Glucose Meter Performance Criteria for Tight Glycemic Control Estimated by Simulation Modeling
Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined. We used simulation modeling to relate glucose meter performance characteristics to insulin dosing errors during TGC. We used 29,920 glucose...
Saved in:
Published in | Clinical chemistry (Baltimore, Md.) Vol. 56; no. 7; pp. 1091 - 1097 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for Clinical Chemistry
01.07.2010
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined. We used simulation modeling to relate glucose meter performance characteristics to insulin dosing errors during TGC.
We used 29,920 glucose values from patients on TGC at 1 institution to represent the expected distribution of glucose values during TGC, and we used 2 different simulation models to relate glucose meter analytical performance to insulin dosing error using these 29,920 initial glucose values and assuming 10%, 15%, or 20% total allowable error (TEa) criteria.
One-category insulin dosing errors were common under all error conditions. Two-category insulin dosing errors occurred more frequently when either 20% or 15% TEa was assumed compared with 10% total error. Dosing errors of 3 or more categories, those most likely to result in hypoglycemia and thus patient harm, occurred infrequently under all error conditions with the exception of 20% TEa.
Glucose meter technologies that operate within a 15% total allowable error tolerance are unlikely to produce large (>or=3-category) insulin dosing errors during TGC. Increasing performance to 10% TEa should reduce the frequency of 2-category insulin dosing errors, although additional studies are necessary to determine the clinical impact of such errors during TGC. Current criteria that allow 20% total allowable error in glucose meters may not be optimal for patient management during TGC. |
---|---|
AbstractList | Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined. We used simulation modeling to relate glucose meter performance characteristics to insulin dosing errors during TGC. We used 29 920 glucose values from patients on TGC at 1 institution to represent the expected distribution of glucose values during TGC, and we used 2 different simulation models to relate glucose meter analytical performance to insulin dosing error using these 29 920 initial glucose values and assuming 10%, 15%, or 20% total allowable error (TEa) criteria. One-category insulin dosing errors were common under all error conditions. Two-category insulin dosing errors occurred more frequently when either 20% or 15% TEa was assumed compared with 10% total error. Dosing errors of 3 or more categories, those most likely to result in hypoglycemia and thus patient harm, occurred infrequently under all error conditions with the exception of 20% TEa. Glucose meter technologies that operate within a 15% total allowable error tolerance are unlikely to produce large (≥3-category) insulin dosing errors during TGC. Increasing performance to 10% TEa should reduce the frequency of 2-category insulin dosing errors, although additional studies are necessary to determine the clinical impact of such errors during TGC. Current criteria that allow 20% total allowable error in glucose meters may not be optimal for patient management during TGC. Abstract Background: Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined. We used simulation modeling to relate glucose meter performance characteristics to insulin dosing errors during TGC. Methods: We used 29 920 glucose values from patients on TGC at 1 institution to represent the expected distribution of glucose values during TGC, and we used 2 different simulation models to relate glucose meter analytical performance to insulin dosing error using these 29 920 initial glucose values and assuming 10%, 15%, or 20% total allowable error (TEa) criteria. Results: One-category insulin dosing errors were common under all error conditions. Two-category insulin dosing errors occurred more frequently when either 20% or 15% TEa was assumed compared with 10% total error. Dosing errors of 3 or more categories, those most likely to result in hypoglycemia and thus patient harm, occurred infrequently under all error conditions with the exception of 20% TEa. Conclusions: Glucose meter technologies that operate within a 15% total allowable error tolerance are unlikely to produce large (≥3-category) insulin dosing errors during TGC. Increasing performance to 10% TEa should reduce the frequency of 2-category insulin dosing errors, although additional studies are necessary to determine the clinical impact of such errors during TGC. Current criteria that allow 20% total allowable error in glucose meters may not be optimal for patient management during TGC. Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined. We used simulation modeling to relate glucose meter performance characteristics to insulin dosing errors during TGC. We used 29,920 glucose values from patients on TGC at 1 institution to represent the expected distribution of glucose values during TGC, and we used 2 different simulation models to relate glucose meter analytical performance to insulin dosing error using these 29,920 initial glucose values and assuming 10%, 15%, or 20% total allowable error (TEa) criteria. One-category insulin dosing errors were common under all error conditions. Two-category insulin dosing errors occurred more frequently when either 20% or 15% TEa was assumed compared with 10% total error. Dosing errors of 3 or more categories, those most likely to result in hypoglycemia and thus patient harm, occurred infrequently under all error conditions with the exception of 20% TEa. Glucose meter technologies that operate within a 15% total allowable error tolerance are unlikely to produce large (>or=3-category) insulin dosing errors during TGC. Increasing performance to 10% TEa should reduce the frequency of 2-category insulin dosing errors, although additional studies are necessary to determine the clinical impact of such errors during TGC. Current criteria that allow 20% total allowable error in glucose meters may not be optimal for patient management during TGC. BACKGROUNDGlucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined. We used simulation modeling to relate glucose meter performance characteristics to insulin dosing errors during TGC.METHODSWe used 29,920 glucose values from patients on TGC at 1 institution to represent the expected distribution of glucose values during TGC, and we used 2 different simulation models to relate glucose meter analytical performance to insulin dosing error using these 29,920 initial glucose values and assuming 10%, 15%, or 20% total allowable error (TEa) criteria.RESULTSOne-category insulin dosing errors were common under all error conditions. Two-category insulin dosing errors occurred more frequently when either 20% or 15% TEa was assumed compared with 10% total error. Dosing errors of 3 or more categories, those most likely to result in hypoglycemia and thus patient harm, occurred infrequently under all error conditions with the exception of 20% TEa.CONCLUSIONSGlucose meter technologies that operate within a 15% total allowable error tolerance are unlikely to produce large (>or=3-category) insulin dosing errors during TGC. Increasing performance to 10% TEa should reduce the frequency of 2-category insulin dosing errors, although additional studies are necessary to determine the clinical impact of such errors during TGC. Current criteria that allow 20% total allowable error in glucose meters may not be optimal for patient management during TGC. |
Author | KARON, Brad S BOYD, James C KLEE, George G |
Author_xml | – sequence: 1 givenname: Brad S surname: KARON fullname: KARON, Brad S organization: Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States – sequence: 2 givenname: James C surname: BOYD fullname: BOYD, James C organization: Department of Pathology, University of Virginia Health System, Charlottesville, VA, United States – sequence: 3 givenname: George G surname: KLEE fullname: KLEE, George G organization: Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23041358$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20511447$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkFFrFDEQx4NU7LX6DUSCUPq0dWaTbHYf5ahXoUXB-mrIZSdtyu6mJrsP9-3NcVcFn4b585th5nfGTqY4EWPvEa5QaPHJDWFyjzRe1bCPpBKNfsVWqARUrWrwhK0AoKs6lPqUneX8VFqp2-YNO61BIUqpV-zXZlhczMTvaKbEv1PyMY12csTXKZQoWF4Sfh8eHme-GXaOxuD4Ok5zigO_znMY7Uw93-74jzAug51DnPhd7Knc9_CWvfZ2yPTuWM_Zzy_X9-ub6vbb5uv6823lJHRz5aHRQnrX1r5Fkl53zqktWuVRa4fYgO7JSYvoCFWz7aXSAlTtoe7Buk6cs8vD3ucUfy-UZzOG7GgY7ERxyUYLIRCgrQv58T_yKS5pKscZ1akam05CgeQBcinmnMib51T-TDuDYPb2zYt9s7dvDvbL2Ifj7mU7Uv936EV3AS6OgM3ODj4V0SH_4wRIFKoVfwBQfJC1 |
CODEN | CLCHAU |
CitedBy_id | crossref_primary_10_1134_S2079978015020028 crossref_primary_10_1515_cclm_2015_0820 crossref_primary_10_1177_193229681200600617 crossref_primary_10_1177_1932296818785642 crossref_primary_10_1373_clinchem_2010_151936 crossref_primary_10_1373_clinchem_2015_251827 crossref_primary_10_1515_cclm_2012_0848 crossref_primary_10_1097_POC_0000000000000120 crossref_primary_10_1177_1932296815602099 crossref_primary_10_1021_ac2030199 crossref_primary_10_1038_s44222_023_00032_w crossref_primary_10_1177_19322968211007170 crossref_primary_10_1210_jc_2012_4127 crossref_primary_10_1089_dia_2011_0284 crossref_primary_10_1089_dia_2014_0421 crossref_primary_10_1177_1932296817710474 crossref_primary_10_1177_1932296819884923 crossref_primary_10_1373_clinchem_2011_164012 crossref_primary_10_1258_acb_2011_011283 crossref_primary_10_1258_acb_2011_011162 crossref_primary_10_1373_jalm_2017_022970 crossref_primary_10_1177_193229681200600228 crossref_primary_10_1515_cclm_2015_0214 crossref_primary_10_2337_dc12_2480 crossref_primary_10_1089_dia_2013_0086 crossref_primary_10_1007_s13631_013_0017_z crossref_primary_10_1097_ALN_0000000000001708 crossref_primary_10_1177_193229681200600104 crossref_primary_10_1016_j_biotechadv_2016_01_003 crossref_primary_10_1373_clinchem_2018_300954 crossref_primary_10_1309_AJCPP5YS2MVSKBYY crossref_primary_10_1089_dia_2011_0097 crossref_primary_10_4155_tde_2019_0047 crossref_primary_10_1515_cclm_2017_1142 crossref_primary_10_1177_1932296817698498 crossref_primary_10_1093_jalm_jfac103 crossref_primary_10_1016_j_cca_2013_03_021 crossref_primary_10_1177_1932296814539590 crossref_primary_10_3390_bios14050214 crossref_primary_10_1016_j_clinbiochem_2019_06_001 crossref_primary_10_1097_POC_0000000000000029 crossref_primary_10_1373_clinchem_2013_216366 crossref_primary_10_1097_POC_0000000000000025 crossref_primary_10_1097_POC_0000000000000027 crossref_primary_10_1097_CCM_0b013e3182653269 crossref_primary_10_1007_s11892_012_0336_x crossref_primary_10_1177_193229681200600232 crossref_primary_10_1373_clinchem_2016_265058 crossref_primary_10_1111_j_1945_1474_2012_00149_x crossref_primary_10_1373_clinchem_2014_227017 crossref_primary_10_1515_cclm_2014_1289 crossref_primary_10_1007_s11892_011_0241_8 crossref_primary_10_1177_1932296819889639 crossref_primary_10_3343_lmo_2012_2_1_1 crossref_primary_10_1177_1932296815584797 crossref_primary_10_1177_1932296813518673 crossref_primary_10_1089_dia_2013_0260 crossref_primary_10_1515_cclm_2020_1640 crossref_primary_10_1007_s13546_011_0272_9 crossref_primary_10_1177_193229681300700516 crossref_primary_10_1016_j_clinbiochem_2011_01_005 crossref_primary_10_1097_MCC_0b013e328348beb7 crossref_primary_10_1016_j_plabm_2020_e00199 crossref_primary_10_1097_POC_0000000000000096 crossref_primary_10_1186_1471_2253_14_46 crossref_primary_10_1089_dia_2014_0074 crossref_primary_10_1177_193229681100500642 crossref_primary_10_1373_clinchem_2014_225326 crossref_primary_10_1515_cclm_2015_1175 crossref_primary_10_1016_j_mee_2014_09_024 crossref_primary_10_1177_1932296819898277 crossref_primary_10_1515_CCLM_2011_655 crossref_primary_10_1038_nrendo_2012_14 crossref_primary_10_1109_RBME_2017_2749038 crossref_primary_10_1373_clinchem_2014_237420 |
Cites_doi | 10.1056/NEJMoa0810625 10.5858/2006-130-1527-TVORBP 10.1097/CCM.0b013e318186ffe6 10.1097/01.CCM.0000189939.10881.60 10.1016/S0076-6879(09)67016-6 10.1345/aph.1E018 10.1309/6RFQCKAAJGKWB8M4 10.1016/j.cca.2008.06.010 10.1016/j.cca.2007.11.019 10.1345/aph.1D211 10.2337/dc06-1679 10.2337/diacare.10.1.95 10.1089/dia.2007.0257 10.1007/s00134-004-2252-2 10.1097/01.CCM.0000282073.98414.4B 10.1097/00003246-200105000-00038 10.1089/dia.2008.0263 10.1093/clinchem/47.2.209 10.2337/diacare.27.2.461 10.1093/clinchem/33.8.1397 10.1056/NEJMoa011300 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Association for Clinical Chemistry Jul 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Association for Clinical Chemistry Jul 2010 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 4U- 7QO 7RV 7TM 7U7 7X7 7XB 88E 88I 8AO 8C1 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. KB0 M0S M1P M2P NAPCQ P64 PCBAR PDBOC PQEST PQQKQ PQUKI Q9U RC3 S0X 7X8 |
DOI | 10.1373/clinchem.2010.145367 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) University Readers Biotechnology Research Abstracts Proquest Nursing & Allied Health Source Nucleic Acids Abstracts Toxicology Abstracts ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts SIRS Editorial MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef University Readers ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials SIRS Editorial Materials Science Collection Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Public Health ProQuest Science Journals (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | University Readers CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1530-8561 |
EndPage | 1097 |
ExternalDocumentID | 2075712241 10_1373_clinchem_2010_145367 20511447 23041358 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 .GJ 04C 08R 18M 1KJ 29B 2WC 3V. 4.4 53G 5GY 5RE 5VS 5WD 6J9 7RV 7X7 88E 88I 8AO 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AABZA AACZT AAPBV AAPGJ AAPQZ AAPXW AAQQT AAUGY AAVAP AAWDT ABCQX ABEFU ABJCF ABLYK ABOCM ABPPZ ABPQP ABPTD ABSGY ABSQV ABUWG ABWST ABXZS ACFRR ACGOD ACIHN ACIWK ACPRK ACUTJ ACYHN ADBBV ADGZP ADIPN ADVEK AEAQA AELWJ AENEX AETBJ AFFNX AFFZL AFGWE AFKRA AFRAH AFYAG AGINJ AGQXC AGUTN AHMBA AI. AIMBJ AJEEA AKALU ALMA_UNASSIGNED_HOLDINGS ALXQX APJGH AQDSO AZQEC BAWUL BCRHZ BENPR BES BGLVJ BHPHI BKEYQ BKSAR BMSDO BPHCQ BTFSW BVXVI BYORX C1A C45 CASEJ CCPQU CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EIHBH EIHJH EJD EMOBN ENERS EX3 F5P F9R FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK FYUFA GAUVT GNUQQ H13 HCIFZ H~9 IAO IEA IGS IH2 IHR IHW INH INIJC INR IQODW ITC J5H KB. KBUDW KOP KQ8 KSI KSN L7B LK5 M1P M2P M7R ML- MVM NAPCQ NOMLY OAUYM OBFPC OBOKY OCZFY OK1 OPAEJ OVD OWPYF PCBAR PDBOC PQQKQ PROAC PSQYO PV9 Q2X R0Z RHF RHI RNS ROX RUSNO RZL S0X SJN SV3 TCC TEORI TMA TR2 TWZ U5U UCJ UKHRP UNMZH VH1 W8F WH7 WOQ WOW X7M YBU YHG YQJ YSK YWH YXANX ZA5 ZCG ZE2 ZGI ~V8 0R~ AARHZ AAUAY ABJNI ABMNT ABNHQ ABQNK ABXVV ACZBC ADQBN AGKRT AGMDO ALIPV ATGXG AVNTJ BEYMZ CGR CUY CVF ECM EIF HMCUK NPM OJZSN AASNB AAYXX CITATION 4U- 7QO 7TM 7U7 7XB 8FD 8FK ABEJV C1K FR3 K9. P64 PQEST PQUKI Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c409t-f06734fc82f81e4f79cc5b1a5f177c11607dec4a11ce156bd4573052f02d0ac93 |
IEDL.DBID | 8FG |
ISSN | 0009-9147 |
IngestDate | Fri Oct 25 11:57:06 EDT 2024 Fri Nov 08 08:08:35 EST 2024 Thu Sep 26 17:54:47 EDT 2024 Wed Oct 16 00:49:05 EDT 2024 Sun Oct 22 16:08:30 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Endocrinopathy Performance evaluation Glucometer Metabolic diseases Biochemistry Target tissue resistance Surveillance Criterion Clinical biology Insulin resistance Simulation model Molecular biology Performance Glycemia |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-f06734fc82f81e4f79cc5b1a5f177c11607dec4a11ce156bd4573052f02d0ac93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/clinchem/article-pdf/56/7/1091/32652842/clinchem1091.pdf |
PMID | 20511447 |
PQID | 595216940 |
PQPubID | 47786 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_733310082 proquest_journals_595216940 crossref_primary_10_1373_clinchem_2010_145367 pubmed_primary_20511447 pascalfrancis_primary_23041358 |
PublicationCentury | 2000 |
PublicationDate | 2010-07-01 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: England – name: Washington |
PublicationTitle | Clinical chemistry (Baltimore, Md.) |
PublicationTitleAlternate | Clin Chem |
PublicationYear | 2010 |
Publisher | American Association for Clinical Chemistry Oxford University Press |
Publisher_xml | – name: American Association for Clinical Chemistry – name: Oxford University Press |
References | 20628141 - Clin Chem. 2010 Sep;56(9):1505-6; author reply 1506 (2020022704324596700_R18) 2008; 389 (2020022704324596700_R14) 2008; 10 (2020022704324596700_R15) 2001; 47 2020022704324596700_R20 (2020022704324596700_R17) 2007; 35 (2020022704324596700_R9) 2007; 30 (2020022704324596700_R1) 2009; 360 (2020022704324596700_R8) 2005; 33 (2020022704324596700_R19) 1987; 10 (2020022704324596700_R2) 2004; 38 (2020022704324596700_R11) 2008; 36 (2020022704324596700_R16) 2009; 467 (2020022704324596700_R22) 2004; 38 (2020022704324596700_R10) 2008; 55 (2020022704324596700_R5) 2001; 29 (2020022704324596700_R21) 2004; 30 (2020022704324596700_R23) 2004; 27 (2020022704324596700_R12) 2007; 127 (2020022704324596700_R6) 1987; 33 (2020022704324596700_R13) 2008; 396 (2020022704324596700_R3) 2001; 345 (2020022704324596700_R4) 2008; 10 (2020022704324596700_R7) 2006; 130 |
References_xml | – volume: 360 start-page: 1283 year: 2009 ident: 2020022704324596700_R1 publication-title: N Engl J Med doi: 10.1056/NEJMoa0810625 – volume: 130 start-page: 1527 year: 2006 ident: 2020022704324596700_R7 publication-title: Arch Pathol Lab Med doi: 10.5858/2006-130-1527-TVORBP – volume: 36 start-page: 3062 year: 2008 ident: 2020022704324596700_R11 publication-title: Crit Care Med doi: 10.1097/CCM.0b013e318186ffe6 – volume: 33 start-page: 2778 year: 2005 ident: 2020022704324596700_R8 publication-title: Crit Care Med doi: 10.1097/01.CCM.0000189939.10881.60 – volume: 467 start-page: 411 year: 2009 ident: 2020022704324596700_R16 publication-title: Methods Enzymol doi: 10.1016/S0076-6879(09)67016-6 – volume: 38 start-page: 1123 year: 2004 ident: 2020022704324596700_R22 publication-title: Ann Pharmacother doi: 10.1345/aph.1E018 – volume: 127 start-page: 919 year: 2007 ident: 2020022704324596700_R12 publication-title: Am J Clin Pathol doi: 10.1309/6RFQCKAAJGKWB8M4 – volume: 396 start-page: 10 year: 2008 ident: 2020022704324596700_R13 publication-title: Clin Chim Acta doi: 10.1016/j.cca.2008.06.010 – volume: 389 start-page: 31 year: 2008 ident: 2020022704324596700_R18 publication-title: Clin Chim Acta doi: 10.1016/j.cca.2007.11.019 – volume: 38 start-page: 1243 year: 2004 ident: 2020022704324596700_R2 publication-title: Ann Pharmacother doi: 10.1345/aph.1D211 – volume: 30 start-page: 403 year: 2007 ident: 2020022704324596700_R9 publication-title: Diabetes Care doi: 10.2337/dc06-1679 – ident: 2020022704324596700_R20 – volume: 10 start-page: 95 year: 1987 ident: 2020022704324596700_R19 publication-title: Diabetes Care doi: 10.2337/diacare.10.1.95 – volume: 10 start-page: 111 year: 2008 ident: 2020022704324596700_R4 publication-title: Diabetes Technol Ther doi: 10.1089/dia.2007.0257 – volume: 30 start-page: 804 year: 2004 ident: 2020022704324596700_R21 publication-title: Intensive Care Med doi: 10.1007/s00134-004-2252-2 – volume: 35 start-page: 2262 year: 2007 ident: 2020022704324596700_R17 publication-title: Crit Care Med doi: 10.1097/01.CCM.0000282073.98414.4B – volume: 55 start-page: 18 year: 2008 ident: 2020022704324596700_R10 publication-title: Clin Chem – volume: 29 start-page: 1062 year: 2001 ident: 2020022704324596700_R5 publication-title: Crit Care Med doi: 10.1097/00003246-200105000-00038 – volume: 10 start-page: 169 year: 2008 ident: 2020022704324596700_R14 publication-title: Diabetes Tech Therap doi: 10.1089/dia.2008.0263 – volume: 47 start-page: 209 year: 2001 ident: 2020022704324596700_R15 publication-title: Clin Chem doi: 10.1093/clinchem/47.2.209 – volume: 27 start-page: 461 year: 2004 ident: 2020022704324596700_R23 publication-title: Diabetes Care doi: 10.2337/diacare.27.2.461 – volume: 33 start-page: 1397 year: 1987 ident: 2020022704324596700_R6 publication-title: Clin Chem doi: 10.1093/clinchem/33.8.1397 – volume: 345 start-page: 1359 year: 2001 ident: 2020022704324596700_R3 publication-title: N Engl J Med doi: 10.1056/NEJMoa011300 |
SSID | ssj0004786 |
Score | 2.3523164 |
Snippet | Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not currently defined.... Abstract Background: Glucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are... BACKGROUNDGlucose meter analytical performance criteria required for safe and effective management of patients on tight glycemic control (TGC) are not... |
SourceID | proquest crossref pubmed pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 1091 |
SubjectTerms | Accuracy Analytical, structural and metabolic biochemistry Biological and medical sciences Blood Chemical Analysis - instrumentation Blood Glucose - analysis Computer Simulation Critical Illness Diabetes Fundamental and applied biological sciences. Psychology Glucose Humans Hypoglycemia Hypoglycemic Agents - administration & dosage Insulin Insulin - administration & dosage Intensive Care Units Investigative techniques, diagnostic techniques (general aspects) Medical sciences Molecular biophysics Monitoring, Physiologic - instrumentation Mortality |
Title | Glucose Meter Performance Criteria for Tight Glycemic Control Estimated by Simulation Modeling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20511447 https://www.proquest.com/docview/595216940 https://search.proquest.com/docview/733310082 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7aFMaglP7Y1ixt0ENfTS1LsuynsYYkpZBSthbyVCPJMgzWJG3Sh_73u7OUhD20L36wsTCfdLo733f6AC7KRuQWHUOiXZknkrg1Rkid1KL2uS-ssor6nSe3-fWDvJmqaeTmLCOtcr0ntht1PXf0j_xSleho8lKmPxbPCYlGUXE1Kmjswh7PtKbcqxiNt22RuhV6pDACbVrq2DkntLiktkME5Slwu7hUohWa33qm_YVZIkhNULd4P_xs3dDoEA5i_Mh-hgk_gh0_O4ZPk1ghP4HHceCgswnxXNjdti-AkaoBrTeGd9g9JeVs_PfNETueDQJjnQ3R4jGG9TWzb-z3n6co7sVIMo0a17_Aw2h4P7hOooZC4jBzWyUNCdHIxhVZU3AvG106pyw3quFaO07Hy9XeScO585jK2VoqtHmVNWlWp8aV4it0ZvOZPwWGmVOZ1soYnzpKc6zGZNBQFGFxkCzrQrLGr1qEozKqtl6mRbXGuyK8q4B3F_r_gbx5if5Tc6GKLvTWqFfRspbVZh10gW2eoklQncPM_Px1WWkhqGxR4Bd9C3O1HRr3IEwh9fcPh-7B50ASIFbuGXRWL6_-HGOPle3Drp5qvBYD3m9XWx_2roa3d7_-Aafo2nc |
link.rule.ids | 315,783,787,12068,12235,12777,21400,27936,27937,31731,31732,33278,33279,33385,33386,33756,33757,43322,43591,43612,43817,74073,74342,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6xIjEkNPF7HRvzA68RSWzHyROaEG3HKEKiSDxh2Y4jIUHbreWh__3uYrfVHthroljRZ5_vzvedP4CzquGFRceQKFcViSBujeFCJTWvfeFLK62kfufhbTF4ENeP8jFyc2aRVrncE9uNup44OiM_lxU6mqIS6cX0d0KiUVRcjQoaH2BTcHTV1Cje66_bIlUr9EhhBNq0ULFzjit-Tm2HCMpr4HZlQvJWaH7tmXamZoYgNUHd4v3ws3VDvV34FONH9iNM-B5s-PE-bA1jhfwAnvqBg86GxHNhd-u-AEaqBrTeGD5hI0rKWf9l4Ygdzy4DY51docVjDOtrZhfs_vk1insxkkyjxvVDeOhdjS4HSdRQSBxmbvOkISEa0bgyb8rMi0ZVzkmbGdlkSrmMrpervRMmy5zHVM7WQqLNy7xJ8zo1ruJH0BlPxv4zMMycqrSWxvjUUZpjFSaDhqIIi4PkeReSJX56Gq7K0G29THG9xFsT3jrg3YXTf0BefUTn1BmXZRdOlqjraFkzvVoHXWCrt2gSVOcwYz95m2nFOZUtSvyj4zBX66FxD8IUUn3579Df4eNgNLzRNz9vf53AdiAMEEP3K3Tmf978N4xD5va0XW1_AeCL2gs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2aFEKglH4k7XbbRIdezdqWZNmnUrbZTdtsCDSBnCIkWYJA9qPZzSH_PjOWdpce0quNhXnSaGY0b_QAvjaBVxYdQ6ZcU2WCuDWGC5W1vPWVr620kvqdJ-fV6ZX4dS2v05VCy0SrXO-J3Ubdzh2dkQ9kg46makQ-CIkVcfFj9G3xNyMBKSq0JjWNHXiJTlGQmEE93LI9hOpEHymkQPsWKnXRccUH1IKIAE0jz6sQknei81sv9WphlghYiEoXz4einUsavYHXKZZk3-Pkv4UXfvYO9iapWv4ebsaRj84mxHlhF9seAUYKB7T2GD5hl5Sgs_HdoyOmPBtG9jo7QevHeNa3zD6yP7fTJPTFSD6NmtgP4Gp0cjk8zZKeQuYwi1tlgURpRHB1GerCi6Aa56QtjAyFUq6gq-Za74QpCucxrbOtkGj_sgx52ebGNfwQdmfzmf8IDLOoJm-lMT53lPJYhYmhoYjC4iBl2YNsjZ9exGszdFc7U1yv8daEt4549-DoH5A3H9GZdcFl3YP-GnWdrGypN2uiB2zzFs2Dah5m5ucPS604pxJGjX_0Ic7VdmjcjzCdVJ_-O_Qx7OFC02c_z3_3YT9yB4is-xl2V_cP_guGJCt71C22J9QC3g4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucose+Meter+Performance+Criteria+for+Tight+Glycemic+Control+Estimated+by+Simulation+Modeling&rft.jtitle=Clinical+chemistry+%28Baltimore%2C+Md.%29&rft.au=Karon%2C+Brad+S&rft.au=Boyd%2C+James+C&rft.au=Klee%2C+George+G&rft.date=2010-07-01&rft.pub=Oxford+University+Press&rft.issn=0009-9147&rft.eissn=1530-8561&rft.volume=56&rft.issue=7&rft.spage=1091&rft_id=info:doi/10.1373%2Fclinchem.2010.145367&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2075712241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9147&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9147&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9147&client=summon |