Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction
The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacan...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 28; pp. 8691 - 8696 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.07.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201805520 |
Cover
Loading…
Abstract | The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4. The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.
Argon plasma can ensure preferential Sn vacancies on the surface of SnCoFe perovskite hydroxide, which exhibits a much higher current density and a lower overpotential for the oxygen evolution reaction. |
---|---|
AbstractList | The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4. The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance. The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies-rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X-ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4 . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies-rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X-ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4 . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance. The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies-rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X-ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH) . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance. The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH) 4 . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance. The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4. The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance. Argon plasma can ensure preferential Sn vacancies on the surface of SnCoFe perovskite hydroxide, which exhibits a much higher current density and a lower overpotential for the oxygen evolution reaction. |
Author | Hao, Li Qiao, Man Chen, Dawei Lu, Ying‐Rui Wang, Shuangyin Li, Yafei Liu, Dongdong Dong, Chung‐Li |
Author_xml | – sequence: 1 givenname: Dawei surname: Chen fullname: Chen, Dawei organization: Hunan University – sequence: 2 givenname: Man surname: Qiao fullname: Qiao, Man organization: Nanjing Normal University – sequence: 3 givenname: Ying‐Rui surname: Lu fullname: Lu, Ying‐Rui organization: Tamkang University – sequence: 4 givenname: Li surname: Hao fullname: Hao, Li organization: Hunan University – sequence: 5 givenname: Dongdong surname: Liu fullname: Liu, Dongdong organization: Hunan University – sequence: 6 givenname: Chung‐Li surname: Dong fullname: Dong, Chung‐Li email: cldong@mail.tku.edu.tw organization: Tamkang University – sequence: 7 givenname: Yafei surname: Li fullname: Li, Yafei email: liyafei@njnu.edu.cn organization: Nanjing Normal University – sequence: 8 givenname: Shuangyin orcidid: 0000-0001-7185-9857 surname: Wang fullname: Wang, Shuangyin email: shuangyinwang@hnu.edu.cn organization: Hunan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29771458$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctrFTEUh4NU7EO3LiXgxs1c85pJsiyXqy2UtoiPZcgkZzR1blKTmdr73ze3t1UoiBDIWXzf4ZzfOUR7MUVA6DUlC0oIe29jgAUjVJG2ZeQZOqAtow2Xku_VWnDeSNXSfXRYylXllSLdC7TPtJRUtOoAfbvMMECGOAU74qWdQor4q3U2ugAFh4gvIaeb8jNMgE82Pqfb4AEPKePpB-CL2813iHh1k8b5Xv0E1m2Ll-j5YMcCrx7-I_Tlw-rz8qQ5u_h4ujw-a5yo8zedZnzomR8oVdzZfnDaWuc70bcd8fVRT4ZeM-Wl9tYp6bnwjLKeSKc51fwIvdv1vc7p1wxlMutQHIyjjZDmYhgRRIq6Lq_o2yfoVZpzrNNVqhO0061qK_XmgZr7NXhzncPa5o15jKwCYge4nEqp6RkXpvvcpmzDaCgx28uY7WXMn8tUbfFEe-z8T0HvhN9hhM1_aHN8frr6694Bh9qgbg |
CitedBy_id | crossref_primary_10_1039_D1CY00240F crossref_primary_10_1002_adfm_202208399 crossref_primary_10_1002_eem2_12064 crossref_primary_10_1016_j_mtchem_2023_101530 crossref_primary_10_1039_C8QI01240G crossref_primary_10_1039_D3TA02813E crossref_primary_10_1021_acscatal_1c00465 crossref_primary_10_1016_j_apcatb_2020_119247 crossref_primary_10_1039_D0CS00639D crossref_primary_10_1002_anie_202100371 crossref_primary_10_1016_j_cej_2021_129698 crossref_primary_10_1016_j_mtchem_2018_10_001 crossref_primary_10_1016_j_apcatb_2021_120641 crossref_primary_10_1021_acsami_2c08071 crossref_primary_10_1021_acscatal_3c05789 crossref_primary_10_1002_smtd_202000868 crossref_primary_10_1016_j_chphma_2022_01_003 crossref_primary_10_1039_C9TA07962A crossref_primary_10_1002_aenm_202000459 crossref_primary_10_1016_j_jclepro_2019_07_051 crossref_primary_10_1002_adma_202005344 crossref_primary_10_1016_j_mseb_2023_116884 crossref_primary_10_1002_advs_201800949 crossref_primary_10_1002_aenm_202102141 crossref_primary_10_1021_acssuschemeng_0c01729 crossref_primary_10_1007_s40843_021_1959_1 crossref_primary_10_1002_smtd_201800344 crossref_primary_10_3724_SP_J_1249_2023_04379 crossref_primary_10_1016_j_ijhydene_2024_01_012 crossref_primary_10_1016_j_mtchem_2018_10_010 crossref_primary_10_1016_j_ijhydene_2020_10_071 crossref_primary_10_1039_C8QI00608C crossref_primary_10_1039_D2QI00226D crossref_primary_10_1002_adma_201901439 crossref_primary_10_1016_j_cej_2024_152758 crossref_primary_10_1002_ange_201910510 crossref_primary_10_1021_acs_energyfuels_4c02080 crossref_primary_10_1002_cssc_201900754 crossref_primary_10_1002_anie_202002394 crossref_primary_10_1021_acsaem_2c01523 crossref_primary_10_1039_C8NJ04429E crossref_primary_10_1016_j_jcis_2021_06_102 crossref_primary_10_1039_C9CY00759H crossref_primary_10_1002_advs_202105135 crossref_primary_10_2139_ssrn_4120980 crossref_primary_10_1002_anie_202111610 crossref_primary_10_1002_aenm_202204019 crossref_primary_10_1016_j_apsusc_2023_158271 crossref_primary_10_1002_adfm_202010437 crossref_primary_10_1002_smll_202000663 crossref_primary_10_1016_j_jcis_2019_12_114 crossref_primary_10_1039_C8TA10985K crossref_primary_10_1007_s40242_020_0056_8 crossref_primary_10_1002_aenm_202100640 crossref_primary_10_1016_j_cclet_2019_03_051 crossref_primary_10_1016_j_nanoen_2018_08_061 crossref_primary_10_1039_C9CS00607A crossref_primary_10_1016_j_bios_2024_116275 crossref_primary_10_1016_j_jallcom_2024_177821 crossref_primary_10_1002_adma_202405129 crossref_primary_10_1016_j_carbon_2025_120215 crossref_primary_10_1038_s42004_019_0112_9 crossref_primary_10_1002_sstr_202000067 crossref_primary_10_1007_s10311_020_01023_8 crossref_primary_10_1021_acssuschemeng_9b03906 crossref_primary_10_1039_D1EE00248A crossref_primary_10_1002_adma_201907879 crossref_primary_10_1002_ange_202418248 crossref_primary_10_1007_s10853_020_04718_z crossref_primary_10_1016_j_jallcom_2019_152610 crossref_primary_10_1016_j_jpowsour_2020_228748 crossref_primary_10_1021_acscatal_2c03476 crossref_primary_10_1039_D2TA00966H crossref_primary_10_1002_aenm_201900228 crossref_primary_10_1016_j_mcat_2022_112502 crossref_primary_10_1007_s11426_022_1419_y crossref_primary_10_1016_j_matt_2020_06_002 crossref_primary_10_1002_cssc_202002103 crossref_primary_10_1016_j_mattod_2019_05_021 crossref_primary_10_1021_acs_chemrev_4c00171 crossref_primary_10_1016_j_jcis_2024_01_151 crossref_primary_10_1016_j_jcat_2022_04_009 crossref_primary_10_1016_j_jcis_2021_02_126 crossref_primary_10_1039_D3NR00082F crossref_primary_10_3389_fbioe_2022_972837 crossref_primary_10_1002_aenm_201903172 crossref_primary_10_1002_cctc_202301420 crossref_primary_10_1016_j_cjsc_2025_100520 crossref_primary_10_1016_S1872_2067_20_63740_8 crossref_primary_10_1039_C9TA09283H crossref_primary_10_1073_pnas_2310004120 crossref_primary_10_1016_j_cej_2025_161271 crossref_primary_10_1002_adfm_202213304 crossref_primary_10_1002_adfm_202316544 crossref_primary_10_1016_j_trechm_2019_05_006 crossref_primary_10_1039_D0TA04362A crossref_primary_10_1016_j_electacta_2018_12_118 crossref_primary_10_1016_j_jcis_2024_03_198 crossref_primary_10_1002_celc_202400648 crossref_primary_10_1002_cssc_201802437 crossref_primary_10_1002_aenm_201901801 crossref_primary_10_1016_j_surfin_2022_101942 crossref_primary_10_1007_s40820_019_0258_0 crossref_primary_10_1038_s41578_019_0160_x crossref_primary_10_1002_cctc_201801753 crossref_primary_10_1002_cssc_202002946 crossref_primary_10_1016_j_cej_2024_156766 crossref_primary_10_1016_j_jhazmat_2022_130024 crossref_primary_10_1021_acssuschemeng_9b01468 crossref_primary_10_1039_D0TA00413H crossref_primary_10_1021_acscatal_3c05344 crossref_primary_10_1021_acssuschemeng_4c04551 crossref_primary_10_1039_C9TA12865D crossref_primary_10_1016_j_ijhydene_2022_08_173 crossref_primary_10_1016_j_mtchem_2019_100239 crossref_primary_10_1021_acscatal_1c03260 crossref_primary_10_1002_ange_202206588 crossref_primary_10_1002_aenm_201901130 crossref_primary_10_1016_j_catcom_2020_106238 crossref_primary_10_1007_s12598_020_01704_x crossref_primary_10_1002_anie_201902411 crossref_primary_10_1007_s40843_022_2091_4 crossref_primary_10_1016_j_apcatb_2019_118477 crossref_primary_10_1002_advs_201900053 crossref_primary_10_1039_D1TA06370G crossref_primary_10_1002_aenm_202201934 crossref_primary_10_1016_j_jallcom_2024_177709 crossref_primary_10_1002_anie_202001703 crossref_primary_10_1016_j_electacta_2021_138872 crossref_primary_10_1016_j_jallcom_2023_171114 crossref_primary_10_1016_j_mtener_2019_01_004 crossref_primary_10_1002_ange_201910716 crossref_primary_10_1016_j_jcis_2019_05_072 crossref_primary_10_1016_j_jelechem_2022_116650 crossref_primary_10_1016_j_apmt_2019_100517 crossref_primary_10_1021_acscatal_0c03034 crossref_primary_10_1002_EXP_20230052 crossref_primary_10_1016_j_jallcom_2020_155784 crossref_primary_10_1002_cssc_201900831 crossref_primary_10_1016_j_apcatb_2021_120451 crossref_primary_10_1007_s12039_022_02072_y crossref_primary_10_1039_C9TA01015G crossref_primary_10_1002_aenm_202003599 crossref_primary_10_1002_smll_201803015 crossref_primary_10_1016_j_nanoen_2021_106030 crossref_primary_10_1016_S1872_2067_22_64168_8 crossref_primary_10_1002_aenm_202102353 crossref_primary_10_1002_ange_202001703 crossref_primary_10_1016_j_nanoen_2018_07_062 crossref_primary_10_1021_acs_iecr_3c00655 crossref_primary_10_1002_ange_201902411 crossref_primary_10_1016_j_apcatb_2019_118569 crossref_primary_10_1002_aenm_202202317 crossref_primary_10_1002_ange_201814625 crossref_primary_10_1021_acs_energyfuels_1c01998 crossref_primary_10_1021_acs_jpclett_2c01557 crossref_primary_10_1016_j_electacta_2019_135456 crossref_primary_10_1002_adfm_201901783 crossref_primary_10_1021_acsami_9b07164 crossref_primary_10_1002_cphc_201900507 crossref_primary_10_1016_j_apsusc_2020_146051 crossref_primary_10_3389_fchem_2021_809111 crossref_primary_10_1021_acsmaterialslett_1c00450 crossref_primary_10_1039_C8QI00972D crossref_primary_10_1016_j_apsusc_2023_158364 crossref_primary_10_1016_j_ijhydene_2024_02_196 crossref_primary_10_1039_D0CY00099J crossref_primary_10_1002_eem2_12278 crossref_primary_10_1002_adfm_202415351 crossref_primary_10_1016_j_chempr_2020_05_010 crossref_primary_10_1016_j_ijhydene_2023_06_304 crossref_primary_10_1039_C9NR07967J crossref_primary_10_1002_aesr_202200071 crossref_primary_10_1002_anie_201814625 crossref_primary_10_1016_j_electacta_2019_03_023 crossref_primary_10_1016_j_apsusc_2020_148221 crossref_primary_10_1126_sciadv_abl9271 crossref_primary_10_1002_ange_202100371 crossref_primary_10_1016_j_jallcom_2023_170368 crossref_primary_10_1039_C9RA06374A crossref_primary_10_1016_j_jece_2022_107959 crossref_primary_10_1016_j_ijhydene_2023_04_284 crossref_primary_10_1016_j_apcatb_2023_123662 crossref_primary_10_1007_s11664_022_09805_2 crossref_primary_10_1016_j_ijhydene_2020_11_020 crossref_primary_10_1002_adfm_202009070 crossref_primary_10_1002_anie_202418248 crossref_primary_10_1039_C8TA05552A crossref_primary_10_1039_D1TA03732C crossref_primary_10_1039_C9CE01883B crossref_primary_10_1016_j_jechem_2022_08_020 crossref_primary_10_1039_D0TA04297H crossref_primary_10_1016_j_apcatb_2020_119761 crossref_primary_10_1021_acs_chemmater_9b05148 crossref_primary_10_1021_acssuschemeng_9b02193 crossref_primary_10_3390_nano9101436 crossref_primary_10_1039_D2NR00522K crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1039_D3TA04947G crossref_primary_10_1002_sus2_3 crossref_primary_10_1016_j_apcatb_2022_122142 crossref_primary_10_1002_ange_202111610 crossref_primary_10_1016_j_jcis_2024_04_089 crossref_primary_10_1016_j_checat_2024_101091 crossref_primary_10_1016_j_apcatb_2021_120004 crossref_primary_10_1002_eem2_12457 crossref_primary_10_1016_j_mtener_2023_101307 crossref_primary_10_1002_adfm_202209753 crossref_primary_10_1021_acsami_8b22133 crossref_primary_10_1021_acsnano_1c02989 crossref_primary_10_1016_j_jechem_2020_05_053 crossref_primary_10_1016_j_mattod_2024_10_010 crossref_primary_10_1039_C9TA03542G crossref_primary_10_1002_advs_202103368 crossref_primary_10_1016_j_electacta_2019_135395 crossref_primary_10_1002_smll_202201131 crossref_primary_10_1039_D4CE00383G crossref_primary_10_1039_D0NR00848F crossref_primary_10_1016_j_matchemphys_2019_122375 crossref_primary_10_1016_j_cej_2022_136321 crossref_primary_10_1016_j_materresbull_2021_111612 crossref_primary_10_1002_cnma_202000437 crossref_primary_10_1016_j_jcis_2019_04_077 crossref_primary_10_1039_D4QM00823E crossref_primary_10_1016_j_apsusc_2019_05_189 crossref_primary_10_1038_s41467_024_55688_8 crossref_primary_10_1016_j_cclet_2018_10_026 crossref_primary_10_1002_cnma_202100051 crossref_primary_10_1016_S1872_2067_19_63284_5 crossref_primary_10_1039_D4NR00975D crossref_primary_10_1016_j_cej_2022_138743 crossref_primary_10_1038_s41467_020_19214_w crossref_primary_10_1016_j_jechem_2020_05_048 crossref_primary_10_1016_j_mtener_2022_101036 crossref_primary_10_1016_j_cej_2021_129186 crossref_primary_10_1016_j_jcis_2019_12_061 crossref_primary_10_1016_j_apcatb_2023_123400 crossref_primary_10_1016_j_apsusc_2019_145096 crossref_primary_10_1038_s41467_024_48256_7 crossref_primary_10_1039_C9CC04481G crossref_primary_10_1002_smtd_202101156 crossref_primary_10_1021_acs_inorgchem_1c03780 crossref_primary_10_1016_j_ijhydene_2020_06_137 crossref_primary_10_1016_j_jpowsour_2019_01_090 crossref_primary_10_20964_2019_12_61 crossref_primary_10_1016_j_apsusc_2018_08_231 crossref_primary_10_1002_anie_202206588 crossref_primary_10_1016_S1872_2067_21_63855_X crossref_primary_10_1021_acsmaterialslett_3c01414 crossref_primary_10_1002_adfm_202409559 crossref_primary_10_1021_acsnano_3c11199 crossref_primary_10_1007_s40820_019_0253_5 crossref_primary_10_1016_j_cej_2022_140948 crossref_primary_10_1016_j_apcata_2024_119784 crossref_primary_10_1038_s41467_021_24828_9 crossref_primary_10_1016_j_jcis_2019_01_066 crossref_primary_10_1038_s41467_021_26724_8 crossref_primary_10_1002_adfm_202417730 crossref_primary_10_1002_elsa_202000009 crossref_primary_10_1002_adfm_202201011 crossref_primary_10_1039_D1NR06285A crossref_primary_10_1002_admi_202001215 crossref_primary_10_1002_batt_202000006 crossref_primary_10_1021_acs_energyfuels_2c02017 crossref_primary_10_1002_ange_202002394 crossref_primary_10_1016_S1872_2067_21_63794_4 crossref_primary_10_2139_ssrn_4147461 crossref_primary_10_1016_j_fuel_2023_130083 crossref_primary_10_1002_chem_202304168 crossref_primary_10_1039_C9SE01253B crossref_primary_10_1007_s40820_023_01152_z crossref_primary_10_1063_5_0221098 crossref_primary_10_1016_j_matchemphys_2022_126399 crossref_primary_10_1039_C9TA00640K crossref_primary_10_1039_D0EE03635H crossref_primary_10_1002_anie_201910716 crossref_primary_10_1039_C9TA03719E crossref_primary_10_1002_aenm_202201713 crossref_primary_10_1016_j_jechem_2020_08_004 crossref_primary_10_1016_S1872_2067_19_63513_8 crossref_primary_10_1016_j_cej_2022_138646 crossref_primary_10_1016_j_jpowsour_2023_232705 crossref_primary_10_1021_acs_langmuir_2c01977 crossref_primary_10_3390_catal13091230 crossref_primary_10_1002_admi_202000016 crossref_primary_10_1016_j_trechm_2019_03_006 crossref_primary_10_1021_acssuschemeng_8b06360 crossref_primary_10_1021_acsaem_9b01840 crossref_primary_10_1021_acsami_8b21155 crossref_primary_10_1016_j_apsadv_2021_100184 crossref_primary_10_1016_j_ijhydene_2018_10_085 crossref_primary_10_1007_s12598_025_03258_2 crossref_primary_10_1021_acsaem_8b01289 crossref_primary_10_1002_asia_202100810 crossref_primary_10_1039_C8NR04402C crossref_primary_10_1016_j_ccr_2023_215109 crossref_primary_10_1016_j_nanoen_2019_02_020 crossref_primary_10_1002_cctc_202400217 crossref_primary_10_1016_j_ccr_2023_215460 crossref_primary_10_1038_s41467_023_42728_y crossref_primary_10_1007_s10562_019_02726_6 crossref_primary_10_1016_j_jechem_2020_02_031 crossref_primary_10_1016_j_jechem_2023_10_038 crossref_primary_10_1016_S1872_2067_20_63621_X crossref_primary_10_1039_D1TA09306A crossref_primary_10_1002_cnma_201900127 crossref_primary_10_1016_j_apcatb_2019_02_074 crossref_primary_10_1002_aenm_201900429 crossref_primary_10_1002_solr_201900487 crossref_primary_10_1039_D3CS01020A crossref_primary_10_1021_acsomega_8b01394 crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1021_acs_energyfuels_2c02236 crossref_primary_10_1002_anie_201909326 crossref_primary_10_1016_j_electacta_2022_141250 crossref_primary_10_1016_j_jallcom_2022_166438 crossref_primary_10_1016_S1872_2067_23_64452_3 crossref_primary_10_1002_adfm_202211530 crossref_primary_10_1016_j_est_2024_110863 crossref_primary_10_1021_acsnano_0c06411 crossref_primary_10_1007_s41918_020_00089_w crossref_primary_10_1039_D1TA08531J crossref_primary_10_1021_acsaem_1c01898 crossref_primary_10_1039_C8TA08337A crossref_primary_10_1016_j_susmat_2023_e00645 crossref_primary_10_1039_C8TA11407B crossref_primary_10_3390_catal12050476 crossref_primary_10_1002_chem_201902389 crossref_primary_10_1021_acscatal_2c01825 crossref_primary_10_1002_adma_201804333 crossref_primary_10_1016_j_xcrp_2021_100550 crossref_primary_10_1016_j_jechem_2020_02_013 crossref_primary_10_1016_j_ijhydene_2019_04_156 crossref_primary_10_1021_acsami_3c06602 crossref_primary_10_1016_j_nanoen_2020_104529 crossref_primary_10_1039_C9TA00489K crossref_primary_10_1021_acsaem_0c02983 crossref_primary_10_1049_hve2_12378 crossref_primary_10_1002_ange_201909326 crossref_primary_10_1016_j_jechem_2020_04_063 crossref_primary_10_1016_j_apcatb_2021_120063 crossref_primary_10_1002_aenm_202101412 crossref_primary_10_1021_acssuschemeng_8b04496 crossref_primary_10_1002_smll_202104513 crossref_primary_10_1002_aenm_202302011 crossref_primary_10_1002_advs_202102217 crossref_primary_10_1039_C9SE01300H crossref_primary_10_1039_D1TA08445C crossref_primary_10_1016_j_jcis_2019_09_104 crossref_primary_10_1021_accountsmr_2c00161 crossref_primary_10_1021_acssuschemeng_0c00060 crossref_primary_10_1002_adfm_202108814 crossref_primary_10_1002_anie_201910510 crossref_primary_10_1007_s12274_022_4874_7 crossref_primary_10_1039_D5TA00039D crossref_primary_10_1021_acsaem_8b01375 crossref_primary_10_1021_acsami_9b21853 crossref_primary_10_1039_C8NR10521A crossref_primary_10_1039_D3NJ05877H crossref_primary_10_1021_acsami_8b12372 crossref_primary_10_1039_C9DT03619A crossref_primary_10_1039_D4TA08773A crossref_primary_10_1016_S1872_2067_23_64486_9 crossref_primary_10_1038_s41467_019_13415_8 crossref_primary_10_1002_smtd_201800406 crossref_primary_10_1016_j_apcatb_2021_120753 crossref_primary_10_1016_j_ijhydene_2021_06_231 crossref_primary_10_1002_slct_201901652 crossref_primary_10_1016_j_ijhydene_2023_01_018 crossref_primary_10_1007_s12274_021_3404_1 |
Cites_doi | 10.1038/nmat4938 10.1039/C5MH00096C 10.1021/cs400903k 10.1021/ja073206 10.1039/B612389A 10.1038/s41467-017-01053-x 10.1021/jp3126768 10.1038/ncomms3439 10.1021/cm3012205 10.1038/ncomms5345 10.1039/C5EE03124A 10.1038/nature11475 10.1002/advs.201500187 10.1002/anie.201408998 10.1021/jp512722x 10.1126/science.1212858 10.1039/C5EE03453A 10.1002/ange.201600687 10.1002/adma.201502024 10.1038/nchem.1069 10.1002/adma.201606459 10.1021/am403244k 10.1021/jacs.6b00036 10.1039/C7NR04381C 10.1038/ncomms7097 10.1021/ja065308q 10.1038/nmat4834 10.1038/ncomms14586 10.1021/acs.jpclett.7b01504 10.1038/ncomms9625 10.1021/nl504872s 10.1021/jp047349j 10.1002/adma.201602270 10.1002/ange.201408998 10.1002/adma.201403064 10.1002/anie.201600687 10.1038/nature11115 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201805520 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8696 |
ExternalDocumentID | 29771458 10_1002_anie_201805520 ANIE201805520 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4100-6923fb2df1183cabfc9aacd64b560d60d1d0fb928d79dac87d34d212b07c93193 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:41:37 EDT 2025 Fri Jul 25 12:00:15 EDT 2025 Thu Apr 03 06:58:08 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Tue Jul 01 02:26:26 EDT 2025 Wed Jan 22 16:45:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | perovskites oxygen evolution reaction vacancies electrocatalysts defects |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4100-6923fb2df1183cabfc9aacd64b560d60d1d0fb928d79dac87d34d212b07c93193 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7185-9857 |
PMID | 29771458 |
PQID | 2064169585 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2040749773 proquest_journals_2064169585 pubmed_primary_29771458 crossref_citationtrail_10_1002_anie_201805520 crossref_primary_10_1002_anie_201805520 wiley_primary_10_1002_anie_201805520_ANIE201805520 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 9, 2018 |
PublicationDateYYYYMMDD | 2018-07-09 |
PublicationDate_xml | – month: 07 year: 2018 text: July 9, 2018 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2007; 17 2011; 334 2015; 15 2017; 8 2007; 129 2015; 6 2013; 4 2012; 486 2017; 29 2012; 488 2011; 3 2004; 108 2016; 16 2013; 5 2017; 9 2014; 5 2015; 27 2016 2016; 55 128 2014; 4 2016; 3 2017; 16 2013; 117 2015 2015; 54 127 2015; 119 2016; 138 2016; 28 2012; 24 2006; 128 2016; 9 e_1_2_2_3_2 e_1_2_2_4_1 e_1_2_2_23_2 e_1_2_2_24_1 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_3 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_40_1 e_1_2_2_41_1 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_29_1 e_1_2_2_43_2 e_1_2_2_44_1 e_1_2_2_8_1 e_1_2_2_27_2 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_31_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_13_3 e_1_2_2_35_2 e_1_2_2_36_1 |
References_xml | – volume: 334 start-page: 1383 year: 2011 end-page: 1385 publication-title: Science – volume: 27 start-page: 784 year: 2015 end-page: 800 publication-title: Adv. Mater. – volume: 6 start-page: 8625 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 473 year: 2016 end-page: 477 publication-title: Energy Environ. Sci. – volume: 129 start-page: 11569 year: 2007 end-page: 11578 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9902 year: 2013 end-page: 9907 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 925 year: 2017 end-page: 931 publication-title: Nat. Mater. – volume: 486 start-page: 43 year: 2012 end-page: 51 publication-title: Nature – volume: 55 128 start-page: 5277 5363 year: 2016 2016 end-page: 5281 5367 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 934 year: 2017 publication-title: Nat. Commun. – volume: 28 start-page: 9266 year: 2016 end-page: 9291 publication-title: Adv. Mater. – volume: 4 start-page: 1061 year: 2014 end-page: 1070 publication-title: ACS Catal. – volume: 3 start-page: 546 year: 2011 end-page: 550 publication-title: Nat. Chem. – volume: 8 start-page: 14586 year: 2017 publication-title: Nat. Commun. – volume: 117 start-page: 8628 year: 2013 end-page: 8635 publication-title: J. Phys. Chem. C – volume: 128 start-page: 14258 year: 2006 end-page: 14259 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 11969 year: 2017 end-page: 11975 publication-title: Nanoscale – volume: 138 start-page: 3541 year: 2016 end-page: 3547 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 3567 year: 2012 end-page: 3573 publication-title: Chem. Mater. – volume: 8 start-page: 3466 year: 2017 end-page: 3472 publication-title: J. Phys. Chem. Lett. – volume: 16 start-page: 16 year: 2016 end-page: 22 publication-title: Nat. Mater. – volume: 5 start-page: 4345 year: 2014 publication-title: Nat. Commun. – volume: 17 start-page: 965 year: 2007 end-page: 971 publication-title: J. Mater. Chem. – volume: 6 start-page: 6097 year: 2015 publication-title: Nat. Commun. – volume: 488 start-page: 294 year: 2012 end-page: 303 publication-title: Nature – volume: 15 start-page: 1421 year: 2015 end-page: 1427 publication-title: Nano Lett. – volume: 108 start-page: 17886 year: 2004 end-page: 17892 publication-title: J. Phys. Chem. B – volume: 3 start-page: 1500187 year: 2016 publication-title: Adv. Sci. – volume: 54 127 start-page: 3897 3969 year: 2015 2015 end-page: 3901 3973 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 8004 year: 2015 end-page: 8013 publication-title: J. Phys. Chem. C – volume: 29 start-page: 1606459 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 495 year: 2015 end-page: 501 publication-title: Mater. Horiz. – volume: 4 start-page: 2439 year: 2013 publication-title: Nat. Commun. – volume: 9 start-page: 176 year: 2016 end-page: 183 publication-title: Energy Environ. Sci. – volume: 27 start-page: 5989 year: 2015 end-page: 5994 publication-title: Adv. Mater. – ident: e_1_2_2_16_2 doi: 10.1038/nmat4938 – ident: e_1_2_2_23_2 doi: 10.1039/C5MH00096C – ident: e_1_2_2_1_1 – ident: e_1_2_2_22_2 doi: 10.1021/cs400903k – ident: e_1_2_2_8_1 doi: 10.1021/ja073206 – ident: e_1_2_2_42_2 doi: 10.1039/B612389A – ident: e_1_2_2_37_2 doi: 10.1038/s41467-017-01053-x – ident: e_1_2_2_43_2 doi: 10.1021/jp3126768 – ident: e_1_2_2_25_2 doi: 10.1038/ncomms3439 – ident: e_1_2_2_31_2 doi: 10.1021/cm3012205 – ident: e_1_2_2_17_2 doi: 10.1038/ncomms5345 – ident: e_1_2_2_26_2 doi: 10.1039/C5EE03124A – ident: e_1_2_2_2_2 doi: 10.1038/nature11475 – ident: e_1_2_2_21_2 doi: 10.1002/advs.201500187 – ident: e_1_2_2_20_2 doi: 10.1002/anie.201408998 – ident: e_1_2_2_10_2 doi: 10.1021/jp512722x – ident: e_1_2_2_35_2 doi: 10.1126/science.1212858 – ident: e_1_2_2_29_1 – ident: e_1_2_2_40_1 doi: 10.1039/C5EE03453A – ident: e_1_2_2_4_1 – ident: e_1_2_2_13_3 doi: 10.1002/ange.201600687 – ident: e_1_2_2_15_2 doi: 10.1002/adma.201502024 – ident: e_1_2_2_38_2 doi: 10.1038/nchem.1069 – ident: e_1_2_2_11_2 doi: 10.1002/adma.201606459 – ident: e_1_2_2_32_1 doi: 10.1021/am403244k – ident: e_1_2_2_36_1 – ident: e_1_2_2_27_2 doi: 10.1021/jacs.6b00036 – ident: e_1_2_2_33_1 – ident: e_1_2_2_12_2 doi: 10.1039/C7NR04381C – ident: e_1_2_2_18_1 doi: 10.1038/ncomms7097 – ident: e_1_2_2_30_2 doi: 10.1021/ja065308q – ident: e_1_2_2_3_2 doi: 10.1038/nmat4834 – ident: e_1_2_2_14_1 – ident: e_1_2_2_28_2 doi: 10.1038/ncomms14586 – ident: e_1_2_2_34_2 doi: 10.1021/acs.jpclett.7b01504 – ident: e_1_2_2_39_1 doi: 10.1038/ncomms9625 – ident: e_1_2_2_44_1 doi: 10.1021/nl504872s – ident: e_1_2_2_41_1 – ident: e_1_2_2_19_1 – ident: e_1_2_2_45_1 doi: 10.1021/jp047349j – ident: e_1_2_2_7_2 doi: 10.1002/adma.201602270 – ident: e_1_2_2_20_3 doi: 10.1002/ange.201408998 – ident: e_1_2_2_24_1 – ident: e_1_2_2_6_2 doi: 10.1002/adma.201403064 – ident: e_1_2_2_13_2 doi: 10.1002/anie.201600687 – ident: e_1_2_2_5_2 doi: 10.1038/nature11115 – ident: e_1_2_2_9_1 |
SSID | ssj0028806 |
Score | 2.6670232 |
Snippet | The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8691 |
SubjectTerms | Absorption spectra Bonding strength Catalysis Catalysts Cations Chemical bonds defects electrocatalysts Lattice vacancies Organic chemistry Oxides Oxygen oxygen evolution reaction Oxygen evolution reactions Perovskites Surface layers Surface properties vacancies |
Title | Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201805520 https://www.ncbi.nlm.nih.gov/pubmed/29771458 https://www.proquest.com/docview/2064169585 https://www.proquest.com/docview/2040749773 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB7EF33xPupFBMGn6m6aNsmjLCur4IF4vZVcBVG64u6K-uud9NJVRFDoQ9ukdJqZSb5J5wDYcVwYqhkPbcJMyBLKQ6nRSomFdNYxyVVRbOLkNOldsePb-PZTFH-ZH6LZcPOaUczXXsGVHux_JA31EdjeNUu04ph6o907bHlUdNHkj6IonGV4URSFvgp9nbWxRffHHx9flb5BzXHkWiw9h7OgaqJLj5P7vdFQ75m3L_kc__NVczBT4VJyUArSPEy4fAGmOnU5uEW4Oa8qkuCU8EA6BUPJtTJFdd8BucvJuXvqPw_8bjDpvVok9s46gpiYIMYkZy-vKKqk-1yJOrlwZUjFElwddi87vbCqyhAahkSGCULCTFOboWkSGaUzI5UyyGqN4Mni0batTEsqLJdWGcFtxCwukLrFjUSFj5ZhMu_nbhVI5HDCUAItUGUYtW1puRWRlk6LLKMZDSCsuZKaKmW5r5zxkJbJlmnqhytthiuA3ab_Y5ms48eeGzWT00ppB9iaIDyVaEAFsN004zD7fygqd_2R74MWMIowjwJYKYWjeRXF220WiwBoweJfaEgPTo-6zdXaXx5ah2l_XrgPyw2YHD6N3CaCpKHeKhThHfUkCAI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5V9AFe6MGVQlsjIfEU2HWc2H5Eq0VLgQUhrrfIVyRUlK3YXQT8esbOgRZUIbVSXhLbysQzY3_jzAGw5bgwVDMe24yZmGWUx1KjlZIK6axjkqtQbOJ4mA0u2K_rtPEm9LEwVX6I9sDNa0ZYr72C-wPp3ZesoT4E2_tmiU6aUrTaP_qy3sGqOmszSFEUzyrAKEliX4e-ydvYobuz42f3pTdgcxa7hs1n_xPohuzK5-T3znSid8zTq4yO__Vdn2GxhqZkr5KlL_DBlV9hvtdUhFuCq9O6KAmuCrekF3hKLpUJBX7H5KYkp-5udD_2B8Jk8GiR2hvrCMJigjCTnDw8orSS_n0t7eTMVVEVy3Cx3z_vDeK6MENsGBIZZ4gKC01tgdZJYpQujFTKILc14ieLV9d2Ci2psFxaZQS3CbO4R-oONxJ1PlmBuXJUujUgicM1Qwk0QpVh1Hal5VYkWjotioIWNIK4YUtu6qzlvnjGbV7lW6a5n668na4Ittv-f6p8HX_tudFwOa_1doytGSJUiTZUBJttM06z_42iSjea-j5oBKMU8ySC1Uo62ldRfNxlqYiABh6_Q0O-Nzzot3ff_mXQT5gfnB8f5UcHw8N1WPDPgzex3IC5yd3UfUfMNNE_glY8A3UODB0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hIQEvfI4tsDEjIfGULXWc2H6culbtgFJV7OMt8lekalVare3E-Os554sVNCGBlJfEtnLx3dm_c-zfAXxwXBiqGQ9tykzIUspDqTFKSYR01jHJVZls4ssoHZyx08vk8s4p_oofol1w855RjtfewRc2P_pFGupPYPutWSJKEopB-0OWRsLb9cmkJZCiaJ3V-aI4Dn0a-oa2MaJHm-03p6U_sOYmdC3nnv4zUI3U1ZaTq8P1Sh-aH78ROv7PZz2HpzUwJceVJb2AB654CY-7TT64V3AxrlOS4JgwI91So-RcmTK975JMCzJ21_ObpV8OJoNbi8JOrSMIigmCTPL1-y3aKund1LZOJq46U7ENZ_3et-4grNMyhIahkGGKmDDX1OYYm8RG6dxIpQzqWiN6snh1bJRrSYXl0iojuI2ZxRlSR9xI9Pj4NWwV88LtAokdjhhKYAiqDKO2Iy23ItbSaZHnNKcBhI1WMlNzlvvUGbOsYlumme-urO2uAD629RcVW8e9NfcaJWe11y6xNEV8KjGCCuB9W4zd7H-iqMLN174OhsBowzwOYKcyjvZVFB93WCICoKWK_yJDdjwa9tq7N__S6AAejU_62efh6NNbeOIfl1uJ5R5sra7Xbh8B00q_K33iJ1w1CtU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preferential+Cation+Vacancies+in+Perovskite+Hydroxide+for+the+Oxygen+Evolution+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Dawei&rft.au=Qiao%2C+Man&rft.au=Lu%2C+Ying-Rui&rft.au=Hao%2C+Li&rft.date=2018-07-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=57&rft.issue=28&rft.spage=8691&rft_id=info:doi/10.1002%2Fanie.201805520&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |