Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2

[Display omitted] •3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was achieved.•Single atom and nanopores revealed by electron microscopy and X ray absorption.•DFT Simulation reveals the mechanism and confirms role of...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 243; pp. 294 - 303
Main Authors Cheng, Yi, Zhao, Shiyong, Li, Haobo, He, Shuai, Veder, Jean-Pierre, Johannessen, Bernt, Xiao, Jianping, Lu, Shanfu, Pan, Jian, Chisholm, Mattew F., Yang, Shi-Ze, Liu, Chang, Chen, Jingguang G., Jiang, San Ping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2019
Subjects
Online AccessGet full text
ISSN0926-3373
1873-3883
DOI10.1016/j.apcatb.2018.10.046

Cover

Loading…
Abstract [Display omitted] •3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was achieved.•Single atom and nanopores revealed by electron microscopy and X ray absorption.•DFT Simulation reveals the mechanism and confirms role of edge anchored single atoms. Supported single atom catalysts (SACs), emerging as a new class of catalytic materials, have been attracting increasing interests. Here we developed a Ni SAC on microwave exfoliated graphene oxide (Ni-N-MEGO) to achieve single atom loading of ∼6.9 wt%, significantly higher than previously reported SACs. The atomically dispersed Ni atoms, stabilized by coordination with nitrogen, were found to be predominantly anchored along the edges of nanopores ( < 6 nm) using a combination of X-ray absorption spectroscopy (XAS) and aberration-corrected scanning transmission electron microscopy (AC-STEM). The Ni-N-MEGO exhibits an onset overpotential of 0.18 V, and a current density of 53.6 mA mg−1 at overpotential of 0.59 V for CO2 reduction reaction (CO2RR), representing one of the best non-precious metal SACs reported so far in the literature. Density functional theory (DFT) calculations suggest that the electrochemical CO2-to-CO conversion occurs more readily on the edge-anchored unsaturated nitrogen coordinated Ni single atoms that lead to enhanced activity toward CO2RR.
AbstractList [Display omitted] •3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was achieved.•Single atom and nanopores revealed by electron microscopy and X ray absorption.•DFT Simulation reveals the mechanism and confirms role of edge anchored single atoms. Supported single atom catalysts (SACs), emerging as a new class of catalytic materials, have been attracting increasing interests. Here we developed a Ni SAC on microwave exfoliated graphene oxide (Ni-N-MEGO) to achieve single atom loading of ∼6.9 wt%, significantly higher than previously reported SACs. The atomically dispersed Ni atoms, stabilized by coordination with nitrogen, were found to be predominantly anchored along the edges of nanopores ( < 6 nm) using a combination of X-ray absorption spectroscopy (XAS) and aberration-corrected scanning transmission electron microscopy (AC-STEM). The Ni-N-MEGO exhibits an onset overpotential of 0.18 V, and a current density of 53.6 mA mg−1 at overpotential of 0.59 V for CO2 reduction reaction (CO2RR), representing one of the best non-precious metal SACs reported so far in the literature. Density functional theory (DFT) calculations suggest that the electrochemical CO2-to-CO conversion occurs more readily on the edge-anchored unsaturated nitrogen coordinated Ni single atoms that lead to enhanced activity toward CO2RR.
Author Pan, Jian
Chisholm, Mattew F.
Li, Haobo
Chen, Jingguang G.
Jiang, San Ping
Veder, Jean-Pierre
Cheng, Yi
Johannessen, Bernt
Yang, Shi-Ze
Zhao, Shiyong
He, Shuai
Lu, Shanfu
Xiao, Jianping
Liu, Chang
Author_xml – sequence: 1
  givenname: Yi
  surname: Cheng
  fullname: Cheng, Yi
  organization: Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
– sequence: 2
  givenname: Shiyong
  surname: Zhao
  fullname: Zhao, Shiyong
  organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia
– sequence: 3
  givenname: Haobo
  surname: Li
  fullname: Li, Haobo
  organization: Institute of Natural Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Peoples Republic of China
– sequence: 4
  givenname: Shuai
  surname: He
  fullname: He, Shuai
  organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia
– sequence: 5
  givenname: Jean-Pierre
  surname: Veder
  fullname: Veder, Jean-Pierre
  organization: John de Laeter Centre, Curtin University, Perth, WA 6102, Australia
– sequence: 6
  givenname: Bernt
  surname: Johannessen
  fullname: Johannessen, Bernt
  organization: Australian Synchrotron, Clayton, VIC 3168, Australia
– sequence: 7
  givenname: Jianping
  surname: Xiao
  fullname: Xiao, Jianping
  organization: Institute of Natural Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Peoples Republic of China
– sequence: 8
  givenname: Shanfu
  orcidid: 0000-0001-9873-6654
  surname: Lu
  fullname: Lu, Shanfu
  organization: Beijing Key Laboratory of Bio-inspired Energy Materials and Devices,School of Space and Environment, Beihang University, Beijing, China
– sequence: 9
  givenname: Jian
  surname: Pan
  fullname: Pan, Jian
  organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia
– sequence: 10
  givenname: Mattew F.
  surname: Chisholm
  fullname: Chisholm, Mattew F.
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
– sequence: 11
  givenname: Shi-Ze
  orcidid: 0000-0002-0421-006X
  surname: Yang
  fullname: Yang, Shi-Ze
  email: shize@bnl.gov
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
– sequence: 12
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: cliu@imr.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
– sequence: 13
  givenname: Jingguang G.
  surname: Chen
  fullname: Chen, Jingguang G.
  organization: Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
– sequence: 14
  givenname: San Ping
  orcidid: 0000-0002-7042-2976
  surname: Jiang
  fullname: Jiang, San Ping
  email: S.Jiang@curtin.edu.au
  organization: Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia
BookMark eNqFkMtOwzAQRS0EEm3hD1j4BxLsuHEcFkio4iVVdEPXlmNPWlepHdluKX9PSlmxgNVornSuZs4YnTvvAKEbSnJKKL_d5KrXKjV5QagYopxM-RkaUVGxjAnBztGI1AXPGKvYJRrHuCGEFKwQI-SXLqq0CyqBwWBWkCmn1z4M25vF0bpVB1glv43YO9z74HcRb60O_kPtAcOh9Z39hldB9WtwgP3BGsCtDxg60Cl4vYaBUB2eLYordNGqLsL1z5yg5dPj--wlmy-eX2cP80xPSZ2yljGu67ZuCOOkqDkvmaYCGihqWlaCl6VhpFSMlqyGShiAohGK1oYyrkhTsQm6O_UOl8YYoJXaJpWsdyko20lK5FGd3MiTOnlUd0wHdQM8_QX3wW5V-PwPuz9hMDy2txBk1BacBmPDIEIab_8u-AJfU44K
CitedBy_id crossref_primary_10_1002_cphc_202200657
crossref_primary_10_1016_j_apsusc_2022_152472
crossref_primary_10_1016_j_electacta_2019_135563
crossref_primary_10_1039_D0TA01955K
crossref_primary_10_1039_D1TA09015A
crossref_primary_10_1016_j_apsusc_2024_160532
crossref_primary_10_1021_acsnano_0c02940
crossref_primary_10_3389_fctls_2021_754167
crossref_primary_10_1002_cssc_202002596
crossref_primary_10_1021_acsenergylett_4c01319
crossref_primary_10_3390_su14095579
crossref_primary_10_1002_cssc_202000048
crossref_primary_10_1016_j_esci_2022_05_002
crossref_primary_10_1039_D0TA11939C
crossref_primary_10_1088_0256_307X_39_4_045201
crossref_primary_10_1002_chem_201905346
crossref_primary_10_1016_j_apcatb_2019_118391
crossref_primary_10_1016_j_ensm_2022_02_021
crossref_primary_10_1039_D2TA00835A
crossref_primary_10_1021_acs_inorgchem_2c03204
crossref_primary_10_1039_D0EE02833A
crossref_primary_10_1002_anie_202311174
crossref_primary_10_1021_acscatal_0c00239
crossref_primary_10_1016_j_mattod_2021_02_005
crossref_primary_10_1002_adma_202102801
crossref_primary_10_1016_j_ces_2023_119656
crossref_primary_10_1016_j_trechm_2022_07_004
crossref_primary_10_1021_acscatal_0c04725
crossref_primary_10_1016_j_nanoen_2023_108967
crossref_primary_10_1002_sstr_202200086
crossref_primary_10_1016_j_coelec_2020_04_008
crossref_primary_10_1016_j_nanoen_2021_106541
crossref_primary_10_1016_j_est_2022_105684
crossref_primary_10_1016_j_cej_2021_130587
crossref_primary_10_1016_j_jcis_2022_08_116
crossref_primary_10_1016_j_surfin_2024_105203
crossref_primary_10_1021_jacs_3c04826
crossref_primary_10_1021_acssuschemeng_1c00743
crossref_primary_10_1002_ese3_1036
crossref_primary_10_1002_smtd_202100102
crossref_primary_10_1016_S1872_2067_21_64000_7
crossref_primary_10_1002_adfm_202400107
crossref_primary_10_1016_j_jcis_2025_01_205
crossref_primary_10_1016_j_cej_2024_153398
crossref_primary_10_1016_j_apcatb_2020_119384
crossref_primary_10_1016_j_apcatb_2023_122801
crossref_primary_10_1002_cey2_498
crossref_primary_10_1016_j_apcatb_2020_119383
crossref_primary_10_1007_s41918_021_00096_5
crossref_primary_10_1016_j_ijhydene_2025_01_404
crossref_primary_10_1016_j_matt_2020_07_032
crossref_primary_10_1021_acsanm_0c01745
crossref_primary_10_1016_j_pmatsci_2020_100637
crossref_primary_10_1039_D3IM00062A
crossref_primary_10_1039_C9CS00422J
crossref_primary_10_1039_D1TA08285J
crossref_primary_10_1016_j_jes_2023_03_020
crossref_primary_10_1021_acsomega_1c05718
crossref_primary_10_1016_j_cej_2021_134269
crossref_primary_10_1016_j_apcatb_2020_119154
crossref_primary_10_1002_adsu_202100216
crossref_primary_10_1021_acs_chemrev_0c00818
crossref_primary_10_1002_adfm_202000768
crossref_primary_10_1002_smll_202202080
crossref_primary_10_1016_j_jcou_2024_102797
crossref_primary_10_1039_D0SC03328F
crossref_primary_10_1080_01614940_2020_1864860
crossref_primary_10_1002_advs_202102886
crossref_primary_10_1021_acsanm_2c05581
crossref_primary_10_1016_j_compositesb_2021_108986
crossref_primary_10_1039_D3QM00364G
crossref_primary_10_1021_acs_chemrev_4c00155
crossref_primary_10_3390_catal13020330
crossref_primary_10_1039_D0SE01127D
crossref_primary_10_1021_acsnano_4c01456
crossref_primary_10_3390_en12214111
crossref_primary_10_1002_asia_202401250
crossref_primary_10_1016_j_enconman_2022_115744
crossref_primary_10_1016_j_chemphys_2025_112616
crossref_primary_10_1021_acsenergylett_9b02585
crossref_primary_10_1002_aenm_202101477
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_26599_NRE_2023_9120096
crossref_primary_10_1002_adfm_202408013
crossref_primary_10_1002_adfm_202208622
crossref_primary_10_1039_D0EE02651D
crossref_primary_10_1016_j_apsusc_2023_156747
crossref_primary_10_1016_j_colsurfa_2022_129365
crossref_primary_10_1016_j_ijhydene_2020_03_174
crossref_primary_10_1007_s13399_021_01499_6
crossref_primary_10_1002_eem2_12134
crossref_primary_10_1016_j_apcatb_2024_124590
crossref_primary_10_1016_j_mcat_2024_114225
crossref_primary_10_1021_acscatal_3c02076
crossref_primary_10_1039_C9SE00776H
crossref_primary_10_1016_j_fuel_2022_124043
crossref_primary_10_1021_acs_energyfuels_4c03129
crossref_primary_10_1016_j_jhazmat_2020_122803
crossref_primary_10_1039_D3SE00830D
crossref_primary_10_1016_j_jpowsour_2021_230143
crossref_primary_10_1016_j_apsusc_2021_150254
crossref_primary_10_1021_acsanm_0c02983
crossref_primary_10_1021_acsmaterialslett_1c00543
crossref_primary_10_1007_s12274_022_4175_z
crossref_primary_10_1016_j_ijhydene_2021_11_165
crossref_primary_10_1021_acs_inorgchem_2c02020
crossref_primary_10_1016_j_jhazmat_2022_129009
crossref_primary_10_1007_s12274_021_3397_9
crossref_primary_10_1016_j_matre_2022_100144
crossref_primary_10_1039_D0SC07040H
crossref_primary_10_1007_s12598_021_01904_z
crossref_primary_10_1002_smtd_202100700
crossref_primary_10_1007_s11708_024_0968_y
crossref_primary_10_3390_catal12030275
crossref_primary_10_1021_acscatal_0c04714
crossref_primary_10_1016_j_cej_2024_153479
crossref_primary_10_1021_acscatal_4c00881
crossref_primary_10_1002_advs_202304424
crossref_primary_10_1002_adsu_202000213
crossref_primary_10_1016_j_apcatb_2024_124268
crossref_primary_10_1016_j_apcatb_2021_120904
crossref_primary_10_1016_j_mtcata_2024_100065
crossref_primary_10_1039_D2RA06302F
crossref_primary_10_1016_j_pmatsci_2020_100711
crossref_primary_10_1002_eem2_12278
crossref_primary_10_1016_j_apcatb_2019_118452
crossref_primary_10_1002_sstr_202100090
crossref_primary_10_1016_j_matt_2022_06_008
crossref_primary_10_1002_adma_202001848
crossref_primary_10_1016_j_ccr_2022_214469
crossref_primary_10_1002_smll_202002411
crossref_primary_10_1002_sstr_202200188
crossref_primary_10_1021_acscatal_0c02643
crossref_primary_10_1149_1945_7111_abc593
crossref_primary_10_1002_adfm_202203067
crossref_primary_10_1021_acsaem_9b01643
crossref_primary_10_1039_D4CC04213A
crossref_primary_10_1039_D4RA08833F
crossref_primary_10_1038_s41467_023_37545_2
crossref_primary_10_1002_cey2_27
crossref_primary_10_1002_jctb_6653
crossref_primary_10_1016_j_ccr_2024_215669
crossref_primary_10_1002_smll_202207808
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1016_j_fuel_2023_129760
crossref_primary_10_1016_j_apsusc_2020_148134
crossref_primary_10_1021_acs_energyfuels_1c00448
crossref_primary_10_1039_D2TA05844H
crossref_primary_10_1016_S1872_2067_21_63965_7
crossref_primary_10_1039_D1CP05442B
crossref_primary_10_1016_j_electacta_2019_135273
crossref_primary_10_1021_acssuschemeng_0c03054
crossref_primary_10_1007_s41918_022_00156_4
crossref_primary_10_1016_j_mtener_2024_101706
crossref_primary_10_1007_s12274_023_5656_4
crossref_primary_10_1021_acscatal_4c01557
crossref_primary_10_1007_s12274_022_4623_9
crossref_primary_10_1021_acs_analchem_1c05617
crossref_primary_10_1016_j_ensm_2023_102772
crossref_primary_10_1016_j_jcis_2019_04_077
crossref_primary_10_1016_j_apcatb_2022_121164
crossref_primary_10_1016_j_apmt_2021_101029
crossref_primary_10_2139_ssrn_4156083
crossref_primary_10_3390_nano15060473
crossref_primary_10_1016_j_esci_2022_03_007
crossref_primary_10_3390_nano10091884
crossref_primary_10_1016_j_jcat_2020_11_019
crossref_primary_10_1016_j_apcatb_2020_119091
crossref_primary_10_1016_j_ceramint_2021_07_175
crossref_primary_10_1016_j_matt_2023_11_009
crossref_primary_10_1016_j_nanoen_2020_105311
crossref_primary_10_1007_s12274_023_5475_7
crossref_primary_10_1002_smll_202309014
crossref_primary_10_1021_acs_chemrev_0c00094
crossref_primary_10_1039_D3NJ01363D
crossref_primary_10_1021_acscatal_2c01589
crossref_primary_10_1002_smll_201903780
crossref_primary_10_1002_cssc_201902061
crossref_primary_10_1016_j_enrev_2024_100075
crossref_primary_10_1016_S1872_5805_24_60839_5
crossref_primary_10_1021_acscatal_1c02941
crossref_primary_10_3390_catal13020393
crossref_primary_10_1021_acssuschemeng_9b03502
crossref_primary_10_1016_j_crcon_2023_05_004
crossref_primary_10_1016_j_apcatb_2022_121953
crossref_primary_10_1016_j_apcatb_2021_120028
crossref_primary_10_1021_jacs_0c11008
crossref_primary_10_1016_j_asems_2023_100073
crossref_primary_10_1038_s41467_020_14402_0
crossref_primary_10_1002_cctc_202001667
crossref_primary_10_1002_adsu_202000096
crossref_primary_10_1016_j_jmst_2019_07_040
crossref_primary_10_1016_j_matre_2023_100197
crossref_primary_10_1016_j_apcatb_2022_121813
crossref_primary_10_1039_D3EY00063J
crossref_primary_10_1016_j_jcat_2021_08_044
crossref_primary_10_1017_S1431927620021364
crossref_primary_10_3390_catal11030351
crossref_primary_10_1002_smll_202107799
crossref_primary_10_1002_adfm_202003870
crossref_primary_10_1021_acscatal_9b04217
crossref_primary_10_1016_j_apcata_2019_117214
crossref_primary_10_1039_D1TA03636J
crossref_primary_10_1039_D3RA03462C
crossref_primary_10_1016_S1872_2067_22_64104_4
crossref_primary_10_1016_j_jechem_2023_09_024
crossref_primary_10_1002_admi_202001904
crossref_primary_10_1021_acscatal_2c01841
crossref_primary_10_1007_s12274_021_3331_1
crossref_primary_10_1039_D1EE03311E
crossref_primary_10_1002_smtd_201800440
crossref_primary_10_1016_j_enchem_2019_100024
crossref_primary_10_1016_j_apcatb_2021_120162
crossref_primary_10_1016_j_cogsc_2022_100651
crossref_primary_10_1016_S1872_2067_23_64392_X
crossref_primary_10_1002_celc_202001437
crossref_primary_10_1016_j_apsusc_2019_06_005
crossref_primary_10_1016_S1872_5805_21_60002_1
crossref_primary_10_1039_D2TA09987J
crossref_primary_10_1039_D0TA11295J
crossref_primary_10_1002_smtd_201900159
crossref_primary_10_1021_acsnano_0c02731
crossref_primary_10_1016_j_jclepro_2024_142650
crossref_primary_10_1016_j_apcatb_2021_120173
crossref_primary_10_1002_smll_202301469
crossref_primary_10_1002_smll_202004579
crossref_primary_10_1063_5_0125654
crossref_primary_10_1016_j_apmt_2023_102037
crossref_primary_10_1039_C9TA12238A
crossref_primary_10_1007_s12274_023_5949_7
crossref_primary_10_1039_D1TA08337F
crossref_primary_10_1021_acs_jpcc_9b02195
crossref_primary_10_1016_j_ijhydene_2022_05_295
crossref_primary_10_1021_acsnano_1c07746
crossref_primary_10_1002_ange_202311174
crossref_primary_10_1016_j_coelec_2021_100854
crossref_primary_10_1039_D0TA09293B
crossref_primary_10_1002_cctc_202101266
crossref_primary_10_1002_adfm_201906157
crossref_primary_10_1021_acscatal_9b05333
crossref_primary_10_1002_advs_202303297
crossref_primary_10_1016_S1872_5805_24_60863_2
crossref_primary_10_1016_j_nanoen_2020_105504
crossref_primary_10_1016_j_carbon_2020_02_065
crossref_primary_10_1016_j_apcatb_2020_118929
crossref_primary_10_1039_D0EE04052E
crossref_primary_10_1016_j_elspec_2023_147364
crossref_primary_10_1016_j_jcou_2020_101316
crossref_primary_10_1016_j_mtchem_2023_101797
crossref_primary_10_1002_ece2_12
crossref_primary_10_1016_j_apcatb_2021_120861
crossref_primary_10_1039_D0CS00835D
crossref_primary_10_1021_acsami_4c01811
crossref_primary_10_1021_acscatal_2c04883
crossref_primary_10_1016_j_ijhydene_2021_06_105
crossref_primary_10_1016_j_jechem_2022_02_045
crossref_primary_10_1002_aenm_201902844
crossref_primary_10_1002_adfm_202108381
crossref_primary_10_1007_s12274_022_5073_0
crossref_primary_10_1021_acscatal_0c05514
crossref_primary_10_1002_asia_202200939
crossref_primary_10_1021_acscatal_0c01950
crossref_primary_10_1016_j_apcatb_2021_120997
crossref_primary_10_1016_j_jechem_2021_05_046
crossref_primary_10_1021_acssuschemeng_3c01222
crossref_primary_10_1039_D3NR05771B
crossref_primary_10_1007_s40820_020_00538_7
crossref_primary_10_1021_acs_jpcc_1c04986
crossref_primary_10_1002_adfm_202002626
crossref_primary_10_1021_acsnano_9b09658
Cites_doi 10.1021/ja508879j
10.1002/anie.201602888
10.1021/acscatal.6b01297
10.1021/ar300361m
10.1021/jacs.7b02736
10.1002/ange.201507381
10.1021/ja5095099
10.1002/anie.201607885
10.1038/nchem.1095
10.1126/science.1200770
10.1126/sciadv.1500462
10.1021/ja403822d
10.1002/anie.201604654
10.1016/j.nanoen.2016.06.035
10.1021/acscatal.5b00922
10.1021/acsnano.5b01079
10.1016/j.nanoen.2016.05.025
10.1021/ja5121088
10.1039/C6SC03911A
10.1021/jacs.6b09470
10.1021/acscatal.6b01534
10.1016/j.cattod.2016.02.006
10.1021/ja409445p
10.1002/smll.201800136
10.1039/C7EE00071E
10.1038/ncomms4242
10.1038/ncomms5695
10.1038/ncomms13638
10.1038/ncomms14036
10.1103/PhysRevB.54.11169
10.1021/jacs.6b13100
10.1002/anie.201602801
10.1002/anie.201610119
10.1002/adma.201706287
10.1103/PhysRevB.13.5188
10.1021/jacs.6b00757
10.1103/PhysRevLett.77.3865
10.1016/j.carbon.2011.08.046
10.1021/jacs.5b00046
10.1021/ja309317u
10.1126/sciadv.1501122
10.1039/C7EE03245E
10.1002/anie.201509241
10.1021/jacs.5b06485
10.1134/S0030400X1303003X
10.1038/s41560-017-0078-8
10.1016/S0378-3820(01)00140-0
10.1039/C7CP00915A
10.1021/jacs.7b09074
10.1002/adfm.201800499
10.1016/j.chempr.2017.12.005
10.1103/PhysRevB.50.17953
10.1016/j.physrep.2009.02.003
10.1016/j.chempr.2017.09.014
10.1002/adma.201705850
10.1126/science.1224581
10.1002/smll.201602158
10.1039/C8EE00133B
10.1002/cctc.201600875
10.1021/jacs.6b03339
10.1149/2.026303jes
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2018.10.046
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 303
ExternalDocumentID 10_1016_j_apcatb_2018_10_046
S0926337318310026
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c409t-f336c9f9b0360296653c18ebe291578655d305a31539e78dee2b8a19d136a0b73
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 03:10:52 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
Sat Mar 02 16:00:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrochemical CO2 reduction
Ni single-atom catalysts
Edge-anchored
Density functional simulation
Defects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-f336c9f9b0360296653c18ebe291578655d305a31539e78dee2b8a19d136a0b73
ORCID 0000-0002-7042-2976
0000-0001-9873-6654
0000-0002-0421-006X
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_apcatb_2018_10_046
crossref_primary_10_1016_j_apcatb_2018_10_046
elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_10_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hall, Bock, MacDougall (bib0280) 2013; 160
Kumar, Brian, Atla, Kumari, Bertram, White, Spurgeon (bib0005) 2016; 270
Blöchl (bib0210) 1994; 50
Malard, Pimenta, Dresselhaus, Dresselhaus (bib0225) 2009; 473
Yang, Miao, Hung, Chen, Tao, Wang, Zhang, Chen, Gao, Chen, Dai, Liu (bib0230) 2016; 2
Lu, Rosen, Zhou, Hutchings, Kimmel, Chen, Jiao (bib0030) 2014; 5
X. Li, Bi, Chen, Sun, Ju, Yan, Zhu, Wu, Chu, Wu (bib0185) 2017; 139
Holby, Zelenay (bib0300) 2016; 29
Avakyan, Manukyan, Mirzakhanyan, Sharoyan, Zubavichus, Trigub, Kolpacheva, Bugaev (bib0240) 2013; 114
Deng, Chen, Yu, Wu, Liu, Liu, Yang, Tian, Hu, Du, Si, Wang, Cui, Li, Xiao, Xu, Deng, Yang, Duchesne, Zhang, Zhou, Sun, Li, Pan, Bao (bib0170) 2015; 1
Liu (bib0135) 2017; 7
Liu, Lucci, Yang, Lee, Marcinkowski, Therrien, Williams, Sykes, Flytzani-Stephanopoulos (bib0075) 2016; 138
Chen, Zhou, Xing, Xu, Tong, Xie, Zhang, Yan, Chu, Wu, Xie (bib0085) 2017; 56
Lang, Li, Matsumura, Miao, Ren, Cui, Tan, Qiao, Li, Wang, Wang, Zhang (bib0110) 2016; 55
Sa, Seo, Woo, Lim, Cheon, Yang, Lee, Kang, Shin, Shin, Jeong, Kim, Kim, Kim, Joo (bib0165) 2016; 138
Monkhorst, Pack (bib0220) 1976; 13
Perdew, Burke, Ernzerhof (bib0215) 1996; 77
He, Jagvaral (bib0120) 2017; 19
Jiang, Siahrostami, Akey, Li, Lu, Lattimer, Hu, Stokes, Gangishetty, Chen, Zhou, Hill, Cai, Bell, Chan, Norskov, Cui, Wang (bib0125) 2017; 3
Sheng, Kattel, Yao, Yan, Liang, Hawxhurst, Wu, Chen (bib0040) 2017; 10
Costentin, Drouet, Robert, Savéant (bib0265) 2012; 338
Qiao, Wang, Yang, Allard, Jiang, Cui, Liu, Li, Zhang (bib0070) 2011; 3
Back, Lim, Kim, Kim, Jung (bib0115) 2017; 8
Wu, Yadav, Liu, Sharma, Tiwary, Ma, Zou, Zhou, Yakobson, Lou, Ajayan (bib0270) 2015; 9
Zhao, Dai, Yao, Chen, Wang, Wang, Yang, Wei, Wu, Li (bib0130) 2017; 139
Zhu, Murali, Stoller, Ganesh, Cai, Ferreira, Pirkle, Wallace, Cychosz, Thommes, Su, Stach, Ruoff (bib0195) 2011; 332
Cheng, Zhao, Johannessen, Veder, Saunders, Rowles, Cheng, Liu, Chisholm, De Marco, Cheng, Yang, Jiang (bib0190) 2018; 30
Pander, Fogg, Bocarsly (bib0260) 2016; 8
Gao, Zhou, Wang, Miao, Yang, Wang, Wang, Bao (bib0035) 2015; 137
Zhang, Jia, Gao, Yan, Chen, Chen, Soo, Wood, Yang, Du, Yao (bib0155) 2018; 4
Qiu, Ito, Cong, Tan, Liu, Hirata, Fujita, Tang, Chen (bib0090) 2015; 127
Dou, Tao, Wang, El Hankari, Chen, Wang (bib0150) 2018; 30
Liu, Yang, Huang, Liu, Cai, Gao, Li, Zhang, Huang, Liu (bib0275) 2018; 28
Yan, Cheng, Yi, Lin, Yao, Wang, Li, Wei, Lu (bib0175) 2015; 137
Wang, Zhao, Wei, Wang, Cho, Cho, Terasaki, Wan (bib0290) 2013; 135
Ma, Trześniewski, Xie, Smith (bib0025) 2016; 55
Holby, Wu, Zelenay, Taylor (bib0295) 2018
Rosen, Hutchings, Lu, Forest, Moore, Jiao (bib0050) 2015; 5
Medina-Ramos, Pupillo, Keane, DiMeglio, Rosenthal (bib0060) 2015; 137
Zhao, Cheng, Veder, Johannessen, Saunders, Zhang, Liu, Chisholm, De Marco, Liu, Yang, Jiang (bib0200) 2018
Yang, Wang, Qiao, Li, Liu, Zhang (bib0140) 2013; 46
Won, Shin, Koh, Chung, Lee, Kim, Woo (bib0045) 2016; 55
Wang, Zhang, Wang, Gao, Luo, Wang, Zeng, Li, Li, Wang, Zheng, Zhu, Zhang, Ma, Si, Zeng (bib0105) 2016; 7
Cheng, Zhao, Johannessen, Veder, Saunders, Rowles, Cheng, Liu, Chisholm, De Marco, Cheng, Yang, Jiang (bib0305) 2018; 30
Zhang, Asakura, Zhang, Zhang, De, Yan (bib0100) 2016; 55
Wang, Qiao, Li, Wang (bib0145) 2018; 14
Zhang, Chi, Veith, Zhang, Lutterman, Rosenthal, Overbury, Dai, Zhu (bib0055) 2016; 6
Yang, Kim, Tak, Soon, Lee (bib0080) 2016; 55
Yang, Hung, Liu, Yuan, Miao, Zhang, Huang, Wang, Cai, Chen, Gao, Yang, Chen, Huang, Chen, Li, Zhang, Liu (bib0245) 2018; 3
Kresse, Furthmüller (bib0205) 1996; 54
Mistry, Reske, Zeng, Zhao, Greeley, Strasser, Cuenya (bib0015) 2014; 136
Zheng, Jiao, Zhu, Cai, Vasileff, Li, Han, Chen, Qiao (bib0160) 2017; 139
Cheng, Stambula, Wang, Banis, Liu, Riese, Xiao, Li, Sham, Liu, Botton, Sun (bib0095) 2016; 7
Zhu, Michalsky, Metin, Lv, Guo, Wright, Sun, Peterson, Sun (bib0020) 2013; 135
Yin, Gao, Yao, Zhao, Cai, Lin, Tang, Zhai, Wang, Ma, Bao (bib0065) 2016; 27
Wilhelm, Simbeck, Karp, Dickenson (bib0010) 2001; 71
Jiang, Siahrostami, Zheng, Hu, Hwang, Stavitski, Peng, Dynes, Gangisetty, Su, Attenkofer, Wang (bib0315) 2018; 11
Su, Iwase, Nakanishi, Hashimoto, Kamiya (bib0310) 2016; 12
C. Yan, Li, Ye, Wu, Cai, Si, Xiao, Miao, Xie, Yang, Li, Wang (bib0320) 2018; 11
Chen, Li, Kanan (bib0250) 2012; 134
Zhu, Zhang, Zhang, Lv, Li, Michalsky, Peterson, Sun (bib0255) 2014; 136
Jiang, Gu, Li, Zhang, Zhang, Zhang, Wang, Hu, Wei, Wan (bib0180) 2016; 138
Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang, Pennycook, Hwang, Dai (bib0285) 2014; 5
Zhong, Deng, Mao, Xie, Sun, Mou, Hong, Yang, Wang (bib0235) 2012; 50
Yang (10.1016/j.apcatb.2018.10.046_bib0080) 2016; 55
Won (10.1016/j.apcatb.2018.10.046_bib0045) 2016; 55
Wang (10.1016/j.apcatb.2018.10.046_bib0290) 2013; 135
Jiang (10.1016/j.apcatb.2018.10.046_bib0180) 2016; 138
Wang (10.1016/j.apcatb.2018.10.046_bib0105) 2016; 7
C. Yan (10.1016/j.apcatb.2018.10.046_bib0320) 2018; 11
Back (10.1016/j.apcatb.2018.10.046_bib0115) 2017; 8
Wang (10.1016/j.apcatb.2018.10.046_bib0145) 2018; 14
He (10.1016/j.apcatb.2018.10.046_bib0120) 2017; 19
Zhao (10.1016/j.apcatb.2018.10.046_bib0130) 2017; 139
Zheng (10.1016/j.apcatb.2018.10.046_bib0160) 2017; 139
Lang (10.1016/j.apcatb.2018.10.046_bib0110) 2016; 55
Wilhelm (10.1016/j.apcatb.2018.10.046_bib0010) 2001; 71
Hall (10.1016/j.apcatb.2018.10.046_bib0280) 2013; 160
Holby (10.1016/j.apcatb.2018.10.046_bib0295) 2018
Chen (10.1016/j.apcatb.2018.10.046_bib0250) 2012; 134
Zhang (10.1016/j.apcatb.2018.10.046_bib0055) 2016; 6
Yin (10.1016/j.apcatb.2018.10.046_bib0065) 2016; 27
Pander (10.1016/j.apcatb.2018.10.046_bib0260) 2016; 8
Chen (10.1016/j.apcatb.2018.10.046_bib0085) 2017; 56
Zhu (10.1016/j.apcatb.2018.10.046_bib0020) 2013; 135
Qiu (10.1016/j.apcatb.2018.10.046_bib0090) 2015; 127
Qiao (10.1016/j.apcatb.2018.10.046_bib0070) 2011; 3
Su (10.1016/j.apcatb.2018.10.046_bib0310) 2016; 12
Dou (10.1016/j.apcatb.2018.10.046_bib0150) 2018; 30
Liu (10.1016/j.apcatb.2018.10.046_bib0275) 2018; 28
Mistry (10.1016/j.apcatb.2018.10.046_bib0015) 2014; 136
Sheng (10.1016/j.apcatb.2018.10.046_bib0040) 2017; 10
Rosen (10.1016/j.apcatb.2018.10.046_bib0050) 2015; 5
Deng (10.1016/j.apcatb.2018.10.046_bib0170) 2015; 1
Holby (10.1016/j.apcatb.2018.10.046_bib0300) 2016; 29
Yang (10.1016/j.apcatb.2018.10.046_bib0245) 2018; 3
Wu (10.1016/j.apcatb.2018.10.046_bib0270) 2015; 9
Gong (10.1016/j.apcatb.2018.10.046_bib0285) 2014; 5
Yang (10.1016/j.apcatb.2018.10.046_bib0140) 2013; 46
Sa (10.1016/j.apcatb.2018.10.046_bib0165) 2016; 138
Zhang (10.1016/j.apcatb.2018.10.046_bib0100) 2016; 55
Jiang (10.1016/j.apcatb.2018.10.046_bib0315) 2018; 11
Gao (10.1016/j.apcatb.2018.10.046_bib0035) 2015; 137
Monkhorst (10.1016/j.apcatb.2018.10.046_bib0220) 1976; 13
Medina-Ramos (10.1016/j.apcatb.2018.10.046_bib0060) 2015; 137
Kumar (10.1016/j.apcatb.2018.10.046_bib0005) 2016; 270
Avakyan (10.1016/j.apcatb.2018.10.046_bib0240) 2013; 114
Liu (10.1016/j.apcatb.2018.10.046_bib0075) 2016; 138
Zhong (10.1016/j.apcatb.2018.10.046_bib0235) 2012; 50
Cheng (10.1016/j.apcatb.2018.10.046_bib0305) 2018; 30
Yan (10.1016/j.apcatb.2018.10.046_bib0175) 2015; 137
Zhu (10.1016/j.apcatb.2018.10.046_bib0195) 2011; 332
Cheng (10.1016/j.apcatb.2018.10.046_bib0095) 2016; 7
Kresse (10.1016/j.apcatb.2018.10.046_bib0205) 1996; 54
Cheng (10.1016/j.apcatb.2018.10.046_bib0190) 2018; 30
Malard (10.1016/j.apcatb.2018.10.046_bib0225) 2009; 473
Blöchl (10.1016/j.apcatb.2018.10.046_bib0210) 1994; 50
Yang (10.1016/j.apcatb.2018.10.046_bib0230) 2016; 2
Zhu (10.1016/j.apcatb.2018.10.046_bib0255) 2014; 136
Costentin (10.1016/j.apcatb.2018.10.046_bib0265) 2012; 338
Zhang (10.1016/j.apcatb.2018.10.046_bib0155) 2018; 4
Ma (10.1016/j.apcatb.2018.10.046_bib0025) 2016; 55
Zhao (10.1016/j.apcatb.2018.10.046_bib0200) 2018
Jiang (10.1016/j.apcatb.2018.10.046_bib0125) 2017; 3
Perdew (10.1016/j.apcatb.2018.10.046_bib0215) 1996; 77
Lu (10.1016/j.apcatb.2018.10.046_bib0030) 2014; 5
Liu (10.1016/j.apcatb.2018.10.046_bib0135) 2017; 7
X. Li (10.1016/j.apcatb.2018.10.046_bib0185) 2017; 139
References_xml – volume: 137
  start-page: 5021
  year: 2015
  end-page: 5027
  ident: bib0060
  article-title: Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts
  publication-title: J. Amer. Chem. Soc.
– volume: 28
  start-page: 1800499
  year: 2018
  ident: bib0275
  article-title: Idenifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1180
  year: 2017
  end-page: 1185
  ident: bib0040
  article-title: Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 4288
  year: 2015
  end-page: 4291
  ident: bib0035
  article-title: Size-Dependent electrocatalytic reduction of CO2 over Pd nanoparticles
  publication-title: J. Amer. Chem. Soc.
– volume: 473
  start-page: 51
  year: 2009
  end-page: 87
  ident: bib0225
  article-title: Raman spectroscopy in graphene
  publication-title: Phys. Rep.
– volume: 7
  start-page: 34
  year: 2017
  end-page: 59
  ident: bib0135
  article-title: Catalysis by supported single metal atoms
  publication-title: ACS Catal.
– volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  ident: bib0245
  article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction
  publication-title: Nat. Energy
– volume: 139
  start-page: 3336
  year: 2017
  end-page: 3339
  ident: bib0160
  article-title: Molecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions
  publication-title: J. Amer. Chem. Soc.
– volume: 1
  start-page: e1500462
  year: 2015
  ident: bib0170
  article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature
  publication-title: Sci. Adv.
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: bib0220
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 13638
  year: 2016
  ident: bib0095
  article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1706287
  year: 2018
  ident: bib0305
  article-title: Atomically dispersed transition metals on carbon nanotubes with UltraHigh loading for selective electrochemical carbon dioxide reduction
  publication-title: Adv. Mater.
– volume: 135
  start-page: 11849
  year: 2013
  end-page: 11860
  ident: bib0290
  article-title: Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts
  publication-title: J. Amer. Chem. Soc.
– volume: 55
  start-page: 9748
  year: 2016
  end-page: 9752
  ident: bib0025
  article-title: Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-Derived nanostructured silver electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 16054
  year: 2016
  end-page: 16058
  ident: bib0110
  article-title: Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 610
  year: 2017
  end-page: 614
  ident: bib0085
  article-title: Atomically dispersed Iron–Nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 10484
  year: 2015
  end-page: 10487
  ident: bib0175
  article-title: Single-atom Pd1/Graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-Butadiene
  publication-title: J. Amer. Chem. Soc.
– volume: 8
  start-page: 3536
  year: 2016
  end-page: 3545
  ident: bib0260
  article-title: Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media
  publication-title: ChemCatChem
– volume: 5
  start-page: 3242
  year: 2014
  ident: bib0030
  article-title: A selective and efficient electrocatalyst for carbon dioxide reduction
  publication-title: Nat. Commun.
– volume: 71
  start-page: 139
  year: 2001
  end-page: 148
  ident: bib0010
  article-title: Syngas production for gas-to-liquids applications: technologies, issues and outlook
  publication-title: Fuel Process. Technol.
– year: 2018
  ident: bib0200
  article-title: One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading
  publication-title: ACS Applied Energy Materials
– volume: 270
  start-page: 19
  year: 2016
  end-page: 30
  ident: bib0005
  article-title: New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction
  publication-title: Catal. Today
– volume: 2
  start-page: e1501122
  year: 2016
  ident: bib0230
  article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst
  publication-title: Sci. Adv.
– volume: 4
  start-page: 285
  year: 2018
  end-page: 297
  ident: bib0155
  article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions
  publication-title: Chem
– volume: 14
  start-page: 1800136
  year: 2018
  ident: bib0145
  article-title: Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: Small
– volume: 138
  start-page: 6396
  year: 2016
  end-page: 6399
  ident: bib0075
  article-title: Tackling CO poisoning with single-atom alloy catalysts
  publication-title: J. Amer. Chem. Soc.
– volume: 338
  start-page: 90
  year: 2012
  end-page: 94
  ident: bib0265
  article-title: A local proton source enhances CO
  publication-title: Science
– volume: 29
  start-page: 54
  year: 2016
  end-page: 64
  ident: bib0300
  article-title: Linking structure to function: the search for active sites in non-platinum group metal oxygen reduction reaction catalysts
  publication-title: Nano Energy
– volume: 30
  start-page: e1706287
  year: 2018
  ident: bib0190
  article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction
  publication-title: Adv. Mater.
– volume: 135
  start-page: 16833
  year: 2013
  end-page: 16836
  ident: bib0020
  article-title: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO
  publication-title: J. Amer. Chem. Soc.
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  ident: bib0140
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib0205
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib0215
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 139
  start-page: 14889
  year: 2017
  end-page: 14892
  ident: bib0185
  article-title: Exclusive Ni–N4 sites realize near-Unity CO selectivity for electrochemical CO2 reduction
  publication-title: J. Amer. Chem. Soc.
– volume: 19
  start-page: 11436
  year: 2017
  end-page: 11446
  ident: bib0120
  article-title: Electrochemical reduction of CO2 on graphene supported transition metals − towards single atom catalysts
  publication-title: Phys. Chem. Chem. Phys.
– volume: 136
  start-page: 16132
  year: 2014
  end-page: 16135
  ident: bib0255
  article-title: Active and selective conversion of CO2 to CO on ultrathin Au nanowires
  publication-title: J. Amer. Chem. Soc.
– volume: 55
  start-page: 9297
  year: 2016
  end-page: 9300
  ident: bib0045
  article-title: Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1090
  year: 2017
  end-page: 1096
  ident: bib0115
  article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
  publication-title: Chem. Sci.
– volume: 55
  start-page: 2058
  year: 2016
  end-page: 2062
  ident: bib0080
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 347
  year: 2013
  end-page: 352
  ident: bib0240
  article-title: Atomic structure of nickel phthalocyanine probed by X-ray absorption spectroscopy and density functional simulations
  publication-title: Opt. Spectrosc.
– volume: 5
  start-page: 4695
  year: 2014
  ident: bib0285
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat. Commun.
– year: 2018
  ident: bib0295
  article-title: Structure of Fe–Nx–C defects in oxygen reduction reaction catalysts from first-principles modeling
  publication-title: The Journal of Physical Chemistry
– volume: 138
  start-page: 15046
  year: 2016
  end-page: 15056
  ident: bib0165
  article-title: A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction
  publication-title: J. Amer. Chem. Soc.
– volume: 332
  start-page: 1537
  year: 2011
  end-page: 1541
  ident: bib0195
  article-title: Carbon-Based supercapacitors produced by activation of graphene
  publication-title: Science
– volume: 139
  start-page: 8078
  year: 2017
  end-page: 8081
  ident: bib0130
  article-title: Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2
  publication-title: J. Amer. Chem. Soc.
– volume: 3
  start-page: 950
  year: 2017
  end-page: 960
  ident: bib0125
  article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis
  publication-title: Chem
– volume: 136
  start-page: 16473
  year: 2014
  end-page: 16476
  ident: bib0015
  article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles
  publication-title: J. Amer. Chem. Soc.
– volume: 12
  start-page: 6083
  year: 2016
  end-page: 6089
  ident: bib0310
  article-title: Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide
  publication-title: Small
– volume: 6
  start-page: 6255
  year: 2016
  end-page: 6264
  ident: bib0055
  article-title: Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects
  publication-title: ACS Catal.
– volume: 27
  start-page: 35
  year: 2016
  end-page: 43
  ident: bib0065
  article-title: Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO
  publication-title: Nano Energy
– volume: 5
  start-page: 4586
  year: 2015
  end-page: 4591
  ident: bib0050
  article-title: Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction
  publication-title: ACS Catal.
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: bib0070
  article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx
  publication-title: Nat. Chem.
– volume: 127
  start-page: 14237
  year: 2015
  end-page: 14241
  ident: bib0090
  article-title: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production
  publication-title: Angewandte Chemie
– volume: 50
  start-page: 335
  year: 2012
  end-page: 338
  ident: bib0235
  article-title: Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy
  publication-title: Carbon
– volume: 7
  start-page: 14036
  year: 2016
  ident: bib0105
  article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
  publication-title: Nat. Commun.
– volume: 138
  start-page: 3570
  year: 2016
  end-page: 3578
  ident: bib0180
  article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx
  publication-title: J. Amer. Chem. Soc.
– volume: 160
  start-page: F235
  year: 2013
  end-page: F243
  ident: bib0280
  article-title: The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution
  publication-title: J. Electrochem. Soc.
– volume: 134
  start-page: 19969
  year: 2012
  end-page: 19972
  ident: bib0250
  article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles
  publication-title: J. Amer. Chem. Soc.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: bib0210
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 55
  start-page: 8319
  year: 2016
  end-page: 8323
  ident: bib0100
  article-title: Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 5364
  year: 2015
  end-page: 5371
  ident: bib0270
  article-title: Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes
  publication-title: ACS Nano
– volume: 11
  start-page: 893
  year: 2018
  end-page: 903
  ident: bib0315
  article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 1204
  year: 2018
  end-page: 1210
  ident: bib0320
  article-title: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1705850
  year: 2018
  ident: bib0150
  article-title: Plasma-assisted synthesis and surface modification of electrode materials for renewable energy
  publication-title: Adv. Mater.
– volume: 136
  start-page: 16473
  year: 2014
  ident: 10.1016/j.apcatb.2018.10.046_bib0015
  article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja508879j
– volume: 55
  start-page: 9297
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0045
  article-title: Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602888
– volume: 6
  start-page: 6255
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0055
  article-title: Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01297
– volume: 46
  start-page: 1740
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.046_bib0140
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 139
  start-page: 8078
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0130
  article-title: Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.7b02736
– volume: 127
  start-page: 14237
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.046_bib0090
  article-title: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production
  publication-title: Angewandte Chemie
  doi: 10.1002/ange.201507381
– volume: 136
  start-page: 16132
  year: 2014
  ident: 10.1016/j.apcatb.2018.10.046_bib0255
  article-title: Active and selective conversion of CO2 to CO on ultrathin Au nanowires
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja5095099
– volume: 55
  start-page: 16054
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0110
  article-title: Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607885
– volume: 3
  start-page: 634
  year: 2011
  ident: 10.1016/j.apcatb.2018.10.046_bib0070
  article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 332
  start-page: 1537
  year: 2011
  ident: 10.1016/j.apcatb.2018.10.046_bib0195
  article-title: Carbon-Based supercapacitors produced by activation of graphene
  publication-title: Science
  doi: 10.1126/science.1200770
– volume: 1
  start-page: e1500462
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.046_bib0170
  article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500462
– volume: 135
  start-page: 11849
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.046_bib0290
  article-title: Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja403822d
– volume: 55
  start-page: 9748
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0025
  article-title: Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-Derived nanostructured silver electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604654
– volume: 27
  start-page: 35
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0065
  article-title: Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.035
– volume: 5
  start-page: 4586
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.046_bib0050
  article-title: Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00922
– volume: 9
  start-page: 5364
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.046_bib0270
  article-title: Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01079
– volume: 29
  start-page: 54
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0300
  article-title: Linking structure to function: the search for active sites in non-platinum group metal oxygen reduction reaction catalysts
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.05.025
– volume: 137
  start-page: 5021
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.046_bib0060
  article-title: Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja5121088
– volume: 8
  start-page: 1090
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0115
  article-title: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03911A
– volume: 138
  start-page: 15046
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0165
  article-title: A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.6b09470
– volume: 7
  start-page: 34
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0135
  article-title: Catalysis by supported single metal atoms
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01534
– volume: 270
  start-page: 19
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0005
  article-title: New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.02.006
– volume: 135
  start-page: 16833
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.046_bib0020
  article-title: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja409445p
– volume: 14
  start-page: 1800136
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0145
  article-title: Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: Small
  doi: 10.1002/smll.201800136
– volume: 10
  start-page: 1180
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0040
  article-title: Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00071E
– year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0295
  article-title: Structure of Fe–Nx–C defects in oxygen reduction reaction catalysts from first-principles modeling
  publication-title: The Journal of Physical Chemistry
– volume: 5
  start-page: 3242
  year: 2014
  ident: 10.1016/j.apcatb.2018.10.046_bib0030
  article-title: A selective and efficient electrocatalyst for carbon dioxide reduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4242
– volume: 5
  start-page: 4695
  year: 2014
  ident: 10.1016/j.apcatb.2018.10.046_bib0285
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5695
– volume: 7
  start-page: 13638
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0095
  article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 7
  start-page: 14036
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0105
  article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14036
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.apcatb.2018.10.046_bib0205
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 139
  start-page: 3336
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0160
  article-title: Molecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.6b13100
– volume: 55
  start-page: 8319
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0100
  article-title: Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602801
– volume: 56
  start-page: 610
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0085
  article-title: Atomically dispersed Iron–Nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610119
– volume: 30
  start-page: 1706287
  issue: 13
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0305
  article-title: Atomically dispersed transition metals on carbon nanotubes with UltraHigh loading for selective electrochemical carbon dioxide reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706287
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.apcatb.2018.10.046_bib0220
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 138
  start-page: 3570
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0180
  article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apcatb.2018.10.046_bib0215
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 50
  start-page: 335
  year: 2012
  ident: 10.1016/j.apcatb.2018.10.046_bib0235
  article-title: Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.08.046
– volume: 137
  start-page: 4288
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.046_bib0035
  article-title: Size-Dependent electrocatalytic reduction of CO2 over Pd nanoparticles
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.5b00046
– volume: 30
  start-page: e1706287
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0190
  article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706287
– year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0200
  article-title: One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading
  publication-title: ACS Applied Energy Materials
– volume: 134
  start-page: 19969
  year: 2012
  ident: 10.1016/j.apcatb.2018.10.046_bib0250
  article-title: Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja309317u
– volume: 2
  start-page: e1501122
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0230
  article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501122
– volume: 11
  start-page: 893
  issue: 4
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0315
  article-title: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03245E
– volume: 55
  start-page: 2058
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0080
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509241
– volume: 137
  start-page: 10484
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.046_bib0175
  article-title: Single-atom Pd1/Graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-Butadiene
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.5b06485
– volume: 114
  start-page: 347
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.046_bib0240
  article-title: Atomic structure of nickel phthalocyanine probed by X-ray absorption spectroscopy and density functional simulations
  publication-title: Opt. Spectrosc.
  doi: 10.1134/S0030400X1303003X
– volume: 3
  start-page: 140
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0245
  article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 71
  start-page: 139
  year: 2001
  ident: 10.1016/j.apcatb.2018.10.046_bib0010
  article-title: Syngas production for gas-to-liquids applications: technologies, issues and outlook
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(01)00140-0
– volume: 19
  start-page: 11436
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0120
  article-title: Electrochemical reduction of CO2 on graphene supported transition metals − towards single atom catalysts
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00915A
– volume: 139
  start-page: 14889
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0185
  article-title: Exclusive Ni–N4 sites realize near-Unity CO selectivity for electrochemical CO2 reduction
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.7b09074
– volume: 28
  start-page: 1800499
  issue: 21
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0275
  article-title: Idenifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800499
– volume: 4
  start-page: 285
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0155
  article-title: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.005
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.apcatb.2018.10.046_bib0210
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 473
  start-page: 51
  year: 2009
  ident: 10.1016/j.apcatb.2018.10.046_bib0225
  article-title: Raman spectroscopy in graphene
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.02.003
– volume: 3
  start-page: 950
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.046_bib0125
  article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.014
– volume: 30
  start-page: 1705850
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0150
  article-title: Plasma-assisted synthesis and surface modification of electrode materials for renewable energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705850
– volume: 338
  start-page: 90
  year: 2012
  ident: 10.1016/j.apcatb.2018.10.046_bib0265
  article-title: A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst
  publication-title: Science
  doi: 10.1126/science.1224581
– volume: 12
  start-page: 6083
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0310
  article-title: Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide
  publication-title: Small
  doi: 10.1002/smll.201602158
– volume: 11
  start-page: 1204
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.046_bib0320
  article-title: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00133B
– volume: 8
  start-page: 3536
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0260
  article-title: Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201600875
– volume: 138
  start-page: 6396
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.046_bib0075
  article-title: Tackling CO poisoning with single-atom alloy catalysts
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/jacs.6b03339
– volume: 160
  start-page: F235
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.046_bib0280
  article-title: The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.026303jes
SSID ssj0002328
Score 2.66194
Snippet [Display omitted] •3D porous graphene with high loading (6.9 wt%) of single atom Ni was produced.•High performance in electrochemical CO2 reduction was...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 294
SubjectTerms Defects
Density functional simulation
Edge-anchored
Electrochemical CO2 reduction
Ni single-atom catalysts
Title Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2
URI https://dx.doi.org/10.1016/j.apcatb.2018.10.046
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hOLAcEHQXLU_5wDU0jeM4PqIKVECUA1uJWxQ_IoJKUtHyOPHbmUkcYKUVK3G05ZEijz0P55tvAA4jblQYaRkUmkpyYkx30ljkQRFLJ60wqWj-mF6Ok9EkPr8RN0sw7GphCFbpbX9r0xtr7Wf6fjf7s7LsX4cqSjiXdCiJR5Rot-NYEn_-0esHzAMjhsYa4-KAVnflcw3GK5-ZfKEJ4JUeEcaLwuB_uadPLud0A9Z9rMiO28_ZhCVX9WB12LVo68HaJzbBHmydfBStoZi_tfOfUE-qOfF3YlhpGb2fBajq2_oBR-OS0WPB1DFMvu_nrK4YBuT145zdE1LvOX9yzL0U9bRshBt6a7SOrH4prWMY8DLfR8d44gE2vIp-weT05M9wFPhGC4HB9G4RFJwnRhVKozsLI0yABDeDFNUbqQHe6EQIi2Yh52gdlZOpdS7SaT5QdsCTPNSSb8FyVVfuNzDhIiM5L4oUY0EVcs3j1Go0EzYROrfxNvBufzPjWcipGcY06-Bmd1mrlYy0QrOolW0I3qVmLQvHf9bLTnXZX6cpQ0fxpeTOtyV34QeOVIvq2YPlxcOj28eAZaEPmhN5ACvHZxej8RuEB-rx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIADggHiTQ5cy7qmaZvjNG3aGBsHmMStah4VRaOd2Hj8fJw25SEhkDg2jaUqdj7bqfMZ4NyjkrueCJ1UmCs5PqY7kc8SJ_VDHSomI1b-MR2Ng_7Ev7xjd0vQqe_CmLJKi_0VppdobUeadjWbsyxr3rjcCygNjVEaHtFgGVYNOxUa-2p7MOyPPwAZg4YSkHG-YwTqG3RlmVcyk8lCmBqv6MKUeZlI-CcP9cXr9LZg04aLpF190TYs6bwBa526S1sDNr4QCjZgr_t5bw3F7Mad70AxyeeGwhMjS0XMEZqD2r4vnvBpnBFzXjDVBPPvxzkpcoIxefE8J4-mWO81edFEv6XFNCuFS4ZrBEhSvGVKE4x5iW2lIy33AOlce7sw6XVvO33H9lpwJGZ4CyelNJA85QI9muthDsSobEWoYY-3cFMHjClEhoQiQHIdRkprT0RJi6sWDRJXhHQPVvIi1_tAmPZkSGmaRhgOcpcK6kdKIFKogIlE-QdA6_WNpSUiN_0wpnFdcfYQV1qJjVbMKGrlAJwPqVlFxPHH_LBWXfzNoGL0Fb9KHv5b8gzW-rejq_hqMB4ewTq-4VWRzzGsLJ6e9QnGLwtxau3zHZLh7aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsaturated+edge-anchored+Ni+single+atoms+on+porous+microwave+exfoliated+graphene+oxide+for+electrochemical+CO2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Cheng%2C+Yi&rft.au=Zhao%2C+Shiyong&rft.au=Li%2C+Haobo&rft.au=He%2C+Shuai&rft.date=2019-04-01&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=243&rft.spage=294&rft.epage=303&rft_id=info:doi/10.1016%2Fj.apcatb.2018.10.046&rft.externalDocID=S0926337318310026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon