Mixed effect gradient boosting for high-dimensional longitudinal data

High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradie...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 30927 - 24
Main Authors Olaniran, Oyebayo Ridwan, Olaniran, Saidat Fehintola, Allohibi, Jeza, Alharbi, Abdulmajeed Atiah, Alharbi, Nada MohammedSaeed
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-16526-z

Cover

Abstract High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data ( n = 12 subjects, p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
AbstractList High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes (p=2000) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data (n=12 subjects, p=33,297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
Abstract High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes $$(p=2000)$$ ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data $$(n=12$$ ( n = 12 subjects, $$p=33,297$$ p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting's inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data subjects, transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p=2000)$$\end{document} ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=12$$\end{document} ( n = 12 subjects, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=33,297$$\end{document} p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting’s inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data ( n = 12 subjects, p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting's inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data ( n = 12 subjects, p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of predictors to observations. To address these challenges, we introduce Mixed-Effect Gradient Boosting (MEGB), a novel R package that synergises gradient boosting with mixed-effects modelling to simultaneously account for population-level fixed effects and subject-specific random variability. MEGB provides a unified framework for analysing repeated measures data that accommodates complex covariance structures while harnessing gradient boosting's inherent regularisation for robust feature selection and prediction. In comprehensive simulations spanning linear and nonlinear data-generating processes, MEGB achieved 35-76% lower mean squared error (MSE) compared to state-of-the-art alternatives like Mixed-Effect Random Forests (MERF) and REEMForest, while maintaining 55-70% true positive rates for variable selection in ultra-high-dimensional regimes ( p = 2000 ) . Demonstrating practical utility, we applied MEGB to maternal cell-free plasma RNA data ( n = 12 subjects, p = 33 , 297 transcripts), where it identified 9 key placental transcripts driving fetal RNA dynamics across pregnancy trimesters.
ArticleNumber 30927
Author Olaniran, Saidat Fehintola
Alharbi, Abdulmajeed Atiah
Alharbi, Nada MohammedSaeed
Allohibi, Jeza
Olaniran, Oyebayo Ridwan
Author_xml – sequence: 1
  givenname: Oyebayo Ridwan
  surname: Olaniran
  fullname: Olaniran, Oyebayo Ridwan
  email: olaniran.or@unilorin.edu.ng, ridwan.olaniran@kcl.ac.uk
  organization: Department of Statistics, Faculty of Physical Sciences, University of Ilorin, Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
– sequence: 2
  givenname: Saidat Fehintola
  surname: Olaniran
  fullname: Olaniran, Saidat Fehintola
  organization: Department of Statistics and Mathematical Sciences, Faculty of Pure and Applied Sciences, Kwara State University
– sequence: 3
  givenname: Jeza
  surname: Allohibi
  fullname: Allohibi, Jeza
  organization: Department of Mathematics, Taibah University, Faculty of Science
– sequence: 4
  givenname: Abdulmajeed Atiah
  surname: Alharbi
  fullname: Alharbi, Abdulmajeed Atiah
  organization: Department of Mathematics, Taibah University, Faculty of Science
– sequence: 5
  givenname: Nada MohammedSaeed
  surname: Alharbi
  fullname: Alharbi, Nada MohammedSaeed
  organization: Department of Mathematics, Taibah University, Faculty of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40847064$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompsbX2D7gwk7jpZpSPwwysjGmqNqlxo2vC51xu5g4V5jZ6f325d2ptXUhCgMN7HjjwvkRHU5o8Qq8JfkcwE-8LEC5FiylvScdp1-6eoROKgbeUUXr0aH6MzkpZ49o4lUDkC3QMWECPOzhBl1_jL-8aH4K3czNk7aKf5sakVOY4DU1IuVnFYdW6uPFTiWnSYzOmaYjz1sX9wulZv0LPgx6LP7sfT9GPT5ffL760198-X118vG4tYLlre8xCAALOBaJxLwNAjYPTvjckMKk1xcJaKrwUUjtiApXGSGyNlZQAZqfoauG6pNfqJseNzr9V0lEdAikPSuc52tErwLbngotOGA3cYIOJ91w654V1HUBlfVhYN1uz8c7WsrMen0Cf7kxxpYZ0qwhlPRPAKuH8npDTz60vs9rEYv046smnbVGMQlc7B1qlb_-RrtM21-c7qGgtDXd74JvHV3q4y5_vqgK6CGxOpWQfHiQEq70t1GILVW2hDrZQu5rElqRSxdPg89-z_5N1B_rSuj4
Cites_doi 10.1177/0962280220946080
10.1002/9780470191613
10.1007/s11634-022-00509-3
10.1145/2939672.2939785
10.1387/ijdb.130329gd
10.1093/jrsssb/qkae094
10.1146/annurev-pathmechdis-012418-012743
10.1080/01621459.2015.1036994
10.1073/pnas.1405528111
10.1161/01.ATV.21.3.335
10.1080/01621459.1992.10475220
10.1016/j.spl.2010.12.003
10.1080/01621459.2016.1264957
10.1007/978-0-387-84858-7_10
10.1007/s10994-011-5258-3
10.32614/CRAN.package.MEGB
10.1016/j.jml.2020.104092
10.1586/eog.11.16
10.1201/b14625-3
10.1136/jmg.2008.058271
10.1080/01621459.2016.1215989
10.1214/07-STS242
10.1080/10618600.2013.773239
10.1198/jcgs.2010.06089
10.1007/978-1-4419-0318-1_1
10.1016/j.csda.2015.02.004
10.1530/rep.1.01076
10.1214/aos/1013203451
10.1007/s10260-022-00658-x
10.2307/2529876
10.1023/A:1010933404324
10.1080/00949655.2012.741599
10.1111/j.2517-6161.1977.tb01600.x
10.1007/978-3-031-38747-0_8
10.1016/j.biochi.2018.02.010
10.1080/10618600.2013.794732
10.1002/nur.21508
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-16526-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_40c7585868ba45b0b01ee59dde8cd644
PMC12373843
40847064
10_1038_s41598_025_16526_z
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c409z-703ff414ddf1a079f444094dae7b1f39aa208cc28e989ad1bf29bb90cbc921403
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:21:37 EDT 2025
Wed Aug 27 05:40:14 EDT 2025
Thu Sep 04 12:31:10 EDT 2025
Sat Aug 23 17:40:24 EDT 2025
Thu Sep 04 05:02:58 EDT 2025
Wed Aug 27 16:28:15 EDT 2025
Sat Aug 23 01:10:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords High-dimensional Data
Gradient Boosting
Longitudinal Data
Mixed Effect Model
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409z-703ff414ddf1a079f444094dae7b1f39aa208cc28e989ad1bf29bb90cbc921403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-16526-z
PMID 40847064
PQID 3242403063
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_40c7585868ba45b0b01ee59dde8cd644
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12373843
proquest_miscellaneous_3246324542
proquest_journals_3242403063
pubmed_primary_40847064
crossref_primary_10_1038_s41598_025_16526_z
springer_journals_10_1038_s41598_025_16526_z
PublicationCentury 2000
PublicationDate 20250822
PublicationDateYYYYMMDD 2025-08-22
PublicationDate_xml – month: 8
  year: 2025
  text: 20250822
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References A Bayes-Genis (16526_CR45) 2001; 21
T Moore (16526_CR38) 2014; 58
FK Hui (16526_CR4) 2017; 112
16526_CR24
16526_CR26
16526_CR27
16526_CR42
F Sigrist (16526_CR22) 2022; 23
16526_CR43
MR Segal (16526_CR11) 1992; 87
W Koh (16526_CR37) 2014; 111
S Hu (16526_CR23) 2023; 32
R Mineri (16526_CR46) 2008; 45
R Zhu (16526_CR20) 2015; 110
LA Cole (16526_CR39) 2011; 6
R Wei (16526_CR13) 2020; 30
A Hajjem (16526_CR15) 2011; 81
RJ Sela (16526_CR17) 2012; 86
F Sigrist (16526_CR21) 2023; 1
E Dusseldorp (16526_CR14) 2010; 19
L Breiman (16526_CR32) 2001; 45
A-AH Thibeault (16526_CR44) 2018; 148
16526_CR2
W Fu (16526_CR18) 2015; 88
16526_CR3
16526_CR30
16526_CR8
GJ Knafl (16526_CR5) 2012; 35
H Deshmukh (16526_CR40) 2019; 14
16526_CR6
16526_CR7
16526_CR35
16526_CR36
S-H Eo (16526_CR12) 2014; 23
16526_CR31
16526_CR1
16526_CR33
16526_CR34
P Bühlmann (16526_CR9) 2007; 22
16526_CR28
AR Linero (16526_CR10) 2018; 113
A Hajjem (16526_CR16) 2014; 84
L Capitaine (16526_CR19) 2021; 30
A Gottard (16526_CR25) 2023; 17
AP Dempster (16526_CR29) 1977; 39
RL Jones (16526_CR41) 2006; 132
References_xml – volume: 30
  start-page: 166
  year: 2021
  ident: 16526_CR19
  publication-title: Stat. methods medical research
  doi: 10.1177/0962280220946080
– ident: 16526_CR30
  doi: 10.1002/9780470191613
– ident: 16526_CR35
– volume: 17
  start-page: 431
  year: 2023
  ident: 16526_CR25
  publication-title: Adv. Data Analysis Classif.
  doi: 10.1007/s11634-022-00509-3
– ident: 16526_CR7
  doi: 10.1145/2939672.2939785
– ident: 16526_CR33
– volume: 58
  start-page: 273
  year: 2014
  ident: 16526_CR38
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.130329gd
– ident: 16526_CR1
  doi: 10.1093/jrsssb/qkae094
– volume: 14
  start-page: 185
  year: 2019
  ident: 16526_CR40
  publication-title: Annu. Rev. Pathol. Mech. Dis.
  doi: 10.1146/annurev-pathmechdis-012418-012743
– volume: 110
  start-page: 1770
  year: 2015
  ident: 16526_CR20
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2015.1036994
– volume: 111
  start-page: 7361
  year: 2014
  ident: 16526_CR37
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1405528111
– volume: 21
  start-page: 335
  year: 2001
  ident: 16526_CR45
  publication-title: Arter. thrombosis, vascular biology
  doi: 10.1161/01.ATV.21.3.335
– ident: 16526_CR43
– volume: 87
  start-page: 407
  year: 1992
  ident: 16526_CR11
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1992.10475220
– volume: 81
  start-page: 451
  year: 2011
  ident: 16526_CR15
  publication-title: Stat. & probability letters
  doi: 10.1016/j.spl.2010.12.003
– volume: 113
  start-page: 626
  year: 2018
  ident: 16526_CR10
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1264957
– ident: 16526_CR28
  doi: 10.1007/978-0-387-84858-7_10
– volume: 86
  start-page: 169
  year: 2012
  ident: 16526_CR17
  publication-title: Mach. learning
  doi: 10.1007/s10994-011-5258-3
– ident: 16526_CR34
  doi: 10.32614/CRAN.package.MEGB
– ident: 16526_CR2
  doi: 10.1016/j.jml.2020.104092
– volume: 6
  start-page: 273
  year: 2011
  ident: 16526_CR39
  publication-title: Expert. Rev. Obstet. & Gynecol.
  doi: 10.1586/eog.11.16
– ident: 16526_CR42
  doi: 10.1201/b14625-3
– ident: 16526_CR31
– volume: 45
  start-page: 473
  year: 2008
  ident: 16526_CR46
  publication-title: J. medical genetics
  doi: 10.1136/jmg.2008.058271
– volume: 112
  start-page: 1323
  year: 2017
  ident: 16526_CR4
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1215989
– volume: 22
  start-page: 477
  year: 2007
  ident: 16526_CR9
  publication-title: Stat. Sci.
  doi: 10.1214/07-STS242
– ident: 16526_CR3
  doi: 10.1080/10618600.2013.773239
– volume: 19
  start-page: 514
  year: 2010
  ident: 16526_CR14
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2010.06089
– ident: 16526_CR8
– ident: 16526_CR27
  doi: 10.1007/978-1-4419-0318-1_1
– volume: 88
  start-page: 53
  year: 2015
  ident: 16526_CR18
  publication-title: Comput. Stat. & Data Analysis
  doi: 10.1016/j.csda.2015.02.004
– volume: 132
  start-page: 217
  year: 2006
  ident: 16526_CR41
  publication-title: Reproduction
  doi: 10.1530/rep.1.01076
– ident: 16526_CR6
  doi: 10.1214/aos/1013203451
– volume: 32
  start-page: 681
  year: 2023
  ident: 16526_CR23
  publication-title: Stat. Methods & Appl.
  doi: 10.1007/s10260-022-00658-x
– ident: 16526_CR26
  doi: 10.2307/2529876
– volume: 45
  start-page: 5
  year: 2001
  ident: 16526_CR32
  publication-title: Random forests. Machine learning
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 55
  year: 2020
  ident: 16526_CR13
  publication-title: Stat. Sinica
– volume: 23
  start-page: 1
  year: 2022
  ident: 16526_CR22
  publication-title: J. Mach. Learn. Res.
– ident: 16526_CR24
– volume: 84
  start-page: 1313
  year: 2014
  ident: 16526_CR16
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2012.741599
– volume: 39
  start-page: 1
  year: 1977
  ident: 16526_CR29
  publication-title: J. royal statistical society: series B (methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 16526_CR36
  doi: 10.1007/978-3-031-38747-0_8
– volume: 148
  start-page: 12
  year: 2018
  ident: 16526_CR44
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2018.02.010
– volume: 1
  start-page: 3
  issue: 2
  year: 2023
  ident: 16526_CR21
  publication-title: R package version
– volume: 23
  start-page: 740
  year: 2014
  ident: 16526_CR12
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2013.794732
– volume: 35
  start-page: 647
  year: 2012
  ident: 16526_CR5
  publication-title: Res. nursing & health
  doi: 10.1002/nur.21508
SSID ssj0000529419
Score 2.4546826
Snippet High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of...
Abstract High-dimensional longitudinal data present significant analytical challenges due to intricate within-subject correlations and an overwhelming ratio of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30927
SubjectTerms 639/705/531
639/705/794
Accuracy
Algorithms
Biomarkers
Biomedical research
Boosting Machine Learning Algorithms
Computer Simulation
Data analysis
Datasets
Decision trees
Efficiency
Feature selection
Female
Fetuses
Flexibility
Genomics
Gradient Boosting
High-dimensional Data
Humanities and Social Sciences
Humans
Longitudinal Data
Longitudinal Studies
Machine learning
Mixed Effect Model
multidisciplinary
Placenta - metabolism
Pregnancy
Proteomics
RNA - metabolism
Science
Science (multidisciplinary)
Sparsity
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SEHwRrb9W2xLBNw1Nsslt8qjSUoT6ZKFvIT-1IHvSuwO9v96ZZO_sWcUXXzcLG77JZL7ZTL4h5BXPevAQOljstWFKxsxMsYEZn_uSgvFF4AXn84-zswv14VJf3mj1hTVhTR64AXeseERKa2YmeKUD_rfLWVvwShMTBHPcfbnlN5KppuotrRJ2uiXDe3O8gEiFt8mkZmKm5YytdyJRFez_E8u8XSz524lpDUSnD8j9iUHSt23mD8mdPO6Tu62n5I9H5OT86ntOtNVp0M_XtaRrSYFML7DCmQJJpahRzBLq-jdNDvp1jm2LVglbZFEsGn1MLk5PPr0_Y1OvBBYhQ1szcNxSlFApFeH5YItSmLkln4cgSm-9l9zEKE22xvokQpE2BMtjiFaiZt8TsjfOx_yMUBMCQGtUtpCbZd77IVkehEEqoYMRHXm9wc19a5IYrh5l98Y1lB2g7CrKbt2Rdwjt9k2Us64PwMhuMrL7l5E7crAxjJt8bOGQCipMefqOvNwOg3fgkYcf83xV30E9eq1kR542O25nojhEZmBkHTE7Ft6Z6u7IePWlKnBDuB96o-DDbzaL4de8_o7F8_-BxQtyT-Iq5rDDyQOyt7xe5UMgRstwVH3gJ3WgCkM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixQxEA66IngR37auEsGbhk3SyXRyEpVdFmE9uTC3kOe6IN3rPEDn11uV7pllfF07DV1dqVR9SVW-IuQ1z7rzEDpYbLVhSsbMTLGBGZ_bkoLxReAF57PPs9Nz9Wmu59OB23Iqq9z6xOqo0xDxjPwIA79CgNu-u_rOsGsUZlenFho3ya1KXQb23M273RkLZrGUsNNdGd6aoyXEK7xTJjUTMy1nbLMXjypt_9-w5p8lk7_lTWs4OrlH7k44kr4fJ_4-uZH7B-T22Fny50NyfHb5Iyc6VmvQi0Ut7FpRgNRLrHOmAFUpMhWzhOz-IzMH_TZg86J1wkZZFEtHH5Hzk-MvH0_Z1DGBRdinbRgs31KUUCkV4Xlni1K4f0s-d0GU1novuYlRmmyN9UmEIm0IlscQrUTmvsfkoB_6_JRQE4KJyahsYYeWeeu7ZHkQBgGFDkY05M1Wb-5qJMZwNaHdGjdq2YGWXdWy2zTkA6p29yaSWtcHw-LCTWvEKR5x92JmJnilAx7R5qwtOGCQBHBbQw63E-OmlbZ013bRkFe7YVgjmPjwfR7W9R1kpddKNuTJOI87SRSH-Ay4rCFmb4b3RN0f6S-_Vh5uCPpdaxR8-O3WGK7l-rcunv3_N56TOxLtk4MHk4fkYLVY5xcAfFbhZbXuX-ixAX8
  priority: 102
  providerName: ProQuest
Title Mixed effect gradient boosting for high-dimensional longitudinal data
URI https://link.springer.com/article/10.1038/s41598-025-16526-z
https://www.ncbi.nlm.nih.gov/pubmed/40847064
https://www.proquest.com/docview/3242403063
https://www.proquest.com/docview/3246324542
https://pubmed.ncbi.nlm.nih.gov/PMC12373843
https://doaj.org/article/40c7585868ba45b0b01ee59dde8cd644
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_u9hB8Eb-tnksF3zSYpmmbPO4texwLd4h6sG8hadLzQLqyH6D71zuTtiur54NPhTSlw-RjfpPM_AbgLQ9FZdF0sDovFJOiDkw12jFlQ954p2yTUYLz5VV5cS3ni2JxBGLIhYlB-5HSMm7TQ3TYhzUaGkoGEwXLykKUbHcMJwrNnxjByWQy_zzfn6zQ3ZXMdJ8hw3N1x8cHViiS9d-FMP8OlPzjtjQaofOH8KBHj-mkk_cRHIX2Mdzr6kn-fAKzy9sfwaddjEZ6s4rhXJsUgfSaoptTBKgp8RMzT5z-HR9H-m1JJYu2nspjpRQw-hSuz2dfphesr5PAavTOdgwXbdPITHrfZJZXupGSvDZvQ-WyJtfWCq7qWqiglbY-c43Qzmleu1oL4ut7BqN22YYXkCrnVO2VDBr9ssBzW3nNXaYIRhROZQm8G_Rmvnd0GCZeY-fKdFo2qGUTtWx2CZyRavc9ico6NixXN6YfWiN5TT6LKpWzsnB0MBtCoXHbRUkQrSVwOgyM6dfX2hAMlOTu5Am82b_GlUHXHbYNy23sQ1z0hRQJPO_GcS-J5GiVEY0loA5G-EDUwzft7dfIvo2mvsqVxB-_HybDb7n-rYuX_9f9FdwXNF857mPiFEab1Ta8RvizcWM4rhbVuJ_1-DybXX38hK3TcjqORwq_AELsBa0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYIEJ7DqOM6ufUCIwlZb2l0h1Eq9GTt2SiWUlH0Iuj-K38hMHlstr1uvsZU4M2PPN54XwHMesoFF1cHyNFNMijwwVWjHlA1p4Z2yRUIJzuNJf3QkPxxnxxvws8uFobDK7kysD2pf5XRHvk2KXxLATd-cfWPUNYq8q10LjUYs9sP5dzTZZq_33iN_XwixOzx8N2JtVwGWoy2zZCjiRSET6X2RWD7QhZRk43gbBi4pUm2t4CrPhQpaaesTVwjtnOa5y7Wg6nb43iuwKSmjtQebO8PJx0-rWx3ym8lEt9k5PFXbM9SQlMUmMpb0M9FnyzUNWDcK-Bu6_TNI8zdPba0Ad2_CjRa5xm8bUbsFG6G8DVebXpbnd2A4Pv0RfNzEh8Qn0zqUbB4jiJ9RZHWM4Dim2sjMUz-BphZI_LWidkkLT625YgpWvQtHl0LNe9ArqzI8gFg5p3KvZNBoEwae2oHX3CWKIEzmVBLBy45u5qwpxWFqF3qqTENlg1Q2NZXNMoIdIu1qJpXRrh9U0xPT7kojeU72kuorZ2Xm6FI4hEzjkY8rQaQYwVbHGNPu7Zm5kMQInq2GcVeSq8WWoVrUc6gOfiZFBPcbPq5WIjkiAkSCEag1Dq8tdX2kPP1SV_5GmDFIlcQPv-qE4WJd_6bFw___xlO4NjocH5iDvcn-I7guSFY5np9iC3rz6SI8Rtg1d09aWY_h82Vvr1_pHkBS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaxNHGdjHxAC2lVLacWBSnszfqVUQpuyD0H3p_HrmMljq-V16zW2Emc84_nG8wJ4lsaitKg6uM8LxaXwkatKO65szKvglK0ySnA-OBzuHsn342K8AT_7XBgKq-zPxOagDrWnO_IBKX5JADcfVF1YxMft0evTb5w6SJGntW-n0bLIfjz7jubb7NXeNu71cyFGO5_e7fKuwwD3aNcsObJ7VclMhlBlNi11JSXZO8HG0mVVrq0VqfJeqKiVtiFzldDO6dQ7rwVVusP3XoLLZY6oCmWpHJer-x3yoMlMd3k6aa4GM9SVlM8mCp4NCzHkyzVd2LQM-BvO_TNc8zefbaMKRzfgeodh2ZuW6W7CRpzcgittV8uz27BzcPIjBtZGirDjaRNUNmcI52cUY80QJjOqkswDdRZoq4KwrzU1TloEatLFKGz1DhxdCC3vwuaknsT7wJRzygclo0brMKa5LYNOXaYIzBROZQm86OlmTtuiHKZxpufKtFQ2SGXTUNksE3hLpF3NpILazYN6emw6-TQy9WQ5qaFyVhaOrodjLDQe_rgSxIwJbPUbYzopn5lznkzg6WoY5ZOcLnYS60UzhyriF1IkcK_dx9VKZIrYADFhAmpth9eWuj4yOfnS1ABHwFHmSuKHX_bMcL6uf9Piwf9_4wlcRaEyH_YO9x_CNUGsmuJBKrZgcz5dxEeIv-buccPoDD5ftGT9AiuCQxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+effect+gradient+boosting+for+high-dimensional+longitudinal+data&rft.jtitle=Scientific+reports&rft.au=Olaniran%2C+Oyebayo+Ridwan&rft.au=Olaniran%2C+Saidat+Fehintola&rft.au=Allohibi%2C+Jeza&rft.au=Alharbi%2C+Abdulmajeed+Atiah&rft.date=2025-08-22&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30927&rft_id=info:doi/10.1038%2Fs41598-025-16526-z&rft_id=info%3Apmid%2F40847064&rft.externalDocID=40847064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon