Mixed effect gradient boosting for high-dimensional longitudinal data
High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradie...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 30927 - 24 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.08.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-16526-z |
Cover
Abstract | High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes
(
p
=
2000
)
. Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data
(
n
=
12
subjects,
p
=
33
,
297
transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters. |
---|---|
AbstractList | High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes (p=2000) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data (n=12 subjects, p=33,297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters. Abstract High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes $$(p=2000)$$ ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data $$(n=12$$ ( n = 12 subjects, $$p=33,297$$ p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters. High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting's inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data subjects, transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters. High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p=2000)$$\end{document} ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=12$$\end{document} ( n = 12 subjects, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=33,297$$\end{document} p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters. High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data ( n = 12 subjects, p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters. High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting's inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data ( n = 12 subjects, p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting's inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data ( n = 12 subjects, p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters. |
ArticleNumber | 30927 |
Author | Olaniran, Saidat Fehintola Alharbi, Abdulmajeed Atiah Alharbi, Nada MohammedSaeed Allohibi, Jeza Olaniran, Oyebayo Ridwan |
Author_xml | – sequence: 1 givenname: Oyebayo Ridwan surname: Olaniran fullname: Olaniran, Oyebayo Ridwan email: olaniran.or@unilorin.edu.ng, ridwan.olaniran@kcl.ac.uk organization: Department of Statistics, Faculty of Physical Sciences, University of Ilorin, Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London – sequence: 2 givenname: Saidat Fehintola surname: Olaniran fullname: Olaniran, Saidat Fehintola organization: Department of Statistics and Mathematical Sciences, Faculty of Pure and Applied Sciences, Kwara State University – sequence: 3 givenname: Jeza surname: Allohibi fullname: Allohibi, Jeza organization: Department of Mathematics, Taibah University, Faculty of Science – sequence: 4 givenname: Abdulmajeed Atiah surname: Alharbi fullname: Alharbi, Abdulmajeed Atiah organization: Department of Mathematics, Taibah University, Faculty of Science – sequence: 5 givenname: Nada MohammedSaeed surname: Alharbi fullname: Alharbi, Nada MohammedSaeed organization: Department of Mathematics, Taibah University, Faculty of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40847064$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhompsbX2D7gwk7jpZpSPwwysjGmqNqlxo2vC51xu5g4V5jZ6f325d2ptXUhCgMN7HjjwvkRHU5o8Qq8JfkcwE-8LEC5FiylvScdp1-6eoROKgbeUUXr0aH6MzkpZ49o4lUDkC3QMWECPOzhBl1_jL-8aH4K3czNk7aKf5sakVOY4DU1IuVnFYdW6uPFTiWnSYzOmaYjz1sX9wulZv0LPgx6LP7sfT9GPT5ffL760198-X118vG4tYLlre8xCAALOBaJxLwNAjYPTvjckMKk1xcJaKrwUUjtiApXGSGyNlZQAZqfoauG6pNfqJseNzr9V0lEdAikPSuc52tErwLbngotOGA3cYIOJ91w654V1HUBlfVhYN1uz8c7WsrMen0Cf7kxxpYZ0qwhlPRPAKuH8npDTz60vs9rEYv046smnbVGMQlc7B1qlb_-RrtM21-c7qGgtDXd74JvHV3q4y5_vqgK6CGxOpWQfHiQEq70t1GILVW2hDrZQu5rElqRSxdPg89-z_5N1B_rSuj4 |
Cites_doi | 10.1177/0962280220946080 10.1002/9780470191613 10.1007/s11634-022-00509-3 10.1145/2939672.2939785 10.1387/ijdb.130329gd 10.1093/jrsssb/qkae094 10.1146/annurev-pathmechdis-012418-012743 10.1080/01621459.2015.1036994 10.1073/pnas.1405528111 10.1161/01.ATV.21.3.335 10.1080/01621459.1992.10475220 10.1016/j.spl.2010.12.003 10.1080/01621459.2016.1264957 10.1007/978-0-387-84858-7_10 10.1007/s10994-011-5258-3 10.32614/CRAN.package.MEGB 10.1016/j.jml.2020.104092 10.1586/eog.11.16 10.1201/b14625-3 10.1136/jmg.2008.058271 10.1080/01621459.2016.1215989 10.1214/07-STS242 10.1080/10618600.2013.773239 10.1198/jcgs.2010.06089 10.1007/978-1-4419-0318-1_1 10.1016/j.csda.2015.02.004 10.1530/rep.1.01076 10.1214/aos/1013203451 10.1007/s10260-022-00658-x 10.2307/2529876 10.1023/A:1010933404324 10.1080/00949655.2012.741599 10.1111/j.2517-6161.1977.tb01600.x 10.1007/978-3-031-38747-0_8 10.1016/j.biochi.2018.02.010 10.1080/10618600.2013.794732 10.1002/nur.21508 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-16526-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_40c7585868ba45b0b01ee59dde8cd644 PMC12373843 40847064 10_1038_s41598_025_16526_z |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c409z-703ff414ddf1a079f444094dae7b1f39aa208cc28e989ad1bf29bb90cbc921403 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:21:37 EDT 2025 Wed Aug 27 05:40:14 EDT 2025 Thu Sep 04 12:31:10 EDT 2025 Sat Aug 23 17:40:24 EDT 2025 Thu Sep 04 05:02:58 EDT 2025 Wed Aug 27 16:28:15 EDT 2025 Sat Aug 23 01:10:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | High-dimensional Data Gradient Boosting Longitudinal Data Mixed Effect Model |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409z-703ff414ddf1a079f444094dae7b1f39aa208cc28e989ad1bf29bb90cbc921403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-16526-z |
PMID | 40847064 |
PQID | 3242403063 |
PQPubID | 2041939 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_40c7585868ba45b0b01ee59dde8cd644 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12373843 proquest_miscellaneous_3246324542 proquest_journals_3242403063 pubmed_primary_40847064 crossref_primary_10_1038_s41598_025_16526_z springer_journals_10_1038_s41598_025_16526_z |
PublicationCentury | 2000 |
PublicationDate | 20250822 |
PublicationDateYYYYMMDD | 2025-08-22 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250822 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | A Bayes-Genis (16526_CR45) 2001; 21 T Moore (16526_CR38) 2014; 58 FK Hui (16526_CR4) 2017; 112 16526_CR24 16526_CR26 16526_CR27 16526_CR42 F Sigrist (16526_CR22) 2022; 23 16526_CR43 MR Segal (16526_CR11) 1992; 87 W Koh (16526_CR37) 2014; 111 S Hu (16526_CR23) 2023; 32 R Mineri (16526_CR46) 2008; 45 R Zhu (16526_CR20) 2015; 110 LA Cole (16526_CR39) 2011; 6 R Wei (16526_CR13) 2020; 30 A Hajjem (16526_CR15) 2011; 81 RJ Sela (16526_CR17) 2012; 86 F Sigrist (16526_CR21) 2023; 1 E Dusseldorp (16526_CR14) 2010; 19 L Breiman (16526_CR32) 2001; 45 A-AH Thibeault (16526_CR44) 2018; 148 16526_CR2 W Fu (16526_CR18) 2015; 88 16526_CR3 16526_CR30 16526_CR8 GJ Knafl (16526_CR5) 2012; 35 H Deshmukh (16526_CR40) 2019; 14 16526_CR6 16526_CR7 16526_CR35 16526_CR36 S-H Eo (16526_CR12) 2014; 23 16526_CR31 16526_CR1 16526_CR33 16526_CR34 P Bühlmann (16526_CR9) 2007; 22 16526_CR28 AR Linero (16526_CR10) 2018; 113 A Hajjem (16526_CR16) 2014; 84 L Capitaine (16526_CR19) 2021; 30 A Gottard (16526_CR25) 2023; 17 AP Dempster (16526_CR29) 1977; 39 RL Jones (16526_CR41) 2006; 132 |
References_xml | – volume: 30 start-page: 166 year: 2021 ident: 16526_CR19 publication-title: Stat. methods medical research doi: 10.1177/0962280220946080 – ident: 16526_CR30 doi: 10.1002/9780470191613 – ident: 16526_CR35 – volume: 17 start-page: 431 year: 2023 ident: 16526_CR25 publication-title: Adv. Data Analysis Classif. doi: 10.1007/s11634-022-00509-3 – ident: 16526_CR7 doi: 10.1145/2939672.2939785 – ident: 16526_CR33 – volume: 58 start-page: 273 year: 2014 ident: 16526_CR38 publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.130329gd – ident: 16526_CR1 doi: 10.1093/jrsssb/qkae094 – volume: 14 start-page: 185 year: 2019 ident: 16526_CR40 publication-title: Annu. Rev. Pathol. Mech. Dis. doi: 10.1146/annurev-pathmechdis-012418-012743 – volume: 110 start-page: 1770 year: 2015 ident: 16526_CR20 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2015.1036994 – volume: 111 start-page: 7361 year: 2014 ident: 16526_CR37 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1405528111 – volume: 21 start-page: 335 year: 2001 ident: 16526_CR45 publication-title: Arter. thrombosis, vascular biology doi: 10.1161/01.ATV.21.3.335 – ident: 16526_CR43 – volume: 87 start-page: 407 year: 1992 ident: 16526_CR11 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1992.10475220 – volume: 81 start-page: 451 year: 2011 ident: 16526_CR15 publication-title: Stat. & probability letters doi: 10.1016/j.spl.2010.12.003 – volume: 113 start-page: 626 year: 2018 ident: 16526_CR10 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1264957 – ident: 16526_CR28 doi: 10.1007/978-0-387-84858-7_10 – volume: 86 start-page: 169 year: 2012 ident: 16526_CR17 publication-title: Mach. learning doi: 10.1007/s10994-011-5258-3 – ident: 16526_CR34 doi: 10.32614/CRAN.package.MEGB – ident: 16526_CR2 doi: 10.1016/j.jml.2020.104092 – volume: 6 start-page: 273 year: 2011 ident: 16526_CR39 publication-title: Expert. Rev. Obstet. & Gynecol. doi: 10.1586/eog.11.16 – ident: 16526_CR42 doi: 10.1201/b14625-3 – ident: 16526_CR31 – volume: 45 start-page: 473 year: 2008 ident: 16526_CR46 publication-title: J. medical genetics doi: 10.1136/jmg.2008.058271 – volume: 112 start-page: 1323 year: 2017 ident: 16526_CR4 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1215989 – volume: 22 start-page: 477 year: 2007 ident: 16526_CR9 publication-title: Stat. Sci. doi: 10.1214/07-STS242 – ident: 16526_CR3 doi: 10.1080/10618600.2013.773239 – volume: 19 start-page: 514 year: 2010 ident: 16526_CR14 publication-title: J. Comput. Graph. Stat. doi: 10.1198/jcgs.2010.06089 – ident: 16526_CR8 – ident: 16526_CR27 doi: 10.1007/978-1-4419-0318-1_1 – volume: 88 start-page: 53 year: 2015 ident: 16526_CR18 publication-title: Comput. Stat. & Data Analysis doi: 10.1016/j.csda.2015.02.004 – volume: 132 start-page: 217 year: 2006 ident: 16526_CR41 publication-title: Reproduction doi: 10.1530/rep.1.01076 – ident: 16526_CR6 doi: 10.1214/aos/1013203451 – volume: 32 start-page: 681 year: 2023 ident: 16526_CR23 publication-title: Stat. Methods & Appl. doi: 10.1007/s10260-022-00658-x – ident: 16526_CR26 doi: 10.2307/2529876 – volume: 45 start-page: 5 year: 2001 ident: 16526_CR32 publication-title: Random forests. Machine learning doi: 10.1023/A:1010933404324 – volume: 30 start-page: 55 year: 2020 ident: 16526_CR13 publication-title: Stat. Sinica – volume: 23 start-page: 1 year: 2022 ident: 16526_CR22 publication-title: J. Mach. Learn. Res. – ident: 16526_CR24 – volume: 84 start-page: 1313 year: 2014 ident: 16526_CR16 publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2012.741599 – volume: 39 start-page: 1 year: 1977 ident: 16526_CR29 publication-title: J. royal statistical society: series B (methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 16526_CR36 doi: 10.1007/978-3-031-38747-0_8 – volume: 148 start-page: 12 year: 2018 ident: 16526_CR44 publication-title: Biochimie doi: 10.1016/j.biochi.2018.02.010 – volume: 1 start-page: 3 issue: 2 year: 2023 ident: 16526_CR21 publication-title: R package version – volume: 23 start-page: 740 year: 2014 ident: 16526_CR12 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2013.794732 – volume: 35 start-page: 647 year: 2012 ident: 16526_CR5 publication-title: Res. nursing & health doi: 10.1002/nur.21508 |
SSID | ssj0000529419 |
Score | 2.4546826 |
Snippet | High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of... Abstract High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 30927 |
SubjectTerms | 639/705/531 639/705/794 Accuracy Algorithms Biomarkers Biomedical research Boosting Machine Learning Algorithms Computer Simulation Data analysis Datasets Decision trees Efficiency Feature selection Female Fetuses Flexibility Genomics Gradient Boosting High-dimensional Data Humanities and Social Sciences Humans Longitudinal Data Longitudinal Studies Machine learning Mixed Effect Model multidisciplinary Placenta - metabolism Pregnancy Proteomics RNA - metabolism Science Science (multidisciplinary) Sparsity Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SEHwRrb9W2xLBNw1Nsslt8qjSUoT6ZKFvIT-1IHvSuwO9v96ZZO_sWcUXXzcLG77JZL7ZTL4h5BXPevAQOljstWFKxsxMsYEZn_uSgvFF4AXn84-zswv14VJf3mj1hTVhTR64AXeseERKa2YmeKUD_rfLWVvwShMTBHPcfbnlN5KppuotrRJ2uiXDe3O8gEiFt8mkZmKm5YytdyJRFez_E8u8XSz524lpDUSnD8j9iUHSt23mD8mdPO6Tu62n5I9H5OT86ntOtNVp0M_XtaRrSYFML7DCmQJJpahRzBLq-jdNDvp1jm2LVglbZFEsGn1MLk5PPr0_Y1OvBBYhQ1szcNxSlFApFeH5YItSmLkln4cgSm-9l9zEKE22xvokQpE2BMtjiFaiZt8TsjfOx_yMUBMCQGtUtpCbZd77IVkehEEqoYMRHXm9wc19a5IYrh5l98Y1lB2g7CrKbt2Rdwjt9k2Us64PwMhuMrL7l5E7crAxjJt8bOGQCipMefqOvNwOg3fgkYcf83xV30E9eq1kR542O25nojhEZmBkHTE7Ft6Z6u7IePWlKnBDuB96o-DDbzaL4de8_o7F8_-BxQtyT-Iq5rDDyQOyt7xe5UMgRstwVH3gJ3WgCkM priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixQxEA66IngR37auEsGbhk3SyXRyEpVdFmE9uTC3kOe6IN3rPEDn11uV7pllfF07DV1dqVR9SVW-IuQ1z7rzEDpYbLVhSsbMTLGBGZ_bkoLxReAF57PPs9Nz9Wmu59OB23Iqq9z6xOqo0xDxjPwIA79CgNu-u_rOsGsUZlenFho3ya1KXQb23M273RkLZrGUsNNdGd6aoyXEK7xTJjUTMy1nbLMXjypt_9-w5p8lk7_lTWs4OrlH7k44kr4fJ_4-uZH7B-T22Fny50NyfHb5Iyc6VmvQi0Ut7FpRgNRLrHOmAFUpMhWzhOz-IzMH_TZg86J1wkZZFEtHH5Hzk-MvH0_Z1DGBRdinbRgs31KUUCkV4Xlni1K4f0s-d0GU1novuYlRmmyN9UmEIm0IlscQrUTmvsfkoB_6_JRQE4KJyahsYYeWeeu7ZHkQBgGFDkY05M1Wb-5qJMZwNaHdGjdq2YGWXdWy2zTkA6p29yaSWtcHw-LCTWvEKR5x92JmJnilAx7R5qwtOGCQBHBbQw63E-OmlbZ013bRkFe7YVgjmPjwfR7W9R1kpddKNuTJOI87SRSH-Ay4rCFmb4b3RN0f6S-_Vh5uCPpdaxR8-O3WGK7l-rcunv3_N56TOxLtk4MHk4fkYLVY5xcAfFbhZbXuX-ixAX8 priority: 102 providerName: ProQuest |
Title | Mixed effect gradient boosting for high-dimensional longitudinal data |
URI | https://link.springer.com/article/10.1038/s41598-025-16526-z https://www.ncbi.nlm.nih.gov/pubmed/40847064 https://www.proquest.com/docview/3242403063 https://www.proquest.com/docview/3246324542 https://pubmed.ncbi.nlm.nih.gov/PMC12373843 https://doaj.org/article/40c7585868ba45b0b01ee59dde8cd644 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_u9hB8Eb-tnksF3zSYpmmbPO4texwLd4h6sG8hadLzQLqyH6D71zuTtiur54NPhTSlw-RjfpPM_AbgLQ9FZdF0sDovFJOiDkw12jFlQ954p2yTUYLz5VV5cS3ni2JxBGLIhYlB-5HSMm7TQ3TYhzUaGkoGEwXLykKUbHcMJwrNnxjByWQy_zzfn6zQ3ZXMdJ8hw3N1x8cHViiS9d-FMP8OlPzjtjQaofOH8KBHj-mkk_cRHIX2Mdzr6kn-fAKzy9sfwaddjEZ6s4rhXJsUgfSaoptTBKgp8RMzT5z-HR9H-m1JJYu2nspjpRQw-hSuz2dfphesr5PAavTOdgwXbdPITHrfZJZXupGSvDZvQ-WyJtfWCq7qWqiglbY-c43Qzmleu1oL4ut7BqN22YYXkCrnVO2VDBr9ssBzW3nNXaYIRhROZQm8G_Rmvnd0GCZeY-fKdFo2qGUTtWx2CZyRavc9ico6NixXN6YfWiN5TT6LKpWzsnB0MBtCoXHbRUkQrSVwOgyM6dfX2hAMlOTu5Am82b_GlUHXHbYNy23sQ1z0hRQJPO_GcS-J5GiVEY0loA5G-EDUwzft7dfIvo2mvsqVxB-_HybDb7n-rYuX_9f9FdwXNF857mPiFEab1Ta8RvizcWM4rhbVuJ_1-DybXX38hK3TcjqORwq_AELsBa0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYIEJ7DqOM6ufUCIwlZb2l0h1Eq9GTt2SiWUlH0Iuj-K38hMHlstr1uvsZU4M2PPN54XwHMesoFF1cHyNFNMijwwVWjHlA1p4Z2yRUIJzuNJf3QkPxxnxxvws8uFobDK7kysD2pf5XRHvk2KXxLATd-cfWPUNYq8q10LjUYs9sP5dzTZZq_33iN_XwixOzx8N2JtVwGWoy2zZCjiRSET6X2RWD7QhZRk43gbBi4pUm2t4CrPhQpaaesTVwjtnOa5y7Wg6nb43iuwKSmjtQebO8PJx0-rWx3ym8lEt9k5PFXbM9SQlMUmMpb0M9FnyzUNWDcK-Bu6_TNI8zdPba0Ad2_CjRa5xm8bUbsFG6G8DVebXpbnd2A4Pv0RfNzEh8Qn0zqUbB4jiJ9RZHWM4Dim2sjMUz-BphZI_LWidkkLT625YgpWvQtHl0LNe9ArqzI8gFg5p3KvZNBoEwae2oHX3CWKIEzmVBLBy45u5qwpxWFqF3qqTENlg1Q2NZXNMoIdIu1qJpXRrh9U0xPT7kojeU72kuorZ2Xm6FI4hEzjkY8rQaQYwVbHGNPu7Zm5kMQInq2GcVeSq8WWoVrUc6gOfiZFBPcbPq5WIjkiAkSCEag1Dq8tdX2kPP1SV_5GmDFIlcQPv-qE4WJd_6bFw___xlO4NjocH5iDvcn-I7guSFY5np9iC3rz6SI8Rtg1d09aWY_h82Vvr1_pHkBS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaxNHGdjHxAC2lVLacWBSnszfqVUQpuyD0H3p_HrmMljq-V16zW2Emc84_nG8wJ4lsaitKg6uM8LxaXwkatKO65szKvglK0ySnA-OBzuHsn342K8AT_7XBgKq-zPxOagDrWnO_IBKX5JADcfVF1YxMft0evTb5w6SJGntW-n0bLIfjz7jubb7NXeNu71cyFGO5_e7fKuwwD3aNcsObJ7VclMhlBlNi11JSXZO8HG0mVVrq0VqfJeqKiVtiFzldDO6dQ7rwVVusP3XoLLZY6oCmWpHJer-x3yoMlMd3k6aa4GM9SVlM8mCp4NCzHkyzVd2LQM-BvO_TNc8zefbaMKRzfgeodh2ZuW6W7CRpzcgittV8uz27BzcPIjBtZGirDjaRNUNmcI52cUY80QJjOqkswDdRZoq4KwrzU1TloEatLFKGz1DhxdCC3vwuaknsT7wJRzygclo0brMKa5LYNOXaYIzBROZQm86OlmTtuiHKZxpufKtFQ2SGXTUNksE3hLpF3NpILazYN6emw6-TQy9WQ5qaFyVhaOrodjLDQe_rgSxIwJbPUbYzopn5lznkzg6WoY5ZOcLnYS60UzhyriF1IkcK_dx9VKZIrYADFhAmpth9eWuj4yOfnS1ABHwFHmSuKHX_bMcL6uf9Piwf9_4wlcRaEyH_YO9x_CNUGsmuJBKrZgcz5dxEeIv-buccPoDD5ftGT9AiuCQxk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+effect+gradient+boosting+for+high-dimensional+longitudinal+data&rft.jtitle=Scientific+reports&rft.au=Olaniran%2C+Oyebayo+Ridwan&rft.au=Olaniran%2C+Saidat+Fehintola&rft.au=Allohibi%2C+Jeza&rft.au=Alharbi%2C+Abdulmajeed+Atiah&rft.date=2025-08-22&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30927&rft_id=info:doi/10.1038%2Fs41598-025-16526-z&rft_id=info%3Apmid%2F40847064&rft.externalDocID=40847064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |