Robust Multiscale Spectral-Spatial Regularized Sparse Unmixing for Hyperspectral Imagery
With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 1269 - 1285 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral-spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral-spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the <inline-formula><tex-math notation="LaTeX">\ell _{2,1}</tex-math></inline-formula> norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities. |
---|---|
AbstractList | With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral-spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral-spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the <inline-formula><tex-math notation="LaTeX">\ell _{2,1}</tex-math></inline-formula> norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities. With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral–spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral–spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the [Formula Omitted] norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities. With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial clues from hyperspectral data into sparse unmixing frameworks is pivotal for enhancing unmixing capabilities. As such, extracting and harnessing spatial signatures from imagery has emerged as a prevalent tactic to optimize unmixing. In real-world scenarios, hyperspectral images are susceptible to noise, which poses great challenges to the separability of ground objects. As a result, most sparse unmixing models are ill-equipped to handle this issue properly, facing risks of failure. To tackle this challenge, we proposed a sparse unmixing technique with robust multiscale spectral-spatial regularization (RMSR). In the proposed RMSR model, an abundance estimation error reduction regularizer and a spectral-spatial weighted sparse regularizer are consolidated into a unified framework, which excavates the spatial information of the image from multiple perspectives. Specifically, in the first part, the abundance estimation error is defined as the difference between the precomputed abundance maps at the superpixel level and the expected abundances calculated from the original data. Then, the <tex-math notation="LaTeX">$\ell _{2,1}$</tex-math> norm is applied to it as a regularization term, which enhances the robustness of the model against image noise and outliers. In the second part, image level spectral weighting coefficients and local spatial weighting terms are leveraged to individually enhance the sparsity of the abundance maps and their piecewise smoothness. The experimental results reveal the algorithm's considerable capabilities in noise immunity and improved unmixing abilities. |
Author | Li, Fan Deng, Chengzhi Zheng, Jiajun Wang, Ke Su, Dingli Cao, Jingjing Zhang, Shaoquan Zhong, Lei |
Author_xml | – sequence: 1 givenname: Ke orcidid: 0009-0001-6127-3542 surname: Wang fullname: Wang, Ke email: 2417621285@qq.com organization: Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 2 givenname: Lei orcidid: 0009-0003-5614-5620 surname: Zhong fullname: Zhong, Lei email: 24547388@qq.com organization: Third Surveying and Mapping Institute of Hunan Province, Changsha, China – sequence: 3 givenname: Jiajun orcidid: 0009-0006-5091-6721 surname: Zheng fullname: Zheng, Jiajun email: 2718706166@qq.com organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China – sequence: 4 givenname: Shaoquan orcidid: 0000-0002-1454-9665 surname: Zhang fullname: Zhang, Shaoquan email: zhangshaoquan1@163.com organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China – sequence: 5 givenname: Fan orcidid: 0000-0001-5077-8118 surname: Li fullname: Li, Fan email: fairylifan@163.com organization: Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 6 givenname: Chengzhi orcidid: 0000-0003-1605-7100 surname: Deng fullname: Deng, Chengzhi email: dengcz@nit.edu.cn organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China – sequence: 7 givenname: Jingjing orcidid: 0000-0002-1239-2203 surname: Cao fullname: Cao, Jingjing email: caojj@gpnu.edu.cn organization: College of Computer Sciences, Guangdong Polytechnic Normal University, Guangzhou, China – sequence: 8 givenname: Dingli orcidid: 0000-0003-2713-0799 surname: Su fullname: Su, Dingli email: sudingli@mail2.sysu.edu.cn organization: Guangzhou Institute of Building Science Group Company Ltd., Guangzhou, China |
BookMark | eNp9kU9rGzEQxUVJoE7ST9AeFnpeR__XOobQNg4pATuB3IRWGhmZ9Wor7ULcT1-l60LpoaeBmfd7zMy7QGd97AGhjwQvCcHq-n77dLPZLimmbMkYawjD79CCEkFqIpg4QwuimKoJx_w9ush5j7GkjWIL9LKJ7ZTH6vvUjSFb00G1HcCOyXT1djBjMF21gd3UmRR-gitDkzJUz_0hvIZ-V_mYqrvjACmfqGp9MDtIxyt07k2X4cOpXqLnr1-ebu_qh8dv69ubh9pyrMbaS-WkN1wy4lYtl3iFBUjeStZSI0jrWtsIQcFjAGeJw2C4KA2JPXgjFbtE69nXRbPXQwoHk446mqB_N2LaaZPGYDvQnjrnQTZWrASnwI2TwhIwWK2allpbvD7PXkOKPybIo97HKfVlfU0VpuWrQvGiUrPKpphzAq9tGMunYl_uD50mWL-FoudQ9Fso-hRKYdk_7J-N_099mqkAAH8RjColCPsFrYCcag |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1080_01431161_2024_2365816 crossref_primary_10_1109_TIM_2024_3522396 |
Cites_doi | 10.1109/TPAMI.2012.120 10.1109/MGRS.2013.2244672 10.1109/TGRS.2010.2098413 10.1109/tnnls.2022.3227167 10.1109/MGRS.2017.2762087 10.1109/LGRS.2017.2700542 10.1109/JSTARS.2012.2194696 10.1109/JSTARS.2017.2651063 10.1109/TGRS.2017.2724944 10.3390/rs10010089 10.1109/JSTARS.2023.3260869 10.1109/IGARSS.2016.7730822 10.1109/MSP.2013.2279731 10.1109/TGRS.2018.2818703 10.3390/rs15164056 10.1109/tgrs.2015.2417162 10.1109/TGRS.2021.3064708 10.1117/12.366289 10.3390/rs10122047 10.1109/JSTARS.2021.3086631 10.1109/tim.2023.3271713 10.1109/TGRS.2017.2728104 10.1109/TGRS.2010.2062190 10.1109/LGRS.2014.2367028 10.1016/j.rse.2017.10.020 10.1109/TGRS.2015.2459763 10.1137/S003614450037906X 10.11834/jrs.20221553 10.1109/TNNLS.2021.3082289 10.1109/LGRS.2020.3027055 10.1109/LGRS.2018.2878394 10.1109/lgrs.2012.2232901 10.1109/TGRS.2012.2191590 10.1109/JSTARS.2022.3175257 10.1109/TGRS.2013.2240001 10.1109/TGRS.2018.2873326 10.1109/TGRS.2017.2683719 10.1109/TIP.2018.2878958 10.1109/TGRS.2021.3107151 10.1016/j.rse.2014.03.034 10.1029/2002JE001847 10.1109/MGRS.2021.3071158 10.1109/LGRS.2016.2527782 10.1109/JSTARS.2021.3132164 10.1109/79.974727 10.1109/TGRS.2004.839806 10.1109/MGRS.2019.2902525 10.1109/TGRS.2004.835299 10.1109/TGRS.2021.3074364 10.1109/TGRS.2018.2797200 10.1007/s00041-008-9045-x 10.1109/TGRS.2021.3101504 10.1016/j.rse.2019.05.015 10.1109/TGRS.2016.2551327 10.1016/j.rse.2022.113264 10.1109/TGRS.2018.2878923 10.1109/TGRS.2005.844293 10.1109/JPROC.2009.2037655 10.1109/tnnls.2023.3303273 10.1109/JSTARS.2020.3017023 10.1109/TIT.2006.885507 10.1016/j.ecoinf.2022.101678 10.1109/JSTARS.2012.2192472 10.1109/WHISPERS.2010.5594963 10.1109/TGRS.2017.2753847 10.1109/TGRS.2016.2580702 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2023.3337130 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Open Access资源_DOAJ |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 1285 |
ExternalDocumentID | oai_doaj_org_article_f2ddfe67c58542e4ad65c1ea0987b2cc 10_1109_JSTARS_2023_3337130 10329951 |
Genre | orig-research |
GrantInformation_xml | – fundername: Chinese Ministry of Education Chunhui Plan Collaborative Research Project grantid: 202201108 – fundername: Research Project of China Construction Enterprise Management Association grantid: 2023-B-033 – fundername: National Natural Science Foundation of China grantid: T2225019; 62361042; 42361061; 42201353 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangxi Province; Jiangxi Provincial Natural Science Foundation grantid: 20232BAB202039; 20224ACB202002; 20224BAB202007 funderid: 10.13039/501100004479 – fundername: Training Program for Academic and Technical Leaders of Jiangxi Province grantid: 20225BCJ23019 – fundername: Guangdong Provincial Department of Housing and Urban-Rural Development Science and Technology Plan Project grantid: 2021-K1-140626 – fundername: Science and Technology Project of Guangzhou Construction Company Ltd. grantid: [2021]-KJ019; [2021]-KJ059 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c409t-f69d6fa4631d8b460805e64b63b2a51bdbc7552ef0eedc1d0ea4555260fefa693 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:31:25 EDT 2025 Fri Jul 25 21:57:34 EDT 2025 Tue Jul 01 03:16:29 EDT 2025 Thu Apr 24 22:50:47 EDT 2025 Wed Aug 27 02:36:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-f69d6fa4631d8b460805e64b63b2a51bdbc7552ef0eedc1d0ea4555260fefa693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1454-9665 0000-0001-5077-8118 0009-0001-6127-3542 0000-0003-1605-7100 0000-0003-2713-0799 0000-0002-1239-2203 0009-0003-5614-5620 0009-0006-5091-6721 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10329951 |
PQID | 2902130594 |
PQPubID | 75722 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2023_3337130 ieee_primary_10329951 doaj_primary_oai_doaj_org_article_f2ddfe67c58542e4ad65c1ea0987b2cc proquest_journals_2902130594 crossref_primary_10_1109_JSTARS_2023_3337130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref45 doi: 10.1109/TPAMI.2012.120 – ident: ref2 doi: 10.1109/MGRS.2013.2244672 – ident: ref30 doi: 10.1109/TGRS.2010.2098413 – ident: ref9 doi: 10.1109/tnnls.2022.3227167 – ident: ref11 doi: 10.1109/MGRS.2017.2762087 – ident: ref44 doi: 10.1109/LGRS.2017.2700542 – ident: ref1 doi: 10.1109/JSTARS.2012.2194696 – ident: ref40 doi: 10.1109/JSTARS.2017.2651063 – ident: ref58 doi: 10.1109/TGRS.2017.2724944 – ident: ref63 doi: 10.3390/rs10010089 – ident: ref47 doi: 10.1109/JSTARS.2023.3260869 – ident: ref37 doi: 10.1109/IGARSS.2016.7730822 – ident: ref13 doi: 10.1109/MSP.2013.2279731 – ident: ref32 doi: 10.1109/TGRS.2018.2818703 – ident: ref53 doi: 10.3390/rs15164056 – ident: ref25 doi: 10.1109/tgrs.2015.2417162 – ident: ref21 doi: 10.1109/TGRS.2021.3064708 – ident: ref16 doi: 10.1117/12.366289 – ident: ref64 doi: 10.3390/rs10122047 – ident: ref38 doi: 10.1109/JSTARS.2021.3086631 – ident: ref41 doi: 10.1109/tim.2023.3271713 – ident: ref18 doi: 10.1109/TGRS.2017.2728104 – ident: ref20 doi: 10.1109/TGRS.2010.2062190 – ident: ref49 doi: 10.1109/LGRS.2014.2367028 – ident: ref14 doi: 10.1016/j.rse.2017.10.020 – ident: ref36 doi: 10.1109/TGRS.2015.2459763 – ident: ref56 doi: 10.1137/S003614450037906X – ident: ref66 doi: 10.11834/jrs.20221553 – ident: ref12 doi: 10.1109/TNNLS.2021.3082289 – ident: ref46 doi: 10.1109/LGRS.2020.3027055 – ident: ref50 doi: 10.1109/LGRS.2018.2878394 – ident: ref34 doi: 10.1109/lgrs.2012.2232901 – ident: ref43 doi: 10.1109/TGRS.2012.2191590 – ident: ref24 doi: 10.1109/JSTARS.2022.3175257 – ident: ref33 doi: 10.1109/TGRS.2013.2240001 – ident: ref60 doi: 10.1109/TGRS.2018.2873326 – ident: ref22 doi: 10.1109/TGRS.2017.2683719 – ident: ref15 doi: 10.1109/TIP.2018.2878958 – ident: ref52 doi: 10.1109/TGRS.2021.3107151 – ident: ref39 doi: 10.1016/j.rse.2014.03.034 – ident: ref62 doi: 10.1029/2002JE001847 – ident: ref3 doi: 10.1109/MGRS.2021.3071158 – ident: ref31 doi: 10.1109/LGRS.2016.2527782 – ident: ref65 doi: 10.1109/JSTARS.2021.3132164 – ident: ref10 doi: 10.1109/79.974727 – ident: ref26 doi: 10.1109/TGRS.2004.839806 – ident: ref8 doi: 10.1109/MGRS.2019.2902525 – ident: ref19 doi: 10.1109/TGRS.2004.835299 – ident: ref23 doi: 10.1109/TGRS.2021.3074364 – ident: ref51 doi: 10.1109/TGRS.2018.2797200 – ident: ref35 doi: 10.1007/s00041-008-9045-x – ident: ref54 doi: 10.1109/TGRS.2021.3101504 – ident: ref29 doi: 10.1016/j.rse.2019.05.015 – ident: ref59 doi: 10.1109/TGRS.2016.2551327 – ident: ref6 doi: 10.1016/j.rse.2022.113264 – ident: ref7 doi: 10.1109/TGRS.2018.2878923 – ident: ref17 doi: 10.1109/TGRS.2005.844293 – ident: ref28 doi: 10.1109/JPROC.2009.2037655 – ident: ref48 doi: 10.1109/tnnls.2023.3303273 – ident: ref42 doi: 10.1109/JSTARS.2020.3017023 – ident: ref55 doi: 10.1109/TIT.2006.885507 – ident: ref5 doi: 10.1016/j.ecoinf.2022.101678 – ident: ref61 doi: 10.1109/JSTARS.2012.2192472 – ident: ref57 doi: 10.1109/WHISPERS.2010.5594963 – ident: ref27 doi: 10.1109/TGRS.2017.2753847 – ident: ref4 doi: 10.1109/TGRS.2016.2580702 |
SSID | ssj0062793 |
Score | 2.3728256 |
Snippet | With the aid of endmember spectral libraries, sparse unmixing plays a critical role in interpreting hyperspectral remote sensing data. Integrating spatial... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1269 |
SubjectTerms | Abundance Abundance estimation error Algorithms Biological system modeling Coefficients Data mining Error reduction Estimation error Hyperspectral imaging Imagery Immunity Libraries Mixture models multiscale Optimization Outliers (statistics) Regularization Remote sensing Robustness Smoothness sparse hyperspectral unmixing Spatial data spatial information spatial regularization Weighting |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyQxEA2LIOxF1lVxdmeXHDzams5HzfRxdlmdFfQwOjC3kI8KCDouzgjqr7eS7hFF0Mte0ynSXamkXoXOe4ztRYL8vhlgFSSoSsMw0ZpDrKJD9NpF8Cbfdz49g_FUn8zM7IXUV_4nrKUHbh13mGSMCWEQCNdqidnchBqdoGLZyxDy7ks5b1VMtXswSAq7jmOoFs0hBflocn6QpcIPlFJUmIlXeajQ9Xf6Km825ZJpjr6wjQ4i8lH7apvsE86_svXjIsH7sMVmkxt_t1jycnV2QS5GnkXk84lFlQWGKaD4pCjM314-YqSHVLsin86vL-8pT3FCqXxM1Wd7yZKs-N_rTGTxsM2mR38ufo-rTh-hClSVLasETYTkNKg6Dr0GAn8GQXtQXjpT--jDwBiJSVAiDHUU6LShBhAJk4NG7bC1-c0cdxlXCnVAkwofO4Aj3xp09dCBF9GJ1GNy5S0bOvLwrGFxZUsRIRrbuthmF9vOxT22_2z0r-XOeL_7rzwNz10z8XVpoHCwXTjYj8Khx7bzJL4YT1HCNXWP9VezartVurCyIYSjMmPNt_8x9nf2mb5Htwc0fba2vL3DHwRZlv5nic4nxXnphA priority: 102 providerName: Directory of Open Access Journals |
Title | Robust Multiscale Spectral-Spatial Regularized Sparse Unmixing for Hyperspectral Imagery |
URI | https://ieeexplore.ieee.org/document/10329951 https://www.proquest.com/docview/2902130594 https://doaj.org/article/f2ddfe67c58542e4ad65c1ea0987b2cc |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagEhIXnkUsLZUPHEnq-JX1sSDKgkQPCyvtzfJjLFXQXdTNSrS_vmPHW_EQiFvk2IqTGXse8XwfIa8iuvze9NAErkUj9TThmgNoogPw0kXtVa53_nSmZwv5camWtVi91MIAQDl8Bm2-LP_y4zpsc6rsOIO_GZMLpu9i5DYWa-22Xc37grCLDolpMmZMhRjqmDlGHT-Zf24zU3grhMC4jP1ihgpaf6VX-WNPLobm9CE5201xPF_ytd0Ovg3Xv6E3_vc7PCIPqstJT0YdeUzuwOoJufe-UPpePSXL-dpvNwMtpbgbFBnQTEqfMyBNJixGBaXzwlh_eX4NEW9iLAx0sbo4_4F2j6LXS2cYzY5FmziKfrjIwBhX-2Rx-u7L21lT-RaagFHe0CRtok5OatHFqZcanUkFWnotPHeq89GHXikOiaFhDV1k4KTCBs0SJKeNeEb2VusVPCdUCJABVCr47lq7ae8VuG7qtGfRsTQhfPf5bahg5JkT45stQQkzdpSZzTKzVWYT8vp20PcRi-Pf3d9kud52zUDapQHlYeu6tInHmED3AcMmySFrpwodOGZwyjyECdnPMvzpeaP4JuRwpya2rvqN5QY9JpERcF78ZdgBuY9TlGMO55DsDZdbeIlezeCPSjbgqOj0DaOD9Rw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqVggulEdRlxbwAW4kTRzb2Rw4lEfZpY_DtivtzfgxRhXtbtXNqt3-F_4Kv42xk13xENwqcYsSW0nsbzzfJJ5vCHnpkPKbqoTEMlkkXHY92hxA4jSA4dpJI0K-8-GR7A35p5EYrZBvy1wYAIibzyANh_FfvpvYWfhUthPE3yqkBO0eyn2YX2GENn3Tf4_T-YqxvQ8n73pJW0QgsRi61ImXlZNec1nkrmu4RIYkQHIjC8O0yI0zthSCgc_QW9jcZaC5wBMy8-C1DFpLuMKvIdEQrEkPWyz0kpVR0xcpUJUElZpW1CjPqh20qt3BcRpqk6dFUWAkmP3i-GJ9gLagyx9eILq2vXXyfTEozY6Wr-msNqm9-U0v8r8dtQfkfkuq6W5jBQ_JCowfkTsfY9Hi-WMyGkzMbFrTmGw8RVACPQ4Jppf6LAklmdEE6QC-hA25pzfg8CJG-0CH4_PTa_TsFHk97WG83qSlYi_aPw_SH_MNMryV13pCVseTMWwSWhTALQgfFeyl1N3SCNB5V0uTOZ35DmGL6Va2lVsPVT_OVAy7sko1GFEBI6rFSIe8Xna6aNRG_t38bcDRsmmQCo8ncP5Vu_Ioz5zzIEuLgSFnEOxP2Bx0VuEjM2s7ZCNg5qf7NXDpkO0FLFW7rk0Vq5ATFkHj5-lfur0gd3snhwfqoH-0v0Xu4ePy5ovVNlmtL2fwDDlcbZ5HS6Lk822D8Ae3OVMC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Multiscale+Spectral-Spatial+Regularized+Sparse+Unmixing+for+Hyperspectral+Imagery&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Ke&rft.au=Zhong%2C+Lei&rft.au=Zheng%2C+Jiajun&rft.au=Zhang%2C+Shaoquan&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=1269&rft.epage=1285&rft_id=info:doi/10.1109%2FJSTARS.2023.3337130&rft.externalDocID=10329951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |