Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction

The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacan...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 28; pp. 8691 - 8696
Main Authors Chen, Dawei, Qiao, Man, Lu, Ying‐Rui, Hao, Li, Liu, Dongdong, Dong, Chung‐Li, Li, Yafei, Wang, Shuangyin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.07.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201805520

Cover

Loading…
Abstract The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4. The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance. Argon plasma can ensure preferential Sn vacancies on the surface of SnCoFe perovskite hydroxide, which exhibits a much higher current density and a lower overpotential for the oxygen evolution reaction.
AbstractList The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4. The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.
The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies-rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X-ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4 . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies-rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X-ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4 . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.
The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies-rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X-ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH) . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.
The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH) 4 . The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance.
The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect engineering has been extensively developed to tune the electrocatalytic activity for OER. Compared to the anion vacancies in metal oxides, cation vacancies are more challenging to selectively generate, and the insight into the structure and activity of cation vacancies‐rich catalysts are lacked. Herein, using SnCoFe perovskite hydroxide as a precursor, abundant Sn vacancies on the surface were preferentially produced by Ar plasma. Sn vacancies could be preferentially produced as confirmed by the X‐ray absorption spectra, probably owing to the lower lattice energy and weaker chemical bonds of Sn(OH)4. The Sn vacancies promoted the exposure of active CoFe sites, resulting in an amorphous surface layer, modulated the conductivity, and thus enhanced the OER performance. Argon plasma can ensure preferential Sn vacancies on the surface of SnCoFe perovskite hydroxide, which exhibits a much higher current density and a lower overpotential for the oxygen evolution reaction.
Author Hao, Li
Qiao, Man
Chen, Dawei
Lu, Ying‐Rui
Wang, Shuangyin
Li, Yafei
Liu, Dongdong
Dong, Chung‐Li
Author_xml – sequence: 1
  givenname: Dawei
  surname: Chen
  fullname: Chen, Dawei
  organization: Hunan University
– sequence: 2
  givenname: Man
  surname: Qiao
  fullname: Qiao, Man
  organization: Nanjing Normal University
– sequence: 3
  givenname: Ying‐Rui
  surname: Lu
  fullname: Lu, Ying‐Rui
  organization: Tamkang University
– sequence: 4
  givenname: Li
  surname: Hao
  fullname: Hao, Li
  organization: Hunan University
– sequence: 5
  givenname: Dongdong
  surname: Liu
  fullname: Liu, Dongdong
  organization: Hunan University
– sequence: 6
  givenname: Chung‐Li
  surname: Dong
  fullname: Dong, Chung‐Li
  email: cldong@mail.tku.edu.tw
  organization: Tamkang University
– sequence: 7
  givenname: Yafei
  surname: Li
  fullname: Li, Yafei
  email: liyafei@njnu.edu.cn
  organization: Nanjing Normal University
– sequence: 8
  givenname: Shuangyin
  orcidid: 0000-0001-7185-9857
  surname: Wang
  fullname: Wang, Shuangyin
  email: shuangyinwang@hnu.edu.cn
  organization: Hunan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29771458$$D View this record in MEDLINE/PubMed
BookMark eNqFkctrFTEUh4NU7EO3LiXgxs1c85pJsiyXqy2UtoiPZcgkZzR1blKTmdr73ze3t1UoiBDIWXzf4ZzfOUR7MUVA6DUlC0oIe29jgAUjVJG2ZeQZOqAtow2Xku_VWnDeSNXSfXRYylXllSLdC7TPtJRUtOoAfbvMMECGOAU74qWdQor4q3U2ugAFh4gvIaeb8jNMgE82Pqfb4AEPKePpB-CL2813iHh1k8b5Xv0E1m2Ll-j5YMcCrx7-I_Tlw-rz8qQ5u_h4ujw-a5yo8zedZnzomR8oVdzZfnDaWuc70bcd8fVRT4ZeM-Wl9tYp6bnwjLKeSKc51fwIvdv1vc7p1wxlMutQHIyjjZDmYhgRRIq6Lq_o2yfoVZpzrNNVqhO0061qK_XmgZr7NXhzncPa5o15jKwCYge4nEqp6RkXpvvcpmzDaCgx28uY7WXMn8tUbfFEe-z8T0HvhN9hhM1_aHN8frr6694Bh9qgbg
CitedBy_id crossref_primary_10_1039_D1CY00240F
crossref_primary_10_1002_adfm_202208399
crossref_primary_10_1002_eem2_12064
crossref_primary_10_1016_j_mtchem_2023_101530
crossref_primary_10_1039_C8QI01240G
crossref_primary_10_1039_D3TA02813E
crossref_primary_10_1021_acscatal_1c00465
crossref_primary_10_1016_j_apcatb_2020_119247
crossref_primary_10_1039_D0CS00639D
crossref_primary_10_1002_anie_202100371
crossref_primary_10_1016_j_cej_2021_129698
crossref_primary_10_1016_j_mtchem_2018_10_001
crossref_primary_10_1016_j_apcatb_2021_120641
crossref_primary_10_1021_acsami_2c08071
crossref_primary_10_1021_acscatal_3c05789
crossref_primary_10_1002_smtd_202000868
crossref_primary_10_1016_j_chphma_2022_01_003
crossref_primary_10_1039_C9TA07962A
crossref_primary_10_1002_aenm_202000459
crossref_primary_10_1016_j_jclepro_2019_07_051
crossref_primary_10_1002_adma_202005344
crossref_primary_10_1016_j_mseb_2023_116884
crossref_primary_10_1002_advs_201800949
crossref_primary_10_1002_aenm_202102141
crossref_primary_10_1021_acssuschemeng_0c01729
crossref_primary_10_1007_s40843_021_1959_1
crossref_primary_10_1002_smtd_201800344
crossref_primary_10_3724_SP_J_1249_2023_04379
crossref_primary_10_1016_j_ijhydene_2024_01_012
crossref_primary_10_1016_j_mtchem_2018_10_010
crossref_primary_10_1016_j_ijhydene_2020_10_071
crossref_primary_10_1039_C8QI00608C
crossref_primary_10_1039_D2QI00226D
crossref_primary_10_1002_adma_201901439
crossref_primary_10_1016_j_cej_2024_152758
crossref_primary_10_1002_ange_201910510
crossref_primary_10_1021_acs_energyfuels_4c02080
crossref_primary_10_1002_cssc_201900754
crossref_primary_10_1002_anie_202002394
crossref_primary_10_1021_acsaem_2c01523
crossref_primary_10_1039_C8NJ04429E
crossref_primary_10_1016_j_jcis_2021_06_102
crossref_primary_10_1039_C9CY00759H
crossref_primary_10_1002_advs_202105135
crossref_primary_10_2139_ssrn_4120980
crossref_primary_10_1002_anie_202111610
crossref_primary_10_1002_aenm_202204019
crossref_primary_10_1016_j_apsusc_2023_158271
crossref_primary_10_1002_adfm_202010437
crossref_primary_10_1002_smll_202000663
crossref_primary_10_1016_j_jcis_2019_12_114
crossref_primary_10_1039_C8TA10985K
crossref_primary_10_1007_s40242_020_0056_8
crossref_primary_10_1002_aenm_202100640
crossref_primary_10_1016_j_cclet_2019_03_051
crossref_primary_10_1016_j_nanoen_2018_08_061
crossref_primary_10_1039_C9CS00607A
crossref_primary_10_1016_j_bios_2024_116275
crossref_primary_10_1016_j_jallcom_2024_177821
crossref_primary_10_1002_adma_202405129
crossref_primary_10_1016_j_carbon_2025_120215
crossref_primary_10_1038_s42004_019_0112_9
crossref_primary_10_1002_sstr_202000067
crossref_primary_10_1007_s10311_020_01023_8
crossref_primary_10_1021_acssuschemeng_9b03906
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1002_adma_201907879
crossref_primary_10_1002_ange_202418248
crossref_primary_10_1007_s10853_020_04718_z
crossref_primary_10_1016_j_jallcom_2019_152610
crossref_primary_10_1016_j_jpowsour_2020_228748
crossref_primary_10_1021_acscatal_2c03476
crossref_primary_10_1039_D2TA00966H
crossref_primary_10_1002_aenm_201900228
crossref_primary_10_1016_j_mcat_2022_112502
crossref_primary_10_1007_s11426_022_1419_y
crossref_primary_10_1016_j_matt_2020_06_002
crossref_primary_10_1002_cssc_202002103
crossref_primary_10_1016_j_mattod_2019_05_021
crossref_primary_10_1021_acs_chemrev_4c00171
crossref_primary_10_1016_j_jcis_2024_01_151
crossref_primary_10_1016_j_jcat_2022_04_009
crossref_primary_10_1016_j_jcis_2021_02_126
crossref_primary_10_1039_D3NR00082F
crossref_primary_10_3389_fbioe_2022_972837
crossref_primary_10_1002_aenm_201903172
crossref_primary_10_1002_cctc_202301420
crossref_primary_10_1016_j_cjsc_2025_100520
crossref_primary_10_1016_S1872_2067_20_63740_8
crossref_primary_10_1039_C9TA09283H
crossref_primary_10_1073_pnas_2310004120
crossref_primary_10_1016_j_cej_2025_161271
crossref_primary_10_1002_adfm_202213304
crossref_primary_10_1002_adfm_202316544
crossref_primary_10_1016_j_trechm_2019_05_006
crossref_primary_10_1039_D0TA04362A
crossref_primary_10_1016_j_electacta_2018_12_118
crossref_primary_10_1016_j_jcis_2024_03_198
crossref_primary_10_1002_celc_202400648
crossref_primary_10_1002_cssc_201802437
crossref_primary_10_1002_aenm_201901801
crossref_primary_10_1016_j_surfin_2022_101942
crossref_primary_10_1007_s40820_019_0258_0
crossref_primary_10_1038_s41578_019_0160_x
crossref_primary_10_1002_cctc_201801753
crossref_primary_10_1002_cssc_202002946
crossref_primary_10_1016_j_cej_2024_156766
crossref_primary_10_1016_j_jhazmat_2022_130024
crossref_primary_10_1021_acssuschemeng_9b01468
crossref_primary_10_1039_D0TA00413H
crossref_primary_10_1021_acscatal_3c05344
crossref_primary_10_1021_acssuschemeng_4c04551
crossref_primary_10_1039_C9TA12865D
crossref_primary_10_1016_j_ijhydene_2022_08_173
crossref_primary_10_1016_j_mtchem_2019_100239
crossref_primary_10_1021_acscatal_1c03260
crossref_primary_10_1002_ange_202206588
crossref_primary_10_1002_aenm_201901130
crossref_primary_10_1016_j_catcom_2020_106238
crossref_primary_10_1007_s12598_020_01704_x
crossref_primary_10_1002_anie_201902411
crossref_primary_10_1007_s40843_022_2091_4
crossref_primary_10_1016_j_apcatb_2019_118477
crossref_primary_10_1002_advs_201900053
crossref_primary_10_1039_D1TA06370G
crossref_primary_10_1002_aenm_202201934
crossref_primary_10_1016_j_jallcom_2024_177709
crossref_primary_10_1002_anie_202001703
crossref_primary_10_1016_j_electacta_2021_138872
crossref_primary_10_1016_j_jallcom_2023_171114
crossref_primary_10_1016_j_mtener_2019_01_004
crossref_primary_10_1002_ange_201910716
crossref_primary_10_1016_j_jcis_2019_05_072
crossref_primary_10_1016_j_jelechem_2022_116650
crossref_primary_10_1016_j_apmt_2019_100517
crossref_primary_10_1021_acscatal_0c03034
crossref_primary_10_1002_EXP_20230052
crossref_primary_10_1016_j_jallcom_2020_155784
crossref_primary_10_1002_cssc_201900831
crossref_primary_10_1016_j_apcatb_2021_120451
crossref_primary_10_1007_s12039_022_02072_y
crossref_primary_10_1039_C9TA01015G
crossref_primary_10_1002_aenm_202003599
crossref_primary_10_1002_smll_201803015
crossref_primary_10_1016_j_nanoen_2021_106030
crossref_primary_10_1016_S1872_2067_22_64168_8
crossref_primary_10_1002_aenm_202102353
crossref_primary_10_1002_ange_202001703
crossref_primary_10_1016_j_nanoen_2018_07_062
crossref_primary_10_1021_acs_iecr_3c00655
crossref_primary_10_1002_ange_201902411
crossref_primary_10_1016_j_apcatb_2019_118569
crossref_primary_10_1002_aenm_202202317
crossref_primary_10_1002_ange_201814625
crossref_primary_10_1021_acs_energyfuels_1c01998
crossref_primary_10_1021_acs_jpclett_2c01557
crossref_primary_10_1016_j_electacta_2019_135456
crossref_primary_10_1002_adfm_201901783
crossref_primary_10_1021_acsami_9b07164
crossref_primary_10_1002_cphc_201900507
crossref_primary_10_1016_j_apsusc_2020_146051
crossref_primary_10_3389_fchem_2021_809111
crossref_primary_10_1021_acsmaterialslett_1c00450
crossref_primary_10_1039_C8QI00972D
crossref_primary_10_1016_j_apsusc_2023_158364
crossref_primary_10_1016_j_ijhydene_2024_02_196
crossref_primary_10_1039_D0CY00099J
crossref_primary_10_1002_eem2_12278
crossref_primary_10_1002_adfm_202415351
crossref_primary_10_1016_j_chempr_2020_05_010
crossref_primary_10_1016_j_ijhydene_2023_06_304
crossref_primary_10_1039_C9NR07967J
crossref_primary_10_1002_aesr_202200071
crossref_primary_10_1002_anie_201814625
crossref_primary_10_1016_j_electacta_2019_03_023
crossref_primary_10_1016_j_apsusc_2020_148221
crossref_primary_10_1126_sciadv_abl9271
crossref_primary_10_1002_ange_202100371
crossref_primary_10_1016_j_jallcom_2023_170368
crossref_primary_10_1039_C9RA06374A
crossref_primary_10_1016_j_jece_2022_107959
crossref_primary_10_1016_j_ijhydene_2023_04_284
crossref_primary_10_1016_j_apcatb_2023_123662
crossref_primary_10_1007_s11664_022_09805_2
crossref_primary_10_1016_j_ijhydene_2020_11_020
crossref_primary_10_1002_adfm_202009070
crossref_primary_10_1002_anie_202418248
crossref_primary_10_1039_C8TA05552A
crossref_primary_10_1039_D1TA03732C
crossref_primary_10_1039_C9CE01883B
crossref_primary_10_1016_j_jechem_2022_08_020
crossref_primary_10_1039_D0TA04297H
crossref_primary_10_1016_j_apcatb_2020_119761
crossref_primary_10_1021_acs_chemmater_9b05148
crossref_primary_10_1021_acssuschemeng_9b02193
crossref_primary_10_3390_nano9101436
crossref_primary_10_1039_D2NR00522K
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_1039_D3TA04947G
crossref_primary_10_1002_sus2_3
crossref_primary_10_1016_j_apcatb_2022_122142
crossref_primary_10_1002_ange_202111610
crossref_primary_10_1016_j_jcis_2024_04_089
crossref_primary_10_1016_j_checat_2024_101091
crossref_primary_10_1016_j_apcatb_2021_120004
crossref_primary_10_1002_eem2_12457
crossref_primary_10_1016_j_mtener_2023_101307
crossref_primary_10_1002_adfm_202209753
crossref_primary_10_1021_acsami_8b22133
crossref_primary_10_1021_acsnano_1c02989
crossref_primary_10_1016_j_jechem_2020_05_053
crossref_primary_10_1016_j_mattod_2024_10_010
crossref_primary_10_1039_C9TA03542G
crossref_primary_10_1002_advs_202103368
crossref_primary_10_1016_j_electacta_2019_135395
crossref_primary_10_1002_smll_202201131
crossref_primary_10_1039_D4CE00383G
crossref_primary_10_1039_D0NR00848F
crossref_primary_10_1016_j_matchemphys_2019_122375
crossref_primary_10_1016_j_cej_2022_136321
crossref_primary_10_1016_j_materresbull_2021_111612
crossref_primary_10_1002_cnma_202000437
crossref_primary_10_1016_j_jcis_2019_04_077
crossref_primary_10_1039_D4QM00823E
crossref_primary_10_1016_j_apsusc_2019_05_189
crossref_primary_10_1038_s41467_024_55688_8
crossref_primary_10_1016_j_cclet_2018_10_026
crossref_primary_10_1002_cnma_202100051
crossref_primary_10_1016_S1872_2067_19_63284_5
crossref_primary_10_1039_D4NR00975D
crossref_primary_10_1016_j_cej_2022_138743
crossref_primary_10_1038_s41467_020_19214_w
crossref_primary_10_1016_j_jechem_2020_05_048
crossref_primary_10_1016_j_mtener_2022_101036
crossref_primary_10_1016_j_cej_2021_129186
crossref_primary_10_1016_j_jcis_2019_12_061
crossref_primary_10_1016_j_apcatb_2023_123400
crossref_primary_10_1016_j_apsusc_2019_145096
crossref_primary_10_1038_s41467_024_48256_7
crossref_primary_10_1039_C9CC04481G
crossref_primary_10_1002_smtd_202101156
crossref_primary_10_1021_acs_inorgchem_1c03780
crossref_primary_10_1016_j_ijhydene_2020_06_137
crossref_primary_10_1016_j_jpowsour_2019_01_090
crossref_primary_10_20964_2019_12_61
crossref_primary_10_1016_j_apsusc_2018_08_231
crossref_primary_10_1002_anie_202206588
crossref_primary_10_1016_S1872_2067_21_63855_X
crossref_primary_10_1021_acsmaterialslett_3c01414
crossref_primary_10_1002_adfm_202409559
crossref_primary_10_1021_acsnano_3c11199
crossref_primary_10_1007_s40820_019_0253_5
crossref_primary_10_1016_j_cej_2022_140948
crossref_primary_10_1016_j_apcata_2024_119784
crossref_primary_10_1038_s41467_021_24828_9
crossref_primary_10_1016_j_jcis_2019_01_066
crossref_primary_10_1038_s41467_021_26724_8
crossref_primary_10_1002_adfm_202417730
crossref_primary_10_1002_elsa_202000009
crossref_primary_10_1002_adfm_202201011
crossref_primary_10_1039_D1NR06285A
crossref_primary_10_1002_admi_202001215
crossref_primary_10_1002_batt_202000006
crossref_primary_10_1021_acs_energyfuels_2c02017
crossref_primary_10_1002_ange_202002394
crossref_primary_10_1016_S1872_2067_21_63794_4
crossref_primary_10_2139_ssrn_4147461
crossref_primary_10_1016_j_fuel_2023_130083
crossref_primary_10_1002_chem_202304168
crossref_primary_10_1039_C9SE01253B
crossref_primary_10_1007_s40820_023_01152_z
crossref_primary_10_1063_5_0221098
crossref_primary_10_1016_j_matchemphys_2022_126399
crossref_primary_10_1039_C9TA00640K
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1002_anie_201910716
crossref_primary_10_1039_C9TA03719E
crossref_primary_10_1002_aenm_202201713
crossref_primary_10_1016_j_jechem_2020_08_004
crossref_primary_10_1016_S1872_2067_19_63513_8
crossref_primary_10_1016_j_cej_2022_138646
crossref_primary_10_1016_j_jpowsour_2023_232705
crossref_primary_10_1021_acs_langmuir_2c01977
crossref_primary_10_3390_catal13091230
crossref_primary_10_1002_admi_202000016
crossref_primary_10_1016_j_trechm_2019_03_006
crossref_primary_10_1021_acssuschemeng_8b06360
crossref_primary_10_1021_acsaem_9b01840
crossref_primary_10_1021_acsami_8b21155
crossref_primary_10_1016_j_apsadv_2021_100184
crossref_primary_10_1016_j_ijhydene_2018_10_085
crossref_primary_10_1007_s12598_025_03258_2
crossref_primary_10_1021_acsaem_8b01289
crossref_primary_10_1002_asia_202100810
crossref_primary_10_1039_C8NR04402C
crossref_primary_10_1016_j_ccr_2023_215109
crossref_primary_10_1016_j_nanoen_2019_02_020
crossref_primary_10_1002_cctc_202400217
crossref_primary_10_1016_j_ccr_2023_215460
crossref_primary_10_1038_s41467_023_42728_y
crossref_primary_10_1007_s10562_019_02726_6
crossref_primary_10_1016_j_jechem_2020_02_031
crossref_primary_10_1016_j_jechem_2023_10_038
crossref_primary_10_1016_S1872_2067_20_63621_X
crossref_primary_10_1039_D1TA09306A
crossref_primary_10_1002_cnma_201900127
crossref_primary_10_1016_j_apcatb_2019_02_074
crossref_primary_10_1002_aenm_201900429
crossref_primary_10_1002_solr_201900487
crossref_primary_10_1039_D3CS01020A
crossref_primary_10_1021_acsomega_8b01394
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1021_acs_energyfuels_2c02236
crossref_primary_10_1002_anie_201909326
crossref_primary_10_1016_j_electacta_2022_141250
crossref_primary_10_1016_j_jallcom_2022_166438
crossref_primary_10_1016_S1872_2067_23_64452_3
crossref_primary_10_1002_adfm_202211530
crossref_primary_10_1016_j_est_2024_110863
crossref_primary_10_1021_acsnano_0c06411
crossref_primary_10_1007_s41918_020_00089_w
crossref_primary_10_1039_D1TA08531J
crossref_primary_10_1021_acsaem_1c01898
crossref_primary_10_1039_C8TA08337A
crossref_primary_10_1016_j_susmat_2023_e00645
crossref_primary_10_1039_C8TA11407B
crossref_primary_10_3390_catal12050476
crossref_primary_10_1002_chem_201902389
crossref_primary_10_1021_acscatal_2c01825
crossref_primary_10_1002_adma_201804333
crossref_primary_10_1016_j_xcrp_2021_100550
crossref_primary_10_1016_j_jechem_2020_02_013
crossref_primary_10_1016_j_ijhydene_2019_04_156
crossref_primary_10_1021_acsami_3c06602
crossref_primary_10_1016_j_nanoen_2020_104529
crossref_primary_10_1039_C9TA00489K
crossref_primary_10_1021_acsaem_0c02983
crossref_primary_10_1049_hve2_12378
crossref_primary_10_1002_ange_201909326
crossref_primary_10_1016_j_jechem_2020_04_063
crossref_primary_10_1016_j_apcatb_2021_120063
crossref_primary_10_1002_aenm_202101412
crossref_primary_10_1021_acssuschemeng_8b04496
crossref_primary_10_1002_smll_202104513
crossref_primary_10_1002_aenm_202302011
crossref_primary_10_1002_advs_202102217
crossref_primary_10_1039_C9SE01300H
crossref_primary_10_1039_D1TA08445C
crossref_primary_10_1016_j_jcis_2019_09_104
crossref_primary_10_1021_accountsmr_2c00161
crossref_primary_10_1021_acssuschemeng_0c00060
crossref_primary_10_1002_adfm_202108814
crossref_primary_10_1002_anie_201910510
crossref_primary_10_1007_s12274_022_4874_7
crossref_primary_10_1039_D5TA00039D
crossref_primary_10_1021_acsaem_8b01375
crossref_primary_10_1021_acsami_9b21853
crossref_primary_10_1039_C8NR10521A
crossref_primary_10_1039_D3NJ05877H
crossref_primary_10_1021_acsami_8b12372
crossref_primary_10_1039_C9DT03619A
crossref_primary_10_1039_D4TA08773A
crossref_primary_10_1016_S1872_2067_23_64486_9
crossref_primary_10_1038_s41467_019_13415_8
crossref_primary_10_1002_smtd_201800406
crossref_primary_10_1016_j_apcatb_2021_120753
crossref_primary_10_1016_j_ijhydene_2021_06_231
crossref_primary_10_1002_slct_201901652
crossref_primary_10_1016_j_ijhydene_2023_01_018
crossref_primary_10_1007_s12274_021_3404_1
Cites_doi 10.1038/nmat4938
10.1039/C5MH00096C
10.1021/cs400903k
10.1021/ja073206
10.1039/B612389A
10.1038/s41467-017-01053-x
10.1021/jp3126768
10.1038/ncomms3439
10.1021/cm3012205
10.1038/ncomms5345
10.1039/C5EE03124A
10.1038/nature11475
10.1002/advs.201500187
10.1002/anie.201408998
10.1021/jp512722x
10.1126/science.1212858
10.1039/C5EE03453A
10.1002/ange.201600687
10.1002/adma.201502024
10.1038/nchem.1069
10.1002/adma.201606459
10.1021/am403244k
10.1021/jacs.6b00036
10.1039/C7NR04381C
10.1038/ncomms7097
10.1021/ja065308q
10.1038/nmat4834
10.1038/ncomms14586
10.1021/acs.jpclett.7b01504
10.1038/ncomms9625
10.1021/nl504872s
10.1021/jp047349j
10.1002/adma.201602270
10.1002/ange.201408998
10.1002/adma.201403064
10.1002/anie.201600687
10.1038/nature11115
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201805520
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8696
ExternalDocumentID 29771458
10_1002_anie_201805520
ANIE201805520
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4100-6923fb2df1183cabfc9aacd64b560d60d1d0fb928d79dac87d34d212b07c93193
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:41:37 EDT 2025
Fri Jul 25 12:00:15 EDT 2025
Thu Apr 03 06:58:08 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Tue Jul 01 02:26:26 EDT 2025
Wed Jan 22 16:45:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords perovskites
oxygen evolution reaction
vacancies
electrocatalysts
defects
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4100-6923fb2df1183cabfc9aacd64b560d60d1d0fb928d79dac87d34d212b07c93193
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7185-9857
PMID 29771458
PQID 2064169585
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2040749773
proquest_journals_2064169585
pubmed_primary_29771458
crossref_citationtrail_10_1002_anie_201805520
crossref_primary_10_1002_anie_201805520
wiley_primary_10_1002_anie_201805520_ANIE201805520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 9, 2018
PublicationDateYYYYMMDD 2018-07-09
PublicationDate_xml – month: 07
  year: 2018
  text: July 9, 2018
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2007; 17
2011; 334
2015; 15
2017; 8
2007; 129
2015; 6
2013; 4
2012; 486
2017; 29
2012; 488
2011; 3
2004; 108
2016; 16
2013; 5
2017; 9
2014; 5
2015; 27
2016 2016; 55 128
2014; 4
2016; 3
2017; 16
2013; 117
2015 2015; 54 127
2015; 119
2016; 138
2016; 28
2012; 24
2006; 128
2016; 9
e_1_2_2_3_2
e_1_2_2_4_1
e_1_2_2_23_2
e_1_2_2_24_1
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_3
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_40_1
e_1_2_2_41_1
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_29_1
e_1_2_2_43_2
e_1_2_2_44_1
e_1_2_2_8_1
e_1_2_2_27_2
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_31_2
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_13_3
e_1_2_2_35_2
e_1_2_2_36_1
References_xml – volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  publication-title: Science
– volume: 27
  start-page: 784
  year: 2015
  end-page: 800
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8625
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 473
  year: 2016
  end-page: 477
  publication-title: Energy Environ. Sci.
– volume: 129
  start-page: 11569
  year: 2007
  end-page: 11578
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9902
  year: 2013
  end-page: 9907
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 925
  year: 2017
  end-page: 931
  publication-title: Nat. Mater.
– volume: 486
  start-page: 43
  year: 2012
  end-page: 51
  publication-title: Nature
– volume: 55 128
  start-page: 5277 5363
  year: 2016 2016
  end-page: 5281 5367
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 934
  year: 2017
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9266
  year: 2016
  end-page: 9291
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1061
  year: 2014
  end-page: 1070
  publication-title: ACS Catal.
– volume: 3
  start-page: 546
  year: 2011
  end-page: 550
  publication-title: Nat. Chem.
– volume: 8
  start-page: 14586
  year: 2017
  publication-title: Nat. Commun.
– volume: 117
  start-page: 8628
  year: 2013
  end-page: 8635
  publication-title: J. Phys. Chem. C
– volume: 128
  start-page: 14258
  year: 2006
  end-page: 14259
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 11969
  year: 2017
  end-page: 11975
  publication-title: Nanoscale
– volume: 138
  start-page: 3541
  year: 2016
  end-page: 3547
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 3567
  year: 2012
  end-page: 3573
  publication-title: Chem. Mater.
– volume: 8
  start-page: 3466
  year: 2017
  end-page: 3472
  publication-title: J. Phys. Chem. Lett.
– volume: 16
  start-page: 16
  year: 2016
  end-page: 22
  publication-title: Nat. Mater.
– volume: 5
  start-page: 4345
  year: 2014
  publication-title: Nat. Commun.
– volume: 17
  start-page: 965
  year: 2007
  end-page: 971
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 6097
  year: 2015
  publication-title: Nat. Commun.
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  publication-title: Nature
– volume: 15
  start-page: 1421
  year: 2015
  end-page: 1427
  publication-title: Nano Lett.
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 1500187
  year: 2016
  publication-title: Adv. Sci.
– volume: 54 127
  start-page: 3897 3969
  year: 2015 2015
  end-page: 3901 3973
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 8004
  year: 2015
  end-page: 8013
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 1606459
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 495
  year: 2015
  end-page: 501
  publication-title: Mater. Horiz.
– volume: 4
  start-page: 2439
  year: 2013
  publication-title: Nat. Commun.
– volume: 9
  start-page: 176
  year: 2016
  end-page: 183
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 5989
  year: 2015
  end-page: 5994
  publication-title: Adv. Mater.
– ident: e_1_2_2_16_2
  doi: 10.1038/nmat4938
– ident: e_1_2_2_23_2
  doi: 10.1039/C5MH00096C
– ident: e_1_2_2_1_1
– ident: e_1_2_2_22_2
  doi: 10.1021/cs400903k
– ident: e_1_2_2_8_1
  doi: 10.1021/ja073206
– ident: e_1_2_2_42_2
  doi: 10.1039/B612389A
– ident: e_1_2_2_37_2
  doi: 10.1038/s41467-017-01053-x
– ident: e_1_2_2_43_2
  doi: 10.1021/jp3126768
– ident: e_1_2_2_25_2
  doi: 10.1038/ncomms3439
– ident: e_1_2_2_31_2
  doi: 10.1021/cm3012205
– ident: e_1_2_2_17_2
  doi: 10.1038/ncomms5345
– ident: e_1_2_2_26_2
  doi: 10.1039/C5EE03124A
– ident: e_1_2_2_2_2
  doi: 10.1038/nature11475
– ident: e_1_2_2_21_2
  doi: 10.1002/advs.201500187
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201408998
– ident: e_1_2_2_10_2
  doi: 10.1021/jp512722x
– ident: e_1_2_2_35_2
  doi: 10.1126/science.1212858
– ident: e_1_2_2_29_1
– ident: e_1_2_2_40_1
  doi: 10.1039/C5EE03453A
– ident: e_1_2_2_4_1
– ident: e_1_2_2_13_3
  doi: 10.1002/ange.201600687
– ident: e_1_2_2_15_2
  doi: 10.1002/adma.201502024
– ident: e_1_2_2_38_2
  doi: 10.1038/nchem.1069
– ident: e_1_2_2_11_2
  doi: 10.1002/adma.201606459
– ident: e_1_2_2_32_1
  doi: 10.1021/am403244k
– ident: e_1_2_2_36_1
– ident: e_1_2_2_27_2
  doi: 10.1021/jacs.6b00036
– ident: e_1_2_2_33_1
– ident: e_1_2_2_12_2
  doi: 10.1039/C7NR04381C
– ident: e_1_2_2_18_1
  doi: 10.1038/ncomms7097
– ident: e_1_2_2_30_2
  doi: 10.1021/ja065308q
– ident: e_1_2_2_3_2
  doi: 10.1038/nmat4834
– ident: e_1_2_2_14_1
– ident: e_1_2_2_28_2
  doi: 10.1038/ncomms14586
– ident: e_1_2_2_34_2
  doi: 10.1021/acs.jpclett.7b01504
– ident: e_1_2_2_39_1
  doi: 10.1038/ncomms9625
– ident: e_1_2_2_44_1
  doi: 10.1021/nl504872s
– ident: e_1_2_2_41_1
– ident: e_1_2_2_19_1
– ident: e_1_2_2_45_1
  doi: 10.1021/jp047349j
– ident: e_1_2_2_7_2
  doi: 10.1002/adma.201602270
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201408998
– ident: e_1_2_2_24_1
– ident: e_1_2_2_6_2
  doi: 10.1002/adma.201403064
– ident: e_1_2_2_13_2
  doi: 10.1002/anie.201600687
– ident: e_1_2_2_5_2
  doi: 10.1038/nature11115
– ident: e_1_2_2_9_1
SSID ssj0028806
Score 2.6670232
Snippet The oxygen evolution reaction (OER) is an ideal model to study the relationship between the activity and the surface properties of catalysts. Defect...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8691
SubjectTerms Absorption spectra
Bonding strength
Catalysis
Catalysts
Cations
Chemical bonds
defects
electrocatalysts
Lattice vacancies
Organic chemistry
Oxides
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Perovskites
Surface layers
Surface properties
vacancies
Title Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201805520
https://www.ncbi.nlm.nih.gov/pubmed/29771458
https://www.proquest.com/docview/2064169585
https://www.proquest.com/docview/2040749773
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB7EF33xPupFBMGn6m6aNsmjLCur4IF4vZVcBVG64u6K-uud9NJVRFDoQ9ukdJqZSb5J5wDYcVwYqhkPbcJMyBLKQ6nRSomFdNYxyVVRbOLkNOldsePb-PZTFH-ZH6LZcPOaUczXXsGVHux_JA31EdjeNUu04ph6o907bHlUdNHkj6IonGV4URSFvgp9nbWxRffHHx9flb5BzXHkWiw9h7OgaqJLj5P7vdFQ75m3L_kc__NVczBT4VJyUArSPEy4fAGmOnU5uEW4Oa8qkuCU8EA6BUPJtTJFdd8BucvJuXvqPw_8bjDpvVok9s46gpiYIMYkZy-vKKqk-1yJOrlwZUjFElwddi87vbCqyhAahkSGCULCTFOboWkSGaUzI5UyyGqN4Mni0batTEsqLJdWGcFtxCwukLrFjUSFj5ZhMu_nbhVI5HDCUAItUGUYtW1puRWRlk6LLKMZDSCsuZKaKmW5r5zxkJbJlmnqhytthiuA3ab_Y5ms48eeGzWT00ppB9iaIDyVaEAFsN004zD7fygqd_2R74MWMIowjwJYKYWjeRXF220WiwBoweJfaEgPTo-6zdXaXx5ah2l_XrgPyw2YHD6N3CaCpKHeKhThHfUkCAI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5V9AFe6MGVQlsjIfEU2HWc2H5Eq0VLgQUhrrfIVyRUlK3YXQT8esbOgRZUIbVSXhLbysQzY3_jzAGw5bgwVDMe24yZmGWUx1KjlZIK6axjkqtQbOJ4mA0u2K_rtPEm9LEwVX6I9sDNa0ZYr72C-wPp3ZesoT4E2_tmiU6aUrTaP_qy3sGqOmszSFEUzyrAKEliX4e-ydvYobuz42f3pTdgcxa7hs1n_xPohuzK5-T3znSid8zTq4yO__Vdn2GxhqZkr5KlL_DBlV9hvtdUhFuCq9O6KAmuCrekF3hKLpUJBX7H5KYkp-5udD_2B8Jk8GiR2hvrCMJigjCTnDw8orSS_n0t7eTMVVEVy3Cx3z_vDeK6MENsGBIZZ4gKC01tgdZJYpQujFTKILc14ieLV9d2Ci2psFxaZQS3CbO4R-oONxJ1PlmBuXJUujUgicM1Qwk0QpVh1Hal5VYkWjotioIWNIK4YUtu6qzlvnjGbV7lW6a5n668na4Ittv-f6p8HX_tudFwOa_1doytGSJUiTZUBJttM06z_42iSjea-j5oBKMU8ySC1Uo62ldRfNxlqYiABh6_Q0O-Nzzot3ff_mXQT5gfnB8f5UcHw8N1WPDPgzex3IC5yd3UfUfMNNE_glY8A3UODB0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hIQEvfI4tsDEjIfGULXWc2H6culbtgFJV7OMt8lekalVare3E-Os554sVNCGBlJfEtnLx3dm_c-zfAXxwXBiqGQ9tykzIUspDqTFKSYR01jHJVZls4ssoHZyx08vk8s4p_oofol1w855RjtfewRc2P_pFGupPYPutWSJKEopB-0OWRsLb9cmkJZCiaJ3V-aI4Dn0a-oa2MaJHm-03p6U_sOYmdC3nnv4zUI3U1ZaTq8P1Sh-aH78ROv7PZz2HpzUwJceVJb2AB654CY-7TT64V3AxrlOS4JgwI91So-RcmTK975JMCzJ21_ObpV8OJoNbi8JOrSMIigmCTPL1-y3aKund1LZOJq46U7ENZ_3et-4grNMyhIahkGGKmDDX1OYYm8RG6dxIpQzqWiN6snh1bJRrSYXl0iojuI2ZxRlSR9xI9Pj4NWwV88LtAokdjhhKYAiqDKO2Iy23ItbSaZHnNKcBhI1WMlNzlvvUGbOsYlumme-urO2uAD629RcVW8e9NfcaJWe11y6xNEV8KjGCCuB9W4zd7H-iqMLN174OhsBowzwOYKcyjvZVFB93WCICoKWK_yJDdjwa9tq7N__S6AAejU_62efh6NNbeOIfl1uJ5R5sra7Xbh8B00q_K33iJ1w1CtU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preferential+Cation+Vacancies+in+Perovskite+Hydroxide+for+the+Oxygen+Evolution+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Dawei&rft.au=Qiao%2C+Man&rft.au=Lu%2C+Ying-Rui&rft.au=Hao%2C+Li&rft.date=2018-07-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=57&rft.issue=28&rft.spage=8691&rft_id=info:doi/10.1002%2Fanie.201805520&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon