Noninvasive Computational Imaging of Cardiac Electrophysiology for 3-D Infarct
Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 58; no. 4; pp. 1033 - 1043 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar. |
---|---|
AbstractList | Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar. Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar. Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar. Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium . In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering [Formula Omitted] transmural infarct scars of different sizes and locations inside the myocardium, and [Formula Omitted] compact infarct scars (extent between [Formula Omitted] and [Formula Omitted]) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar. Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium [Ref 1]. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10 % and 30 % ) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar. |
Author | Zhang, Heye Shi, Pengcheng Liu, Huafeng Wang, Linwei Wong, Ken C.L. |
Author_xml | – sequence: 1 givenname: Linwei surname: Wang fullname: Wang, Linwei email: linwei.wang@rit.edu organization: Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology , Rochester, USA – sequence: 2 givenname: Ken C.L. surname: Wong fullname: Wong, Ken C.L. organization: Asclepios Research Project, Institut National de Recherche en Informatique et en Automatique (INRIA), 06560 Sophia-Antipolis, France – sequence: 3 givenname: Heye surname: Zhang fullname: Zhang, Heye organization: Chinese University of Hong Kong, Hong Kong, and also with the Shenzhen Institutes of Advanced Technology, Shenzhen , China – sequence: 4 givenname: Huafeng surname: Liu fullname: Liu, Huafeng organization: Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA, and also with State Key Laboratory of Modern Optical Instrumentation, Zhefiang University , China – sequence: 5 givenname: Pengcheng surname: Shi fullname: Shi, Pengcheng organization: Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology , Rochester, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24041676$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21156386$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYNU7Lb6B4ggQ0F8mpqPydejrqsutPWlPoe7mWRNmZmsyUxh__tm2K1CH-zT5cLvHO495wydDHFwCL0l-JIQrD_dfrleXVJcVoq1plS8QAvCuaopZ-QELTAmqtZUN6foLOe7sjaqEa_QKSWEC6bEAt3cxCEM95DDvauWsd9NI4whDtBV6x62YdhW0VdLSG0AW606Z8cUd7_3OcQubveVj6li9ddqPXhIdnyNXnrosntznOfo17fV7fJHffXz-3r5-aq2DdZj7V2rKOXcCyB-Y9lGUcK8l1RhzngrQbCNZ9YrzwW0VENTnoNWAHYC-_LdOfp48N2l-GdyeTR9yNZ1HQwuTtkooRUVUsrnSa5ouYXqQl48Ie_ilEoSMyS1wsWwQO-P0LTpXWt2KfSQ9uYx0QJ8OAKQLXQ-wWBD_sc1uCFCzpw8cDbFnJPzxoZD9GOC0BmCzdyxmTs2c8fm2HFRkifKR_P_ad4dNME595fnQkjMMXsAXlavbQ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1007_s11517_019_02018_6 crossref_primary_10_1109_TBME_2015_2395387 crossref_primary_10_1109_TBME_2024_3382050 crossref_primary_10_1155_2013_276478 crossref_primary_10_1109_TBME_2014_2358618 crossref_primary_10_1109_RBME_2024_3486439 crossref_primary_10_1109_TMI_2013_2295220 crossref_primary_10_1109_TMI_2015_2464315 crossref_primary_10_1109_TMI_2012_2202914 crossref_primary_10_3389_fphys_2023_1197778 crossref_primary_10_1109_TMI_2012_2236567 crossref_primary_10_3389_fphys_2018_01305 crossref_primary_10_3389_fphys_2019_00183 crossref_primary_10_1186_s12938_018_0614_1 crossref_primary_10_7498_aps_68_20190387 crossref_primary_10_1016_j_cvdhj_2021_11_005 crossref_primary_10_1016_j_jelectrocard_2016_07_026 crossref_primary_10_1152_ajpheart_00618_2011 crossref_primary_10_1109_TBME_2018_2839713 crossref_primary_10_1002_wsbm_1256 crossref_primary_10_1109_TMI_2014_2324900 crossref_primary_10_1155_2012_936243 crossref_primary_10_1109_TBME_2013_2244892 crossref_primary_10_1109_TBME_2016_2629849 crossref_primary_10_1016_j_jelectrocard_2011_04_004 crossref_primary_10_1017_S0962492917000046 crossref_primary_10_1016_j_pbiomolbio_2011_07_002 crossref_primary_10_1016_j_compbiomed_2012_12_003 crossref_primary_10_3390_s19051214 crossref_primary_10_1098_rsif_2016_0513 crossref_primary_10_1016_j_jbiomech_2019_05_019 crossref_primary_10_1016_j_pbiomolbio_2011_07_007 crossref_primary_10_1109_TMI_2012_2234320 crossref_primary_10_1016_j_media_2014_04_011 crossref_primary_10_1016_j_jelectrocard_2015_08_035 crossref_primary_10_1080_24725579_2023_2233992 |
Cites_doi | 10.1016/S0025-5564(97)00024-2 10.1007/BF02351022 10.1093/eurheartj/ehl567 10.1109/CIC.2007.4745450 10.1161/01.CIR.41.6.899 10.1111/j.1542-474X.2005.00608.x 10.1161/01.RES.51.3.330 10.1161/01.RES.42.1.103 10.1016/j.jelectrocard.2008.06.010 10.1016/j.jacc.2004.06.071 10.1161/01.CIR.92.7.1825 10.1016/j.jelectrocard.2008.07.022 10.1161/01.CIR.101.5.533 10.1161/01.RES.43.2.315 10.1016/j.jelectrocard.2003.09.004 10.1161/hc0402.102975 10.1016/j.ccl.2006.04.005 10.1161/CIRCRESAHA.107.158980 10.1016/j.media.2008.07.002 10.1007/s00791-002-0081-9 10.1054/jelc.2001.28844 10.1016/j.jacc.2007.04.090 10.1113/expphysiol.2005.030973 10.1161/01.CIR.90.3.1469 10.1161/CIRCULATIONAHA.106.653568 10.1016/0960-0779(95)00089-5 10.1109/TBME.2009.2024531 10.1016/S0735-1097(00)00804-4 10.1113/expphysiol.2008.044073 10.1016/S0022-0736(98)90314-4 10.1016/j.athoracsur.2005.05.103 10.1016/j.pbiomolbio.2004.01.016 10.1093/europace/eul109 10.1109/CIC.2007.4745452 10.1161/01.CIR.87.1.199 10.1161/CIRCULATIONAHA.107.723262 10.1161/01.CIR.55.2.268 10.1114/1.73 10.1109/CIC.2007.4745449 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2010.2099226 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Applied Sciences |
EISSN | 1558-2531 |
EndPage | 1043 |
ExternalDocumentID | 2298391831 21156386 24041676 10_1109_TBME_2010_2099226 5667050 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c409t-fed82255f6a1fbc3b8213ff7280535d7a63bf3cf8f56ad29a4226ad6a0e60f253 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 16:43:59 EDT 2025 Fri Jul 11 00:16:36 EDT 2025 Mon Jun 30 10:18:09 EDT 2025 Mon Jul 21 06:04:08 EDT 2025 Mon Jul 21 09:15:05 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Tue Jul 01 02:15:42 EDT 2025 Wed Aug 27 02:53:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Heart Myocardial infarction Transmembrane current Body surface Electrophysiology Cardiovascular disease Coronary heart disease Myocardial disease Nuclear magnetic resonance imaging Modeling cardiac electrophysiological imaging myocardial infarction (MI) transmembrane potential (TMP) Body surface potential (BSP) Imaging Medical imagery Tridimensional image Membrane potential Surface potential Biomedical engineering |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-fed82255f6a1fbc3b8213ff7280535d7a63bf3cf8f56ad29a4226ad6a0e60f253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 SourceType-Conference Papers & Proceedings-2 |
PMID | 21156386 |
PQID | 857980267 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | proquest_journals_857980267 pubmed_primary_21156386 proquest_miscellaneous_869826777 proquest_miscellaneous_858282229 pascalfrancis_primary_24041676 crossref_citationtrail_10_1109_TBME_2010_2099226 ieee_primary_5667050 crossref_primary_10_1109_TBME_2010_2099226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-01 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2011 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref33 ref32 ref10 alpert (ref5) 2000; 36 ref1 ref39 ref17 ref16 (ref35) 0 horacek (ref38) 2001; 34 ref18 cerqueira (ref34) 2002; 105 pop m sermesant d lepiller m v truong e r mcveigh e crystal a dick h delingette n ayache and g a wright (ref25) 2009; 13 ref46 ref24 ref45 ref23 ref20 ref42 julier (ref30) 2000; 47 zhang (ref26) 2008 ref22 ref44 ref43 schmidt c f azevedo a cheng s n gupta d a bluemke t k foo g gerstenblith r g weiss e marbn g f tomaselli j a c lima and k c wu (ref11) 2007; 115 ref28 (ref19) 0 ref29 vigmond (ref2) 2009; 94 wang (ref21) 2009; 2 ref8 ref7 cheng (ref41) 2001 ref9 ref4 plonsey (ref27) 1969 ref3 ref6 ref40 |
References_xml | – ident: ref36 doi: 10.1016/S0025-5564(97)00024-2 – ident: ref17 doi: 10.1007/BF02351022 – ident: ref12 doi: 10.1093/eurheartj/ehl567 – ident: ref15 doi: 10.1109/CIC.2007.4745450 – ident: ref31 doi: 10.1161/01.CIR.41.6.899 – ident: ref13 doi: 10.1111/j.1542-474X.2005.00608.x – ident: ref28 doi: 10.1161/01.RES.51.3.330 – ident: ref44 doi: 10.1161/01.RES.42.1.103 – ident: ref16 doi: 10.1016/j.jelectrocard.2008.06.010 – ident: ref6 doi: 10.1016/j.jacc.2004.06.071 – ident: ref37 doi: 10.1161/01.CIR.92.7.1825 – ident: ref42 doi: 10.1016/j.jelectrocard.2008.07.022 – ident: ref14 doi: 10.1161/01.CIR.101.5.533 – ident: ref32 doi: 10.1161/01.RES.43.2.315 – ident: ref39 doi: 10.1016/j.jelectrocard.2003.09.004 – volume: 105 start-page: 539 year: 2002 ident: ref34 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart publication-title: Circulation doi: 10.1161/hc0402.102975 – ident: ref7 doi: 10.1016/j.ccl.2006.04.005 – ident: ref10 doi: 10.1161/CIRCRESAHA.107.158980 – volume: 13 start-page: 370 year: 2009 ident: ref25 article-title: Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: a feasibility study publication-title: Med Image Anal doi: 10.1016/j.media.2008.07.002 – ident: ref24 doi: 10.1007/s00791-002-0081-9 – volume: 34 start-page: 97 year: 2001 ident: ref38 article-title: Optimal electrocardiographic leads for detecting acute myocardial ischemia publication-title: J Electrocardiol doi: 10.1054/jelc.2001.28844 – ident: ref40 doi: 10.1016/j.jacc.2007.04.090 – ident: ref46 doi: 10.1113/expphysiol.2005.030973 – ident: ref33 doi: 10.1161/01.CIR.90.3.1469 – volume: 115 start-page: 2006 year: 2007 ident: ref11 article-title: Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patient's with left ventricular dysfunction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.653568 – year: 0 ident: ref19 – year: 2001 ident: ref41 publication-title: Non-invasive electrical imaging of the heart – ident: ref22 doi: 10.1016/0960-0779(95)00089-5 – ident: ref1 doi: 10.1109/TBME.2009.2024531 – volume: 36 start-page: 959 year: 2000 ident: ref5 article-title: Myocardial infarction redefined-A consensus document of the joint European society of cardiology/American college of cardiology committee for the redefinition of myocardial infarction publication-title: J Amer Coll Cardiol doi: 10.1016/S0735-1097(00)00804-4 – volume: 94 start-page: 563 year: 2009 ident: ref2 article-title: Towards predicative modeling of the electrophysiology of the heart publication-title: Exp Physiol doi: 10.1113/expphysiol.2008.044073 – ident: ref8 doi: 10.1016/S0022-0736(98)90314-4 – ident: ref45 doi: 10.1016/j.athoracsur.2005.05.103 – ident: ref23 doi: 10.1016/j.pbiomolbio.2004.01.016 – year: 0 ident: ref35 – ident: ref3 doi: 10.1093/europace/eul109 – ident: ref20 doi: 10.1109/CIC.2007.4745452 – volume: 47 start-page: 1445 year: 2000 ident: ref30 article-title: The scaled unscented transform publication-title: Int J Numer Methods Eng – year: 2008 ident: ref26 publication-title: A meshfree method for simulating myocardial electrical activity – ident: ref4 doi: 10.1161/01.CIR.87.1.199 – ident: ref9 doi: 10.1161/CIRCULATIONAHA.107.723262 – year: 1969 ident: ref27 publication-title: Bioelectric Phenomena – ident: ref43 doi: 10.1161/01.CIR.55.2.268 – ident: ref29 doi: 10.1114/1.73 – ident: ref18 doi: 10.1109/CIC.2007.4745449 – volume: 2 start-page: 175 year: 2009 ident: ref21 article-title: Electrocardiographic simulation on personalized heart-torso structures using coupled meshfree-BEM platform publication-title: Int J Funct Inf Pers Med |
SSID | ssj0014846 |
Score | 2.2270083 |
Snippet | Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and... Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1033 |
SubjectTerms | Algorithms Applied sciences Biological and medical sciences Body surface potential (BSP) Body Surface Potential Mapping - methods cardiac electrophysiological imaging Cardiology. Vascular system Computational modeling Computer Simulation Coronary heart disease Electric potential Electrocardiography. Vectocardiography Electrodiagnosis. Electric activity recording Estimation Exact sciences and technology Heart Heart attacks Heart Conduction System - physiopathology Heart Ventricles - physiopathology Heterogeneity Humans Image processing Imaging Imaging, Three-Dimensional - methods Information, signal and communications theory Investigative techniques, diagnostic techniques (general aspects) Medical sciences Models, Cardiovascular Myocardial infarction myocardial infarction (MI) Myocardium Reproducibility of Results Sensitivity and Specificity Signal processing Telecommunications and information theory Three dimensional displays Torso transmembrane potential (TMP) |
Title | Noninvasive Computational Imaging of Cardiac Electrophysiology for 3-D Infarct |
URI | https://ieeexplore.ieee.org/document/5667050 https://www.ncbi.nlm.nih.gov/pubmed/21156386 https://www.proquest.com/docview/857980267 https://www.proquest.com/docview/858282229 https://www.proquest.com/docview/869826777 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcYh4kd2AbbKGzIh50mUpw4duLjxopgUnsCiVvkz8u2dBopB_563rPdjCGGdqsUp3X83mt-7_NHyEcnbF2VtS0cDm6trdSF0VVTMK9L02guWUy0zxfy7LL-diWuNsjR2AvjvY_FZ36KH2Mu3y3tCkNlxwA9GoYO-jNw3FKv1pgxqNvUlMNKMOBK1TmDWTJ1fPFlPktFXNgnCngjTgAGx4VjB_W911HkV8HqSH0NBxQSs8W_oWd8BZ2-JPP15lPlyffpajBTe_tgruP_Pt0rsp2xKP2clOc12fD9Dnlxb0LhDnk-z7n3XbJYYOT2RmO9O01kEDmQSM9_Rq4jugz0JGqcpbNErxMDJzFyTwEdU158ped9AOMa3pDL09nFyVmR2RgKCz7gUATvAEwIEaQug7HctFXJQ0B6K8GFa7TkJnAb2iCkdpXS2KOrndTMSxYqwd-SzX7Z-z1ChYW_NVUz7rypjSqVA1wBSE6ZihmnwoSwtVA6m0eVI2PGjy66LEx1KNIORdplkU7Ip_GWX2lOx1OLd_H4x4X55Cfk8C_Jj9dxd6Vs4L6DtSp02dSvu1Y0qkUerwmh41WwUUy86N4vV7ikrSJx-hNLpAJHr2ngW94lHfvz61lV9x_f9QHZSnFurCZ6TzaH3yv_AYDSYA6jhdwBCMcLBQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIgE98GihLIXiAydEtnYcO_ERyla70OxpK_UW-XkpZBHNcuDX47G9oSCouEWKnTiemXjeH0KvLTdVSStTWGjcWhmhCq3KuiBOUV0rJkgMtLdLMb-oPl7yyx30dqyFcc7F5DM3hcsYy7drswFX2UlQPWoCBvqdcO5zmqq1xphB1aSyHEKDCJeyyjFMSuTJ6n07S2lcUCkaNI7YAziYLgxqqG8cSBFhBfIj1XXYIp-wLf6tfMZD6OwharfLT7knV9PNoKfmxx-dHf_3-x6hB1kbxe8S-zxGO67fR3s3ehTuo7ttjr4foOUSfLffFWS84wQHkV2JePEloh3htcenkecMniWAneg6ib57HPRjzIoPeNH7IF7DE3RxNludzouMx1CYYAUOhXc2qBOce6Go14bppqTMewC44ozbWgmmPTO-8VwoW0oFVbrKCkWcIL7k7Cna7de9e4YwN-HHJivCrNOVllTaoFkEXU7qkmgr_QSRLVE6k5uVA2bG5y4aLUR2QNIOSNplkk7Qm3HK19Sp47bBB7D948C88xN0_Bvlx_uwOirqMO9oywpdFvbrruG1bADJa4LweDdIKYReVO_WGxjSlBE6_ZYhQgZTr67DUw4Tj_16e2bV539f9St0b75qz7vzxfLTEbqfvN6QW_QC7Q7fNu5lUJsGfRyl5ScYLw5O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+computational+imaging+of+cardiac+electrophysiology+for+3-D+infarct&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Linwei&rft.au=Wong%2C+Ken+C+L&rft.au=Zhang%2C+Heye&rft.au=Liu%2C+Huafeng&rft.date=2011-04-01&rft.eissn=1558-2531&rft.volume=58&rft.issue=4&rft.spage=1033&rft_id=info:doi/10.1109%2FTBME.2010.2099226&rft_id=info%3Apmid%2F21156386&rft.externalDocID=21156386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |