How Credibly Do CMIP6 Simulations Capture Historical Mean and Extreme Precipitation Changes?
Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled M...
Saved in:
Published in | Geophysical research letters Vol. 50; no. 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.07.2023
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2022GL102466 |
Cover
Loading…
Abstract | Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases.
Plain Language Summary
Climate models are the primary tools to predict future changes in precipitation related to global warming. These predictions can however only usefully inform adaptation measures if they can be trusted. Here we evaluate the trustworthiness of climate model‐simulated precipitation changes based on their capability to correctly capture observed precipitation changes. We apply skill measures commonly used for the evaluation of seasonal to decadal climate predictions to historical climate simulations. We perform this analysis for total precipitation accumulations and indicators of precipitation extremes. The level of skill differs between regions and can be sensitive to the number of available simulations, with some regions benefitting from very large simulation ensembles. Mean and extreme precipitation are skillfully predicted in similar regions, including large parts of Europe and Asia. Lack of skill typically occurs in regions where observed precipitation is characterized by downward trends but Coupled Model Intercomparison Project Phase 6 models simulate increases. This study helps understand the trustworthiness of climate simulations to realistically capture precipitation changes, identifying regions where current models are more or less capable.
Key Points
Coupled Model Intercomparison Project Phase 6 (CMIP6) realistically simulates observed changes in mean and extreme precipitation in large parts of Europe and Asia and other land regions
In regions with moderate skill and observed precipitation subject to multi‐decadal variations the availability of very large ensembles is beneficial
Lack of skill occurs primarily in regions where negative precipitation trends are observed but CMIP6 simulates increases |
---|---|
AbstractList | Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases.
Plain Language Summary
Climate models are the primary tools to predict future changes in precipitation related to global warming. These predictions can however only usefully inform adaptation measures if they can be trusted. Here we evaluate the trustworthiness of climate model‐simulated precipitation changes based on their capability to correctly capture observed precipitation changes. We apply skill measures commonly used for the evaluation of seasonal to decadal climate predictions to historical climate simulations. We perform this analysis for total precipitation accumulations and indicators of precipitation extremes. The level of skill differs between regions and can be sensitive to the number of available simulations, with some regions benefitting from very large simulation ensembles. Mean and extreme precipitation are skillfully predicted in similar regions, including large parts of Europe and Asia. Lack of skill typically occurs in regions where observed precipitation is characterized by downward trends but Coupled Model Intercomparison Project Phase 6 models simulate increases. This study helps understand the trustworthiness of climate simulations to realistically capture precipitation changes, identifying regions where current models are more or less capable.
Key Points
Coupled Model Intercomparison Project Phase 6 (CMIP6) realistically simulates observed changes in mean and extreme precipitation in large parts of Europe and Asia and other land regions
In regions with moderate skill and observed precipitation subject to multi‐decadal variations the availability of very large ensembles is beneficial
Lack of skill occurs primarily in regions where negative precipitation trends are observed but CMIP6 simulates increases Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases. Abstract Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases. Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their ability to capture observed precipitation changes. Here we evaluate how skillfully historical climate simulations contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) capture observed changes in mean and extreme precipitation. We find that CMIP6 historical simulations skillfully represent observed precipitation changes over large parts of Europe, Asia, northeastern North America, parts of South America and western Australia, whereas a lack of skill is apparent in western North America and parts of Africa. In particular in regions with moderate skill the availability of very large ensembles can be beneficial to improve the simulation accuracy. CMIP6 simulations are regionally skillful where they capture observed (positive or negative) trends, whereas a lack of skill is found in regions characterized by negative observed precipitation trends where CMIP6 simulates increases. Climate models are the primary tools to predict future changes in precipitation related to global warming. These predictions can however only usefully inform adaptation measures if they can be trusted. Here we evaluate the trustworthiness of climate model‐simulated precipitation changes based on their capability to correctly capture observed precipitation changes. We apply skill measures commonly used for the evaluation of seasonal to decadal climate predictions to historical climate simulations. We perform this analysis for total precipitation accumulations and indicators of precipitation extremes. The level of skill differs between regions and can be sensitive to the number of available simulations, with some regions benefitting from very large simulation ensembles. Mean and extreme precipitation are skillfully predicted in similar regions, including large parts of Europe and Asia. Lack of skill typically occurs in regions where observed precipitation is characterized by downward trends but Coupled Model Intercomparison Project Phase 6 models simulate increases. This study helps understand the trustworthiness of climate simulations to realistically capture precipitation changes, identifying regions where current models are more or less capable. Coupled Model Intercomparison Project Phase 6 (CMIP6) realistically simulates observed changes in mean and extreme precipitation in large parts of Europe and Asia and other land regions In regions with moderate skill and observed precipitation subject to multi‐decadal variations the availability of very large ensembles is beneficial Lack of skill occurs primarily in regions where negative precipitation trends are observed but CMIP6 simulates increases |
Author | Ortega, Pablo Mahmood, Rashed Doblas‐Reyes, Francisco J. Donat, Markus G. Delgado‐Torres, Carlos Luca, Paolo |
Author_xml | – sequence: 1 givenname: Markus G. orcidid: 0000-0002-0608-7288 surname: Donat fullname: Donat, Markus G. email: markus.donat@bsc.es organization: Institució Catalana de Recerca i Estudis Avançats (ICREA) – sequence: 2 givenname: Carlos orcidid: 0000-0003-1737-4212 surname: Delgado‐Torres fullname: Delgado‐Torres, Carlos organization: Barcelona Supercomputing Center – sequence: 3 givenname: Paolo orcidid: 0000-0002-0416-4622 surname: Luca fullname: Luca, Paolo organization: Barcelona Supercomputing Center – sequence: 4 givenname: Rashed orcidid: 0000-0002-3583-2232 surname: Mahmood fullname: Mahmood, Rashed organization: University of Montreal – sequence: 5 givenname: Pablo surname: Ortega fullname: Ortega, Pablo organization: Barcelona Supercomputing Center – sequence: 6 givenname: Francisco J. surname: Doblas‐Reyes fullname: Doblas‐Reyes, Francisco J. organization: Institució Catalana de Recerca i Estudis Avançats (ICREA) |
BookMark | eNp9kV-LUzEQxYOsYHf1zQ8Q8NXqZJLmJk8i17UtdHHxz5sQcpPcNeX2pia3rP32xm0FEfRpDsPvnJlhLsnFmMZAyHMGrxigfo2AuNxUKaR8RGZMCzFXAM0FmQHoqrGRT8hlKVsA4MDZjHxdpXva5uBjNxzpu0Tbm_WtpJ_i7jDYKaax0Nbup0MOdBXLlHJ0dqA3wY7Ujp5e_5hy2AV6m4OL-zg9WGj7zY53obx5Sh73dijh2blekS_vrz-3q_nmw3Ldvt3MnWAA874TyqIA3ivNG1Q9NNI7b22nhXRW8Ep5v6iy8Sp4VLoDqYMISnaomeRXZH3K9cluzT7Hnc1Hk2w0D42U74zNU3RDMI3wivHQOI5B6B4VV8I1HL2DBSLDmvXilLXP6fshlMls0yGPdX2DSuACZR1ZKTxRLqdScuiNOx8_ZRsHw8D8-oj58yPV9PIv0-9V_4GfZ9zHIRz_y5rlx42UIIH_BHuFmXo |
CitedBy_id | crossref_primary_10_1029_2024GL109704 crossref_primary_10_1016_j_scitotenv_2024_172456 crossref_primary_10_1088_1748_9326_acf389 crossref_primary_10_1002_joc_8660 crossref_primary_10_1016_j_jhydrol_2024_131939 crossref_primary_10_3390_w15223957 crossref_primary_10_1007_s00382_024_07201_6 crossref_primary_10_1016_j_wace_2025_100752 crossref_primary_10_5194_gmd_17_7285_2024 crossref_primary_10_1038_s41612_024_00841_9 crossref_primary_10_1038_s41612_024_00832_w crossref_primary_10_1007_s00382_023_07063_4 crossref_primary_10_1016_j_gloplacha_2025_104725 crossref_primary_10_1016_j_uclim_2024_101966 crossref_primary_10_1038_s41612_024_00796_x crossref_primary_10_1029_2024GL112436 |
Cites_doi | 10.5194/essd-12-2959-2020 10.5194/gmd-9-3461-2016 10.1029/2019JD032184 10.1016/B978-0-12-385022-5.00008-7 10.5194/gmd-13-2197-2020 10.1071/ES19035 10.1002/jgrd.50203 10.1007/s12601-021-00001-7 10.1029/2019MS001791 10.1175/MWR-D-15-0218.1 10.5194/gmd-15-2973-2022 10.1029/2019MS001689 10.1016/S0022-1694(97)00125-X 10.1029/2019JD030943 10.1029/2019MS001995 10.1029/2018MS001369 10.1175/JCLI-D-19-0953.1 10.1088/1748-9326/ab79e2 10.3402/tellusa.v57i3.14658 10.1071/ES19040 10.1029/2019JC016036 10.1175/JCLI-D-21-0811.1 10.1038/s43017-021-00155-x 10.1038/ngeo1568 10.5194/gmd-13-6165-2020 10.1029/2019MS001683 10.1002/wcc.147 10.11871/jfdc.issn.2096-742X.2020.01.004 10.5194/gmd-11-2975-2018 10.1007/s00376-020-2032-0 10.1038/s41467-019-09729-2 10.1038/nclimate2941 10.1029/2019MS002010 10.1002/2015GL066615 10.1175/JCLI-D-19-0965.1 10.2307/1412159 10.1029/2021MS002814 10.1038/nature01092 10.2151/jmsj.2019-051 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2 10.1038/s41612-019-0071-y 10.5194/gmd-9-1937-2016 10.1007/s00382-021-06034-x 10.1080/16742834.2020.1778419 10.1175/JCLI-D-17-0672.1 10.1007/978-981-13-3396-5_9 10.5194/hess-24-919-2020 10.5194/essd-5-71-2013 10.1175/JCLI-D-12-00502.1 10.1007/s00382-017-3539-7 10.1016/j.wace.2015.06.003 10.1088/1748-9326/ab1c8e 10.5194/gmd-15-4393-2022 10.1029/2019MS001916 10.1029/2019GL086875 10.1002/jgrd.50150 10.1175/MWR-D-16-0037.1 10.1029/2019MS001739 10.1029/2019MS002025 10.1175/JCLI-D-12-00259.1 10.1007/s00382-012-1481-2 10.5194/gmd-12-1573-2019 10.1029/2021GL094915 10.12006/j.issn.1673-1719.2019.186 10.3389/fclim.2021.678109 10.1029/2019JD032263 10.1038/nature06025 10.3390/cli10060083 10.5194/gmd-12-4823-2019 10.1038/nature09763 10.5194/esd-13-1437-2022 10.1029/2018MS001400 10.1017/9781009157896.006 10.5194/gmd-12-2727-2019 10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2 10.3354/cr00953 10.1002/joc.1181 10.5194/gmd-7-545-2014 10.1088/1748-9326/abf28a |
ContentType | Journal Article |
Copyright | 2023 The Authors. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2022GL102466 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_74d813e7c32e49f28384c732dc052212 10_1029_2022GL102466 GRL66060 |
Genre | article |
GeographicLocations | Asia North America Europe |
GeographicLocations_xml | – name: North America – name: Europe – name: Asia |
GrantInformation_xml | – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions funderid: 101059659 – fundername: Spanish Ministry for Science and Innovation funderid: PRE2019‐509 08864 – fundername: Horizon 2020 Framework Programme funderid: 869367 – fundername: Departament de Recerca i Universitats de la Generalitat de Catalunya funderid: 2021 SGR 00786 – fundername: Horizon Europe Programme funderid: 101081460 – fundername: AXA Research Fund |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PHGZM PHGZT PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TG 7TN 8FD AFPKN F1W FR3 H8D H96 KL. KR7 L.G L7M PQGLB PUEGO |
ID | FETCH-LOGICAL-c4100-fb48a2403f893728f076dcdaab946ca43410dd56ca7d8ed289b069e4e86b29163 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:31:05 EDT 2025 Fri Jul 25 12:18:57 EDT 2025 Tue Jul 01 01:05:21 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Sun Jul 06 04:45:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4100-fb48a2403f893728f076dcdaab946ca43410dd56ca7d8ed289b069e4e86b29163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0416-4622 0000-0002-3583-2232 0000-0003-1737-4212 0000-0002-0608-7288 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL102466 |
PQID | 2842526291 |
PQPubID | 54723 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74d813e7c32e49f28384c732dc052212 proquest_journals_2842526291 crossref_citationtrail_10_1029_2022GL102466 crossref_primary_10_1029_2022GL102466 wiley_primary_10_1029_2022GL102466_GRL66060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 July 2023 |
PublicationDateYYYYMMDD | 2023-07-28 |
PublicationDate_xml | – month: 07 year: 2023 text: 28 July 2023 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_7_1_11_1 e_1_2_7_1_32_1 e_1_2_7_1_13_1 e_1_2_7_1_34_1 e_1_2_7_1_30_1 e_1_2_7_2_3_1 e_1_2_7_2_20_1 e_1_2_7_2_7_1 e_1_2_7_2_22_1 e_1_2_7_2_5_1 e_1_2_7_2_24_1 e_1_2_7_2_15_1 e_1_2_7_2_17_1 e_1_2_7_2_19_1 e_1_2_7_1_5_1 e_1_2_7_1_29_1 e_1_2_7_1_7_1 e_1_2_7_1_25_1 e_1_2_7_1_3_1 e_1_2_7_1_27_1 e_1_2_7_1_21_1 e_1_2_7_1_44_1 e_1_2_7_1_23_1 e_1_2_7_1_46_1 e_1_2_7_1_9_1 e_1_2_7_1_40_1 e_1_2_7_1_42_1 e_1_2_7_2_30_1 e_1_2_7_2_32_1 e_1_2_7_2_11_1 e_1_2_7_2_34_1 e_1_2_7_2_13_1 e_1_2_7_2_27_1 e_1_2_7_2_29_1 e_1_2_7_2_9_1 e_1_2_7_1_18_1 e_1_2_7_1_14_1 e_1_2_7_1_37_1 e_1_2_7_1_16_1 e_1_2_7_1_39_1 e_1_2_7_1_10_1 e_1_2_7_1_33_1 e_1_2_7_1_12_1 e_1_2_7_1_35_1 e_1_2_7_1_31_1 e_1_2_7_2_2_1 e_1_2_7_2_21_1 e_1_2_7_2_6_1 e_1_2_7_2_23_1 e_1_2_7_2_4_1 e_1_2_7_2_25_1 e_1_2_7_2_16_1 e_1_2_7_2_18_1 e_1_2_7_1_6_1 e_1_2_7_1_8_1 e_1_2_7_1_2_1 e_1_2_7_1_26_1 e_1_2_7_1_47_1 e_1_2_7_1_4_1 e_1_2_7_1_28_1 e_1_2_7_1_22_1 e_1_2_7_1_43_1 e_1_2_7_1_24_1 e_1_2_7_1_45_1 e_1_2_7_1_20_1 e_1_2_7_1_41_1 e_1_2_7_2_10_1 e_1_2_7_2_31_1 e_1_2_7_2_12_1 e_1_2_7_2_33_1 e_1_2_7_2_14_1 e_1_2_7_2_26_1 e_1_2_7_2_8_1 e_1_2_7_2_28_1 e_1_2_7_1_19_1 e_1_2_7_1_15_1 e_1_2_7_1_36_1 e_1_2_7_1_17_1 e_1_2_7_1_38_1 |
References_xml | – ident: e_1_2_7_1_22_1 doi: 10.5194/essd-12-2959-2020 – ident: e_1_2_7_1_36_1 doi: 10.5194/gmd-9-3461-2016 – ident: e_1_2_7_1_5_1 doi: 10.1029/2019JD032184 – ident: e_1_2_7_1_45_1 doi: 10.1016/B978-0-12-385022-5.00008-7 – ident: e_1_2_7_2_14_1 doi: 10.5194/gmd-13-2197-2020 – ident: e_1_2_7_2_33_1 doi: 10.1071/ES19035 – ident: e_1_2_7_1_39_1 doi: 10.1002/jgrd.50203 – ident: e_1_2_7_2_20_1 doi: 10.1007/s12601-021-00001-7 – ident: e_1_2_7_2_23_1 doi: 10.1029/2019MS001791 – ident: e_1_2_7_2_10_1 doi: 10.1175/MWR-D-15-0218.1 – ident: e_1_2_7_2_11_1 doi: 10.5194/gmd-15-2973-2022 – ident: e_1_2_7_1_33_1 doi: 10.1029/2019MS001689 – ident: e_1_2_7_1_19_1 doi: 10.1016/S0022-1694(97)00125-X – ident: e_1_2_7_2_12_1 doi: 10.1029/2019JD030943 – ident: e_1_2_7_2_2_1 doi: 10.1029/2019MS001995 – ident: e_1_2_7_2_7_1 doi: 10.1029/2018MS001369 – ident: e_1_2_7_1_8_1 doi: 10.1175/JCLI-D-19-0953.1 – ident: e_1_2_7_1_2_1 doi: 10.1088/1748-9326/ab79e2 – ident: e_1_2_7_1_12_1 doi: 10.3402/tellusa.v57i3.14658 – ident: e_1_2_7_2_4_1 doi: 10.1071/ES19040 – ident: e_1_2_7_2_3_1 doi: 10.1029/2019JC016036 – ident: e_1_2_7_1_11_1 doi: 10.1175/JCLI-D-21-0811.1 – ident: e_1_2_7_1_29_1 doi: 10.1038/s43017-021-00155-x – ident: e_1_2_7_1_35_1 doi: 10.1038/ngeo1568 – ident: e_1_2_7_2_25_1 doi: 10.5194/gmd-13-6165-2020 – ident: e_1_2_7_2_30_1 doi: 10.1029/2019MS001683 – ident: e_1_2_7_1_46_1 doi: 10.1002/wcc.147 – ident: e_1_2_7_2_13_1 doi: 10.11871/jfdc.issn.2096-742X.2020.01.004 – ident: e_1_2_7_2_6_1 doi: 10.5194/gmd-11-2975-2018 – ident: e_1_2_7_2_21_1 doi: 10.1007/s00376-020-2032-0 – ident: e_1_2_7_1_7_1 doi: 10.1038/s41467-019-09729-2 – ident: e_1_2_7_1_15_1 doi: 10.1038/nclimate2941 – ident: e_1_2_7_2_5_1 doi: 10.1029/2019MS002010 – ident: e_1_2_7_1_21_1 doi: 10.1002/2015GL066615 – ident: e_1_2_7_1_9_1 doi: 10.1175/JCLI-D-19-0965.1 – ident: e_1_2_7_1_41_1 doi: 10.2307/1412159 – ident: e_1_2_7_2_18_1 doi: 10.1029/2021MS002814 – ident: e_1_2_7_1_3_1 doi: 10.1038/nature01092 – ident: e_1_2_7_2_32_1 doi: 10.2151/jmsj.2019-051 – ident: e_1_2_7_1_34_1 doi: 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2 – ident: e_1_2_7_1_40_1 doi: 10.1038/s41612-019-0071-y – ident: e_1_2_7_1_17_1 doi: 10.5194/gmd-9-1937-2016 – ident: e_1_2_7_1_43_1 doi: 10.1007/s00382-021-06034-x – ident: e_1_2_7_2_15_1 doi: 10.1080/16742834.2020.1778419 – ident: e_1_2_7_1_23_1 doi: 10.1175/JCLI-D-17-0672.1 – ident: e_1_2_7_2_17_1 doi: 10.1007/978-981-13-3396-5_9 – ident: e_1_2_7_1_10_1 doi: 10.5194/hess-24-919-2020 – ident: e_1_2_7_1_6_1 doi: 10.5194/essd-5-71-2013 – ident: e_1_2_7_1_44_1 doi: 10.1175/JCLI-D-12-00502.1 – ident: e_1_2_7_2_29_1 doi: 10.1007/s00382-017-3539-7 – ident: e_1_2_7_1_4_1 doi: 10.1016/j.wace.2015.06.003 – ident: e_1_2_7_1_14_1 doi: 10.1088/1748-9326/ab1c8e – ident: e_1_2_7_2_8_1 doi: 10.5194/gmd-15-4393-2022 – ident: e_1_2_7_2_9_1 doi: 10.1029/2019MS001916 – ident: e_1_2_7_1_37_1 doi: 10.1029/2019GL086875 – ident: e_1_2_7_1_13_1 doi: 10.1002/jgrd.50150 – ident: e_1_2_7_2_26_1 doi: 10.1175/MWR-D-16-0037.1 – ident: e_1_2_7_2_24_1 doi: 10.1029/2019MS001739 – ident: e_1_2_7_2_16_1 doi: 10.1029/2019MS002025 – ident: e_1_2_7_1_24_1 doi: 10.1175/JCLI-D-12-00259.1 – ident: e_1_2_7_1_18_1 doi: 10.1007/s00382-012-1481-2 – ident: e_1_2_7_2_31_1 doi: 10.5194/gmd-12-1573-2019 – ident: e_1_2_7_1_28_1 doi: 10.1029/2021GL094915 – ident: e_1_2_7_2_22_1 doi: 10.12006/j.issn.1673-1719.2019.186 – ident: e_1_2_7_1_20_1 doi: 10.3389/fclim.2021.678109 – ident: e_1_2_7_1_16_1 doi: 10.1029/2019JD032263 – ident: e_1_2_7_1_47_1 doi: 10.1038/nature06025 – ident: e_1_2_7_1_38_1 doi: 10.3390/cli10060083 – ident: e_1_2_7_2_27_1 doi: 10.5194/gmd-12-4823-2019 – ident: e_1_2_7_1_30_1 doi: 10.1038/nature09763 – ident: e_1_2_7_1_27_1 doi: 10.5194/esd-13-1437-2022 – ident: e_1_2_7_2_19_1 doi: 10.1029/2018MS001400 – ident: e_1_2_7_1_25_1 doi: 10.1017/9781009157896.006 – ident: e_1_2_7_2_28_1 doi: 10.5194/gmd-12-2727-2019 – ident: e_1_2_7_2_34_1 doi: 10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2 – ident: e_1_2_7_1_42_1 doi: 10.3354/cr00953 – ident: e_1_2_7_1_31_1 doi: 10.1002/joc.1181 – ident: e_1_2_7_1_26_1 doi: 10.5194/gmd-7-545-2014 – ident: e_1_2_7_1_32_1 doi: 10.1088/1748-9326/abf28a |
SSID | ssj0003031 |
Score | 2.5225973 |
Snippet | Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by their... Abstract Future precipitation changes are typically estimated from climate model simulations, while the credibility of such projections needs to be assessed by... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Availability Climate change Climate models Climate prediction CMIP6 Evaluation Extreme weather extremes Future precipitation Global warming historical climate simulations Intercomparison Modelling Precipitation Precipitation trends Regions Simulation Trends Trustworthiness |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxtBFB9EELyItYqxqcyhnmRxnMzOx0lqqoliSmgreBCW-QQh3YQkxfrf983sJKYH9eJtWIbl7by3835vPn4_hL4Y6zT31BUqKAMFiigLY4wqSum90ZCgbOLpHnzn_Vt2fVferUh9xTNhDT1wM3Angjl52vHCdqhnKkA2lMyKDnWWAHRI-sIUXrkopvIcDBNzo5WnWCGp4PnIO6EqVvu0dwNNlpgRn5NR4uz_D2iuwtWUby630VYGivhrY-AHtObrHbTRS0K8T9BKRzft7CO6748fcXcKSciMnvC3Me4OroYc_3z4nZW5ZrirJ3GjAD9zguCB1zXWtcMXf-dxiRAPI83FJDN24-bSwexsF91eXvzq9ousmVBYdkpIEQyTOnLshQhEqAxEcAf-0EYxbjWDpEWcK6EpnPQOyi1DuPLMS24oQMXOHlqvx7XfR9gSoXlpqVMhMGmgkrJCcuadlkELH1roeDF4lc3mRV2LUZU2tqmqVoe6hY6WvScNkcYL_c6jH5Z9Iv11egBBUeWgqN4KihZqL7xY5X9yVtG440g5fCVYnjz7qiFV78cNh_KOHLyHRZ_QZhSqj6vCVLbR-nz6x38GODM3hyly_wG_dOm5 priority: 102 providerName: Directory of Open Access Journals |
Title | How Credibly Do CMIP6 Simulations Capture Historical Mean and Extreme Precipitation Changes? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL102466 https://www.proquest.com/docview/2842526291 https://doaj.org/article/74d813e7c32e49f28384c732dc052212 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagFRKXqrxEaBv5ACe0YuN4_TihNqQJqKmiQqUekFZ-IqSyibJB0H_fGa8b0gNI3LyrseT17Hi-GdvfEPLaOm9EYL7QUVsIUGRVWGt1UakQrAEH5RJP9-xcTC_5p6vqKifc8C5Mxw-xSbihZaT1Gg3c2DaTDSBHJkTtbHIGD1yIh2QXb9diBQPG55uVGJbnrmKe5oViUuSD79D_3Xbvey4pMfffg5vboDV5ndN9spfhIj3u9PuEPAjNU_Joksrx3kArHeB07TPydbr4RUcrcEX2-oZ-WNDR7ONc0M_ff-T6XC0dmSVuF9A_zCB0FkxDTePp-PcaE4V0jmQXy8zbTburB-375-TydPxlNC1y5YTC8UFZFtFyZZBpLyIcYSqWUnjQirGaC2c4uK7S-wqa0qvgIeiypdCBByUsA8A4fEF2mkUTXhLqSmlE5ZjXMXJlIZ5yUgkevFHRyBB75O3d5NUuDw-rW1zXaXub6Xp7qnvkzUZ62dFp_EXuBPWwkUES7PRisfpWZ5uqJfdqMAzSDVngOgJQUtzJIfOuBFQ5YD1yeKfFOltmWzPcd2QCvhJGnjT7z4HUk4szAUFe-eq_pA_IY6xLj0lgpg7Jznr1MxwBelnbfvpF-2T3ZHw-v-inHMAtVu_lXw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagCMEF8VRTCvgAJ7Ri43j9OCEIbVJIqghaqQcky0-EVDZRkgr675nxuiE9gMRtdzWWvB6P55ux_Q0hL50PVkQWKp20gwBFNpVzTleNitFZcFA-83RPj8X4lH88a85KnVO8C9PxQ2wSbmgZeb1GA8eEdGEbQJJMCNvZaAIvXIib5BYHaI7TmvHZZimG9bkrmad5pZgU5eQ7tH-z3fqaT8rU_dfw5jZqzW7n8D65V_Aifdcp-AG5EduH5PYo1-O9hKd8gtOvHpGv4_lPOlyCL3Lnl_TDnA6nRzNBv3z_UQp0rejQLnC_gP6hBqHTaFtq20APfq0xU0hnyHaxKMTdtLt7sHr7mJweHpwMx1UpnVB53q_rKjmuLFLtJcQjTKVaigBqsU5z4S0H31WH0MCjDCoGiLpcLXTkUQnHADEOnpCddt7GXUJ9La1oPAs6Ja4cBFReKsFjsCpZGVOPvL4aPONL97C8xbnJ-9tMm-2h7pFXG-lFx6fxF7n3qIeNDLJg5w_z5TdTjMpIHlR_EKUfsMh1AqSkuJcDFnwNsLLPemT_SoummObKMNx4ZAL-EnqeNfvPjpjR54mAKK_e-y_pF-TO-GQ6MZOj409PyV0sUo8ZYab2yc56eRGfAZRZu-d5uv4GRw7mRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagCMQF8VQDBXyAE1qxcbx-nBCkTVJIqgio1AOS5SdCKpsoCYL-e2a8bkgPIHHzrsaS17Pj-cZjf0PIC-eDFZGFSiftIECRTeWc01WjYnQWHJTPPN2zEzE55e_PmrOy4YZ3YTp-iO2GG1pGXq_RwJchFbIB5MiEqJ2Np_DAhbhObmC-D4_0MT7frsSwPHcV8zSvFJOiHHyH_q93e19xSZm5_wrc3AWt2euM7pI7BS7St51-75Frsb1Pbo5zOd4LaOUDnH79gHyZLH7S4QpckTu_oIcLOpwdzwX99O17qc-1pkO7xHQB_cMMQmfRttS2gR792uBGIZ0j2cWy8HbT7urB-s1Dcjo6-jycVKVyQuV5v66r5LiyyLSXEI4wlWopAmjFOs2FtxxcVx1CA00ZVAwQdLla6MijEo4BYBw8Invtoo37hPpaWtF4FnRKXDmIp7xUgsdgVbIyph55dTl5xpfhYXWLc5PT20yb3anukZdb6WVHp_EXuXeoh60MkmDnF4vVV1NsykgeVH8QpR-wyHUCoKS4lwMWfA2oss965OBSi6ZY5towzDsyAV8JI8-a_edAzPjjVECQVz_-L-nn5Nb8cGSmxycfnpDbWKIe94OZOiB7m9WP-BSAzMY9y3_rb-LE5W4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Credibly+Do+CMIP6+Simulations+Capture+Historical+Mean+and+Extreme+Precipitation+Changes%3F&rft.jtitle=Geophysical+research+letters&rft.au=Donat%2C+Markus+G.&rft.au=Delgado%E2%80%90Torres%2C+Carlos&rft.au=De+Luca%2C+Paolo&rft.au=Mahmood%2C+Rashed&rft.date=2023-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=14&rft_id=info:doi/10.1029%2F2022GL102466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2022GL102466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |