A novel approach to smart-assisted schizophrenia screening based on Raman spectroscopy and deep learning
In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy individuals, classified them based on four convolutional neural networks, and developed an assisted screening method for schizophrenia based on serum R...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 28487 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.08.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy individuals, classified them based on four convolutional neural networks, and developed an assisted screening method for schizophrenia based on serum Raman spectra. We also introduce Markov transition field (MTF), which is commonly used in time-series signal processing, into Raman spectral analysis, and convert 1D Raman spectral sequences into 2D spectrograms to enrich the method of Raman spectral analysis. The experimental results show that the performance of the model trained based on MTF is overall better than that of the model trained based on 1D spectral sequences. |
---|---|
AbstractList | In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy individuals, classified them based on four convolutional neural networks, and developed an assisted screening method for schizophrenia based on serum Raman spectra. We also introduce Markov transition field (MTF), which is commonly used in time-series signal processing, into Raman spectral analysis, and convert 1D Raman spectral sequences into 2D spectrograms to enrich the method of Raman spectral analysis. The experimental results show that the performance of the model trained based on MTF is overall better than that of the model trained based on 1D spectral sequences. Abstract In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy individuals, classified them based on four convolutional neural networks, and developed an assisted screening method for schizophrenia based on serum Raman spectra. We also introduce Markov transition field (MTF), which is commonly used in time-series signal processing, into Raman spectral analysis, and convert 1D Raman spectral sequences into 2D spectrograms to enrich the method of Raman spectral analysis. The experimental results show that the performance of the model trained based on MTF is overall better than that of the model trained based on 1D spectral sequences. In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy individuals, classified them based on four convolutional neural networks, and developed an assisted screening method for schizophrenia based on serum Raman spectra. We also introduce Markov transition field (MTF), which is commonly used in time-series signal processing, into Raman spectral analysis, and convert 1D Raman spectral sequences into 2D spectrograms to enrich the method of Raman spectral analysis. The experimental results show that the performance of the model trained based on MTF is overall better than that of the model trained based on 1D spectral sequences.In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy individuals, classified them based on four convolutional neural networks, and developed an assisted screening method for schizophrenia based on serum Raman spectra. We also introduce Markov transition field (MTF), which is commonly used in time-series signal processing, into Raman spectral analysis, and convert 1D Raman spectral sequences into 2D spectrograms to enrich the method of Raman spectral analysis. The experimental results show that the performance of the model trained based on MTF is overall better than that of the model trained based on 1D spectral sequences. |
ArticleNumber | 28487 |
Author | Xiaokaiti, Sulidan Shang, Meng Xu, Pan Xiao, Meng Zhu, Xiaofen |
Author_xml | – sequence: 1 givenname: Meng surname: Xiao fullname: Xiao, Meng organization: Quzhou KeCheng People’s Hospital – sequence: 2 givenname: Sulidan surname: Xiaokaiti fullname: Xiaokaiti, Sulidan organization: The Fourth People’s Hospital of Urumqi – sequence: 3 givenname: Meng surname: Shang fullname: Shang, Meng organization: Quzhou KeCheng People’s Hospital – sequence: 4 givenname: Pan surname: Xu fullname: Xu, Pan organization: Quzhou KeCheng People’s Hospital – sequence: 5 givenname: Xiaofen surname: Zhu fullname: Zhu, Xiaofen email: qzzhuxiaofen@163.com organization: Quzhou KeCheng People’s Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40764795$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARbZf-AQ7IEhcuAX8nPqGqglKpEhKCs2U7k01WWTvY2WrbX4-3KaXlgC-e8bx5fvNxio5CDIDQG0o-UMKbj1lQqZuKMFlRQais9i_QCSNCVowzdvTEPkZnOW9IOZJpQfUrdCxIrUSt5Qnqz3GINzBiO00pWt_jOeK8tWmubM5DnqHF2ffDXZz6BGGwxUtQjLDGzuYSjQF_t1sbcJ7AzylmH6dbbEOLW4AJj2DTAf0avezsmOHs4V6hn18-_7j4Wl1_u7y6OL-uvCB6X7UtF1IJwbtadwKots574Iwr6jRrlHXad0L5WlJJlWOWCc4EKGq1oxwIX6GrhbeNdmOmNJRabk20g7l_iGltSnGDH8E4Bo7XrSZelr74uuGNr1taNw1Yp4q7Qp8WrmnnttB6CHOy4zPS55Ew9GYdbwwtfS9VsMLw_oEhxV87yLPZDtnDONoAcZdNKawmhHJ-EP7uH-gm7lIovTqgVEMUYQdJb59KetTyZ6IFwBaAL6PICbpHCCXmsDlm2RxTNsfcb47ZlyS-JOUCDmtIf__-T9ZvV1HGXQ |
Cites_doi | 10.1016/j.asoc.2024.112204 10.1109/TKDE.2005.50 10.1021/acs.analchem.1c00431 10.3390/s22103936 10.1016/j.chemolab.2016.01.005 10.1093/schbul/sbaa065 10.1016/j.microc.2023.108485 10.1039/C8AY01089G 10.1038/s41598-024-64621-4 10.3390/e24060751 10.1016/j.talanta.2018.04.083 10.1109/CVPR.2016.70 10.1016/j.chemolab.2025.105375 10.1016/j.saa.2024.124251 10.1016/j.ipm.2024.103804 10.1016/j.aca.2024.343302 10.1021/acs.est.4c06737 10.1038/nature09552 10.1007/s00216-019-02349-1 10.1016/S2215-0366(21)00395-3 10.1080/05704920701551530 10.1109/CVPR.2016.90 10.1038/s42254-020-0171-y 10.1016/j.saa.2024.125604 10.1109/CVPR.2017.634 10.1038/s41598-024-80590-0 10.1038/s41537-021-00139-2 10.1016/j.molstruc.2020.129493 10.1080/00387010.2024.2349143 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-14015-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_b2eb37d90c5941c7838c7d1788eab678 PMC12325642 40764795 10_1038_s41598_025_14015_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science and Technology Program Project of Urumqi Health Commission grantid: 202123 – fundername: Zhejiang Province Medicine and Health Science and Technology Program grantid: 2024XY087; 2024XY087; 2024XY087; 2024XY087 – fundername: Zhejiang Province Medicine and Health Science and Technology Program grantid: 2024XY087 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AARCD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c409x-dd3456443f79f4e19abcce32361b9286ab9cf46c751516b2a24324e61a9b13e03 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:19:20 EDT 2025 Thu Aug 21 18:30:00 EDT 2025 Wed Aug 06 19:19:46 EDT 2025 Sat Aug 23 13:33:02 EDT 2025 Sun Aug 10 01:32:13 EDT 2025 Wed Aug 06 19:32:10 EDT 2025 Wed Aug 06 16:36:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Schizophrenia Medical diagnose Raman spectroscopy |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409x-dd3456443f79f4e19abcce32361b9286ab9cf46c751516b2a24324e61a9b13e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/b2eb37d90c5941c7838c7d1788eab678 |
PMID | 40764795 |
PQID | 3236806028 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b2eb37d90c5941c7838c7d1788eab678 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12325642 proquest_miscellaneous_3237001330 proquest_journals_3236806028 pubmed_primary_40764795 crossref_primary_10_1038_s41598_025_14015_x springer_journals_10_1038_s41598_025_14015_x |
PublicationCentury | 2000 |
PublicationDate | 20250805 |
PublicationDateYYYYMMDD | 2025-08-05 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250805 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | S He (14015_CR24) 2016; 152 14015_CR1 AS Cohen (14015_CR4) 2021; 47 X Wang (14015_CR7) 2020; 2 X Xin (14015_CR11) 2024; 315 DR Parachalil (14015_CR6) 2020; 412 14015_CR14 X Zhou (14015_CR20) 2024; 61 Z Movasaghi (14015_CR26) 2007; 42 SJ Barton (14015_CR25) 2018; 10 J Yan (14015_CR23) 2022; 22 M Wang (14015_CR22) 2022; 24 TR Insel (14015_CR3) 2010; 468 M Ghassemi (14015_CR9) 2021; 1229 X Zhou (14015_CR17) 2024; 166 C Chen (14015_CR19) 2024; 1330 T Shi (14015_CR15) 2024; 14 Y Feng (14015_CR21) 2023; 189 S Srivastava (14015_CR12) 2024; 58 14015_CR28 14015_CR29 J Huang (14015_CR32) 2005; 17 L Kuang (14015_CR10) 2025; 330 14015_CR30 L Dellazizzo (14015_CR5) 2021; 7 E Kaznowska (14015_CR8) 2018; 186 H Song (14015_CR16) 2024; 14 14015_CR31 S Yu (14015_CR13) 2021; 93 GBD 2019 Mental Disorders Collaborators (14015_CR2) 2022; 9 Y LeCun (14015_CR27) 2015; 521 Z Chen (14015_CR18) 2024; 57 |
References_xml | – volume: 166 start-page: 112204 year: 2024 ident: 14015_CR17 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112204 – volume: 17 start-page: 299 issue: 3 year: 2005 ident: 14015_CR32 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.50 – volume: 93 start-page: 11089 issue: 32 year: 2021 ident: 14015_CR13 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00431 – volume: 22 start-page: 3936 issue: 10 year: 2022 ident: 14015_CR23 publication-title: Sensors doi: 10.3390/s22103936 – volume: 152 start-page: 1 year: 2016 ident: 14015_CR24 publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.01.005 – volume: 47 start-page: 44 issue: 1 year: 2021 ident: 14015_CR4 publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbaa065 – volume: 189 start-page: 108485 year: 2023 ident: 14015_CR21 publication-title: Microchem. J. doi: 10.1016/j.microc.2023.108485 – ident: 14015_CR1 – volume: 10 start-page: 3759 issue: 30 year: 2018 ident: 14015_CR25 publication-title: Anal. Methods doi: 10.1039/C8AY01089G – volume: 14 start-page: 15056 issue: 1 year: 2024 ident: 14015_CR15 publication-title: Sci. Rep. doi: 10.1038/s41598-024-64621-4 – volume: 24 start-page: 751 issue: 6 year: 2022 ident: 14015_CR22 publication-title: Entropy doi: 10.3390/e24060751 – volume: 186 start-page: 337 year: 2018 ident: 14015_CR8 publication-title: Talanta doi: 10.1016/j.talanta.2018.04.083 – ident: 14015_CR31 doi: 10.1109/CVPR.2016.70 – ident: 14015_CR14 doi: 10.1016/j.chemolab.2025.105375 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 14015_CR27 publication-title: Deep Learn. Nat. – volume: 315 start-page: 124251 year: 2024 ident: 14015_CR11 publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2024.124251 – volume: 61 start-page: 103804 issue: 6 year: 2024 ident: 14015_CR20 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2024.103804 – volume: 1330 start-page: 343302 year: 2024 ident: 14015_CR19 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2024.343302 – volume: 58 start-page: 20830 issue: 47 year: 2024 ident: 14015_CR12 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.4c06737 – volume: 468 start-page: 187 issue: 7321 year: 2010 ident: 14015_CR3 publication-title: Nature doi: 10.1038/nature09552 – volume: 412 start-page: 1993 issue: 9 year: 2020 ident: 14015_CR6 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-019-02349-1 – volume: 9 start-page: 137 issue: 2 year: 2022 ident: 14015_CR2 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(21)00395-3 – volume: 42 start-page: 493 issue: 5 year: 2007 ident: 14015_CR26 publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704920701551530 – ident: 14015_CR28 doi: 10.1109/CVPR.2016.90 – volume: 2 start-page: 253 issue: 5 year: 2020 ident: 14015_CR7 publication-title: Nat. Reviews Phys. doi: 10.1038/s42254-020-0171-y – volume: 330 start-page: 125604 year: 2025 ident: 14015_CR10 publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2024.125604 – ident: 14015_CR29 doi: 10.1109/CVPR.2017.634 – volume: 14 start-page: 29125 issue: 1 year: 2024 ident: 14015_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-024-80590-0 – volume: 7 start-page: 9 issue: 1 year: 2021 ident: 14015_CR5 publication-title: NPJ Schizophrenia doi: 10.1038/s41537-021-00139-2 – volume: 1229 start-page: 129493 year: 2021 ident: 14015_CR9 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2020.129493 – ident: 14015_CR30 – volume: 57 start-page: 271 issue: 5 year: 2024 ident: 14015_CR18 publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2024.2349143 |
SSID | ssj0000529419 |
Score | 2.4536562 |
Snippet | In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy... Abstract In this study, serum Raman spectra are introduced into the screening of schizophrenia. We collect serum Raman spectra from schizophrenic and healthy... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 28487 |
SubjectTerms | 631/114 631/443 631/45 639/624 692/308 692/617 692/699 Adult Biomarkers Body fluids Carotenoids Deep Learning Disease Female Health care Humanities and Social Sciences Humans Lipids Male Markov Chains Medical diagnose Medical screening Mental disorders Methods multidisciplinary Neural networks Neural Networks, Computer Proteins Raman spectroscopy Schizophrenia Schizophrenia - blood Schizophrenia - diagnosis Science Science (multidisciplinary) Signal processing Spectral analysis Spectrum analysis Spectrum Analysis, Raman - methods Time series Triglycerides |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJuUgozEDawmsePHCRVEVSHBAVFpb5ZfaZFosjTbavvv8TjJluV1TBwpznzjzIxn_A3Aq0q4stWsok56RnkrAtUiWqqDsJ6rNJw3cz59FkfH_OOiWUwbbsNUVjn_E_OPOvQe98j3Wc2EKkUyh2-XPyh2jcLs6tRC4ybcQuoy1Gq5kJs9Fsxi8UpPZ2VKpvaHZK_wTFndUIwsGrreskeZtv9vvuafJZO_5U2zOTq8B3cnP5IcjMDfhxuxewC3x86SVw_h9IB0_WX8TmbOcLLqyXCW9IQmbxmhDWT4td4uXWEFTnoXQcMWSN-RL_bMdiSfxUTOy355RWwXSIhxSaZuEyeP4Pjww9f3R3RqqkB9CuXWNASGDDKctVK3PFbaOu8jSrdyulbCOu1bLrxMjk5CqrY1cvZFUVntKhZL9hh2ur6LT4EE5pRrKoQ6cMakVZw731rb1FG20hbwehatWY7cGSbnvJkyIxAmAWEyEGZdwDuU_uZJ5L3ON_rzEzMtI-PqFPzLoEvfJGS9VEx5GaoUx0frkt0tYG_GzkyLcTDXqlPAy81wWkaYG7Fd7C_yM5iBZ6ws4MkI9WYmKeYVXOqmALWlBFtT3R7pvp1mqm50WJO06wLezPpyPa9_y2L3_5_xDO7UqMJYudLswc7q_CI-T77Ryr3IC-AnyhcN2Q priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEC2v0FIZiRtYJLHjx3FBVNVKcAAq9Wb5lRaJJqvuFrX_nhknWVjaHjgmdpSJv3FmxjP-TMibSvqyNbxiXgXORCsjMzI5ZqJ0QWhozos5n7_I4xMxP21Ot0g97YXJRfuZ0jL_pqfqsPdLMDS4GaxuGIYEDQO_cQep2kG3d2az-bf5emUFc1eiMuMOmZLrOx7esEKZrP8uD_N2oeQ_2dJshI4ek0ej90hng7y7ZCt1e-TBcJ7kzRNyPqNd_yv9pBNTOF31dHkBn8fAR0ZAI13-XWUHV1h3A--iaM4i7Tv61V24juYdmMh02S9uqOsijSkt6HjGxNlTcnL06fvHYzYepcACBHDXLEaOvDGCt8q0IlXG-RASR-YVb2otnTehFTIocG8An9rVyNSXZOWMr3gq-TOy3fVdekFo5F77pkKAo-BcOS2ED61zTZ1Uq1xB3k5DaxcDY4bNmW6u7QCEBSBsBsJeF-QDjv66J7Jd5xv95Zkd0be-hpBfRVOGBpANSnMdVKwgek_Og7UtyMGEnR2n4NLix-lSgv9UkNfrZpg8mBFxXeqvch_Mu3NeFuT5APVaEoh0pVCmKYjeUIINUTdbuh_nmaAb3VQY7bog7yZ9-SPX_WPx8v-675OHNao01q80B2R7dXmVXoGHtPKH45T4DaPIDYY priority: 102 providerName: Springer Nature |
Title | A novel approach to smart-assisted schizophrenia screening based on Raman spectroscopy and deep learning |
URI | https://link.springer.com/article/10.1038/s41598-025-14015-x https://www.ncbi.nlm.nih.gov/pubmed/40764795 https://www.proquest.com/docview/3236806028 https://www.proquest.com/docview/3237001330 https://pubmed.ncbi.nlm.nih.gov/PMC12325642 https://doaj.org/article/b2eb37d90c5941c7838c7d1788eab678 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jsFexr7nrgsa7G0TtS1ZH49paCmBldGtkDehL6-D1Q5LOtL_vifbyZJ9sJc9GUsCS3cn3Z3v9DuAt4Vwea1ZQZ30jPJaBKpFtFQHYT1X2N39zPlwJk4v-HRWzbZKfaWcsB4euCfcoSvR3ZNB577SvPBSMeVlKNBzi9bhSZtOX9R5W85Uj-pd4mg93JLJmTpcoKZKt8nKiiafoqKrHU3UAfb_ycr8PVnyl4hpp4hOHsHDwYIk437mj-FObJ7A_b6m5M1TuByTpv0Rv5E1WjhZtmRxhQulaCcnpgay2M60w7eUe4PfIkmlBdI25Nxe2YZ0tzAT2mU7vyG2CSTEOCdDnYkvz-Di5Pjz5JQO5RSoRyduRUNgCTuGs1rqmsdCW-d9ZAl9xelSCeu0r7nwEk0c5FFpy4TWF0VhtStYzNlz2GvaJr4EEphTrioSkwNnTFrFufO1tVUZZS1tBu_WpDXzHjXDdNFupkzPCIOMMB0jzCqDo0T9zciEeN01oByYQQ7Mv-Qgg4M178ywDRcmLU7lAm2oDN5sunEDpaiIbWJ73Y1JsXfG8gxe9KzezAS9XcGlrjJQO0KwM9XdnubrZQfSnUxVpHaZwfu1vPyc199psf8_aPEKHpRJ0FNmS3UAe8vv1_E12k5LN4K7ciZHcG88nn6a4vPo-OzjObZOxGTUbaFbswAbKw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFET2_HjgFB5VFv6OKBW6s34lRaJJkt3C7t_it-Ix0m2LK9bj4mtxJn5JjPjGc8g9KzktqgVLXMrHM1ZzX2ueDC58tw4JuNw2szZ3eOjA_bhsDpcQT-GszCQVjn8E9OP2rcO9sjXKaFcFjyqw9fjrzl0jYLo6tBCo4PFdph_jy7b5NXWu8jf54Rsvt9_O8r7rgK5i77MLPeeQgkVRmuhahZKZaxzAR5fWkUkN1a5mnEnoqaPSyWGQNG6wEujbElDQeNzL6HLUfEW4OyJQ7HY04GoGStVfzanoHJ9EvUjnGEjVQ6eTJXPlvRfahPwN9v2zxTN3-K0Sf1t3kDXe7sVb3RAu4lWQnMLXek6Wc5vo-MN3LTfwhc81CjH0xZPTiIu82idA5Q8nvya3xevIOMnvguDIvW4bfBHc2IanM5-Qo3NdjzHpvHYhzDGfXeLozvo4ELIfRetNm0T7iPsqZW2KgFanlEqjGTMutqYigRRC5OhFwNp9bir1aFTjJ1K3TFCR0boxAg9y9AboP5iJtTZTjfa0yPdi622JFgqvCpcFTnrhKTSCV8KKYOxUc9naG3gne6Ff6LPoZqhp4vhKLYQizFNaM_SHIj4U1pk6F7H6sVKoo_NmVBVhuQSCJaWujzSfD5OpcHBQI7UJhl6OeDlfF3_psWD_3_GE3R1tL-7o3e29rYfomsE4AxZM9UaWp2enoVH0S6b2sdJGDD6dNHS9xPpK0mw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2sZ3YPiDU0q5aClVVUam34FdaJJos3S3s_jV-HZ48tiyvW4-JrdiZ-cYz9oxnAJ6nuUlKxdLYCMtiXuYuVrnXsXK5tlyG5uYw58Nevn3I3x1lRyvwo78Lg2GV_ZrYLNSutnhGPmSU5TLJgzocll1YxP7m6M34a4wVpNDT2pfTaCGy6-ffw_Zt8npnM_D6BaWjrY9vt-OuwkBsw75mFjvHMJ0KZ6VQJfep0sZaj0OlRlGZa6NsyXMrgtYP06aaYgI7n6damZT5hIXvXoFVgbuiAaxubO3tHyxOeNCHxlPV3dRJmBxOgrbEG200i3Ffk8WzJW3YFA34m6X7Z8Dmb17bRhmObsKNzool6y3sbsGKr27D1bau5fwOnKyTqv7mv5A-YzmZ1mRyGlAaB1sdgeXI5Ndov_CE8T9hLIJq1ZG6Igf6VFekuQmKGTfr8ZzoyhHn_Zh0tS6O78LhpRD8HgyquvIPgDhmpMlSBJrjjAktOTe21DqjXpRCR_CyJ20xbjN3FI3HncmiZUQRGFE0jChmEWwg9Rc9Met286I-Oy46IS4M9YYJpxKbBc5aIZm0wqVCSq9N0PoRrPW8K7qlYFJcADeCZ4vmIMTomdGVr8-bPuj_ZyyJ4H7L6sVMArZyLlQWgVwCwdJUl1uqzydNonA0lwO1aQSverxczOvftHj4_994CteC5BXvd_Z2H8F1imjGEJpsDQbTs3P_OBhpU_OkkwYCny5bAH8C67RPSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+to+smart-assisted+schizophrenia+screening+based+on+Raman+spectroscopy+and+deep+learning&rft.jtitle=Scientific+reports&rft.au=Xiao%2C+Meng&rft.au=Xiaokaiti%2C+Sulidan&rft.au=Shang%2C+Meng&rft.au=Xu%2C+Pan&rft.date=2025-08-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-14015-x&rft.externalDocID=PMC12325642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |