Robust Multiscale Spectral-Spatial Regularized Sparse Unmixing for Hyperspectral Imagery

With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 1269 - 1285
Main Authors Wang, Ke, Zhong, Lei, Zheng, Jiajun, Zhang, Shaoquan, Li, Fan, Deng, Chengzhi, Cao, Jingjing, Su, Dingli
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral-spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral-spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the <inline-formula><tex-math notation="LaTeX">\ell _{2,1}</tex-math></inline-formula> norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities.
AbstractList With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral-spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral-spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the <inline-formula><tex-math notation="LaTeX">\ell _{2,1}</tex-math></inline-formula> norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities.
With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral–spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral–spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the [Formula Omitted] norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities.
With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral-spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral-spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the <tex-math notation="LaTeX">$\ell _{2,1}$</tex-math> norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities.
Author Li, Fan
Deng, Chengzhi
Zheng, Jiajun
Wang, Ke
Su, Dingli
Cao, Jingjing
Zhang, Shaoquan
Zhong, Lei
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0009-0001-6127-3542
  surname: Wang
  fullname: Wang, Ke
  email: 2417621285@qq.com
  organization: Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Lei
  orcidid: 0009-0003-5614-5620
  surname: Zhong
  fullname: Zhong, Lei
  email: 24547388@qq.com
  organization: Third Surveying and Mapping Institute of Hunan Province, Changsha, China
– sequence: 3
  givenname: Jiajun
  orcidid: 0009-0006-5091-6721
  surname: Zheng
  fullname: Zheng, Jiajun
  email: 2718706166@qq.com
  organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China
– sequence: 4
  givenname: Shaoquan
  orcidid: 0000-0002-1454-9665
  surname: Zhang
  fullname: Zhang, Shaoquan
  email: zhangshaoquan1@163.com
  organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China
– sequence: 5
  givenname: Fan
  orcidid: 0000-0001-5077-8118
  surname: Li
  fullname: Li, Fan
  email: fairylifan@163.com
  organization: Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 6
  givenname: Chengzhi
  orcidid: 0000-0003-1605-7100
  surname: Deng
  fullname: Deng, Chengzhi
  email: dengcz@nit.edu.cn
  organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China
– sequence: 7
  givenname: Jingjing
  orcidid: 0000-0002-1239-2203
  surname: Cao
  fullname: Cao, Jingjing
  email: caojj@gpnu.edu.cn
  organization: College of Computer Sciences, Guangdong Polytechnic Normal University, Guangzhou, China
– sequence: 8
  givenname: Dingli
  orcidid: 0000-0003-2713-0799
  surname: Su
  fullname: Su, Dingli
  email: sudingli@mail2.sysu.edu.cn
  organization: Guangzhou Institute of Building Science Group Company Ltd., Guangzhou, China
BookMark eNp9kU9rGzEQxUVJoE7ST9AeFnpeR__XOobQNg4pATuB3IRWGhmZ9Wor7ULcT1-l60LpoaeBmfd7zMy7QGd97AGhjwQvCcHq-n77dLPZLimmbMkYawjD79CCEkFqIpg4QwuimKoJx_w9ush5j7GkjWIL9LKJ7ZTH6vvUjSFb00G1HcCOyXT1djBjMF21gd3UmRR-gitDkzJUz_0hvIZ-V_mYqrvjACmfqGp9MDtIxyt07k2X4cOpXqLnr1-ebu_qh8dv69ubh9pyrMbaS-WkN1wy4lYtl3iFBUjeStZSI0jrWtsIQcFjAGeJw2C4KA2JPXgjFbtE69nXRbPXQwoHk446mqB_N2LaaZPGYDvQnjrnQTZWrASnwI2TwhIwWK2allpbvD7PXkOKPybIo97HKfVlfU0VpuWrQvGiUrPKpphzAq9tGMunYl_uD50mWL-FoudQ9Fso-hRKYdk_7J-N_099mqkAAH8RjColCPsFrYCcag
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1080_01431161_2024_2365816
crossref_primary_10_1109_TIM_2024_3522396
Cites_doi 10.1109/TPAMI.2012.120
10.1109/MGRS.2013.2244672
10.1109/TGRS.2010.2098413
10.1109/tnnls.2022.3227167
10.1109/MGRS.2017.2762087
10.1109/LGRS.2017.2700542
10.1109/JSTARS.2012.2194696
10.1109/JSTARS.2017.2651063
10.1109/TGRS.2017.2724944
10.3390/rs10010089
10.1109/JSTARS.2023.3260869
10.1109/IGARSS.2016.7730822
10.1109/MSP.2013.2279731
10.1109/TGRS.2018.2818703
10.3390/rs15164056
10.1109/tgrs.2015.2417162
10.1109/TGRS.2021.3064708
10.1117/12.366289
10.3390/rs10122047
10.1109/JSTARS.2021.3086631
10.1109/tim.2023.3271713
10.1109/TGRS.2017.2728104
10.1109/TGRS.2010.2062190
10.1109/LGRS.2014.2367028
10.1016/j.rse.2017.10.020
10.1109/TGRS.2015.2459763
10.1137/S003614450037906X
10.11834/jrs.20221553
10.1109/TNNLS.2021.3082289
10.1109/LGRS.2020.3027055
10.1109/LGRS.2018.2878394
10.1109/lgrs.2012.2232901
10.1109/TGRS.2012.2191590
10.1109/JSTARS.2022.3175257
10.1109/TGRS.2013.2240001
10.1109/TGRS.2018.2873326
10.1109/TGRS.2017.2683719
10.1109/TIP.2018.2878958
10.1109/TGRS.2021.3107151
10.1016/j.rse.2014.03.034
10.1029/2002JE001847
10.1109/MGRS.2021.3071158
10.1109/LGRS.2016.2527782
10.1109/JSTARS.2021.3132164
10.1109/79.974727
10.1109/TGRS.2004.839806
10.1109/MGRS.2019.2902525
10.1109/TGRS.2004.835299
10.1109/TGRS.2021.3074364
10.1109/TGRS.2018.2797200
10.1007/s00041-008-9045-x
10.1109/TGRS.2021.3101504
10.1016/j.rse.2019.05.015
10.1109/TGRS.2016.2551327
10.1016/j.rse.2022.113264
10.1109/TGRS.2018.2878923
10.1109/TGRS.2005.844293
10.1109/JPROC.2009.2037655
10.1109/tnnls.2023.3303273
10.1109/JSTARS.2020.3017023
10.1109/TIT.2006.885507
10.1016/j.ecoinf.2022.101678
10.1109/JSTARS.2012.2192472
10.1109/WHISPERS.2010.5594963
10.1109/TGRS.2017.2753847
10.1109/TGRS.2016.2580702
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3337130
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Open Access资源_DOAJ
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1285
ExternalDocumentID oai_doaj_org_article_f2ddfe67c58542e4ad65c1ea0987b2cc
10_1109_JSTARS_2023_3337130
10329951
Genre orig-research
GrantInformation_xml – fundername: Chinese Ministry of Education Chunhui Plan Collaborative Research Project
  grantid: 202201108
– fundername: Research Project of China Construction Enterprise Management Association
  grantid: 2023-B-033
– fundername: National Natural Science Foundation of China
  grantid: T2225019; 62361042; 42361061; 42201353
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangxi Province; Jiangxi Provincial Natural Science Foundation
  grantid: 20232BAB202039; 20224ACB202002; 20224BAB202007
  funderid: 10.13039/501100004479
– fundername: Training Program for Academic and Technical Leaders of Jiangxi Province
  grantid: 20225BCJ23019
– fundername: Guangdong Provincial Department of Housing and Urban-Rural Development Science and Technology Plan Project
  grantid: 2021-K1-140626
– fundername: Science and Technology Project of Guangzhou Construction Company Ltd.
  grantid: [2021]-KJ019; [2021]-KJ059
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-f69d6fa4631d8b460805e64b63b2a51bdbc7552ef0eedc1d0ea4555260fefa693
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:31:25 EDT 2025
Fri Jul 25 21:57:34 EDT 2025
Tue Jul 01 03:16:29 EDT 2025
Thu Apr 24 22:50:47 EDT 2025
Wed Aug 27 02:36:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-f69d6fa4631d8b460805e64b63b2a51bdbc7552ef0eedc1d0ea4555260fefa693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1454-9665
0000-0001-5077-8118
0009-0001-6127-3542
0000-0003-1605-7100
0000-0003-2713-0799
0000-0002-1239-2203
0009-0003-5614-5620
0009-0006-5091-6721
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10329951
PQID 2902130594
PQPubID 75722
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2023_3337130
ieee_primary_10329951
doaj_primary_oai_doaj_org_article_f2ddfe67c58542e4ad65c1ea0987b2cc
proquest_journals_2902130594
crossref_primary_10_1109_JSTARS_2023_3337130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref45
  doi: 10.1109/TPAMI.2012.120
– ident: ref2
  doi: 10.1109/MGRS.2013.2244672
– ident: ref30
  doi: 10.1109/TGRS.2010.2098413
– ident: ref9
  doi: 10.1109/tnnls.2022.3227167
– ident: ref11
  doi: 10.1109/MGRS.2017.2762087
– ident: ref44
  doi: 10.1109/LGRS.2017.2700542
– ident: ref1
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref40
  doi: 10.1109/JSTARS.2017.2651063
– ident: ref58
  doi: 10.1109/TGRS.2017.2724944
– ident: ref63
  doi: 10.3390/rs10010089
– ident: ref47
  doi: 10.1109/JSTARS.2023.3260869
– ident: ref37
  doi: 10.1109/IGARSS.2016.7730822
– ident: ref13
  doi: 10.1109/MSP.2013.2279731
– ident: ref32
  doi: 10.1109/TGRS.2018.2818703
– ident: ref53
  doi: 10.3390/rs15164056
– ident: ref25
  doi: 10.1109/tgrs.2015.2417162
– ident: ref21
  doi: 10.1109/TGRS.2021.3064708
– ident: ref16
  doi: 10.1117/12.366289
– ident: ref64
  doi: 10.3390/rs10122047
– ident: ref38
  doi: 10.1109/JSTARS.2021.3086631
– ident: ref41
  doi: 10.1109/tim.2023.3271713
– ident: ref18
  doi: 10.1109/TGRS.2017.2728104
– ident: ref20
  doi: 10.1109/TGRS.2010.2062190
– ident: ref49
  doi: 10.1109/LGRS.2014.2367028
– ident: ref14
  doi: 10.1016/j.rse.2017.10.020
– ident: ref36
  doi: 10.1109/TGRS.2015.2459763
– ident: ref56
  doi: 10.1137/S003614450037906X
– ident: ref66
  doi: 10.11834/jrs.20221553
– ident: ref12
  doi: 10.1109/TNNLS.2021.3082289
– ident: ref46
  doi: 10.1109/LGRS.2020.3027055
– ident: ref50
  doi: 10.1109/LGRS.2018.2878394
– ident: ref34
  doi: 10.1109/lgrs.2012.2232901
– ident: ref43
  doi: 10.1109/TGRS.2012.2191590
– ident: ref24
  doi: 10.1109/JSTARS.2022.3175257
– ident: ref33
  doi: 10.1109/TGRS.2013.2240001
– ident: ref60
  doi: 10.1109/TGRS.2018.2873326
– ident: ref22
  doi: 10.1109/TGRS.2017.2683719
– ident: ref15
  doi: 10.1109/TIP.2018.2878958
– ident: ref52
  doi: 10.1109/TGRS.2021.3107151
– ident: ref39
  doi: 10.1016/j.rse.2014.03.034
– ident: ref62
  doi: 10.1029/2002JE001847
– ident: ref3
  doi: 10.1109/MGRS.2021.3071158
– ident: ref31
  doi: 10.1109/LGRS.2016.2527782
– ident: ref65
  doi: 10.1109/JSTARS.2021.3132164
– ident: ref10
  doi: 10.1109/79.974727
– ident: ref26
  doi: 10.1109/TGRS.2004.839806
– ident: ref8
  doi: 10.1109/MGRS.2019.2902525
– ident: ref19
  doi: 10.1109/TGRS.2004.835299
– ident: ref23
  doi: 10.1109/TGRS.2021.3074364
– ident: ref51
  doi: 10.1109/TGRS.2018.2797200
– ident: ref35
  doi: 10.1007/s00041-008-9045-x
– ident: ref54
  doi: 10.1109/TGRS.2021.3101504
– ident: ref29
  doi: 10.1016/j.rse.2019.05.015
– ident: ref59
  doi: 10.1109/TGRS.2016.2551327
– ident: ref6
  doi: 10.1016/j.rse.2022.113264
– ident: ref7
  doi: 10.1109/TGRS.2018.2878923
– ident: ref17
  doi: 10.1109/TGRS.2005.844293
– ident: ref28
  doi: 10.1109/JPROC.2009.2037655
– ident: ref48
  doi: 10.1109/tnnls.2023.3303273
– ident: ref42
  doi: 10.1109/JSTARS.2020.3017023
– ident: ref55
  doi: 10.1109/TIT.2006.885507
– ident: ref5
  doi: 10.1016/j.ecoinf.2022.101678
– ident: ref61
  doi: 10.1109/JSTARS.2012.2192472
– ident: ref57
  doi: 10.1109/WHISPERS.2010.5594963
– ident: ref27
  doi: 10.1109/TGRS.2017.2753847
– ident: ref4
  doi: 10.1109/TGRS.2016.2580702
SSID ssj0062793
Score 2.3728256
Snippet With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1269
SubjectTerms Abundance
Abundance estimation error
Algorithms
Biological system modeling
Coefficients
Data mining
Error reduction
Estimation error
Hyperspectral imaging
Imagery
Immunity
Libraries
Mixture models
multiscale
Optimization
Outliers (statistics)
Regularization
Remote sensing
Robustness
Smoothness
sparse hyperspectral unmixing
Spatial data
spatial information
spatial regularization
Weighting
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyQxEA2LIOxF1lVxdmeXHDzams5HzfRxdlmdFfQwOjC3kI8KCDouzgjqr7eS7hFF0Mte0ynSXamkXoXOe4ztRYL8vhlgFSSoSsMw0ZpDrKJD9NpF8Cbfdz49g_FUn8zM7IXUV_4nrKUHbh13mGSMCWEQCNdqidnchBqdoGLZyxDy7ks5b1VMtXswSAq7jmOoFs0hBflocn6QpcIPlFJUmIlXeajQ9Xf6Km825ZJpjr6wjQ4i8lH7apvsE86_svXjIsH7sMVmkxt_t1jycnV2QS5GnkXk84lFlQWGKaD4pCjM314-YqSHVLsin86vL-8pT3FCqXxM1Wd7yZKs-N_rTGTxsM2mR38ufo-rTh-hClSVLasETYTkNKg6Dr0GAn8GQXtQXjpT--jDwBiJSVAiDHUU6LShBhAJk4NG7bC1-c0cdxlXCnVAkwofO4Aj3xp09dCBF9GJ1GNy5S0bOvLwrGFxZUsRIRrbuthmF9vOxT22_2z0r-XOeL_7rzwNz10z8XVpoHCwXTjYj8Khx7bzJL4YT1HCNXWP9VezartVurCyIYSjMmPNt_8x9nf2mb5Htwc0fba2vL3DHwRZlv5nic4nxXnphA
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust Multiscale Spectral-Spatial Regularized Sparse Unmixing for Hyperspectral Imagery
URI https://ieeexplore.ieee.org/document/10329951
https://www.proquest.com/docview/2902130594
https://doaj.org/article/f2ddfe67c58542e4ad65c1ea0987b2cc
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagEhIXnkUsLZUPHEnq-JX1sSDKgkQPCyvtzfJjLFXQXdTNSrS_vmPHW_EQiFvk2IqTGXse8XwfIa8iuvze9NAErkUj9TThmgNoogPw0kXtVa53_nSmZwv5camWtVi91MIAQDl8Bm2-LP_y4zpsc6rsOIO_GZMLpu9i5DYWa-22Xc37grCLDolpMmZMhRjqmDlGHT-Zf24zU3grhMC4jP1ihgpaf6VX-WNPLobm9CE5201xPF_ytd0Ovg3Xv6E3_vc7PCIPqstJT0YdeUzuwOoJufe-UPpePSXL-dpvNwMtpbgbFBnQTEqfMyBNJixGBaXzwlh_eX4NEW9iLAx0sbo4_4F2j6LXS2cYzY5FmziKfrjIwBhX-2Rx-u7L21lT-RaagFHe0CRtok5OatHFqZcanUkFWnotPHeq89GHXikOiaFhDV1k4KTCBs0SJKeNeEb2VusVPCdUCJABVCr47lq7ae8VuG7qtGfRsTQhfPf5bahg5JkT45stQQkzdpSZzTKzVWYT8vp20PcRi-Pf3d9kud52zUDapQHlYeu6tInHmED3AcMmySFrpwodOGZwyjyECdnPMvzpeaP4JuRwpya2rvqN5QY9JpERcF78ZdgBuY9TlGMO55DsDZdbeIlezeCPSjbgqOj0DaOD9Rw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqVggulEdRlxbwAW4kTRzb2Rw4lEfZpY_DtivtzfgxRhXtbtXNqt3-F_4Kv42xk13xENwqcYsSW0nsbzzfJJ5vCHnpkPKbqoTEMlkkXHY92hxA4jSA4dpJI0K-8-GR7A35p5EYrZBvy1wYAIibzyANh_FfvpvYWfhUthPE3yqkBO0eyn2YX2GENn3Tf4_T-YqxvQ8n73pJW0QgsRi61ImXlZNec1nkrmu4RIYkQHIjC8O0yI0zthSCgc_QW9jcZaC5wBMy8-C1DFpLuMKvIdEQrEkPWyz0kpVR0xcpUJUElZpW1CjPqh20qt3BcRpqk6dFUWAkmP3i-GJ9gLagyx9eILq2vXXyfTEozY6Wr-msNqm9-U0v8r8dtQfkfkuq6W5jBQ_JCowfkTsfY9Hi-WMyGkzMbFrTmGw8RVACPQ4Jppf6LAklmdEE6QC-hA25pzfg8CJG-0CH4_PTa_TsFHk97WG83qSlYi_aPw_SH_MNMryV13pCVseTMWwSWhTALQgfFeyl1N3SCNB5V0uTOZ35DmGL6Va2lVsPVT_OVAy7sko1GFEBI6rFSIe8Xna6aNRG_t38bcDRsmmQCo8ncP5Vu_Ioz5zzIEuLgSFnEOxP2Bx0VuEjM2s7ZCNg5qf7NXDpkO0FLFW7rk0Vq5ATFkHj5-lfur0gd3snhwfqoH-0v0Xu4ePy5ovVNlmtL2fwDDlcbZ5HS6Lk822D8Ae3OVMC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Multiscale+Spectral-Spatial+Regularized+Sparse+Unmixing+for+Hyperspectral+Imagery&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Ke&rft.au=Zhong%2C+Lei&rft.au=Zheng%2C+Jiajun&rft.au=Zhang%2C+Shaoquan&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=1269&rft.epage=1285&rft_id=info:doi/10.1109%2FJSTARS.2023.3337130&rft.externalDocID=10329951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon