Noninvasive Computational Imaging of Cardiac Electrophysiology for 3-D Infarct

Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 58; no. 4; pp. 1033 - 1043
Main Authors Wang, Linwei, Wong, Ken C.L., Zhang, Heye, Liu, Huafeng, Shi, Pengcheng
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.
AbstractList Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.
Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.
Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.
Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium . In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering [Formula Omitted] transmural infarct scars of different sizes and locations inside the myocardium, and [Formula Omitted] compact infarct scars (extent between [Formula Omitted] and [Formula Omitted]) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.
Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium [Ref 1]. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10 % and 30 % ) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.
Author Zhang, Heye
Shi, Pengcheng
Liu, Huafeng
Wang, Linwei
Wong, Ken C.L.
Author_xml – sequence: 1
  givenname: Linwei
  surname: Wang
  fullname: Wang, Linwei
  email: linwei.wang@rit.edu
  organization: Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology , Rochester, USA
– sequence: 2
  givenname: Ken C.L.
  surname: Wong
  fullname: Wong, Ken C.L.
  organization: Asclepios Research Project, Institut National de Recherche en Informatique et en Automatique (INRIA), 06560 Sophia-Antipolis, France
– sequence: 3
  givenname: Heye
  surname: Zhang
  fullname: Zhang, Heye
  organization: Chinese University of Hong Kong, Hong Kong, and also with the Shenzhen Institutes of Advanced Technology, Shenzhen , China
– sequence: 4
  givenname: Huafeng
  surname: Liu
  fullname: Liu, Huafeng
  organization: Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA, and also with State Key Laboratory of Modern Optical Instrumentation, Zhefiang University , China
– sequence: 5
  givenname: Pengcheng
  surname: Shi
  fullname: Shi, Pengcheng
  organization: Computational Biomedicine Laboratory, Golisano College of Computing and Information Sciences, Rochester Institute of Technology , Rochester, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24041676$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21156386$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYNU7Lb6B4ggQ0F8mpqPydejrqsutPWlPoe7mWRNmZmsyUxh__tm2K1CH-zT5cLvHO495wydDHFwCL0l-JIQrD_dfrleXVJcVoq1plS8QAvCuaopZ-QELTAmqtZUN6foLOe7sjaqEa_QKSWEC6bEAt3cxCEM95DDvauWsd9NI4whDtBV6x62YdhW0VdLSG0AW606Z8cUd7_3OcQubveVj6li9ddqPXhIdnyNXnrosntznOfo17fV7fJHffXz-3r5-aq2DdZj7V2rKOXcCyB-Y9lGUcK8l1RhzngrQbCNZ9YrzwW0VENTnoNWAHYC-_LdOfp48N2l-GdyeTR9yNZ1HQwuTtkooRUVUsrnSa5ouYXqQl48Ie_ilEoSMyS1wsWwQO-P0LTpXWt2KfSQ9uYx0QJ8OAKQLXQ-wWBD_sc1uCFCzpw8cDbFnJPzxoZD9GOC0BmCzdyxmTs2c8fm2HFRkifKR_P_ad4dNME595fnQkjMMXsAXlavbQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s11517_019_02018_6
crossref_primary_10_1109_TBME_2015_2395387
crossref_primary_10_1109_TBME_2024_3382050
crossref_primary_10_1155_2013_276478
crossref_primary_10_1109_TBME_2014_2358618
crossref_primary_10_1109_RBME_2024_3486439
crossref_primary_10_1109_TMI_2013_2295220
crossref_primary_10_1109_TMI_2015_2464315
crossref_primary_10_1109_TMI_2012_2202914
crossref_primary_10_3389_fphys_2023_1197778
crossref_primary_10_1109_TMI_2012_2236567
crossref_primary_10_3389_fphys_2018_01305
crossref_primary_10_3389_fphys_2019_00183
crossref_primary_10_1186_s12938_018_0614_1
crossref_primary_10_7498_aps_68_20190387
crossref_primary_10_1016_j_cvdhj_2021_11_005
crossref_primary_10_1016_j_jelectrocard_2016_07_026
crossref_primary_10_1152_ajpheart_00618_2011
crossref_primary_10_1109_TBME_2018_2839713
crossref_primary_10_1002_wsbm_1256
crossref_primary_10_1109_TMI_2014_2324900
crossref_primary_10_1155_2012_936243
crossref_primary_10_1109_TBME_2013_2244892
crossref_primary_10_1109_TBME_2016_2629849
crossref_primary_10_1016_j_jelectrocard_2011_04_004
crossref_primary_10_1017_S0962492917000046
crossref_primary_10_1016_j_pbiomolbio_2011_07_002
crossref_primary_10_1016_j_compbiomed_2012_12_003
crossref_primary_10_3390_s19051214
crossref_primary_10_1098_rsif_2016_0513
crossref_primary_10_1016_j_jbiomech_2019_05_019
crossref_primary_10_1016_j_pbiomolbio_2011_07_007
crossref_primary_10_1109_TMI_2012_2234320
crossref_primary_10_1016_j_media_2014_04_011
crossref_primary_10_1016_j_jelectrocard_2015_08_035
crossref_primary_10_1080_24725579_2023_2233992
Cites_doi 10.1016/S0025-5564(97)00024-2
10.1007/BF02351022
10.1093/eurheartj/ehl567
10.1109/CIC.2007.4745450
10.1161/01.CIR.41.6.899
10.1111/j.1542-474X.2005.00608.x
10.1161/01.RES.51.3.330
10.1161/01.RES.42.1.103
10.1016/j.jelectrocard.2008.06.010
10.1016/j.jacc.2004.06.071
10.1161/01.CIR.92.7.1825
10.1016/j.jelectrocard.2008.07.022
10.1161/01.CIR.101.5.533
10.1161/01.RES.43.2.315
10.1016/j.jelectrocard.2003.09.004
10.1161/hc0402.102975
10.1016/j.ccl.2006.04.005
10.1161/CIRCRESAHA.107.158980
10.1016/j.media.2008.07.002
10.1007/s00791-002-0081-9
10.1054/jelc.2001.28844
10.1016/j.jacc.2007.04.090
10.1113/expphysiol.2005.030973
10.1161/01.CIR.90.3.1469
10.1161/CIRCULATIONAHA.106.653568
10.1016/0960-0779(95)00089-5
10.1109/TBME.2009.2024531
10.1016/S0735-1097(00)00804-4
10.1113/expphysiol.2008.044073
10.1016/S0022-0736(98)90314-4
10.1016/j.athoracsur.2005.05.103
10.1016/j.pbiomolbio.2004.01.016
10.1093/europace/eul109
10.1109/CIC.2007.4745452
10.1161/01.CIR.87.1.199
10.1161/CIRCULATIONAHA.107.723262
10.1161/01.CIR.55.2.268
10.1114/1.73
10.1109/CIC.2007.4745449
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2010.2099226
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Applied Sciences
EISSN 1558-2531
EndPage 1043
ExternalDocumentID 2298391831
21156386
24041676
10_1109_TBME_2010_2099226
5667050
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c409t-fed82255f6a1fbc3b8213ff7280535d7a63bf3cf8f56ad29a4226ad6a0e60f253
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 16:43:59 EDT 2025
Fri Jul 11 00:16:36 EDT 2025
Mon Jun 30 10:18:09 EDT 2025
Mon Jul 21 06:04:08 EDT 2025
Mon Jul 21 09:15:05 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Tue Jul 01 02:15:42 EDT 2025
Wed Aug 27 02:53:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Heart
Myocardial infarction
Transmembrane current
Body surface
Electrophysiology
Cardiovascular disease
Coronary heart disease
Myocardial disease
Nuclear magnetic resonance imaging
Modeling
cardiac electrophysiological imaging
myocardial infarction (MI)
transmembrane potential (TMP)
Body surface potential (BSP)
Imaging
Medical imagery
Tridimensional image
Membrane potential
Surface potential
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-fed82255f6a1fbc3b8213ff7280535d7a63bf3cf8f56ad29a4226ad6a0e60f253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
PMID 21156386
PQID 857980267
PQPubID 85474
PageCount 11
ParticipantIDs proquest_journals_857980267
pubmed_primary_21156386
proquest_miscellaneous_869826777
proquest_miscellaneous_858282229
pascalfrancis_primary_24041676
crossref_citationtrail_10_1109_TBME_2010_2099226
ieee_primary_5667050
crossref_primary_10_1109_TBME_2010_2099226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref32
ref10
alpert (ref5) 2000; 36
ref1
ref39
ref17
ref16
(ref35) 0
horacek (ref38) 2001; 34
ref18
cerqueira (ref34) 2002; 105
pop m sermesant d lepiller m v truong e r mcveigh e crystal a dick h delingette n ayache and g a wright (ref25) 2009; 13
ref46
ref24
ref45
ref23
ref20
ref42
julier (ref30) 2000; 47
zhang (ref26) 2008
ref22
ref44
ref43
schmidt c f azevedo a cheng s n gupta d a bluemke t k foo g gerstenblith r g weiss e marbn g f tomaselli j a c lima and k c wu (ref11) 2007; 115
ref28
(ref19) 0
ref29
vigmond (ref2) 2009; 94
wang (ref21) 2009; 2
ref8
ref7
cheng (ref41) 2001
ref9
ref4
plonsey (ref27) 1969
ref3
ref6
ref40
References_xml – ident: ref36
  doi: 10.1016/S0025-5564(97)00024-2
– ident: ref17
  doi: 10.1007/BF02351022
– ident: ref12
  doi: 10.1093/eurheartj/ehl567
– ident: ref15
  doi: 10.1109/CIC.2007.4745450
– ident: ref31
  doi: 10.1161/01.CIR.41.6.899
– ident: ref13
  doi: 10.1111/j.1542-474X.2005.00608.x
– ident: ref28
  doi: 10.1161/01.RES.51.3.330
– ident: ref44
  doi: 10.1161/01.RES.42.1.103
– ident: ref16
  doi: 10.1016/j.jelectrocard.2008.06.010
– ident: ref6
  doi: 10.1016/j.jacc.2004.06.071
– ident: ref37
  doi: 10.1161/01.CIR.92.7.1825
– ident: ref42
  doi: 10.1016/j.jelectrocard.2008.07.022
– ident: ref14
  doi: 10.1161/01.CIR.101.5.533
– ident: ref32
  doi: 10.1161/01.RES.43.2.315
– ident: ref39
  doi: 10.1016/j.jelectrocard.2003.09.004
– volume: 105
  start-page: 539
  year: 2002
  ident: ref34
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
– ident: ref7
  doi: 10.1016/j.ccl.2006.04.005
– ident: ref10
  doi: 10.1161/CIRCRESAHA.107.158980
– volume: 13
  start-page: 370
  year: 2009
  ident: ref25
  article-title: Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: a feasibility study
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2008.07.002
– ident: ref24
  doi: 10.1007/s00791-002-0081-9
– volume: 34
  start-page: 97
  year: 2001
  ident: ref38
  article-title: Optimal electrocardiographic leads for detecting acute myocardial ischemia
  publication-title: J Electrocardiol
  doi: 10.1054/jelc.2001.28844
– ident: ref40
  doi: 10.1016/j.jacc.2007.04.090
– ident: ref46
  doi: 10.1113/expphysiol.2005.030973
– ident: ref33
  doi: 10.1161/01.CIR.90.3.1469
– volume: 115
  start-page: 2006
  year: 2007
  ident: ref11
  article-title: Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patient's with left ventricular dysfunction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.653568
– year: 0
  ident: ref19
– year: 2001
  ident: ref41
  publication-title: Non-invasive electrical imaging of the heart
– ident: ref22
  doi: 10.1016/0960-0779(95)00089-5
– ident: ref1
  doi: 10.1109/TBME.2009.2024531
– volume: 36
  start-page: 959
  year: 2000
  ident: ref5
  article-title: Myocardial infarction redefined-A consensus document of the joint European society of cardiology/American college of cardiology committee for the redefinition of myocardial infarction
  publication-title: J Amer Coll Cardiol
  doi: 10.1016/S0735-1097(00)00804-4
– volume: 94
  start-page: 563
  year: 2009
  ident: ref2
  article-title: Towards predicative modeling of the electrophysiology of the heart
  publication-title: Exp Physiol
  doi: 10.1113/expphysiol.2008.044073
– ident: ref8
  doi: 10.1016/S0022-0736(98)90314-4
– ident: ref45
  doi: 10.1016/j.athoracsur.2005.05.103
– ident: ref23
  doi: 10.1016/j.pbiomolbio.2004.01.016
– year: 0
  ident: ref35
– ident: ref3
  doi: 10.1093/europace/eul109
– ident: ref20
  doi: 10.1109/CIC.2007.4745452
– volume: 47
  start-page: 1445
  year: 2000
  ident: ref30
  article-title: The scaled unscented transform
  publication-title: Int J Numer Methods Eng
– year: 2008
  ident: ref26
  publication-title: A meshfree method for simulating myocardial electrical activity
– ident: ref4
  doi: 10.1161/01.CIR.87.1.199
– ident: ref9
  doi: 10.1161/CIRCULATIONAHA.107.723262
– year: 1969
  ident: ref27
  publication-title: Bioelectric Phenomena
– ident: ref43
  doi: 10.1161/01.CIR.55.2.268
– ident: ref29
  doi: 10.1114/1.73
– ident: ref18
  doi: 10.1109/CIC.2007.4745449
– volume: 2
  start-page: 175
  year: 2009
  ident: ref21
  article-title: Electrocardiographic simulation on personalized heart-torso structures using coupled meshfree-BEM platform
  publication-title: Int J Funct Inf Pers Med
SSID ssj0014846
Score 2.2270083
Snippet Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular ar rhythmias, such as tachycardia and...
Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1033
SubjectTerms Algorithms
Applied sciences
Biological and medical sciences
Body surface potential (BSP)
Body Surface Potential Mapping - methods
cardiac electrophysiological imaging
Cardiology. Vascular system
Computational modeling
Computer Simulation
Coronary heart disease
Electric potential
Electrocardiography. Vectocardiography
Electrodiagnosis. Electric activity recording
Estimation
Exact sciences and technology
Heart
Heart attacks
Heart Conduction System - physiopathology
Heart Ventricles - physiopathology
Heterogeneity
Humans
Image processing
Imaging
Imaging, Three-Dimensional - methods
Information, signal and communications theory
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Models, Cardiovascular
Myocardial infarction
myocardial infarction (MI)
Myocardium
Reproducibility of Results
Sensitivity and Specificity
Signal processing
Telecommunications and information theory
Three dimensional displays
Torso
transmembrane potential (TMP)
Title Noninvasive Computational Imaging of Cardiac Electrophysiology for 3-D Infarct
URI https://ieeexplore.ieee.org/document/5667050
https://www.ncbi.nlm.nih.gov/pubmed/21156386
https://www.proquest.com/docview/857980267
https://www.proquest.com/docview/858282229
https://www.proquest.com/docview/869826777
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcYh4kd2AbbKGzIh50mUpw4duLjxopgUnsCiVvkz8u2dBopB_563rPdjCGGdqsUp3X83mt-7_NHyEcnbF2VtS0cDm6trdSF0VVTMK9L02guWUy0zxfy7LL-diWuNsjR2AvjvY_FZ36KH2Mu3y3tCkNlxwA9GoYO-jNw3FKv1pgxqNvUlMNKMOBK1TmDWTJ1fPFlPktFXNgnCngjTgAGx4VjB_W911HkV8HqSH0NBxQSs8W_oWd8BZ2-JPP15lPlyffpajBTe_tgruP_Pt0rsp2xKP2clOc12fD9Dnlxb0LhDnk-z7n3XbJYYOT2RmO9O01kEDmQSM9_Rq4jugz0JGqcpbNErxMDJzFyTwEdU158ped9AOMa3pDL09nFyVmR2RgKCz7gUATvAEwIEaQug7HctFXJQ0B6K8GFa7TkJnAb2iCkdpXS2KOrndTMSxYqwd-SzX7Z-z1ChYW_NVUz7rypjSqVA1wBSE6ZihmnwoSwtVA6m0eVI2PGjy66LEx1KNIORdplkU7Ip_GWX2lOx1OLd_H4x4X55Cfk8C_Jj9dxd6Vs4L6DtSp02dSvu1Y0qkUerwmh41WwUUy86N4vV7ikrSJx-hNLpAJHr2ngW94lHfvz61lV9x_f9QHZSnFurCZ6TzaH3yv_AYDSYA6jhdwBCMcLBQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIgE98GihLIXiAydEtnYcO_ERyla70OxpK_UW-XkpZBHNcuDX47G9oSCouEWKnTiemXjeH0KvLTdVSStTWGjcWhmhCq3KuiBOUV0rJkgMtLdLMb-oPl7yyx30dqyFcc7F5DM3hcsYy7drswFX2UlQPWoCBvqdcO5zmqq1xphB1aSyHEKDCJeyyjFMSuTJ6n07S2lcUCkaNI7YAziYLgxqqG8cSBFhBfIj1XXYIp-wLf6tfMZD6OwharfLT7knV9PNoKfmxx-dHf_3-x6hB1kbxe8S-zxGO67fR3s3ehTuo7ttjr4foOUSfLffFWS84wQHkV2JePEloh3htcenkecMniWAneg6ib57HPRjzIoPeNH7IF7DE3RxNludzouMx1CYYAUOhXc2qBOce6Go14bppqTMewC44ozbWgmmPTO-8VwoW0oFVbrKCkWcIL7k7Cna7de9e4YwN-HHJivCrNOVllTaoFkEXU7qkmgr_QSRLVE6k5uVA2bG5y4aLUR2QNIOSNplkk7Qm3HK19Sp47bBB7D948C88xN0_Bvlx_uwOirqMO9oywpdFvbrruG1bADJa4LweDdIKYReVO_WGxjSlBE6_ZYhQgZTr67DUw4Tj_16e2bV539f9St0b75qz7vzxfLTEbqfvN6QW_QC7Q7fNu5lUJsGfRyl5ScYLw5O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+computational+imaging+of+cardiac+electrophysiology+for+3-D+infarct&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Wang%2C+Linwei&rft.au=Wong%2C+Ken+C+L&rft.au=Zhang%2C+Heye&rft.au=Liu%2C+Huafeng&rft.date=2011-04-01&rft.eissn=1558-2531&rft.volume=58&rft.issue=4&rft.spage=1033&rft_id=info:doi/10.1109%2FTBME.2010.2099226&rft_id=info%3Apmid%2F21156386&rft.externalDocID=21156386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon