AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target Detection

Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this article, we propose an effective attention-guided feature enhancement network (AFE-Net), which can leverage the local and nonlocal features of targ...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 4208 - 4221
Main Authors Wang, Keyan, Wu, Xueyan, Zhou, Peicheng, Chen, Zuntian, Zhang, Rui, Yang, Liyun, Li, Yunsong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this article, we propose an effective attention-guided feature enhancement network (AFE-Net), which can leverage the local and nonlocal features of targets and background in infrared images. The AFE-Net consists of three key modules, namely encoder and decoder interactive guidance (EDIG) module, cascading false alarm removal (CFAR) module, and random scale input (RSI) module. Specifically, in the EDIG module, we employ a CA mechanism on encoding and decoding layers to select feature channels with higher contribution. Then, we impose a bottom-up pointwise attention block to highlight the features of small infrared targets and suppress possible noise by incorporating the low-level detailed features into the high-level semantic features. The CFAR module extracts affluent global features by cascading nonlocal operations of different layers, which can remove clutters with similar features to infrared targets. The RSI module is placed in front of the entire detection network to extract multiscale features of infrared small targets, which can enhance the robustness of the proposed network. Experimental results on the SIRST dataset and comprehensive comparisons with representative methods demonstrate the superiority of our proposed method.
AbstractList Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this article, we propose an effective attention-guided feature enhancement network (AFE-Net), which can leverage the local and nonlocal features of targets and background in infrared images. The AFE-Net consists of three key modules, namely encoder and decoder interactive guidance (EDIG) module, cascading false alarm removal (CFAR) module, and random scale input (RSI) module. Specifically, in the EDIG module, we employ a CA mechanism on encoding and decoding layers to select feature channels with higher contribution. Then, we impose a bottom-up pointwise attention block to highlight the features of small infrared targets and suppress possible noise by incorporating the low-level detailed features into the high-level semantic features. The CFAR module extracts affluent global features by cascading nonlocal operations of different layers, which can remove clutters with similar features to infrared targets. The RSI module is placed in front of the entire detection network to extract multiscale features of infrared small targets, which can enhance the robustness of the proposed network. Experimental results on the SIRST dataset and comprehensive comparisons with representative methods demonstrate the superiority of our proposed method.
Author Chen, Zuntian
Wu, Xueyan
Yang, Liyun
Li, Yunsong
Zhang, Rui
Zhou, Peicheng
Wang, Keyan
Author_xml – sequence: 1
  givenname: Keyan
  orcidid: 0000-0002-9545-718X
  surname: Wang
  fullname: Wang, Keyan
  email: kywang@mail.xidian.edu.cn
  organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China
– sequence: 2
  givenname: Xueyan
  orcidid: 0009-0008-7690-3130
  surname: Wu
  fullname: Wu, Xueyan
  email: xueyanwu@stu.xidian.edu.cn
  organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China
– sequence: 3
  givenname: Peicheng
  orcidid: 0000-0003-2468-3128
  surname: Zhou
  fullname: Zhou, Peicheng
  email: zhoupeicheng@xidian.edu.cn
  organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China
– sequence: 4
  givenname: Zuntian
  orcidid: 0009-0005-5794-0620
  surname: Chen
  fullname: Chen, Zuntian
  email: chenzt2125@sina.com
  organization: Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an, China
– sequence: 5
  givenname: Rui
  orcidid: 0009-0004-2704-6807
  surname: Zhang
  fullname: Zhang, Rui
  email: zhr886@163.com
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
– sequence: 6
  givenname: Liyun
  surname: Yang
  fullname: Yang, Liyun
  email: 3302243738@qq.com
  organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China
– sequence: 7
  givenname: Yunsong
  orcidid: 0000-0002-0234-6270
  surname: Li
  fullname: Li, Yunsong
  email: ysli@mail.xidian.edu.cn
  organization: State Key Laboratory of lntegrated Services Networks (ISN), Xidian University, Xi'an, China
BookMark eNp9kUtvEzEUhS1UJNLCL4DFSKwnXD_mYXZRSUqqCiQSFqysW_u6TJiMi8dR1X-PhykSYsHKkn2-c451ztnZEAZi7DWHJeeg313v9qsvu6UAoZZSVkoo9YwtBK94yStZnbEF11KXXIF6wc7H8QBQi0bLBfu22qzLT5TeF6uUaEhdGMqrU-fIFRvCdIpUrIfvOFg65tciKx9C_FH4EIvt4CPGLNwdse-LPcY7SsUHSmQnm5fsucd-pFdP5wX7ulnvLz-WN5-vtperm9Iq0Kn0MjezthXgG6IWa2igdV45D67W2jac8NYKbSVxJYBD5S1xVHgLsnLI5QXbzr4u4MHcx-6I8dEE7MzvixDvDMbU2Z4MB2-dRyW40qrVTnNoFensXEtqa8heb2ev-xh-nmhM5hBOccj1jdBC5UTVTIl6VtkYxjGSN7ZLOP05Rez6HGOmVcy8iplWMU-rZFb-w_5p_H_qzUx1RPQXoQCaWspf29iaCg
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_TGRS_2025_3526754
crossref_primary_10_1038_s41598_024_83241_6
crossref_primary_10_1109_JSTARS_2024_3509993
crossref_primary_10_1109_TGRS_2024_3461795
crossref_primary_10_3390_s24123885
Cites_doi 10.1109/TGRS.2020.3012981
10.3390/rs10111821
10.1109/CVPR.2018.00813
10.1109/ICNNSP.2003.1279357
10.1016/j.infrared.2017.01.009
10.1109/WACV48630.2021.00099
10.1109/TGRS.2020.3044958
10.1016/j.infrared.2017.02.002
10.1007/s11263-022-01739-w
10.1109/CVPR.2019.00326
10.1109/ICCV48922.2021.00986
10.1007/s11042-019-7643-z
10.1117/12.364049
10.1109/ICCV.2019.00860
10.1109/CVPR.2019.00060
10.1109/TGRS.2016.2538295
10.1109/JSTARS.2017.2700023
10.1007/978-3-319-24574-4_28
10.1016/j.infrared.2005.04.006
10.1109/TGRS.2019.2911513
10.1109/TIP.2013.2281420
10.1109/TGRS.2013.2242477
10.1016/j.jvcir.2019.05.013
10.1109/LGRS.2014.2323236
10.3390/rs11040382
10.1109/TGRS.2022.3163410
10.3390/rs13163200
10.1007/978-3-319-50835-1_22
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3354244
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 4221
ExternalDocumentID oai_doaj_org_article_10fcdfa42149489d91084e93e163e860
10_1109_JSTARS_2024_3354244
10400763
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: XJSJ23087
  funderid: 10.13039/501100012226
– fundername: Science and Technology on Electromechanical Dynamic Control Laboratory, China
– fundername: National Natural Science Foundation of China
  grantid: 62121001
  funderid: 10.13039/501100001809
– fundername: Science and Technology on Electromechanical Dynamic Control Laboratory, China
  grantid: 6142601220302
– fundername: Nature Science Foundation of Shaanxi Province of China
  grantid: 2021JM-125
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-f3939cc820f7ee8a60708df4df0d699c71eabc29c3e1420105fce1a4ab035da13
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:07:28 EDT 2025
Fri Jul 25 23:37:01 EDT 2025
Tue Jul 01 03:16:30 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Wed Aug 27 02:01:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-f3939cc820f7ee8a60708df4df0d699c71eabc29c3e1420105fce1a4ab035da13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-7690-3130
0000-0002-0234-6270
0009-0005-5794-0620
0000-0002-9545-718X
0009-0004-2704-6807
0000-0003-2468-3128
OpenAccessLink https://doaj.org/article/10fcdfa42149489d91084e93e163e860
PQID 2924035471
PQPubID 75722
PageCount 14
ParticipantIDs proquest_journals_2924035471
ieee_primary_10400763
crossref_primary_10_1109_JSTARS_2024_3354244
crossref_citationtrail_10_1109_JSTARS_2024_3354244
doaj_primary_oai_doaj_org_article_10fcdfa42149489d91084e93e163e860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Xu (ref27) 2021; 34
Li (ref30)
Ma (ref32); 33
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Zhao (ref31) 2001
References_xml – ident: ref1
  doi: 10.1109/TGRS.2020.3012981
– ident: ref10
  doi: 10.3390/rs10111821
– year: 2001
  ident: ref31
  article-title: TBC-Net: A real-time detector for infrared small target detection using semantic constraint
– ident: ref22
  doi: 10.1109/CVPR.2018.00813
– ident: ref15
  doi: 10.1109/ICNNSP.2003.1279357
– volume: 33
  start-page: 1488
  ident: ref32
  article-title: Auto learning attention
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref13
  doi: 10.1016/j.infrared.2017.01.009
– ident: ref17
  doi: 10.1109/WACV48630.2021.00099
– ident: ref18
  doi: 10.1109/TGRS.2020.3044958
– ident: ref2
  doi: 10.1016/j.infrared.2017.02.002
– ident: ref28
  doi: 10.1007/s11263-022-01739-w
– ident: ref24
  doi: 10.1109/CVPR.2019.00326
– ident: ref26
  doi: 10.1109/ICCV48922.2021.00986
– volume: 34
  start-page: 28522
  year: 2021
  ident: ref27
  article-title: ViTAE: Vision transformer advanced by exploring intrinsic inductive bias
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref3
  doi: 10.1007/s11042-019-7643-z
– ident: ref4
  doi: 10.1117/12.364049
– ident: ref33
  doi: 10.1109/ICCV.2019.00860
– ident: ref29
  doi: 10.1109/CVPR.2019.00060
– ident: ref12
  doi: 10.1109/TGRS.2016.2538295
– ident: ref14
  doi: 10.1109/JSTARS.2017.2700023
– start-page: 1
  ident: ref30
  article-title: Pyramid attention network for semantic segmentation
  publication-title: Proc. 29th Brit. Mach. Vis. Conf.
– ident: ref21
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref5
  doi: 10.1016/j.infrared.2005.04.006
– ident: ref6
  doi: 10.1109/TGRS.2019.2911513
– ident: ref9
  doi: 10.1109/TIP.2013.2281420
– ident: ref7
  doi: 10.1109/TGRS.2013.2242477
– ident: ref16
  doi: 10.1016/j.jvcir.2019.05.013
– ident: ref8
  doi: 10.1109/LGRS.2014.2323236
– ident: ref11
  doi: 10.3390/rs11040382
– ident: ref20
  doi: 10.1109/TGRS.2022.3163410
– ident: ref19
  doi: 10.3390/rs13163200
– ident: ref23
  doi: 10.1007/978-3-319-50835-1_22
– ident: ref25
  doi: 10.1109/CVPR.2016.90
SSID ssj0062793
Score 2.4283376
Snippet Infrared small target detection is considerably challenging due to the few pixels in targets, low signal-to-noise ratio, and complex background. In this...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4208
SubjectTerms Attention mechanism
Background noise
Clutter
convolutional neural network (CNN)
Decoding
Detection
False alarms
Feature extraction
Infrared imagery
infrared small target detection
Modules
nonlocal dependency
Object detection
Semantics
Signal to noise ratio
Sparse matrices
Target detection
Task analysis
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQuPItYKMgHjnhxYjuJuS2w24LEHmgrlVPk2GMVsaRoSQ7w65mxsxUPgbhFke3Enodn7JlvGHta-DpaUEaEYNBBqXQtnG28aFBZSotcHT2dd7xbV8dn-u25OZ-S1VMuDACk4DOY02O6yw-XfqSjMpRwquJdqT22h55bTtbaqd2qrBPCLhokVhBmzAQxVEj7HHl88f4EncFSz5UylNv1yzaU0Pqn8ip_6OS00axusfXuF3N8yaf5OHRz__039Mb_nsNtdnMyOfki88gddg36u-z6USrp--0e-7BYLcUahhd8MQw5-FEcjR8DBE724bgFvuwviDloZL7OceMcjV3-po9bCmDnJ5_dZsNPU1Q5fw1Diu_qD9jZann66lhMBReERzdvEFHh4nmPRkGsARpXoT5oQtQhylBZ6-sCXOdL6xUUmq7RTfRQOO06qUxwhbrP9vvLHh4wbrwKnXQRtPS6M6ZDBkBxxyGcdFa6GSt369_6CY2cimJs2uSVSNtmorVEtHYi2ow9u-r0JYNx_Lv5SyLsVVNC0k4vkCDtJJjYP_oQnS4LAsqxAc2nRoPFGVYKmkrO2AER8afvZfrN2OGOT9pJ7L-2pSV4Q4Mb_sO_dHvEbtAv5kOcQ7Y_bEd4jGbN0D1J7PwDe3nwew
  priority: 102
  providerName: IEEE
Title AFE-Net: Attention-Guided Feature Enhancement Network for Infrared Small Target Detection
URI https://ieeexplore.ieee.org/document/10400763
https://www.proquest.com/docview/2924035471
https://doaj.org/article/10fcdfa42149489d91084e93e163e860
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReUEtB3XaLfOCIwYntJO5tC7tQpO6hgAQny_FDVFpStGQP_fedsbMIVIleuEZOHM_D8_D4G0L2C1dHHYRi3isIUCpZM6sbxxrYLLkGqY4O8x0_5tXZlTy_VtdPWn1hTViGB86EA62OzkcrywKBTLQH89bIoEUARyI0VYrWweatg6m8B1dlneB2wTvRDAFkBryhgusjEPjJzwuIDEt5KITCi17PbFKC7h96rfyzQSerM3tHtgZ3kU7yb74nb0K3TTZPUzvePx_IzWQ2ZfPQf6WTvs-Fi-x09csHT9G3Wy0DnXa3yFhMAtJ5rvmm4KjS711cYvE5vbiziwW9TBXh9CT0qTar2yFXs-nl8RkbmiUwByFaz6KAtToHBj3WITS2Al1ufJQ-cl9p7eoi2NaV2gHlJB6Bq-hCYaVtuVDeFmKXbHS_u_CRUOWEb7mNQXInW6VaYB6oKnzCcqu5HZFyTS7jBiRxbGixMCmi4NpkGhuksRloPCIHjy_dZyCNl4d_Qz48DkUU7PQAZMMMsmH-JxsjsoNcfDIfdoGvxIiM12w1g8o-mFIjNKECY_3pNeb-TN7ienK2Zkw2-uUqfAH_pW_3kqjupauGfwG-5uaV
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKEYILv0UsFPABbmRxYjuJkTgsdLe7tN0D3UrllDr2WCCWFG0TofIuvArPxthJVvwIbpW4RZHtxPY34xl7_A0hT2KTOQVcRtZKdFBSkUVa5SbKUVkyhah2xu93HMzT6ZF4cyyPN8i39V0YAAjBZzD0j-Es356axm-VoYT7LN5pn6t6D86_oId29nK2g9P5NEkm48XradQlEYgMui515Ljiyhhc6FwGkOsUMZ5bJ6xjNlXKZDHo0iTKcIiFPxqWzkCshS4Zl1bHHNu9RC6joSGT9npYr-jTJAucvmgCqciz1HSkRjFTz1GqRm8P0f1MxJBz6W-T_bLwhfwAXUKXP1aBsLRNbpDv_aC0ES0fh01dDs3X3_gi_9tRu0mud0Y1HbVScItsQHWbXNkNSYvP75B3o8k4mkP9go7qug3vjHabDxYs9RZwswI6rt57-Pue0HkbGU_RnKezyq18iD49_KSXS7oIcfN0B-oQwVZtkaML6dddslmdVnCPUGm4LZl2IJgRpZQlQhwVGjahmVZMD0jSz3dhOr51n_ZjWQS_i6miBUnhQVJ0IBmQZ-tKn1u6kX8Xf-WBtC7qucLDCwRA0akerO-MdVoksacCUhYNxFyAwh6mHPKUDciWB81P32vxMiDbPS6LTrGdFYnyBI4STZr7f6n2mFydLg72i_3ZfO8BueZ_t92y2iab9aqBh2jE1eWjIEqUnFw0Cn8Ao5tPOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AFE-Net%3A+Attention-Guided+Feature+Enhancement+Network+for+Infrared+Small+Target+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Keyan&rft.au=Wu%2C+Xueyan&rft.au=Zhou%2C+Peicheng&rft.au=Chen%2C+Zuntian&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=4208&rft.epage=4221&rft_id=info:doi/10.1109%2FJSTARS.2024.3354244&rft.externalDocID=10400763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon