Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2
[Display omitted] •3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was achieved.•Single atom and nanopores revealed by electron microscopy and X ray absorption.•DFT Simulation reveals the mechanism and confirms role of...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 243; pp. 294 - 303 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0926-3373 1873-3883 |
DOI | 10.1016/j.apcatb.2018.10.046 |
Cover
Loading…
Abstract | [Display omitted]
•3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was achieved.•Single atom and nanopores revealed by electron microscopy and X ray absorption.•DFT Simulation reveals the mechanism and confirms role of edge anchored single atoms.
Supported single atom catalysts (SACs), emerging as a new class of catalytic materials, have been attracting increasing interests. Here we developed a Ni SAC on microwave exfoliated graphene oxide (Ni-N-MEGO) to achieve single atom loading of ∼6.9 wt%, significantly higher than previously reported SACs. The atomically dispersed Ni atoms, stabilized by coordination with nitrogen, were found to be predominantly anchored along the edges of nanopores ( < 6 nm) using a combination of X-ray absorption spectroscopy (XAS) and aberration-corrected scanning transmission electron microscopy (AC-STEM). The Ni-N-MEGO exhibits an onset overpotential of 0.18 V, and a current density of 53.6 mA mg−1 at overpotential of 0.59 V for CO2 reduction reaction (CO2RR), representing one of the best non-precious metal SACs reported so far in the literature. Density functional theory (DFT) calculations suggest that the electrochemical CO2-to-CO conversion occurs more readily on the edge-anchored unsaturated nitrogen coordinated Ni single atoms that lead to enhanced activity toward CO2RR. |
---|---|
AbstractList | [Display omitted]
•3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was achieved.•Single atom and nanopores revealed by electron microscopy and X ray absorption.•DFT Simulation reveals the mechanism and confirms role of edge anchored single atoms.
Supported single atom catalysts (SACs), emerging as a new class of catalytic materials, have been attracting increasing interests. Here we developed a Ni SAC on microwave exfoliated graphene oxide (Ni-N-MEGO) to achieve single atom loading of ∼6.9 wt%, significantly higher than previously reported SACs. The atomically dispersed Ni atoms, stabilized by coordination with nitrogen, were found to be predominantly anchored along the edges of nanopores ( < 6 nm) using a combination of X-ray absorption spectroscopy (XAS) and aberration-corrected scanning transmission electron microscopy (AC-STEM). The Ni-N-MEGO exhibits an onset overpotential of 0.18 V, and a current density of 53.6 mA mg−1 at overpotential of 0.59 V for CO2 reduction reaction (CO2RR), representing one of the best non-precious metal SACs reported so far in the literature. Density functional theory (DFT) calculations suggest that the electrochemical CO2-to-CO conversion occurs more readily on the edge-anchored unsaturated nitrogen coordinated Ni single atoms that lead to enhanced activity toward CO2RR. |
Author | Pan, Jian Chisholm, Mattew F. Li, Haobo Chen, Jingguang G. Jiang, San Ping Veder, Jean-Pierre Cheng, Yi Johannessen, Bernt Yang, Shi-Ze Zhao, Shiyong He, Shuai Lu, Shanfu Xiao, Jianping Liu, Chang |
Author_xml | – sequence: 1 givenname: Yi surname: Cheng fullname: Cheng, Yi organization: Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China – sequence: 2 givenname: Shiyong surname: Zhao fullname: Zhao, Shiyong organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia – sequence: 3 givenname: Haobo surname: Li fullname: Li, Haobo organization: Institute of Natural Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Peoples Republic of China – sequence: 4 givenname: Shuai surname: He fullname: He, Shuai organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia – sequence: 5 givenname: Jean-Pierre surname: Veder fullname: Veder, Jean-Pierre organization: John de Laeter Centre, Curtin University, Perth, WA 6102, Australia – sequence: 6 givenname: Bernt surname: Johannessen fullname: Johannessen, Bernt organization: Australian Synchrotron, Clayton, VIC 3168, Australia – sequence: 7 givenname: Jianping surname: Xiao fullname: Xiao, Jianping organization: Institute of Natural Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Peoples Republic of China – sequence: 8 givenname: Shanfu orcidid: 0000-0001-9873-6654 surname: Lu fullname: Lu, Shanfu organization: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices,School of Space and Environment, Beihang University, Beijing, China – sequence: 9 givenname: Jian surname: Pan fullname: Pan, Jian organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia – sequence: 10 givenname: Mattew F. surname: Chisholm fullname: Chisholm, Mattew F. organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States – sequence: 11 givenname: Shi-Ze orcidid: 0000-0002-0421-006X surname: Yang fullname: Yang, Shi-Ze email: shize@bnl.gov organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States – sequence: 12 givenname: Chang surname: Liu fullname: Liu, Chang email: cliu@imr.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China – sequence: 13 givenname: Jingguang G. surname: Chen fullname: Chen, Jingguang G. organization: Department of Chemical Engineering, Columbia University, New York, NY 10027, USA – sequence: 14 givenname: San Ping orcidid: 0000-0002-7042-2976 surname: Jiang fullname: Jiang, San Ping email: S.Jiang@curtin.edu.au organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia |
BookMark | eNqFkMtOwzAQRS0EEm3hD1j4BxLsuHEcFkio4iVVdEPXlmNPWlepHdluKX9PSlmxgNVornSuZs4YnTvvAKEbSnJKKL_d5KrXKjV5QagYopxM-RkaUVGxjAnBztGI1AXPGKvYJRrHuCGEFKwQI-SXLqq0CyqBwWBWkCmn1z4M25vF0bpVB1glv43YO9z74HcRb60O_kPtAcOh9Z39hldB9WtwgP3BGsCtDxg60Cl4vYaBUB2eLYordNGqLsL1z5yg5dPj--wlmy-eX2cP80xPSZ2yljGu67ZuCOOkqDkvmaYCGihqWlaCl6VhpFSMlqyGShiAohGK1oYyrkhTsQm6O_UOl8YYoJXaJpWsdyko20lK5FGd3MiTOnlUd0wHdQM8_QX3wW5V-PwPuz9hMDy2txBk1BacBmPDIEIab_8u-AJfU44K |
CitedBy_id | crossref_primary_10_1002_cphc_202200657 crossref_primary_10_1016_j_apsusc_2022_152472 crossref_primary_10_1016_j_electacta_2019_135563 crossref_primary_10_1039_D0TA01955K crossref_primary_10_1039_D1TA09015A crossref_primary_10_1016_j_apsusc_2024_160532 crossref_primary_10_1021_acsnano_0c02940 crossref_primary_10_3389_fctls_2021_754167 crossref_primary_10_1002_cssc_202002596 crossref_primary_10_1021_acsenergylett_4c01319 crossref_primary_10_3390_su14095579 crossref_primary_10_1002_cssc_202000048 crossref_primary_10_1016_j_esci_2022_05_002 crossref_primary_10_1039_D0TA11939C crossref_primary_10_1088_0256_307X_39_4_045201 crossref_primary_10_1002_chem_201905346 crossref_primary_10_1016_j_apcatb_2019_118391 crossref_primary_10_1016_j_ensm_2022_02_021 crossref_primary_10_1039_D2TA00835A crossref_primary_10_1021_acs_inorgchem_2c03204 crossref_primary_10_1039_D0EE02833A crossref_primary_10_1002_anie_202311174 crossref_primary_10_1021_acscatal_0c00239 crossref_primary_10_1016_j_mattod_2021_02_005 crossref_primary_10_1002_adma_202102801 crossref_primary_10_1016_j_ces_2023_119656 crossref_primary_10_1016_j_trechm_2022_07_004 crossref_primary_10_1021_acscatal_0c04725 crossref_primary_10_1016_j_nanoen_2023_108967 crossref_primary_10_1002_sstr_202200086 crossref_primary_10_1016_j_coelec_2020_04_008 crossref_primary_10_1016_j_nanoen_2021_106541 crossref_primary_10_1016_j_est_2022_105684 crossref_primary_10_1016_j_cej_2021_130587 crossref_primary_10_1016_j_jcis_2022_08_116 crossref_primary_10_1016_j_surfin_2024_105203 crossref_primary_10_1021_jacs_3c04826 crossref_primary_10_1021_acssuschemeng_1c00743 crossref_primary_10_1002_ese3_1036 crossref_primary_10_1002_smtd_202100102 crossref_primary_10_1016_S1872_2067_21_64000_7 crossref_primary_10_1002_adfm_202400107 crossref_primary_10_1016_j_jcis_2025_01_205 crossref_primary_10_1016_j_cej_2024_153398 crossref_primary_10_1016_j_apcatb_2020_119384 crossref_primary_10_1016_j_apcatb_2023_122801 crossref_primary_10_1002_cey2_498 crossref_primary_10_1016_j_apcatb_2020_119383 crossref_primary_10_1007_s41918_021_00096_5 crossref_primary_10_1016_j_ijhydene_2025_01_404 crossref_primary_10_1016_j_matt_2020_07_032 crossref_primary_10_1021_acsanm_0c01745 crossref_primary_10_1016_j_pmatsci_2020_100637 crossref_primary_10_1039_D3IM00062A crossref_primary_10_1039_C9CS00422J crossref_primary_10_1039_D1TA08285J crossref_primary_10_1016_j_jes_2023_03_020 crossref_primary_10_1021_acsomega_1c05718 crossref_primary_10_1016_j_cej_2021_134269 crossref_primary_10_1016_j_apcatb_2020_119154 crossref_primary_10_1002_adsu_202100216 crossref_primary_10_1021_acs_chemrev_0c00818 crossref_primary_10_1002_adfm_202000768 crossref_primary_10_1002_smll_202202080 crossref_primary_10_1016_j_jcou_2024_102797 crossref_primary_10_1039_D0SC03328F crossref_primary_10_1080_01614940_2020_1864860 crossref_primary_10_1002_advs_202102886 crossref_primary_10_1021_acsanm_2c05581 crossref_primary_10_1016_j_compositesb_2021_108986 crossref_primary_10_1039_D3QM00364G crossref_primary_10_1021_acs_chemrev_4c00155 crossref_primary_10_3390_catal13020330 crossref_primary_10_1039_D0SE01127D crossref_primary_10_1021_acsnano_4c01456 crossref_primary_10_3390_en12214111 crossref_primary_10_1002_asia_202401250 crossref_primary_10_1016_j_enconman_2022_115744 crossref_primary_10_1016_j_chemphys_2025_112616 crossref_primary_10_1021_acsenergylett_9b02585 crossref_primary_10_1002_aenm_202101477 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_26599_NRE_2023_9120096 crossref_primary_10_1002_adfm_202408013 crossref_primary_10_1002_adfm_202208622 crossref_primary_10_1039_D0EE02651D crossref_primary_10_1016_j_apsusc_2023_156747 crossref_primary_10_1016_j_colsurfa_2022_129365 crossref_primary_10_1016_j_ijhydene_2020_03_174 crossref_primary_10_1007_s13399_021_01499_6 crossref_primary_10_1002_eem2_12134 crossref_primary_10_1016_j_apcatb_2024_124590 crossref_primary_10_1016_j_mcat_2024_114225 crossref_primary_10_1021_acscatal_3c02076 crossref_primary_10_1039_C9SE00776H crossref_primary_10_1016_j_fuel_2022_124043 crossref_primary_10_1021_acs_energyfuels_4c03129 crossref_primary_10_1016_j_jhazmat_2020_122803 crossref_primary_10_1039_D3SE00830D crossref_primary_10_1016_j_jpowsour_2021_230143 crossref_primary_10_1016_j_apsusc_2021_150254 crossref_primary_10_1021_acsanm_0c02983 crossref_primary_10_1021_acsmaterialslett_1c00543 crossref_primary_10_1007_s12274_022_4175_z crossref_primary_10_1016_j_ijhydene_2021_11_165 crossref_primary_10_1021_acs_inorgchem_2c02020 crossref_primary_10_1016_j_jhazmat_2022_129009 crossref_primary_10_1007_s12274_021_3397_9 crossref_primary_10_1016_j_matre_2022_100144 crossref_primary_10_1039_D0SC07040H crossref_primary_10_1007_s12598_021_01904_z crossref_primary_10_1002_smtd_202100700 crossref_primary_10_1007_s11708_024_0968_y crossref_primary_10_3390_catal12030275 crossref_primary_10_1021_acscatal_0c04714 crossref_primary_10_1016_j_cej_2024_153479 crossref_primary_10_1021_acscatal_4c00881 crossref_primary_10_1002_advs_202304424 crossref_primary_10_1002_adsu_202000213 crossref_primary_10_1016_j_apcatb_2024_124268 crossref_primary_10_1016_j_apcatb_2021_120904 crossref_primary_10_1016_j_mtcata_2024_100065 crossref_primary_10_1039_D2RA06302F crossref_primary_10_1016_j_pmatsci_2020_100711 crossref_primary_10_1002_eem2_12278 crossref_primary_10_1016_j_apcatb_2019_118452 crossref_primary_10_1002_sstr_202100090 crossref_primary_10_1016_j_matt_2022_06_008 crossref_primary_10_1002_adma_202001848 crossref_primary_10_1016_j_ccr_2022_214469 crossref_primary_10_1002_smll_202002411 crossref_primary_10_1002_sstr_202200188 crossref_primary_10_1021_acscatal_0c02643 crossref_primary_10_1149_1945_7111_abc593 crossref_primary_10_1002_adfm_202203067 crossref_primary_10_1021_acsaem_9b01643 crossref_primary_10_1039_D4CC04213A crossref_primary_10_1039_D4RA08833F crossref_primary_10_1038_s41467_023_37545_2 crossref_primary_10_1002_cey2_27 crossref_primary_10_1002_jctb_6653 crossref_primary_10_1016_j_ccr_2024_215669 crossref_primary_10_1002_smll_202207808 crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1016_j_fuel_2023_129760 crossref_primary_10_1016_j_apsusc_2020_148134 crossref_primary_10_1021_acs_energyfuels_1c00448 crossref_primary_10_1039_D2TA05844H crossref_primary_10_1016_S1872_2067_21_63965_7 crossref_primary_10_1039_D1CP05442B crossref_primary_10_1016_j_electacta_2019_135273 crossref_primary_10_1021_acssuschemeng_0c03054 crossref_primary_10_1007_s41918_022_00156_4 crossref_primary_10_1016_j_mtener_2024_101706 crossref_primary_10_1007_s12274_023_5656_4 crossref_primary_10_1021_acscatal_4c01557 crossref_primary_10_1007_s12274_022_4623_9 crossref_primary_10_1021_acs_analchem_1c05617 crossref_primary_10_1016_j_ensm_2023_102772 crossref_primary_10_1016_j_jcis_2019_04_077 crossref_primary_10_1016_j_apcatb_2022_121164 crossref_primary_10_1016_j_apmt_2021_101029 crossref_primary_10_2139_ssrn_4156083 crossref_primary_10_3390_nano15060473 crossref_primary_10_1016_j_esci_2022_03_007 crossref_primary_10_3390_nano10091884 crossref_primary_10_1016_j_jcat_2020_11_019 crossref_primary_10_1016_j_apcatb_2020_119091 crossref_primary_10_1016_j_ceramint_2021_07_175 crossref_primary_10_1016_j_matt_2023_11_009 crossref_primary_10_1016_j_nanoen_2020_105311 crossref_primary_10_1007_s12274_023_5475_7 crossref_primary_10_1002_smll_202309014 crossref_primary_10_1021_acs_chemrev_0c00094 crossref_primary_10_1039_D3NJ01363D crossref_primary_10_1021_acscatal_2c01589 crossref_primary_10_1002_smll_201903780 crossref_primary_10_1002_cssc_201902061 crossref_primary_10_1016_j_enrev_2024_100075 crossref_primary_10_1016_S1872_5805_24_60839_5 crossref_primary_10_1021_acscatal_1c02941 crossref_primary_10_3390_catal13020393 crossref_primary_10_1021_acssuschemeng_9b03502 crossref_primary_10_1016_j_crcon_2023_05_004 crossref_primary_10_1016_j_apcatb_2022_121953 crossref_primary_10_1016_j_apcatb_2021_120028 crossref_primary_10_1021_jacs_0c11008 crossref_primary_10_1016_j_asems_2023_100073 crossref_primary_10_1038_s41467_020_14402_0 crossref_primary_10_1002_cctc_202001667 crossref_primary_10_1002_adsu_202000096 crossref_primary_10_1016_j_jmst_2019_07_040 crossref_primary_10_1016_j_matre_2023_100197 crossref_primary_10_1016_j_apcatb_2022_121813 crossref_primary_10_1039_D3EY00063J crossref_primary_10_1016_j_jcat_2021_08_044 crossref_primary_10_1017_S1431927620021364 crossref_primary_10_3390_catal11030351 crossref_primary_10_1002_smll_202107799 crossref_primary_10_1002_adfm_202003870 crossref_primary_10_1021_acscatal_9b04217 crossref_primary_10_1016_j_apcata_2019_117214 crossref_primary_10_1039_D1TA03636J crossref_primary_10_1039_D3RA03462C crossref_primary_10_1016_S1872_2067_22_64104_4 crossref_primary_10_1016_j_jechem_2023_09_024 crossref_primary_10_1002_admi_202001904 crossref_primary_10_1021_acscatal_2c01841 crossref_primary_10_1007_s12274_021_3331_1 crossref_primary_10_1039_D1EE03311E crossref_primary_10_1002_smtd_201800440 crossref_primary_10_1016_j_enchem_2019_100024 crossref_primary_10_1016_j_apcatb_2021_120162 crossref_primary_10_1016_j_cogsc_2022_100651 crossref_primary_10_1016_S1872_2067_23_64392_X crossref_primary_10_1002_celc_202001437 crossref_primary_10_1016_j_apsusc_2019_06_005 crossref_primary_10_1016_S1872_5805_21_60002_1 crossref_primary_10_1039_D2TA09987J crossref_primary_10_1039_D0TA11295J crossref_primary_10_1002_smtd_201900159 crossref_primary_10_1021_acsnano_0c02731 crossref_primary_10_1016_j_jclepro_2024_142650 crossref_primary_10_1016_j_apcatb_2021_120173 crossref_primary_10_1002_smll_202301469 crossref_primary_10_1002_smll_202004579 crossref_primary_10_1063_5_0125654 crossref_primary_10_1016_j_apmt_2023_102037 crossref_primary_10_1039_C9TA12238A crossref_primary_10_1007_s12274_023_5949_7 crossref_primary_10_1039_D1TA08337F crossref_primary_10_1021_acs_jpcc_9b02195 crossref_primary_10_1016_j_ijhydene_2022_05_295 crossref_primary_10_1021_acsnano_1c07746 crossref_primary_10_1002_ange_202311174 crossref_primary_10_1016_j_coelec_2021_100854 crossref_primary_10_1039_D0TA09293B crossref_primary_10_1002_cctc_202101266 crossref_primary_10_1002_adfm_201906157 crossref_primary_10_1021_acscatal_9b05333 crossref_primary_10_1002_advs_202303297 crossref_primary_10_1016_S1872_5805_24_60863_2 crossref_primary_10_1016_j_nanoen_2020_105504 crossref_primary_10_1016_j_carbon_2020_02_065 crossref_primary_10_1016_j_apcatb_2020_118929 crossref_primary_10_1039_D0EE04052E crossref_primary_10_1016_j_elspec_2023_147364 crossref_primary_10_1016_j_jcou_2020_101316 crossref_primary_10_1016_j_mtchem_2023_101797 crossref_primary_10_1002_ece2_12 crossref_primary_10_1016_j_apcatb_2021_120861 crossref_primary_10_1039_D0CS00835D crossref_primary_10_1021_acsami_4c01811 crossref_primary_10_1021_acscatal_2c04883 crossref_primary_10_1016_j_ijhydene_2021_06_105 crossref_primary_10_1016_j_jechem_2022_02_045 crossref_primary_10_1002_aenm_201902844 crossref_primary_10_1002_adfm_202108381 crossref_primary_10_1007_s12274_022_5073_0 crossref_primary_10_1021_acscatal_0c05514 crossref_primary_10_1002_asia_202200939 crossref_primary_10_1021_acscatal_0c01950 crossref_primary_10_1016_j_apcatb_2021_120997 crossref_primary_10_1016_j_jechem_2021_05_046 crossref_primary_10_1021_acssuschemeng_3c01222 crossref_primary_10_1039_D3NR05771B crossref_primary_10_1007_s40820_020_00538_7 crossref_primary_10_1021_acs_jpcc_1c04986 crossref_primary_10_1002_adfm_202002626 crossref_primary_10_1021_acsnano_9b09658 |
Cites_doi | 10.1021/ja508879j 10.1002/anie.201602888 10.1021/acscatal.6b01297 10.1021/ar300361m 10.1021/jacs.7b02736 10.1002/ange.201507381 10.1021/ja5095099 10.1002/anie.201607885 10.1038/nchem.1095 10.1126/science.1200770 10.1126/sciadv.1500462 10.1021/ja403822d 10.1002/anie.201604654 10.1016/j.nanoen.2016.06.035 10.1021/acscatal.5b00922 10.1021/acsnano.5b01079 10.1016/j.nanoen.2016.05.025 10.1021/ja5121088 10.1039/C6SC03911A 10.1021/jacs.6b09470 10.1021/acscatal.6b01534 10.1016/j.cattod.2016.02.006 10.1021/ja409445p 10.1002/smll.201800136 10.1039/C7EE00071E 10.1038/ncomms4242 10.1038/ncomms5695 10.1038/ncomms13638 10.1038/ncomms14036 10.1103/PhysRevB.54.11169 10.1021/jacs.6b13100 10.1002/anie.201602801 10.1002/anie.201610119 10.1002/adma.201706287 10.1103/PhysRevB.13.5188 10.1021/jacs.6b00757 10.1103/PhysRevLett.77.3865 10.1016/j.carbon.2011.08.046 10.1021/jacs.5b00046 10.1021/ja309317u 10.1126/sciadv.1501122 10.1039/C7EE03245E 10.1002/anie.201509241 10.1021/jacs.5b06485 10.1134/S0030400X1303003X 10.1038/s41560-017-0078-8 10.1016/S0378-3820(01)00140-0 10.1039/C7CP00915A 10.1021/jacs.7b09074 10.1002/adfm.201800499 10.1016/j.chempr.2017.12.005 10.1103/PhysRevB.50.17953 10.1016/j.physrep.2009.02.003 10.1016/j.chempr.2017.09.014 10.1002/adma.201705850 10.1126/science.1224581 10.1002/smll.201602158 10.1039/C8EE00133B 10.1002/cctc.201600875 10.1021/jacs.6b03339 10.1149/2.026303jes |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2018.10.046 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 303 |
ExternalDocumentID | 10_1016_j_apcatb_2018_10_046 S0926337318310026 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c409t-f336c9f9b0360296653c18ebe291578655d305a31539e78dee2b8a19d136a0b73 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 03:10:52 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 Sat Mar 02 16:00:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrochemical CO2 reduction Ni single-atom catalysts Edge-anchored Density functional simulation Defects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-f336c9f9b0360296653c18ebe291578655d305a31539e78dee2b8a19d136a0b73 |
ORCID | 0000-0002-7042-2976 0000-0001-9873-6654 0000-0002-0421-006X |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apcatb_2018_10_046 crossref_primary_10_1016_j_apcatb_2018_10_046 elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_10_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hall, Bock, MacDougall (bib0280) 2013; 160 Kumar, Brian, Atla, Kumari, Bertram, White, Spurgeon (bib0005) 2016; 270 Blöchl (bib0210) 1994; 50 Malard, Pimenta, Dresselhaus, Dresselhaus (bib0225) 2009; 473 Yang, Miao, Hung, Chen, Tao, Wang, Zhang, Chen, Gao, Chen, Dai, Liu (bib0230) 2016; 2 Lu, Rosen, Zhou, Hutchings, Kimmel, Chen, Jiao (bib0030) 2014; 5 X. Li, Bi, Chen, Sun, Ju, Yan, Zhu, Wu, Chu, Wu (bib0185) 2017; 139 Holby, Zelenay (bib0300) 2016; 29 Avakyan, Manukyan, Mirzakhanyan, Sharoyan, Zubavichus, Trigub, Kolpacheva, Bugaev (bib0240) 2013; 114 Deng, Chen, Yu, Wu, Liu, Liu, Yang, Tian, Hu, Du, Si, Wang, Cui, Li, Xiao, Xu, Deng, Yang, Duchesne, Zhang, Zhou, Sun, Li, Pan, Bao (bib0170) 2015; 1 Liu (bib0135) 2017; 7 Liu, Lucci, Yang, Lee, Marcinkowski, Therrien, Williams, Sykes, Flytzani-Stephanopoulos (bib0075) 2016; 138 Chen, Zhou, Xing, Xu, Tong, Xie, Zhang, Yan, Chu, Wu, Xie (bib0085) 2017; 56 Lang, Li, Matsumura, Miao, Ren, Cui, Tan, Qiao, Li, Wang, Wang, Zhang (bib0110) 2016; 55 Sa, Seo, Woo, Lim, Cheon, Yang, Lee, Kang, Shin, Shin, Jeong, Kim, Kim, Kim, Joo (bib0165) 2016; 138 Monkhorst, Pack (bib0220) 1976; 13 Perdew, Burke, Ernzerhof (bib0215) 1996; 77 He, Jagvaral (bib0120) 2017; 19 Jiang, Siahrostami, Akey, Li, Lu, Lattimer, Hu, Stokes, Gangishetty, Chen, Zhou, Hill, Cai, Bell, Chan, Norskov, Cui, Wang (bib0125) 2017; 3 Sheng, Kattel, Yao, Yan, Liang, Hawxhurst, Wu, Chen (bib0040) 2017; 10 Costentin, Drouet, Robert, Savéant (bib0265) 2012; 338 Qiao, Wang, Yang, Allard, Jiang, Cui, Liu, Li, Zhang (bib0070) 2011; 3 Back, Lim, Kim, Kim, Jung (bib0115) 2017; 8 Wu, Yadav, Liu, Sharma, Tiwary, Ma, Zou, Zhou, Yakobson, Lou, Ajayan (bib0270) 2015; 9 Zhao, Dai, Yao, Chen, Wang, Wang, Yang, Wei, Wu, Li (bib0130) 2017; 139 Zhu, Murali, Stoller, Ganesh, Cai, Ferreira, Pirkle, Wallace, Cychosz, Thommes, Su, Stach, Ruoff (bib0195) 2011; 332 Cheng, Zhao, Johannessen, Veder, Saunders, Rowles, Cheng, Liu, Chisholm, De Marco, Cheng, Yang, Jiang (bib0190) 2018; 30 Pander, Fogg, Bocarsly (bib0260) 2016; 8 Gao, Zhou, Wang, Miao, Yang, Wang, Wang, Bao (bib0035) 2015; 137 Zhang, Jia, Gao, Yan, Chen, Chen, Soo, Wood, Yang, Du, Yao (bib0155) 2018; 4 Qiu, Ito, Cong, Tan, Liu, Hirata, Fujita, Tang, Chen (bib0090) 2015; 127 Dou, Tao, Wang, El Hankari, Chen, Wang (bib0150) 2018; 30 Liu, Yang, Huang, Liu, Cai, Gao, Li, Zhang, Huang, Liu (bib0275) 2018; 28 Yan, Cheng, Yi, Lin, Yao, Wang, Li, Wei, Lu (bib0175) 2015; 137 Wang, Zhao, Wei, Wang, Cho, Cho, Terasaki, Wan (bib0290) 2013; 135 Ma, Trześniewski, Xie, Smith (bib0025) 2016; 55 Holby, Wu, Zelenay, Taylor (bib0295) 2018 Rosen, Hutchings, Lu, Forest, Moore, Jiao (bib0050) 2015; 5 Medina-Ramos, Pupillo, Keane, DiMeglio, Rosenthal (bib0060) 2015; 137 Zhao, Cheng, Veder, Johannessen, Saunders, Zhang, Liu, Chisholm, De Marco, Liu, Yang, Jiang (bib0200) 2018 Yang, Wang, Qiao, Li, Liu, Zhang (bib0140) 2013; 46 Won, Shin, Koh, Chung, Lee, Kim, Woo (bib0045) 2016; 55 Wang, Zhang, Wang, Gao, Luo, Wang, Zeng, Li, Li, Wang, Zheng, Zhu, Zhang, Ma, Si, Zeng (bib0105) 2016; 7 Cheng, Zhao, Johannessen, Veder, Saunders, Rowles, Cheng, Liu, Chisholm, De Marco, Cheng, Yang, Jiang (bib0305) 2018; 30 Zhang, Asakura, Zhang, Zhang, De, Yan (bib0100) 2016; 55 Wang, Qiao, Li, Wang (bib0145) 2018; 14 Zhang, Chi, Veith, Zhang, Lutterman, Rosenthal, Overbury, Dai, Zhu (bib0055) 2016; 6 Yang, Kim, Tak, Soon, Lee (bib0080) 2016; 55 Yang, Hung, Liu, Yuan, Miao, Zhang, Huang, Wang, Cai, Chen, Gao, Yang, Chen, Huang, Chen, Li, Zhang, Liu (bib0245) 2018; 3 Kresse, Furthmüller (bib0205) 1996; 54 Mistry, Reske, Zeng, Zhao, Greeley, Strasser, Cuenya (bib0015) 2014; 136 Zheng, Jiao, Zhu, Cai, Vasileff, Li, Han, Chen, Qiao (bib0160) 2017; 139 Cheng, Stambula, Wang, Banis, Liu, Riese, Xiao, Li, Sham, Liu, Botton, Sun (bib0095) 2016; 7 Zhu, Michalsky, Metin, Lv, Guo, Wright, Sun, Peterson, Sun (bib0020) 2013; 135 Yin, Gao, Yao, Zhao, Cai, Lin, Tang, Zhai, Wang, Ma, Bao (bib0065) 2016; 27 Wilhelm, Simbeck, Karp, Dickenson (bib0010) 2001; 71 Jiang, Siahrostami, Zheng, Hu, Hwang, Stavitski, Peng, Dynes, Gangisetty, Su, Attenkofer, Wang (bib0315) 2018; 11 Su, Iwase, Nakanishi, Hashimoto, Kamiya (bib0310) 2016; 12 C. Yan, Li, Ye, Wu, Cai, Si, Xiao, Miao, Xie, Yang, Li, Wang (bib0320) 2018; 11 Chen, Li, Kanan (bib0250) 2012; 134 Zhu, Zhang, Zhang, Lv, Li, Michalsky, Peterson, Sun (bib0255) 2014; 136 Jiang, Gu, Li, Zhang, Zhang, Zhang, Wang, Hu, Wei, Wan (bib0180) 2016; 138 Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang, Pennycook, Hwang, Dai (bib0285) 2014; 5 Zhong, Deng, Mao, Xie, Sun, Mou, Hong, Yang, Wang (bib0235) 2012; 50 Yang (10.1016/j.apcatb.2018.10.046_bib0080) 2016; 55 Won (10.1016/j.apcatb.2018.10.046_bib0045) 2016; 55 Wang (10.1016/j.apcatb.2018.10.046_bib0290) 2013; 135 Jiang (10.1016/j.apcatb.2018.10.046_bib0180) 2016; 138 Wang (10.1016/j.apcatb.2018.10.046_bib0105) 2016; 7 C. Yan (10.1016/j.apcatb.2018.10.046_bib0320) 2018; 11 Back (10.1016/j.apcatb.2018.10.046_bib0115) 2017; 8 Wang (10.1016/j.apcatb.2018.10.046_bib0145) 2018; 14 He (10.1016/j.apcatb.2018.10.046_bib0120) 2017; 19 Zhao (10.1016/j.apcatb.2018.10.046_bib0130) 2017; 139 Zheng (10.1016/j.apcatb.2018.10.046_bib0160) 2017; 139 Lang (10.1016/j.apcatb.2018.10.046_bib0110) 2016; 55 Wilhelm (10.1016/j.apcatb.2018.10.046_bib0010) 2001; 71 Hall (10.1016/j.apcatb.2018.10.046_bib0280) 2013; 160 Holby (10.1016/j.apcatb.2018.10.046_bib0295) 2018 Chen (10.1016/j.apcatb.2018.10.046_bib0250) 2012; 134 Zhang (10.1016/j.apcatb.2018.10.046_bib0055) 2016; 6 Yin (10.1016/j.apcatb.2018.10.046_bib0065) 2016; 27 Pander (10.1016/j.apcatb.2018.10.046_bib0260) 2016; 8 Chen (10.1016/j.apcatb.2018.10.046_bib0085) 2017; 56 Zhu (10.1016/j.apcatb.2018.10.046_bib0020) 2013; 135 Qiu (10.1016/j.apcatb.2018.10.046_bib0090) 2015; 127 Qiao (10.1016/j.apcatb.2018.10.046_bib0070) 2011; 3 Su (10.1016/j.apcatb.2018.10.046_bib0310) 2016; 12 Dou (10.1016/j.apcatb.2018.10.046_bib0150) 2018; 30 Liu (10.1016/j.apcatb.2018.10.046_bib0275) 2018; 28 Mistry (10.1016/j.apcatb.2018.10.046_bib0015) 2014; 136 Sheng (10.1016/j.apcatb.2018.10.046_bib0040) 2017; 10 Rosen (10.1016/j.apcatb.2018.10.046_bib0050) 2015; 5 Deng (10.1016/j.apcatb.2018.10.046_bib0170) 2015; 1 Holby (10.1016/j.apcatb.2018.10.046_bib0300) 2016; 29 Yang (10.1016/j.apcatb.2018.10.046_bib0245) 2018; 3 Wu (10.1016/j.apcatb.2018.10.046_bib0270) 2015; 9 Gong (10.1016/j.apcatb.2018.10.046_bib0285) 2014; 5 Yang (10.1016/j.apcatb.2018.10.046_bib0140) 2013; 46 Sa (10.1016/j.apcatb.2018.10.046_bib0165) 2016; 138 Zhang (10.1016/j.apcatb.2018.10.046_bib0100) 2016; 55 Jiang (10.1016/j.apcatb.2018.10.046_bib0315) 2018; 11 Gao (10.1016/j.apcatb.2018.10.046_bib0035) 2015; 137 Monkhorst (10.1016/j.apcatb.2018.10.046_bib0220) 1976; 13 Medina-Ramos (10.1016/j.apcatb.2018.10.046_bib0060) 2015; 137 Kumar (10.1016/j.apcatb.2018.10.046_bib0005) 2016; 270 Avakyan (10.1016/j.apcatb.2018.10.046_bib0240) 2013; 114 Liu (10.1016/j.apcatb.2018.10.046_bib0075) 2016; 138 Zhong (10.1016/j.apcatb.2018.10.046_bib0235) 2012; 50 Cheng (10.1016/j.apcatb.2018.10.046_bib0305) 2018; 30 Yan (10.1016/j.apcatb.2018.10.046_bib0175) 2015; 137 Zhu (10.1016/j.apcatb.2018.10.046_bib0195) 2011; 332 Cheng (10.1016/j.apcatb.2018.10.046_bib0095) 2016; 7 Kresse (10.1016/j.apcatb.2018.10.046_bib0205) 1996; 54 Cheng (10.1016/j.apcatb.2018.10.046_bib0190) 2018; 30 Malard (10.1016/j.apcatb.2018.10.046_bib0225) 2009; 473 Blöchl (10.1016/j.apcatb.2018.10.046_bib0210) 1994; 50 Yang (10.1016/j.apcatb.2018.10.046_bib0230) 2016; 2 Zhu (10.1016/j.apcatb.2018.10.046_bib0255) 2014; 136 Costentin (10.1016/j.apcatb.2018.10.046_bib0265) 2012; 338 Zhang (10.1016/j.apcatb.2018.10.046_bib0155) 2018; 4 Ma (10.1016/j.apcatb.2018.10.046_bib0025) 2016; 55 Zhao (10.1016/j.apcatb.2018.10.046_bib0200) 2018 Jiang (10.1016/j.apcatb.2018.10.046_bib0125) 2017; 3 Perdew (10.1016/j.apcatb.2018.10.046_bib0215) 1996; 77 Lu (10.1016/j.apcatb.2018.10.046_bib0030) 2014; 5 Liu (10.1016/j.apcatb.2018.10.046_bib0135) 2017; 7 X. Li (10.1016/j.apcatb.2018.10.046_bib0185) 2017; 139 |
References_xml | – volume: 137 start-page: 5021 year: 2015 end-page: 5027 ident: bib0060 article-title: Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts publication-title: J. Amer. Chem. Soc. – volume: 28 start-page: 1800499 year: 2018 ident: bib0275 article-title: Idenifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1180 year: 2017 end-page: 1185 ident: bib0040 article-title: Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios publication-title: Energy Environ. Sci. – volume: 137 start-page: 4288 year: 2015 end-page: 4291 ident: bib0035 article-title: Size-Dependent electrocatalytic reduction of CO2 over Pd nanoparticles publication-title: J. Amer. Chem. Soc. – volume: 473 start-page: 51 year: 2009 end-page: 87 ident: bib0225 article-title: Raman spectroscopy in graphene publication-title: Phys. Rep. – volume: 7 start-page: 34 year: 2017 end-page: 59 ident: bib0135 article-title: Catalysis by supported single metal atoms publication-title: ACS Catal. – volume: 3 start-page: 140 year: 2018 end-page: 147 ident: bib0245 article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction publication-title: Nat. Energy – volume: 139 start-page: 3336 year: 2017 end-page: 3339 ident: bib0160 article-title: Molecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions publication-title: J. Amer. Chem. Soc. – volume: 1 start-page: e1500462 year: 2015 ident: bib0170 article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature publication-title: Sci. Adv. – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: bib0220 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 7 start-page: 13638 year: 2016 ident: bib0095 article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction publication-title: Nat. Commun. – volume: 30 start-page: 1706287 year: 2018 ident: bib0305 article-title: Atomically dispersed transition metals on carbon nanotubes with UltraHigh loading for selective electrochemical carbon dioxide reduction publication-title: Adv. Mater. – volume: 135 start-page: 11849 year: 2013 end-page: 11860 ident: bib0290 article-title: Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts publication-title: J. Amer. Chem. Soc. – volume: 55 start-page: 9748 year: 2016 end-page: 9752 ident: bib0025 article-title: Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-Derived nanostructured silver electrocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 16054 year: 2016 end-page: 16058 ident: bib0110 article-title: Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 610 year: 2017 end-page: 614 ident: bib0085 article-title: Atomically dispersed Iron–Nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 10484 year: 2015 end-page: 10487 ident: bib0175 article-title: Single-atom Pd1/Graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-Butadiene publication-title: J. Amer. Chem. Soc. – volume: 8 start-page: 3536 year: 2016 end-page: 3545 ident: bib0260 article-title: Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media publication-title: ChemCatChem – volume: 5 start-page: 3242 year: 2014 ident: bib0030 article-title: A selective and efficient electrocatalyst for carbon dioxide reduction publication-title: Nat. Commun. – volume: 71 start-page: 139 year: 2001 end-page: 148 ident: bib0010 article-title: Syngas production for gas-to-liquids applications: technologies, issues and outlook publication-title: Fuel Process. Technol. – year: 2018 ident: bib0200 article-title: One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading publication-title: ACS Applied Energy Materials – volume: 270 start-page: 19 year: 2016 end-page: 30 ident: bib0005 article-title: New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction publication-title: Catal. Today – volume: 2 start-page: e1501122 year: 2016 ident: bib0230 article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst publication-title: Sci. Adv. – volume: 4 start-page: 285 year: 2018 end-page: 297 ident: bib0155 article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions publication-title: Chem – volume: 14 start-page: 1800136 year: 2018 ident: bib0145 article-title: Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction publication-title: Small – volume: 138 start-page: 6396 year: 2016 end-page: 6399 ident: bib0075 article-title: Tackling CO poisoning with single-atom alloy catalysts publication-title: J. Amer. Chem. Soc. – volume: 338 start-page: 90 year: 2012 end-page: 94 ident: bib0265 article-title: A local proton source enhances CO publication-title: Science – volume: 29 start-page: 54 year: 2016 end-page: 64 ident: bib0300 article-title: Linking structure to function: the search for active sites in non-platinum group metal oxygen reduction reaction catalysts publication-title: Nano Energy – volume: 30 start-page: e1706287 year: 2018 ident: bib0190 article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction publication-title: Adv. Mater. – volume: 135 start-page: 16833 year: 2013 end-page: 16836 ident: bib0020 article-title: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO publication-title: J. Amer. Chem. Soc. – volume: 46 start-page: 1740 year: 2013 end-page: 1748 ident: bib0140 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib0205 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib0215 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 139 start-page: 14889 year: 2017 end-page: 14892 ident: bib0185 article-title: Exclusive Ni–N4 sites realize near-Unity CO selectivity for electrochemical CO2 reduction publication-title: J. Amer. Chem. Soc. – volume: 19 start-page: 11436 year: 2017 end-page: 11446 ident: bib0120 article-title: Electrochemical reduction of CO2 on graphene supported transition metals − towards single atom catalysts publication-title: Phys. Chem. Chem. Phys. – volume: 136 start-page: 16132 year: 2014 end-page: 16135 ident: bib0255 article-title: Active and selective conversion of CO2 to CO on ultrathin Au nanowires publication-title: J. Amer. Chem. Soc. – volume: 55 start-page: 9297 year: 2016 end-page: 9300 ident: bib0045 article-title: Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1090 year: 2017 end-page: 1096 ident: bib0115 article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements publication-title: Chem. Sci. – volume: 55 start-page: 2058 year: 2016 end-page: 2062 ident: bib0080 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew. Chem. Int. Ed. – volume: 114 start-page: 347 year: 2013 end-page: 352 ident: bib0240 article-title: Atomic structure of nickel phthalocyanine probed by X-ray absorption spectroscopy and density functional simulations publication-title: Opt. Spectrosc. – volume: 5 start-page: 4695 year: 2014 ident: bib0285 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat. Commun. – year: 2018 ident: bib0295 article-title: Structure of Fe–Nx–C defects in oxygen reduction reaction catalysts from first-principles modeling publication-title: The Journal of Physical Chemistry – volume: 138 start-page: 15046 year: 2016 end-page: 15056 ident: bib0165 article-title: A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction publication-title: J. Amer. Chem. Soc. – volume: 332 start-page: 1537 year: 2011 end-page: 1541 ident: bib0195 article-title: Carbon-Based supercapacitors produced by activation of graphene publication-title: Science – volume: 139 start-page: 8078 year: 2017 end-page: 8081 ident: bib0130 article-title: Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2 publication-title: J. Amer. Chem. Soc. – volume: 3 start-page: 950 year: 2017 end-page: 960 ident: bib0125 article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis publication-title: Chem – volume: 136 start-page: 16473 year: 2014 end-page: 16476 ident: bib0015 article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles publication-title: J. Amer. Chem. Soc. – volume: 12 start-page: 6083 year: 2016 end-page: 6089 ident: bib0310 article-title: Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide publication-title: Small – volume: 6 start-page: 6255 year: 2016 end-page: 6264 ident: bib0055 article-title: Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects publication-title: ACS Catal. – volume: 27 start-page: 35 year: 2016 end-page: 43 ident: bib0065 article-title: Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO publication-title: Nano Energy – volume: 5 start-page: 4586 year: 2015 end-page: 4591 ident: bib0050 article-title: Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction publication-title: ACS Catal. – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: bib0070 article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx publication-title: Nat. Chem. – volume: 127 start-page: 14237 year: 2015 end-page: 14241 ident: bib0090 article-title: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production publication-title: Angewandte Chemie – volume: 50 start-page: 335 year: 2012 end-page: 338 ident: bib0235 article-title: Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy publication-title: Carbon – volume: 7 start-page: 14036 year: 2016 ident: bib0105 article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst publication-title: Nat. Commun. – volume: 138 start-page: 3570 year: 2016 end-page: 3578 ident: bib0180 article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx publication-title: J. Amer. Chem. Soc. – volume: 160 start-page: F235 year: 2013 end-page: F243 ident: bib0280 article-title: The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution publication-title: J. Electrochem. Soc. – volume: 134 start-page: 19969 year: 2012 end-page: 19972 ident: bib0250 article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles publication-title: J. Amer. Chem. Soc. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: bib0210 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 55 start-page: 8319 year: 2016 end-page: 8323 ident: bib0100 article-title: Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 5364 year: 2015 end-page: 5371 ident: bib0270 article-title: Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes publication-title: ACS Nano – volume: 11 start-page: 893 year: 2018 end-page: 903 ident: bib0315 article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO publication-title: Energy Environ. Sci. – volume: 11 start-page: 1204 year: 2018 end-page: 1210 ident: bib0320 article-title: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction publication-title: Energy Environ. Sci. – volume: 30 start-page: 1705850 year: 2018 ident: bib0150 article-title: Plasma-assisted synthesis and surface modification of electrode materials for renewable energy publication-title: Adv. Mater. – volume: 136 start-page: 16473 year: 2014 ident: 10.1016/j.apcatb.2018.10.046_bib0015 article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja508879j – volume: 55 start-page: 9297 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0045 article-title: Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602888 – volume: 6 start-page: 6255 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0055 article-title: Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects publication-title: ACS Catal. doi: 10.1021/acscatal.6b01297 – volume: 46 start-page: 1740 year: 2013 ident: 10.1016/j.apcatb.2018.10.046_bib0140 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 139 start-page: 8078 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0130 article-title: Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2 publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.7b02736 – volume: 127 start-page: 14237 year: 2015 ident: 10.1016/j.apcatb.2018.10.046_bib0090 article-title: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production publication-title: Angewandte Chemie doi: 10.1002/ange.201507381 – volume: 136 start-page: 16132 year: 2014 ident: 10.1016/j.apcatb.2018.10.046_bib0255 article-title: Active and selective conversion of CO2 to CO on ultrathin Au nanowires publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja5095099 – volume: 55 start-page: 16054 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0110 article-title: Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607885 – volume: 3 start-page: 634 year: 2011 ident: 10.1016/j.apcatb.2018.10.046_bib0070 article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 332 start-page: 1537 year: 2011 ident: 10.1016/j.apcatb.2018.10.046_bib0195 article-title: Carbon-Based supercapacitors produced by activation of graphene publication-title: Science doi: 10.1126/science.1200770 – volume: 1 start-page: e1500462 year: 2015 ident: 10.1016/j.apcatb.2018.10.046_bib0170 article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature publication-title: Sci. Adv. doi: 10.1126/sciadv.1500462 – volume: 135 start-page: 11849 year: 2013 ident: 10.1016/j.apcatb.2018.10.046_bib0290 article-title: Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja403822d – volume: 55 start-page: 9748 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0025 article-title: Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-Derived nanostructured silver electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604654 – volume: 27 start-page: 35 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0065 article-title: Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.035 – volume: 5 start-page: 4586 year: 2015 ident: 10.1016/j.apcatb.2018.10.046_bib0050 article-title: Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction publication-title: ACS Catal. doi: 10.1021/acscatal.5b00922 – volume: 9 start-page: 5364 year: 2015 ident: 10.1016/j.apcatb.2018.10.046_bib0270 article-title: Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes publication-title: ACS Nano doi: 10.1021/acsnano.5b01079 – volume: 29 start-page: 54 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0300 article-title: Linking structure to function: the search for active sites in non-platinum group metal oxygen reduction reaction catalysts publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.05.025 – volume: 137 start-page: 5021 year: 2015 ident: 10.1016/j.apcatb.2018.10.046_bib0060 article-title: Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja5121088 – volume: 8 start-page: 1090 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0115 article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements publication-title: Chem. Sci. doi: 10.1039/C6SC03911A – volume: 138 start-page: 15046 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0165 article-title: A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.6b09470 – volume: 7 start-page: 34 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0135 article-title: Catalysis by supported single metal atoms publication-title: ACS Catal. doi: 10.1021/acscatal.6b01534 – volume: 270 start-page: 19 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0005 article-title: New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction publication-title: Catal. Today doi: 10.1016/j.cattod.2016.02.006 – volume: 135 start-page: 16833 year: 2013 ident: 10.1016/j.apcatb.2018.10.046_bib0020 article-title: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja409445p – volume: 14 start-page: 1800136 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0145 article-title: Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction publication-title: Small doi: 10.1002/smll.201800136 – volume: 10 start-page: 1180 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0040 article-title: Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00071E – year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0295 article-title: Structure of Fe–Nx–C defects in oxygen reduction reaction catalysts from first-principles modeling publication-title: The Journal of Physical Chemistry – volume: 5 start-page: 3242 year: 2014 ident: 10.1016/j.apcatb.2018.10.046_bib0030 article-title: A selective and efficient electrocatalyst for carbon dioxide reduction publication-title: Nat. Commun. doi: 10.1038/ncomms4242 – volume: 5 start-page: 4695 year: 2014 ident: 10.1016/j.apcatb.2018.10.046_bib0285 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat. Commun. doi: 10.1038/ncomms5695 – volume: 7 start-page: 13638 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0095 article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 7 start-page: 14036 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0105 article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms14036 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.apcatb.2018.10.046_bib0205 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 139 start-page: 3336 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0160 article-title: Molecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.6b13100 – volume: 55 start-page: 8319 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0100 article-title: Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602801 – volume: 56 start-page: 610 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0085 article-title: Atomically dispersed Iron–Nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610119 – volume: 30 start-page: 1706287 issue: 13 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0305 article-title: Atomically dispersed transition metals on carbon nanotubes with UltraHigh loading for selective electrochemical carbon dioxide reduction publication-title: Adv. Mater. doi: 10.1002/adma.201706287 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.apcatb.2018.10.046_bib0220 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 138 start-page: 3570 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0180 article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.apcatb.2018.10.046_bib0215 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 50 start-page: 335 year: 2012 ident: 10.1016/j.apcatb.2018.10.046_bib0235 article-title: Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy publication-title: Carbon doi: 10.1016/j.carbon.2011.08.046 – volume: 137 start-page: 4288 year: 2015 ident: 10.1016/j.apcatb.2018.10.046_bib0035 article-title: Size-Dependent electrocatalytic reduction of CO2 over Pd nanoparticles publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.5b00046 – volume: 30 start-page: e1706287 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0190 article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction publication-title: Adv. Mater. doi: 10.1002/adma.201706287 – year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0200 article-title: One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading publication-title: ACS Applied Energy Materials – volume: 134 start-page: 19969 year: 2012 ident: 10.1016/j.apcatb.2018.10.046_bib0250 article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja309317u – volume: 2 start-page: e1501122 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0230 article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst publication-title: Sci. Adv. doi: 10.1126/sciadv.1501122 – volume: 11 start-page: 893 issue: 4 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0315 article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03245E – volume: 55 start-page: 2058 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0080 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509241 – volume: 137 start-page: 10484 year: 2015 ident: 10.1016/j.apcatb.2018.10.046_bib0175 article-title: Single-atom Pd1/Graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-Butadiene publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.5b06485 – volume: 114 start-page: 347 year: 2013 ident: 10.1016/j.apcatb.2018.10.046_bib0240 article-title: Atomic structure of nickel phthalocyanine probed by X-ray absorption spectroscopy and density functional simulations publication-title: Opt. Spectrosc. doi: 10.1134/S0030400X1303003X – volume: 3 start-page: 140 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0245 article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 71 start-page: 139 year: 2001 ident: 10.1016/j.apcatb.2018.10.046_bib0010 article-title: Syngas production for gas-to-liquids applications: technologies, issues and outlook publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(01)00140-0 – volume: 19 start-page: 11436 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0120 article-title: Electrochemical reduction of CO2 on graphene supported transition metals − towards single atom catalysts publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00915A – volume: 139 start-page: 14889 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0185 article-title: Exclusive Ni–N4 sites realize near-Unity CO selectivity for electrochemical CO2 reduction publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.7b09074 – volume: 28 start-page: 1800499 issue: 21 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0275 article-title: Idenifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800499 – volume: 4 start-page: 285 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0155 article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions publication-title: Chem doi: 10.1016/j.chempr.2017.12.005 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.apcatb.2018.10.046_bib0210 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 473 start-page: 51 year: 2009 ident: 10.1016/j.apcatb.2018.10.046_bib0225 article-title: Raman spectroscopy in graphene publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.02.003 – volume: 3 start-page: 950 year: 2017 ident: 10.1016/j.apcatb.2018.10.046_bib0125 article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis publication-title: Chem doi: 10.1016/j.chempr.2017.09.014 – volume: 30 start-page: 1705850 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0150 article-title: Plasma-assisted synthesis and surface modification of electrode materials for renewable energy publication-title: Adv. Mater. doi: 10.1002/adma.201705850 – volume: 338 start-page: 90 year: 2012 ident: 10.1016/j.apcatb.2018.10.046_bib0265 article-title: A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst publication-title: Science doi: 10.1126/science.1224581 – volume: 12 start-page: 6083 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0310 article-title: Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide publication-title: Small doi: 10.1002/smll.201602158 – volume: 11 start-page: 1204 year: 2018 ident: 10.1016/j.apcatb.2018.10.046_bib0320 article-title: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00133B – volume: 8 start-page: 3536 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0260 article-title: Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media publication-title: ChemCatChem doi: 10.1002/cctc.201600875 – volume: 138 start-page: 6396 year: 2016 ident: 10.1016/j.apcatb.2018.10.046_bib0075 article-title: Tackling CO poisoning with single-atom alloy catalysts publication-title: J. Amer. Chem. Soc. doi: 10.1021/jacs.6b03339 – volume: 160 start-page: F235 year: 2013 ident: 10.1016/j.apcatb.2018.10.046_bib0280 article-title: The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution publication-title: J. Electrochem. Soc. doi: 10.1149/2.026303jes |
SSID | ssj0002328 |
Score | 2.66194 |
Snippet | [Display omitted]
•3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 294 |
SubjectTerms | Defects Density functional simulation Edge-anchored Electrochemical CO2 reduction Ni single-atom catalysts |
Title | Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 |
URI | https://dx.doi.org/10.1016/j.apcatb.2018.10.046 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hOLAcEHQXLU_5wDU0jeM4PqIKVECUA1uJWxQ_IoJKUtHyOPHbmUkcYKUVK3G05ZEijz0P55tvAA4jblQYaRkUmkpyYkx30ljkQRFLJ60wqWj-mF6Ok9EkPr8RN0sw7GphCFbpbX9r0xtr7Wf6fjf7s7LsX4cqSjiXdCiJR5Rot-NYEn_-0esHzAMjhsYa4-KAVnflcw3GK5-ZfKEJ4JUeEcaLwuB_uadPLud0A9Z9rMiO28_ZhCVX9WB12LVo68HaJzbBHmydfBStoZi_tfOfUE-qOfF3YlhpGb2fBajq2_oBR-OS0WPB1DFMvu_nrK4YBuT145zdE1LvOX9yzL0U9bRshBt6a7SOrH4prWMY8DLfR8d44gE2vIp-weT05M9wFPhGC4HB9G4RFJwnRhVKozsLI0yABDeDFNUbqQHe6EQIi2Yh52gdlZOpdS7SaT5QdsCTPNSSb8FyVVfuNzDhIiM5L4oUY0EVcs3j1Go0EzYROrfxNvBufzPjWcipGcY06-Bmd1mrlYy0QrOolW0I3qVmLQvHf9bLTnXZX6cpQ0fxpeTOtyV34QeOVIvq2YPlxcOj28eAZaEPmhN5ACvHZxej8RuEB-rx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIADggHiTQ5cy7qmaZvjNG3aGBsHmMStah4VRaOd2Hj8fJw25SEhkDg2jaUqdj7bqfMZ4NyjkrueCJ1UmCs5PqY7kc8SJ_VDHSomI1b-MR2Ng_7Ev7xjd0vQqe_CmLJKi_0VppdobUeadjWbsyxr3rjcCygNjVEaHtFgGVYNOxUa-2p7MOyPPwAZg4YSkHG-YwTqG3RlmVcyk8lCmBqv6MKUeZlI-CcP9cXr9LZg04aLpF190TYs6bwBa526S1sDNr4QCjZgr_t5bw3F7Mad70AxyeeGwhMjS0XMEZqD2r4vnvBpnBFzXjDVBPPvxzkpcoIxefE8J4-mWO81edFEv6XFNCuFS4ZrBEhSvGVKE4x5iW2lIy33AOlce7sw6XVvO33H9lpwJGZ4CyelNJA85QI9muthDsSobEWoYY-3cFMHjClEhoQiQHIdRkprT0RJi6sWDRJXhHQPVvIi1_tAmPZkSGmaRhgOcpcK6kdKIFKogIlE-QdA6_WNpSUiN_0wpnFdcfYQV1qJjVbMKGrlAJwPqVlFxPHH_LBWXfzNoGL0Fb9KHv5b8gzW-rejq_hqMB4ewTq-4VWRzzGsLJ6e9QnGLwtxau3zHZLh7aI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsaturated+edge-anchored+Ni+single+atoms+on+porous+microwave+exfoliated+graphene+oxide+for+electrochemical+CO2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Cheng%2C+Yi&rft.au=Zhao%2C+Shiyong&rft.au=Li%2C+Haobo&rft.au=He%2C+Shuai&rft.date=2019-04-01&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=243&rft.spage=294&rft.epage=303&rft_id=info:doi/10.1016%2Fj.apcatb.2018.10.046&rft.externalDocID=S0926337318310026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |