How Credibly Do CMIP6 Simulations Capture Historical Mean and Extreme Precipitation Changes?

Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled M...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 50; no. 14
Main Authors Donat, Markus G., Delgado‐Torres, Carlos, Luca, Paolo, Mahmood, Rashed, Ortega, Pablo, Doblas‐Reyes, Francisco J.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.07.2023
Wiley
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2022GL102466

Cover

Loading…
Abstract Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases. Plain Language Summary Climate models are the primary tools to predict future changes in precipitation related to global warming. These predictions can however only usefully inform adaptation measures if they can be trusted. Here we evaluate the trustworthiness of climate model‐simulated precipitation changes based on their capability to correctly capture observed precipitation changes. We apply skill measures commonly used for the evaluation of seasonal to decadal climate predictions to historical climate simulations. We perform this analysis for total precipitation accumulations and indicators of precipitation extremes. The level of skill differs between regions and can be sensitive to the number of available simulations, with some regions benefitting from very large simulation ensembles. Mean and extreme precipitation are skillfully predicted in similar regions, including large parts of Europe and Asia. Lack of skill typically occurs in regions where observed precipitation is characterized by downward trends but Coupled Model Intercomparison Project Phase 6 models simulate increases. This study helps understand the trustworthiness of climate simulations to realistically capture precipitation changes, identifying regions where current models are more or less capable. Key Points Coupled Model Intercomparison Project Phase 6 (CMIP6) realistically simulates observed changes in mean and extreme precipitation in large parts of Europe and Asia and other land regions In regions with moderate skill and observed precipitation subject to multi‐decadal variations the availability of very large ensembles is beneficial Lack of skill occurs primarily in regions where negative precipitation trends are observed but CMIP6 simulates increases
AbstractList Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases. Plain Language Summary Climate models are the primary tools to predict future changes in precipitation related to global warming. These predictions can however only usefully inform adaptation measures if they can be trusted. Here we evaluate the trustworthiness of climate model‐simulated precipitation changes based on their capability to correctly capture observed precipitation changes. We apply skill measures commonly used for the evaluation of seasonal to decadal climate predictions to historical climate simulations. We perform this analysis for total precipitation accumulations and indicators of precipitation extremes. The level of skill differs between regions and can be sensitive to the number of available simulations, with some regions benefitting from very large simulation ensembles. Mean and extreme precipitation are skillfully predicted in similar regions, including large parts of Europe and Asia. Lack of skill typically occurs in regions where observed precipitation is characterized by downward trends but Coupled Model Intercomparison Project Phase 6 models simulate increases. This study helps understand the trustworthiness of climate simulations to realistically capture precipitation changes, identifying regions where current models are more or less capable. Key Points Coupled Model Intercomparison Project Phase 6 (CMIP6) realistically simulates observed changes in mean and extreme precipitation in large parts of Europe and Asia and other land regions In regions with moderate skill and observed precipitation subject to multi‐decadal variations the availability of very large ensembles is beneficial Lack of skill occurs primarily in regions where negative precipitation trends are observed but CMIP6 simulates increases
Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases.
Abstract Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases.
Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases. Climate models are the primary tools to predict future changes in precipitation related to global warming. These predictions can however only usefully inform adaptation measures if they can be trusted. Here we evaluate the trustworthiness of climate model‐simulated precipitation changes based on their capability to correctly capture observed precipitation changes. We apply skill measures commonly used for the evaluation of seasonal to decadal climate predictions to historical climate simulations. We perform this analysis for total precipitation accumulations and indicators of precipitation extremes. The level of skill differs between regions and can be sensitive to the number of available simulations, with some regions benefitting from very large simulation ensembles. Mean and extreme precipitation are skillfully predicted in similar regions, including large parts of Europe and Asia. Lack of skill typically occurs in regions where observed precipitation is characterized by downward trends but Coupled Model Intercomparison Project Phase 6 models simulate increases. This study helps understand the trustworthiness of climate simulations to realistically capture precipitation changes, identifying regions where current models are more or less capable. Coupled Model Intercomparison Project Phase 6 (CMIP6) realistically simulates observed changes in mean and extreme precipitation in large parts of Europe and Asia and other land regions In regions with moderate skill and observed precipitation subject to multi‐decadal variations the availability of very large ensembles is beneficial Lack of skill occurs primarily in regions where negative precipitation trends are observed but CMIP6 simulates increases
Author Ortega, Pablo
Mahmood, Rashed
Doblas‐Reyes, Francisco J.
Donat, Markus G.
Delgado‐Torres, Carlos
Luca, Paolo
Author_xml – sequence: 1
  givenname: Markus G.
  orcidid: 0000-0002-0608-7288
  surname: Donat
  fullname: Donat, Markus G.
  email: markus.donat@bsc.es
  organization: Institució Catalana de Recerca i Estudis Avançats (ICREA)
– sequence: 2
  givenname: Carlos
  orcidid: 0000-0003-1737-4212
  surname: Delgado‐Torres
  fullname: Delgado‐Torres, Carlos
  organization: Barcelona Supercomputing Center
– sequence: 3
  givenname: Paolo
  orcidid: 0000-0002-0416-4622
  surname: Luca
  fullname: Luca, Paolo
  organization: Barcelona Supercomputing Center
– sequence: 4
  givenname: Rashed
  orcidid: 0000-0002-3583-2232
  surname: Mahmood
  fullname: Mahmood, Rashed
  organization: University of Montreal
– sequence: 5
  givenname: Pablo
  surname: Ortega
  fullname: Ortega, Pablo
  organization: Barcelona Supercomputing Center
– sequence: 6
  givenname: Francisco J.
  surname: Doblas‐Reyes
  fullname: Doblas‐Reyes, Francisco J.
  organization: Institució Catalana de Recerca i Estudis Avançats (ICREA)
BookMark eNp9kV-LUzEQxYOsYHf1zQ8Q8NXqZJLmJk8i17UtdHHxz5sQcpPcNeX2pia3rP32xm0FEfRpDsPvnJlhLsnFmMZAyHMGrxigfo2AuNxUKaR8RGZMCzFXAM0FmQHoqrGRT8hlKVsA4MDZjHxdpXva5uBjNxzpu0Tbm_WtpJ_i7jDYKaax0Nbup0MOdBXLlHJ0dqA3wY7Ujp5e_5hy2AV6m4OL-zg9WGj7zY53obx5Sh73dijh2blekS_vrz-3q_nmw3Ldvt3MnWAA874TyqIA3ivNG1Q9NNI7b22nhXRW8Ep5v6iy8Sp4VLoDqYMISnaomeRXZH3K9cluzT7Hnc1Hk2w0D42U74zNU3RDMI3wivHQOI5B6B4VV8I1HL2DBSLDmvXilLXP6fshlMls0yGPdX2DSuACZR1ZKTxRLqdScuiNOx8_ZRsHw8D8-oj58yPV9PIv0-9V_4GfZ9zHIRz_y5rlx42UIIH_BHuFmXo
CitedBy_id crossref_primary_10_1029_2024GL109704
crossref_primary_10_1016_j_scitotenv_2024_172456
crossref_primary_10_1088_1748_9326_acf389
crossref_primary_10_1002_joc_8660
crossref_primary_10_1016_j_jhydrol_2024_131939
crossref_primary_10_3390_w15223957
crossref_primary_10_1007_s00382_024_07201_6
crossref_primary_10_1016_j_wace_2025_100752
crossref_primary_10_5194_gmd_17_7285_2024
crossref_primary_10_1038_s41612_024_00841_9
crossref_primary_10_1038_s41612_024_00832_w
crossref_primary_10_1007_s00382_023_07063_4
crossref_primary_10_1016_j_gloplacha_2025_104725
crossref_primary_10_1016_j_uclim_2024_101966
crossref_primary_10_1038_s41612_024_00796_x
crossref_primary_10_1029_2024GL112436
Cites_doi 10.5194/essd-12-2959-2020
10.5194/gmd-9-3461-2016
10.1029/2019JD032184
10.1016/B978-0-12-385022-5.00008-7
10.5194/gmd-13-2197-2020
10.1071/ES19035
10.1002/jgrd.50203
10.1007/s12601-021-00001-7
10.1029/2019MS001791
10.1175/MWR-D-15-0218.1
10.5194/gmd-15-2973-2022
10.1029/2019MS001689
10.1016/S0022-1694(97)00125-X
10.1029/2019JD030943
10.1029/2019MS001995
10.1029/2018MS001369
10.1175/JCLI-D-19-0953.1
10.1088/1748-9326/ab79e2
10.3402/tellusa.v57i3.14658
10.1071/ES19040
10.1029/2019JC016036
10.1175/JCLI-D-21-0811.1
10.1038/s43017-021-00155-x
10.1038/ngeo1568
10.5194/gmd-13-6165-2020
10.1029/2019MS001683
10.1002/wcc.147
10.11871/jfdc.issn.2096-742X.2020.01.004
10.5194/gmd-11-2975-2018
10.1007/s00376-020-2032-0
10.1038/s41467-019-09729-2
10.1038/nclimate2941
10.1029/2019MS002010
10.1002/2015GL066615
10.1175/JCLI-D-19-0965.1
10.2307/1412159
10.1029/2021MS002814
10.1038/nature01092
10.2151/jmsj.2019-051
10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
10.1038/s41612-019-0071-y
10.5194/gmd-9-1937-2016
10.1007/s00382-021-06034-x
10.1080/16742834.2020.1778419
10.1175/JCLI-D-17-0672.1
10.1007/978-981-13-3396-5_9
10.5194/hess-24-919-2020
10.5194/essd-5-71-2013
10.1175/JCLI-D-12-00502.1
10.1007/s00382-017-3539-7
10.1016/j.wace.2015.06.003
10.1088/1748-9326/ab1c8e
10.5194/gmd-15-4393-2022
10.1029/2019MS001916
10.1029/2019GL086875
10.1002/jgrd.50150
10.1175/MWR-D-16-0037.1
10.1029/2019MS001739
10.1029/2019MS002025
10.1175/JCLI-D-12-00259.1
10.1007/s00382-012-1481-2
10.5194/gmd-12-1573-2019
10.1029/2021GL094915
10.12006/j.issn.1673-1719.2019.186
10.3389/fclim.2021.678109
10.1029/2019JD032263
10.1038/nature06025
10.3390/cli10060083
10.5194/gmd-12-4823-2019
10.1038/nature09763
10.5194/esd-13-1437-2022
10.1029/2018MS001400
10.1017/9781009157896.006
10.5194/gmd-12-2727-2019
10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2
10.3354/cr00953
10.1002/joc.1181
10.5194/gmd-7-545-2014
10.1088/1748-9326/abf28a
ContentType Journal Article
Copyright 2023 The Authors.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2022GL102466
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_74d813e7c32e49f28384c732dc052212
10_1029_2022GL102466
GRL66060
Genre article
GeographicLocations Asia
North America
Europe
GeographicLocations_xml – name: North America
– name: Europe
– name: Asia
GrantInformation_xml – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions
  funderid: 101059659
– fundername: Spanish Ministry for Science and Innovation
  funderid: PRE2019‐509 08864
– fundername: Horizon 2020 Framework Programme
  funderid: 869367
– fundername: Departament de Recerca i Universitats de la Generalitat de Catalunya
  funderid: 2021 SGR 00786
– fundername: Horizon Europe Programme
  funderid: 101081460
– fundername: AXA Research Fund
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TG
7TN
8FD
AFPKN
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
PQGLB
PUEGO
ID FETCH-LOGICAL-c4100-fb48a2403f893728f076dcdaab946ca43410dd56ca7d8ed289b069e4e86b29163
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Wed Aug 27 01:31:05 EDT 2025
Fri Jul 25 12:18:57 EDT 2025
Tue Jul 01 01:05:21 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Sun Jul 06 04:45:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4100-fb48a2403f893728f076dcdaab946ca43410dd56ca7d8ed289b069e4e86b29163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0416-4622
0000-0002-3583-2232
0000-0003-1737-4212
0000-0002-0608-7288
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL102466
PQID 2842526291
PQPubID 54723
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_74d813e7c32e49f28384c732dc052212
proquest_journals_2842526291
crossref_citationtrail_10_1029_2022GL102466
crossref_primary_10_1029_2022GL102466
wiley_primary_10_1029_2022GL102466_GRL66060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 July 2023
PublicationDateYYYYMMDD 2023-07-28
PublicationDate_xml – month: 07
  year: 2023
  text: 28 July 2023
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_7_1_11_1
e_1_2_7_1_32_1
e_1_2_7_1_13_1
e_1_2_7_1_34_1
e_1_2_7_1_30_1
e_1_2_7_2_3_1
e_1_2_7_2_20_1
e_1_2_7_2_7_1
e_1_2_7_2_22_1
e_1_2_7_2_5_1
e_1_2_7_2_24_1
e_1_2_7_2_15_1
e_1_2_7_2_17_1
e_1_2_7_2_19_1
e_1_2_7_1_5_1
e_1_2_7_1_29_1
e_1_2_7_1_7_1
e_1_2_7_1_25_1
e_1_2_7_1_3_1
e_1_2_7_1_27_1
e_1_2_7_1_21_1
e_1_2_7_1_44_1
e_1_2_7_1_23_1
e_1_2_7_1_46_1
e_1_2_7_1_9_1
e_1_2_7_1_40_1
e_1_2_7_1_42_1
e_1_2_7_2_30_1
e_1_2_7_2_32_1
e_1_2_7_2_11_1
e_1_2_7_2_34_1
e_1_2_7_2_13_1
e_1_2_7_2_27_1
e_1_2_7_2_29_1
e_1_2_7_2_9_1
e_1_2_7_1_18_1
e_1_2_7_1_14_1
e_1_2_7_1_37_1
e_1_2_7_1_16_1
e_1_2_7_1_39_1
e_1_2_7_1_10_1
e_1_2_7_1_33_1
e_1_2_7_1_12_1
e_1_2_7_1_35_1
e_1_2_7_1_31_1
e_1_2_7_2_2_1
e_1_2_7_2_21_1
e_1_2_7_2_6_1
e_1_2_7_2_23_1
e_1_2_7_2_4_1
e_1_2_7_2_25_1
e_1_2_7_2_16_1
e_1_2_7_2_18_1
e_1_2_7_1_6_1
e_1_2_7_1_8_1
e_1_2_7_1_2_1
e_1_2_7_1_26_1
e_1_2_7_1_47_1
e_1_2_7_1_4_1
e_1_2_7_1_28_1
e_1_2_7_1_22_1
e_1_2_7_1_43_1
e_1_2_7_1_24_1
e_1_2_7_1_45_1
e_1_2_7_1_20_1
e_1_2_7_1_41_1
e_1_2_7_2_10_1
e_1_2_7_2_31_1
e_1_2_7_2_12_1
e_1_2_7_2_33_1
e_1_2_7_2_14_1
e_1_2_7_2_26_1
e_1_2_7_2_8_1
e_1_2_7_2_28_1
e_1_2_7_1_19_1
e_1_2_7_1_15_1
e_1_2_7_1_36_1
e_1_2_7_1_17_1
e_1_2_7_1_38_1
References_xml – ident: e_1_2_7_1_22_1
  doi: 10.5194/essd-12-2959-2020
– ident: e_1_2_7_1_36_1
  doi: 10.5194/gmd-9-3461-2016
– ident: e_1_2_7_1_5_1
  doi: 10.1029/2019JD032184
– ident: e_1_2_7_1_45_1
  doi: 10.1016/B978-0-12-385022-5.00008-7
– ident: e_1_2_7_2_14_1
  doi: 10.5194/gmd-13-2197-2020
– ident: e_1_2_7_2_33_1
  doi: 10.1071/ES19035
– ident: e_1_2_7_1_39_1
  doi: 10.1002/jgrd.50203
– ident: e_1_2_7_2_20_1
  doi: 10.1007/s12601-021-00001-7
– ident: e_1_2_7_2_23_1
  doi: 10.1029/2019MS001791
– ident: e_1_2_7_2_10_1
  doi: 10.1175/MWR-D-15-0218.1
– ident: e_1_2_7_2_11_1
  doi: 10.5194/gmd-15-2973-2022
– ident: e_1_2_7_1_33_1
  doi: 10.1029/2019MS001689
– ident: e_1_2_7_1_19_1
  doi: 10.1016/S0022-1694(97)00125-X
– ident: e_1_2_7_2_12_1
  doi: 10.1029/2019JD030943
– ident: e_1_2_7_2_2_1
  doi: 10.1029/2019MS001995
– ident: e_1_2_7_2_7_1
  doi: 10.1029/2018MS001369
– ident: e_1_2_7_1_8_1
  doi: 10.1175/JCLI-D-19-0953.1
– ident: e_1_2_7_1_2_1
  doi: 10.1088/1748-9326/ab79e2
– ident: e_1_2_7_1_12_1
  doi: 10.3402/tellusa.v57i3.14658
– ident: e_1_2_7_2_4_1
  doi: 10.1071/ES19040
– ident: e_1_2_7_2_3_1
  doi: 10.1029/2019JC016036
– ident: e_1_2_7_1_11_1
  doi: 10.1175/JCLI-D-21-0811.1
– ident: e_1_2_7_1_29_1
  doi: 10.1038/s43017-021-00155-x
– ident: e_1_2_7_1_35_1
  doi: 10.1038/ngeo1568
– ident: e_1_2_7_2_25_1
  doi: 10.5194/gmd-13-6165-2020
– ident: e_1_2_7_2_30_1
  doi: 10.1029/2019MS001683
– ident: e_1_2_7_1_46_1
  doi: 10.1002/wcc.147
– ident: e_1_2_7_2_13_1
  doi: 10.11871/jfdc.issn.2096-742X.2020.01.004
– ident: e_1_2_7_2_6_1
  doi: 10.5194/gmd-11-2975-2018
– ident: e_1_2_7_2_21_1
  doi: 10.1007/s00376-020-2032-0
– ident: e_1_2_7_1_7_1
  doi: 10.1038/s41467-019-09729-2
– ident: e_1_2_7_1_15_1
  doi: 10.1038/nclimate2941
– ident: e_1_2_7_2_5_1
  doi: 10.1029/2019MS002010
– ident: e_1_2_7_1_21_1
  doi: 10.1002/2015GL066615
– ident: e_1_2_7_1_9_1
  doi: 10.1175/JCLI-D-19-0965.1
– ident: e_1_2_7_1_41_1
  doi: 10.2307/1412159
– ident: e_1_2_7_2_18_1
  doi: 10.1029/2021MS002814
– ident: e_1_2_7_1_3_1
  doi: 10.1038/nature01092
– ident: e_1_2_7_2_32_1
  doi: 10.2151/jmsj.2019-051
– ident: e_1_2_7_1_34_1
  doi: 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
– ident: e_1_2_7_1_40_1
  doi: 10.1038/s41612-019-0071-y
– ident: e_1_2_7_1_17_1
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_2_7_1_43_1
  doi: 10.1007/s00382-021-06034-x
– ident: e_1_2_7_2_15_1
  doi: 10.1080/16742834.2020.1778419
– ident: e_1_2_7_1_23_1
  doi: 10.1175/JCLI-D-17-0672.1
– ident: e_1_2_7_2_17_1
  doi: 10.1007/978-981-13-3396-5_9
– ident: e_1_2_7_1_10_1
  doi: 10.5194/hess-24-919-2020
– ident: e_1_2_7_1_6_1
  doi: 10.5194/essd-5-71-2013
– ident: e_1_2_7_1_44_1
  doi: 10.1175/JCLI-D-12-00502.1
– ident: e_1_2_7_2_29_1
  doi: 10.1007/s00382-017-3539-7
– ident: e_1_2_7_1_4_1
  doi: 10.1016/j.wace.2015.06.003
– ident: e_1_2_7_1_14_1
  doi: 10.1088/1748-9326/ab1c8e
– ident: e_1_2_7_2_8_1
  doi: 10.5194/gmd-15-4393-2022
– ident: e_1_2_7_2_9_1
  doi: 10.1029/2019MS001916
– ident: e_1_2_7_1_37_1
  doi: 10.1029/2019GL086875
– ident: e_1_2_7_1_13_1
  doi: 10.1002/jgrd.50150
– ident: e_1_2_7_2_26_1
  doi: 10.1175/MWR-D-16-0037.1
– ident: e_1_2_7_2_24_1
  doi: 10.1029/2019MS001739
– ident: e_1_2_7_2_16_1
  doi: 10.1029/2019MS002025
– ident: e_1_2_7_1_24_1
  doi: 10.1175/JCLI-D-12-00259.1
– ident: e_1_2_7_1_18_1
  doi: 10.1007/s00382-012-1481-2
– ident: e_1_2_7_2_31_1
  doi: 10.5194/gmd-12-1573-2019
– ident: e_1_2_7_1_28_1
  doi: 10.1029/2021GL094915
– ident: e_1_2_7_2_22_1
  doi: 10.12006/j.issn.1673-1719.2019.186
– ident: e_1_2_7_1_20_1
  doi: 10.3389/fclim.2021.678109
– ident: e_1_2_7_1_16_1
  doi: 10.1029/2019JD032263
– ident: e_1_2_7_1_47_1
  doi: 10.1038/nature06025
– ident: e_1_2_7_1_38_1
  doi: 10.3390/cli10060083
– ident: e_1_2_7_2_27_1
  doi: 10.5194/gmd-12-4823-2019
– ident: e_1_2_7_1_30_1
  doi: 10.1038/nature09763
– ident: e_1_2_7_1_27_1
  doi: 10.5194/esd-13-1437-2022
– ident: e_1_2_7_2_19_1
  doi: 10.1029/2018MS001400
– ident: e_1_2_7_1_25_1
  doi: 10.1017/9781009157896.006
– ident: e_1_2_7_2_28_1
  doi: 10.5194/gmd-12-2727-2019
– ident: e_1_2_7_2_34_1
  doi: 10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2
– ident: e_1_2_7_1_42_1
  doi: 10.3354/cr00953
– ident: e_1_2_7_1_31_1
  doi: 10.1002/joc.1181
– ident: e_1_2_7_1_26_1
  doi: 10.5194/gmd-7-545-2014
– ident: e_1_2_7_1_32_1
  doi: 10.1088/1748-9326/abf28a
SSID ssj0003031
Score 2.5225973
Snippet Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their...
Abstract Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Availability
Climate change
Climate models
Climate prediction
CMIP6
Evaluation
Extreme weather
extremes
Future precipitation
Global warming
historical climate simulations
Intercomparison
Modelling
Precipitation
Precipitation trends
Regions
Simulation
Trends
Trustworthiness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxtBFB9EELyItYqxqcyhnmRxnMzOx0lqqoliSmgreBCW-QQh3YQkxfrf983sJKYH9eJtWIbl7by3835vPn4_hL4Y6zT31BUqKAMFiigLY4wqSum90ZCgbOLpHnzn_Vt2fVferUh9xTNhDT1wM3Angjl52vHCdqhnKkA2lMyKDnWWAHRI-sIUXrkopvIcDBNzo5WnWCGp4PnIO6EqVvu0dwNNlpgRn5NR4uz_D2iuwtWUby630VYGivhrY-AHtObrHbTRS0K8T9BKRzft7CO6748fcXcKSciMnvC3Me4OroYc_3z4nZW5ZrirJ3GjAD9zguCB1zXWtcMXf-dxiRAPI83FJDN24-bSwexsF91eXvzq9ousmVBYdkpIEQyTOnLshQhEqAxEcAf-0EYxbjWDpEWcK6EpnPQOyi1DuPLMS24oQMXOHlqvx7XfR9gSoXlpqVMhMGmgkrJCcuadlkELH1roeDF4lc3mRV2LUZU2tqmqVoe6hY6WvScNkcYL_c6jH5Z9Iv11egBBUeWgqN4KihZqL7xY5X9yVtG440g5fCVYnjz7qiFV78cNh_KOHLyHRZ_QZhSqj6vCVLbR-nz6x38GODM3hyly_wG_dOm5
  priority: 102
  providerName: Directory of Open Access Journals
Title How Credibly Do CMIP6 Simulations Capture Historical Mean and Extreme Precipitation Changes?
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL102466
https://www.proquest.com/docview/2842526291
https://doaj.org/article/74d813e7c32e49f28384c732dc052212
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagFRKXqrxEaBv5ACe0YuN4_TihNqQJqKmiQqUekFZ-IqSyibJB0H_fGa8b0gNI3LyrseT17Hi-GdvfEPLaOm9EYL7QUVsIUGRVWGt1UakQrAEH5RJP9-xcTC_5p6vqKifc8C5Mxw-xSbihZaT1Gg3c2DaTDSBHJkTtbHIGD1yIh2QXb9diBQPG55uVGJbnrmKe5oViUuSD79D_3Xbvey4pMfffg5vboDV5ndN9spfhIj3u9PuEPAjNU_Joksrx3kArHeB07TPydbr4RUcrcEX2-oZ-WNDR7ONc0M_ff-T6XC0dmSVuF9A_zCB0FkxDTePp-PcaE4V0jmQXy8zbTburB-375-TydPxlNC1y5YTC8UFZFtFyZZBpLyIcYSqWUnjQirGaC2c4uK7S-wqa0qvgIeiypdCBByUsA8A4fEF2mkUTXhLqSmlE5ZjXMXJlIZ5yUgkevFHRyBB75O3d5NUuDw-rW1zXaXub6Xp7qnvkzUZ62dFp_EXuBPWwkUES7PRisfpWZ5uqJfdqMAzSDVngOgJQUtzJIfOuBFQ5YD1yeKfFOltmWzPcd2QCvhJGnjT7z4HUk4szAUFe-eq_pA_IY6xLj0lgpg7Jznr1MxwBelnbfvpF-2T3ZHw-v-inHMAtVu_lXw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagCMEF8VRTCvgAJ7Ri43j9OCEIbVJIqghaqQcky0-EVDZRkgr675nxuiE9gMRtdzWWvB6P55ux_Q0hL50PVkQWKp20gwBFNpVzTleNitFZcFA-83RPj8X4lH88a85KnVO8C9PxQ2wSbmgZeb1GA8eEdGEbQJJMCNvZaAIvXIib5BYHaI7TmvHZZimG9bkrmad5pZgU5eQ7tH-z3fqaT8rU_dfw5jZqzW7n8D65V_Aifdcp-AG5EduH5PYo1-O9hKd8gtOvHpGv4_lPOlyCL3Lnl_TDnA6nRzNBv3z_UQp0rejQLnC_gP6hBqHTaFtq20APfq0xU0hnyHaxKMTdtLt7sHr7mJweHpwMx1UpnVB53q_rKjmuLFLtJcQjTKVaigBqsU5z4S0H31WH0MCjDCoGiLpcLXTkUQnHADEOnpCddt7GXUJ9La1oPAs6Ja4cBFReKsFjsCpZGVOPvL4aPONL97C8xbnJ-9tMm-2h7pFXG-lFx6fxF7n3qIeNDLJg5w_z5TdTjMpIHlR_EKUfsMh1AqSkuJcDFnwNsLLPemT_SoummObKMNx4ZAL-EnqeNfvPjpjR54mAKK_e-y_pF-TO-GQ6MZOj409PyV0sUo8ZYab2yc56eRGfAZRZu-d5uv4GRw7mRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagCMQF8VQDBXyAE1qxcbx-nBCkTVJIqgio1AOS5SdCKpsoCYL-e2a8bkgPIHHzrsaS17Pj-cZjf0PIC-eDFZGFSiftIECRTeWc01WjYnQWHJTPPN2zEzE55e_PmrOy4YZ3YTp-iO2GG1pGXq_RwJchFbIB5MiEqJ2Np_DAhbhObmC-D4_0MT7frsSwPHcV8zSvFJOiHHyH_q93e19xSZm5_wrc3AWt2euM7pI7BS7St51-75Frsb1Pbo5zOd4LaOUDnH79gHyZLH7S4QpckTu_oIcLOpwdzwX99O17qc-1pkO7xHQB_cMMQmfRttS2gR792uBGIZ0j2cWy8HbT7urB-s1Dcjo6-jycVKVyQuV5v66r5LiyyLSXEI4wlWopAmjFOs2FtxxcVx1CA00ZVAwQdLla6MijEo4BYBw8Invtoo37hPpaWtF4FnRKXDmIp7xUgsdgVbIyph55dTl5xpfhYXWLc5PT20yb3anukZdb6WVHp_EXuXeoh60MkmDnF4vVV1NsykgeVH8QpR-wyHUCoKS4lwMWfA2oss965OBSi6ZY5towzDsyAV8JI8-a_edAzPjjVECQVz_-L-nn5Nb8cGSmxycfnpDbWKIe94OZOiB7m9WP-BSAzMY9y3_rb-LE5W4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Credibly+Do+CMIP6+Simulations+Capture+Historical+Mean+and+Extreme+Precipitation+Changes%3F&rft.jtitle=Geophysical+research+letters&rft.au=Donat%2C+Markus+G.&rft.au=Delgado%E2%80%90Torres%2C+Carlos&rft.au=De+Luca%2C+Paolo&rft.au=Mahmood%2C+Rashed&rft.date=2023-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=14&rft_id=info:doi/10.1029%2F2022GL102466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2022GL102466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon