AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target Detection
Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this article, we propose an effective attention-guided feature enhancement network (AFE-Net), which can leverage the local and nonlocal features of targ...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 4208 - 4221 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this article, we propose an effective attention-guided feature enhancement network (AFE-Net), which can leverage the local and nonlocal features of targets and background in infrared images. The AFE-Net consists of three key modules, namely encoder and decoder interactive guidance (EDIG) module, cascading false alarm removal (CFAR) module, and random scale input (RSI) module. Specifically, in the EDIG module, we employ a CA mechanism on encoding and decoding layers to select feature channels with higher contribution. Then, we impose a bottom-up pointwise attention block to highlight the features of small infrared targets and suppress possible noise by incorporating the low-level detailed features into the high-level semantic features. The CFAR module extracts affluent global features by cascading nonlocal operations of different layers, which can remove clutters with similar features to infrared targets. The RSI module is placed in front of the entire detection network to extract multiscale features of infrared small targets, which can enhance the robustness of the proposed network. Experimental results on the SIRST dataset and comprehensive comparisons with representative methods demonstrate the superiority of our proposed method. |
---|---|
AbstractList | Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this article, we propose an effective attention-guided feature enhancement network (AFE-Net), which can leverage the local and nonlocal features of targets and background in infrared images. The AFE-Net consists of three key modules, namely encoder and decoder interactive guidance (EDIG) module, cascading false alarm removal (CFAR) module, and random scale input (RSI) module. Specifically, in the EDIG module, we employ a CA mechanism on encoding and decoding layers to select feature channels with higher contribution. Then, we impose a bottom-up pointwise attention block to highlight the features of small infrared targets and suppress possible noise by incorporating the low-level detailed features into the high-level semantic features. The CFAR module extracts affluent global features by cascading nonlocal operations of different layers, which can remove clutters with similar features to infrared targets. The RSI module is placed in front of the entire detection network to extract multiscale features of infrared small targets, which can enhance the robustness of the proposed network. Experimental results on the SIRST dataset and comprehensive comparisons with representative methods demonstrate the superiority of our proposed method. |
Author | Chen, Zuntian Wu, Xueyan Yang, Liyun Li, Yunsong Zhang, Rui Zhou, Peicheng Wang, Keyan |
Author_xml | – sequence: 1 givenname: Keyan orcidid: 0000-0002-9545-718X surname: Wang fullname: Wang, Keyan email: kywang@mail.xidian.edu.cn organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China – sequence: 2 givenname: Xueyan orcidid: 0009-0008-7690-3130 surname: Wu fullname: Wu, Xueyan email: xueyanwu@stu.xidian.edu.cn organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China – sequence: 3 givenname: Peicheng orcidid: 0000-0003-2468-3128 surname: Zhou fullname: Zhou, Peicheng email: zhoupeicheng@xidian.edu.cn organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China – sequence: 4 givenname: Zuntian orcidid: 0009-0005-5794-0620 surname: Chen fullname: Chen, Zuntian email: chenzt2125@sina.com organization: Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an, China – sequence: 5 givenname: Rui orcidid: 0009-0004-2704-6807 surname: Zhang fullname: Zhang, Rui email: zhr886@163.com organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China – sequence: 6 givenname: Liyun surname: Yang fullname: Yang, Liyun email: 3302243738@qq.com organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China – sequence: 7 givenname: Yunsong orcidid: 0000-0002-0234-6270 surname: Li fullname: Li, Yunsong email: ysli@mail.xidian.edu.cn organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China |
BookMark | eNp9kUtvEzEUhS1UJNLCL4DFSKwnXD_mYXZRSUqqCiQSFqysW_u6TJiMi8dR1X-PhykSYsHKkn2-c451ztnZEAZi7DWHJeeg313v9qsvu6UAoZZSVkoo9YwtBK94yStZnbEF11KXXIF6wc7H8QBQi0bLBfu22qzLT5TeF6uUaEhdGMqrU-fIFRvCdIpUrIfvOFg65tciKx9C_FH4EIvt4CPGLNwdse-LPcY7SsUHSmQnm5fsucd-pFdP5wX7ulnvLz-WN5-vtperm9Iq0Kn0MjezthXgG6IWa2igdV45D67W2jac8NYKbSVxJYBD5S1xVHgLsnLI5QXbzr4u4MHcx-6I8dEE7MzvixDvDMbU2Z4MB2-dRyW40qrVTnNoFensXEtqa8heb2ev-xh-nmhM5hBOccj1jdBC5UTVTIl6VtkYxjGSN7ZLOP05Rez6HGOmVcy8iplWMU-rZFb-w_5p_H_qzUx1RPQXoQCaWspf29iaCg |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1109_TGRS_2025_3526754 crossref_primary_10_1038_s41598_024_83241_6 crossref_primary_10_1109_JSTARS_2024_3509993 crossref_primary_10_1109_TGRS_2024_3461795 crossref_primary_10_3390_s24123885 |
Cites_doi | 10.1109/TGRS.2020.3012981 10.3390/rs10111821 10.1109/CVPR.2018.00813 10.1109/ICNNSP.2003.1279357 10.1016/j.infrared.2017.01.009 10.1109/WACV48630.2021.00099 10.1109/TGRS.2020.3044958 10.1016/j.infrared.2017.02.002 10.1007/s11263-022-01739-w 10.1109/CVPR.2019.00326 10.1109/ICCV48922.2021.00986 10.1007/s11042-019-7643-z 10.1117/12.364049 10.1109/ICCV.2019.00860 10.1109/CVPR.2019.00060 10.1109/TGRS.2016.2538295 10.1109/JSTARS.2017.2700023 10.1007/978-3-319-24574-4_28 10.1016/j.infrared.2005.04.006 10.1109/TGRS.2019.2911513 10.1109/TIP.2013.2281420 10.1109/TGRS.2013.2242477 10.1016/j.jvcir.2019.05.013 10.1109/LGRS.2014.2323236 10.3390/rs11040382 10.1109/TGRS.2022.3163410 10.3390/rs13163200 10.1007/978-3-319-50835-1_22 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2024.3354244 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 4221 |
ExternalDocumentID | oai_doaj_org_article_10fcdfa42149489d91084e93e163e860 10_1109_JSTARS_2024_3354244 10400763 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: XJSJ23087 funderid: 10.13039/501100012226 – fundername: Science and Technology on Electromechanical Dynamic Control Laboratory, China – fundername: National Natural Science Foundation of China grantid: 62121001 funderid: 10.13039/501100001809 – fundername: Science and Technology on Electromechanical Dynamic Control Laboratory, China grantid: 6142601220302 – fundername: Nature Science Foundation of Shaanxi Province of China grantid: 2021JM-125 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c409t-f3939cc820f7ee8a60708df4df0d699c71eabc29c3e1420105fce1a4ab035da13 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:07:28 EDT 2025 Fri Jul 25 23:37:01 EDT 2025 Tue Jul 01 03:16:30 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Wed Aug 27 02:01:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-f3939cc820f7ee8a60708df4df0d699c71eabc29c3e1420105fce1a4ab035da13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-7690-3130 0000-0002-0234-6270 0009-0005-5794-0620 0000-0002-9545-718X 0009-0004-2704-6807 0000-0003-2468-3128 |
OpenAccessLink | https://doaj.org/article/10fcdfa42149489d91084e93e163e860 |
PQID | 2924035471 |
PQPubID | 75722 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2924035471 ieee_primary_10400763 crossref_primary_10_1109_JSTARS_2024_3354244 crossref_citationtrail_10_1109_JSTARS_2024_3354244 doaj_primary_oai_doaj_org_article_10fcdfa42149489d91084e93e163e860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Xu (ref27) 2021; 34 Li (ref30) Ma (ref32); 33 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Zhao (ref31) 2001 |
References_xml | – ident: ref1 doi: 10.1109/TGRS.2020.3012981 – ident: ref10 doi: 10.3390/rs10111821 – year: 2001 ident: ref31 article-title: TBC-Net: A real-time detector for infrared small target detection using semantic constraint – ident: ref22 doi: 10.1109/CVPR.2018.00813 – ident: ref15 doi: 10.1109/ICNNSP.2003.1279357 – volume: 33 start-page: 1488 ident: ref32 article-title: Auto learning attention publication-title: Adv. Neural Inf. Process. Syst. – ident: ref13 doi: 10.1016/j.infrared.2017.01.009 – ident: ref17 doi: 10.1109/WACV48630.2021.00099 – ident: ref18 doi: 10.1109/TGRS.2020.3044958 – ident: ref2 doi: 10.1016/j.infrared.2017.02.002 – ident: ref28 doi: 10.1007/s11263-022-01739-w – ident: ref24 doi: 10.1109/CVPR.2019.00326 – ident: ref26 doi: 10.1109/ICCV48922.2021.00986 – volume: 34 start-page: 28522 year: 2021 ident: ref27 article-title: ViTAE: Vision transformer advanced by exploring intrinsic inductive bias publication-title: Adv. Neural Inf. Process. Syst. – ident: ref3 doi: 10.1007/s11042-019-7643-z – ident: ref4 doi: 10.1117/12.364049 – ident: ref33 doi: 10.1109/ICCV.2019.00860 – ident: ref29 doi: 10.1109/CVPR.2019.00060 – ident: ref12 doi: 10.1109/TGRS.2016.2538295 – ident: ref14 doi: 10.1109/JSTARS.2017.2700023 – start-page: 1 ident: ref30 article-title: Pyramid attention network for semantic segmentation publication-title: Proc. 29th Brit. Mach. Vis. Conf. – ident: ref21 doi: 10.1007/978-3-319-24574-4_28 – ident: ref5 doi: 10.1016/j.infrared.2005.04.006 – ident: ref6 doi: 10.1109/TGRS.2019.2911513 – ident: ref9 doi: 10.1109/TIP.2013.2281420 – ident: ref7 doi: 10.1109/TGRS.2013.2242477 – ident: ref16 doi: 10.1016/j.jvcir.2019.05.013 – ident: ref8 doi: 10.1109/LGRS.2014.2323236 – ident: ref11 doi: 10.3390/rs11040382 – ident: ref20 doi: 10.1109/TGRS.2022.3163410 – ident: ref19 doi: 10.3390/rs13163200 – ident: ref23 doi: 10.1007/978-3-319-50835-1_22 – ident: ref25 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0062793 |
Score | 2.4283376 |
Snippet | Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4208 |
SubjectTerms | Attention mechanism Background noise Clutter convolutional neural network (CNN) Decoding Detection False alarms Feature extraction Infrared imagery infrared small target detection Modules nonlocal dependency Object detection Semantics Signal to noise ratio Sparse matrices Target detection Task analysis |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQuPItYKMgHjnhxYjuJuS2w24LEHmgrlVPk2GMVsaRoSQ7w65mxsxUPgbhFke3Enodn7JlvGHta-DpaUEaEYNBBqXQtnG28aFBZSotcHT2dd7xbV8dn-u25OZ-S1VMuDACk4DOY02O6yw-XfqSjMpRwquJdqT22h55bTtbaqd2qrBPCLhokVhBmzAQxVEj7HHl88f4EncFSz5UylNv1yzaU0Pqn8ip_6OS00axusfXuF3N8yaf5OHRz__039Mb_nsNtdnMyOfki88gddg36u-z6USrp--0e-7BYLcUahhd8MQw5-FEcjR8DBE724bgFvuwviDloZL7OceMcjV3-po9bCmDnJ5_dZsNPU1Q5fw1Diu_qD9jZann66lhMBReERzdvEFHh4nmPRkGsARpXoT5oQtQhylBZ6-sCXOdL6xUUmq7RTfRQOO06qUxwhbrP9vvLHh4wbrwKnXQRtPS6M6ZDBkBxxyGcdFa6GSt369_6CY2cimJs2uSVSNtmorVEtHYi2ow9u-r0JYNx_Lv5SyLsVVNC0k4vkCDtJJjYP_oQnS4LAsqxAc2nRoPFGVYKmkrO2AER8afvZfrN2OGOT9pJ7L-2pSV4Q4Mb_sO_dHvEbtAv5kOcQ7Y_bEd4jGbN0D1J7PwDe3nwew priority: 102 providerName: IEEE |
Title | AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target Detection |
URI | https://ieeexplore.ieee.org/document/10400763 https://www.proquest.com/docview/2924035471 https://doaj.org/article/10fcdfa42149489d91084e93e163e860 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReUEtB3XaLfOCIwYntJO5tC7tQpO6hgAQny_FDVFpStGQP_fedsbMIVIleuEZOHM_D8_D4G0L2C1dHHYRi3isIUCpZM6sbxxrYLLkGqY4O8x0_5tXZlTy_VtdPWn1hTViGB86EA62OzkcrywKBTLQH89bIoEUARyI0VYrWweatg6m8B1dlneB2wTvRDAFkBryhgusjEPjJzwuIDEt5KITCi17PbFKC7h96rfyzQSerM3tHtgZ3kU7yb74nb0K3TTZPUzvePx_IzWQ2ZfPQf6WTvs-Fi-x09csHT9G3Wy0DnXa3yFhMAtJ5rvmm4KjS711cYvE5vbiziwW9TBXh9CT0qTar2yFXs-nl8RkbmiUwByFaz6KAtToHBj3WITS2Al1ufJQ-cl9p7eoi2NaV2gHlJB6Bq-hCYaVtuVDeFmKXbHS_u_CRUOWEb7mNQXInW6VaYB6oKnzCcqu5HZFyTS7jBiRxbGixMCmi4NpkGhuksRloPCIHjy_dZyCNl4d_Qz48DkUU7PQAZMMMsmH-JxsjsoNcfDIfdoGvxIiM12w1g8o-mFIjNKECY_3pNeb-TN7ienK2Zkw2-uUqfAH_pW_3kqjupauGfwG-5uaV |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKEYILv0UsFPABbmRxYjuJkTgsdLe7tN0D3UrllDr2WCCWFG0TofIuvArPxthJVvwIbpW4RZHtxPY34xl7_A0hT2KTOQVcRtZKdFBSkUVa5SbKUVkyhah2xu93HMzT6ZF4cyyPN8i39V0YAAjBZzD0j-Es356axm-VoYT7LN5pn6t6D86_oId29nK2g9P5NEkm48XradQlEYgMui515Ljiyhhc6FwGkOsUMZ5bJ6xjNlXKZDHo0iTKcIiFPxqWzkCshS4Zl1bHHNu9RC6joSGT9npYr-jTJAucvmgCqciz1HSkRjFTz1GqRm8P0f1MxJBz6W-T_bLwhfwAXUKXP1aBsLRNbpDv_aC0ES0fh01dDs3X3_gi_9tRu0mud0Y1HbVScItsQHWbXNkNSYvP75B3o8k4mkP9go7qug3vjHabDxYs9RZwswI6rt57-Pue0HkbGU_RnKezyq18iD49_KSXS7oIcfN0B-oQwVZtkaML6dddslmdVnCPUGm4LZl2IJgRpZQlQhwVGjahmVZMD0jSz3dhOr51n_ZjWQS_i6miBUnhQVJ0IBmQZ-tKn1u6kX8Xf-WBtC7qucLDCwRA0akerO-MdVoksacCUhYNxFyAwh6mHPKUDciWB81P32vxMiDbPS6LTrGdFYnyBI4STZr7f6n2mFydLg72i_3ZfO8BueZ_t92y2iab9aqBh2jE1eWjIEqUnFw0Cn8Ao5tPOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AFE-Net%3A+Attention-Guided+Feature+Enhancement+Network+for+Infrared+Small+Target+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Keyan&rft.au=Wu%2C+Xueyan&rft.au=Zhou%2C+Peicheng&rft.au=Chen%2C+Zuntian&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=4208&rft.epage=4221&rft_id=info:doi/10.1109%2FJSTARS.2024.3354244&rft.externalDocID=10400763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |