Time–information uncertainty relations in thermodynamics
Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are...
Saved in:
Published in | Nature physics Vol. 16; no. 12; pp. 1211 - 1215 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2020
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time–information uncertainty relation—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we establish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam–Tamm version of the time–energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics or their function.
A time–information uncertainty relation in thermodynamics has been derived, analogous to the time–energy uncertainty relation in quantum mechanics, imposing limits on the speed of energy and entropy exchange between a system and external reservoirs. |
---|---|
AbstractList | Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time–information uncertainty relation—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we establish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam–Tamm version of the time–energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics or their function.
A time–information uncertainty relation in thermodynamics has been derived, analogous to the time–energy uncertainty relation in quantum mechanics, imposing limits on the speed of energy and entropy exchange between a system and external reservoirs. Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time–information uncertainty relation—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we establish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam–Tamm version of the time–energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics or their function.A time–information uncertainty relation in thermodynamics has been derived, analogous to the time–energy uncertainty relation in quantum mechanics, imposing limits on the speed of energy and entropy exchange between a system and external reservoirs. Not provided. |
Author | del Campo, Adolfo Nicholson, Schuyler B. García-Pintos, Luis Pedro Green, Jason R. |
Author_xml | – sequence: 1 givenname: Schuyler B. surname: Nicholson fullname: Nicholson, Schuyler B. organization: Department of Chemistry, University of Massachusetts Boston, Center for Quantum and Nonequilibrium Systems, University of Massachusetts Boston – sequence: 2 givenname: Luis Pedro surname: García-Pintos fullname: García-Pintos, Luis Pedro organization: Department of Physics, University of Massachusetts Boston, Joint Center for Quantum Information and Computer Science and Joint Quantum Institute, NIST/University of Maryland – sequence: 3 givenname: Adolfo surname: del Campo fullname: del Campo, Adolfo organization: Department of Physics, University of Massachusetts Boston, Donostia International Physics Center, IKERBASQUE, Basque Foundation for Science – sequence: 4 givenname: Jason R. orcidid: 0000-0003-2572-2838 surname: Green fullname: Green, Jason R. email: jason.green@umb.edu organization: Department of Chemistry, University of Massachusetts Boston, Center for Quantum and Nonequilibrium Systems, University of Massachusetts Boston, Department of Physics, University of Massachusetts Boston |
BackLink | https://www.osti.gov/biblio/1852778$$D View this record in Osti.gov |
BookMark | eNp9kM1OAyEURonRxLb6AO4muh4FhhkYd6bxL2nipq4JZS6WpgMV6GJ2voNv6JM47RhNTHR1CfkOfPeM0aHzDhA6I_iS4EJcRUbKiueY4hzXguTdARoRzsqcMkEOv8-8OEbjGFcYM1qRYoSu57aFj7d364wPrUrWu2zrNISkrEtdFmC9v4yZdVlaQmh90znVWh1P0JFR6winX3OCnu9u59OHfPZ0_zi9meWa4TrlYIiqMKZVqZmuNPCaaW4MF3VTFliB4biqjDKmFkA1XbCiEbxegGhUZRhpigk6H971MVkZtU2gl9o7BzpJIkrKuehDF0NoE_zrFmKSK78Nru8ld1tTwXE_JogMKR18jAGM3ATbqtBJguXOoxw8yt6j3HmUXc_wX0zfYO8kBWXX_5J0IGP_i3uB8NPpb-gTY2yLcQ |
CitedBy_id | crossref_primary_10_1103_PhysRevA_106_012202 crossref_primary_10_1103_PhysRevA_108_012204 crossref_primary_10_1103_PhysRevResearch_5_013194 crossref_primary_10_3390_e23111393 crossref_primary_10_3390_sym14020314 crossref_primary_10_1038_s41467_023_38074_8 crossref_primary_10_1103_PhysRevE_110_014143 crossref_primary_10_1103_PhysRevE_111_014101 crossref_primary_10_7566_JPSJ_93_064006 crossref_primary_10_1038_s41567_023_02330_x crossref_primary_10_1103_PhysRevE_108_L052103 crossref_primary_10_1109_TPWRS_2022_3146314 crossref_primary_10_1103_PhysRevA_107_022212 crossref_primary_10_1103_PhysRevE_108_064118 crossref_primary_10_1007_s11128_021_02992_7 crossref_primary_10_1103_PhysRevResearch_7_013307 crossref_primary_10_1038_s42005_022_00912_4 crossref_primary_10_1038_s42254_024_00720_5 crossref_primary_10_1515_jnet_2022_0104 crossref_primary_10_1103_PhysRevResearch_7_L012078 crossref_primary_10_1063_5_0165484 crossref_primary_10_1103_PhysRevX_11_031064 crossref_primary_10_1103_PhysRevResearch_3_043093 crossref_primary_10_1142_S0217979222300079 crossref_primary_10_37394_23209_2022_19_12 crossref_primary_10_1098_rspa_2024_0024 crossref_primary_10_1088_1361_6633_acacad crossref_primary_10_1103_PhysRevE_109_044114 crossref_primary_10_1002_ange_202423536 crossref_primary_10_1140_epja_s10050_021_00538_0 crossref_primary_10_1103_PhysRevX_14_041002 crossref_primary_10_1088_1674_1056_ac0daf crossref_primary_10_1103_PhysRevLett_127_240602 crossref_primary_10_1103_PhysRevE_106_044131 crossref_primary_10_1088_1751_8121_ac3fc2 crossref_primary_10_1103_PhysRevE_103_032105 crossref_primary_10_3390_e22121395 crossref_primary_10_1038_s41598_024_61872_z crossref_primary_10_1088_1742_5468_acbc24 crossref_primary_10_1063_5_0106714 crossref_primary_10_1016_j_cnsns_2024_108256 crossref_primary_10_1103_PhysRevLett_129_120603 crossref_primary_10_3390_e23060694 crossref_primary_10_1088_1742_5468_ac21d6 crossref_primary_10_1038_s42005_024_01851_y crossref_primary_10_1088_1742_5468_ac21d5 crossref_primary_10_1007_s11128_020_02964_3 crossref_primary_10_1103_PhysRevE_108_044139 crossref_primary_10_2139_ssrn_4000304 crossref_primary_10_1103_PRXQuantum_3_020319 crossref_primary_10_1103_PhysRevResearch_6_013018 crossref_primary_10_1209_0295_5075_ac8caf crossref_primary_10_1038_s42005_022_00985_1 crossref_primary_10_1007_s10701_023_00672_3 crossref_primary_10_1088_2633_1357_abe99f crossref_primary_10_1103_PhysRevResearch_5_L012016 crossref_primary_10_1103_PhysRevE_109_L042101 crossref_primary_10_1103_PhysRevLett_131_167101 crossref_primary_10_1140_epjp_s13360_022_03150_3 crossref_primary_10_1016_j_biosystems_2023_104956 crossref_primary_10_1103_PhysRevE_109_L052104 crossref_primary_10_1002_anie_202423536 crossref_primary_10_1103_PhysRevE_109_054126 crossref_primary_10_1103_PhysRevX_12_011038 crossref_primary_10_1016_j_physa_2024_129819 crossref_primary_10_1063_5_0084251 crossref_primary_10_1016_j_chaos_2024_115535 crossref_primary_10_1038_s41467_025_56451_3 crossref_primary_10_1007_s41884_023_00102_3 crossref_primary_10_1103_PhysRevLett_132_087102 crossref_primary_10_22331_q_2021_06_24_482 crossref_primary_10_1103_PhysRevLett_130_010402 crossref_primary_10_1021_acs_jpclett_2c03335 crossref_primary_10_3390_e23081087 crossref_primary_10_3390_e23030317 crossref_primary_10_1103_PhysRevLett_127_160601 crossref_primary_10_1103_PhysRevA_106_062438 crossref_primary_10_1103_PhysRevE_111_014133 crossref_primary_10_1088_1751_8121_acb5d6 crossref_primary_10_1103_PhysRevResearch_3_023128 crossref_primary_10_22331_q_2022_12_22_884 crossref_primary_10_1103_PhysRevResearch_5_023127 crossref_primary_10_1103_PhysRevE_109_064128 crossref_primary_10_1063_5_0125479 crossref_primary_10_1088_2632_072X_ac457a crossref_primary_10_1103_PhysRevE_103_042114 crossref_primary_10_22331_q_2023_07_11_1055 crossref_primary_10_1016_j_aop_2022_168970 crossref_primary_10_1103_PhysRevE_106_054151 crossref_primary_10_1021_acsphotonics_4c01401 crossref_primary_10_1088_1367_2630_ac7346 crossref_primary_10_3390_e26040323 |
Cites_doi | 10.1017/CBO9780511616907 10.1103/PhysRevE.93.062127 10.1088/1751-8113/49/17/175002 10.1146/annurev-conmatphys-062910-140506 10.1103/PhysRevE.96.012101 10.1103/PhysRevLett.121.070601 10.1103/PhysRevLett.120.070401 10.1002/9783527658701.ch6 10.1103/PhysRevLett.114.158101 10.1103/PhysRevLett.111.010402 10.1016/S0167-2789(98)00054-2 10.1088/1367-2630/aae512 10.1103/PhysRevD.23.357 10.1103/PhysRevE.98.032106 10.1103/PhysRevLett.119.160601 10.1063/1.3662140 10.1088/1367-2630/ab099e 10.1103/PhysRevLett.120.070402 10.1103/PhysRevX.10.021056 10.1103/PhysRevE.93.012129 10.1103/PhysRevLett.110.050402 10.1088/0034-4885/75/12/126001 10.1088/1367-2630/18/2/023049 10.1063/1.448337 10.1103/PhysRevLett.120.190602 10.1063/1.4895514 10.1103/PhysRevLett.51.1127 10.1016/j.physa.2014.04.035 10.1103/PhysRevLett.98.090401 10.1023/A:1018811305766 10.1073/pnas.1312165110 10.1103/PhysRevLett.72.3439 10.1103/PhysRevA.74.034301 10.1038/s41567-019-0702-6 10.1103/PhysRevLett.99.100602 10.1103/PhysRevE.99.062126 10.1088/1751-8121/aaf3ff 10.1002/j.1538-7305.1948.tb00917.x 10.1002/047174882X 10.1103/PhysRevLett.116.120601 10.1063/1.4907629 10.1016/0022-3697(88)90200-4 10.1103/PhysRevLett.110.050403 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
CorporateAuthor | Univ. of Massachusetts, Amherst, MA (United States) Duke Univ., Durham, NC (United States) Univ. of Maryland, College Park, MD (United States) |
CorporateAuthor_xml | – name: Univ. of Maryland, College Park, MD (United States) – name: Univ. of Massachusetts, Amherst, MA (United States) – name: Duke Univ., Durham, NC (United States) |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OTOTI |
DOI | 10.1038/s41567-020-0981-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 1215 |
ExternalDocumentID | 1852778 10_1038_s41567_020_0981_y |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 1856250 funderid: https://doi.org/10.13039/100000001 – fundername: John Templeton Foundation (JTF) funderid: https://doi.org/10.13039/100000925 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) grantid: W911NF-14-1-0359; W911NF-14-1-0359 funderid: https://doi.org/10.13039/100000183 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0019515 funderid: https://doi.org/10.13039/100000015 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI PUEGO Q9U AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c409t-ef1a600265c4c6ce794c7ff789d530aef7066faff98e2c2b43d879be8da6f41d3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Fri May 19 00:46:42 EDT 2023 Sat Aug 23 13:24:59 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 00:25:40 EDT 2025 Fri Feb 21 02:37:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-ef1a600265c4c6ce794c7ff789d530aef7066faff98e2c2b43d879be8da6f41d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) SC0019040; SC0019449; SC0019515; SC0020312 |
ORCID | 0000-0003-2572-2838 0000000325722838 |
PQID | 2473287047 |
PQPubID | 27545 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1852778 proquest_journals_2473287047 crossref_primary_10_1038_s41567_020_0981_y crossref_citationtrail_10_1038_s41567_020_0981_y springer_journals_10_1038_s41567_020_0981_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
References | ZielińskiBZychMGeneralization of the Margolus-Levitin boundPhys. Rev. A2006740343012006PhRvA..74c4301Z10.1103/PhysRevA.74.034301 KimELeeUHeseltineJHollerbachRGeometric structure and geodesic in a solvable model of nonequilibrium processPhys. Rev. E2016930621272016PhRvE..93f2127K371318910.1103/PhysRevE.93.062127 BoydABCrutchfieldDMJPIdentifying functional thermodynamics in autonomous Maxwellian ratchetsNew J. Phys.2016180230492016NJPh...18b3049B10.1088/1367-2630/18/2/023049 GreenJRCostaABGrzybowskiBASzleiferIRelationship between dynamical entropy and energy dissipation far from thermodynamic equilibriumProc. Natl Acad. Sci. USA201311016339163432013PNAS..11016339G10.1073/pnas.1312165110 Cover, T. M. & Thomas, J. A. Elements of Information Theory 2nd edn (Wiley, 2006). Reif, F. Fundamentals of Statistical and Thermal Physics (Waveland, 2009). BraunsteinSLCavesCMStatistical distance and the geometry of quantum statesPhys. Rev. Lett.199472343934431994PhRvL..72.3439B127463110.1103/PhysRevLett.72.3439 NicholsJWFlynnSWGreenJROrder and disorder in irreversible decay processesJ. Chem. Phys.20151420641132015JChPh.142f4113N10.1063/1.4907629 del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D10.1103/PhysRevLett.110.050403 PietzonkaPSeifertUUniversal trade-off between power, efficiency, and constancy in steady-state heat enginesPhys. Rev. Lett.20181201906022018PhRvL.120s0602P10.1103/PhysRevLett.120.190602 CrooksGEMeasuring thermodynamic lengthPhys. Rev. Lett.2007991006022007PhRvL..99j0602C10.1103/PhysRevLett.99.100602 SchlöglFThermodynamic uncertainty relationJ. Phys. Chem. Solids1988496796831988JPCS...49..679S10.1016/0022-3697(88)90200-4 HorowitzJMGingrichTRThermodynamic uncertainty relations constrain non-equilibrium fluctuationsNat. Phys.201916152010.1038/s41567-019-0702-6 TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T10.1103/PhysRevLett.110.050402 BaratoACChetriteRFaggionatoAGabrielliDBounds on current fluctuations in periodically driven systemsNew J. Phys.20182010302310.1088/1367-2630/aae512 MaesCFrenetic bounds on the entropy productionPhys. Rev. Lett.20171191606012017PhRvL.119p0601M10.1103/PhysRevLett.119.160601 WoottersWKStatistical distance and Hilbert spacePhys. Rev. D1981233573621981PhRvD..23..357W59989710.1103/PhysRevD.23.357 Margolus, N. The finite-state character of physical dynamics. Preprint at https://arxiv.org/abs/1109.4994 (2011). BaratoACSeifertUThermodynamic uncertainty relation for biomolecular processesPhys. Rev. Lett.20151141581012015PhRvL.114o8101B344865610.1103/PhysRevLett.114.158101 Messiah, A. Quantum Mechanics Vol. 1 (North-Holland, 1961). MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. USSR19459249254153340060.45003 HeseltineJKimENovel mapping in non-equilibrium stochastic processesJ. Phys. A2016491750022016JPhA...49q5002H349117610.1088/1751-8113/49/17/175002 Groot, S. R. D. & Mazur, P. Non-Equilibrium Thermodynamics Vol. 1 (Dover, 1984). MargolusNLevitinLBThe maximum speed of dynamical evolutionPhysica D19981201881951998PhyD..120..188M10.1016/S0167-2789(98)00054-2 UffinkJvan LithJThermodynamic uncertainty relationsFound. Phys.199929655692170918310.1023/A:1018811305766 HasegawaYVuTVUncertainty relations in stochastic processes: an information inequality approachPhys. Rev. E2019990621262019PhRvE..99f2126H10.1103/PhysRevE.99.062126 TakahashiKOhzekiMConflict between fastest relaxation of a Markov process and detailed balance conditionPhys. Rev. E2016930121292016PhRvE..93a2129T10.1103/PhysRevE.93.012129 Frieden, B. R. Science from Fisher Information 2nd Ed. (Cambridge University Press, 2004). OkuyamaMOhzekiMQuantum speed limit is not quantumPhys. Rev. Lett.20181200704022018PhRvL.120g0402O376871010.1103/PhysRevLett.120.070402 SalamonPBerrySRThermodynamic length and dissipated availabilityPhys. Rev. Lett.198351112711301983PhRvL..51.1127S71735010.1103/PhysRevLett.51.1127 SeifertUStochastic thermodynamics, fluctuation theorems and molecular machinesRep. Prog. Phys.2012751260012012RPPh...75l6001S10.1088/0034-4885/75/12/126001 Sagawa, T. & Ueda, M. in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (eds Klages, R. et al.) 181–211 (Wiley-VCH, 2013). Ito, S. & Dechant, A. Stochastic time evolution, information geometry and the Cramér-Rao bound. Phys. Rev. X10, 021056 (2020). GingrichTRHorowitzJMPerunovNEnglandJLDissipation bounds all steady-state current fluctuationsPhys. Rev. Lett.20161161206012016PhRvL.116l0601G10.1103/PhysRevLett.116.120601 PietzonkaPRitortFSeifertUFinite-time generalization of the thermodynamic uncertainty relationPhys. Rev. E2017960121012017PhRvE..96a2101P10.1103/PhysRevE.96.012101 ShanahanBChenuAMargolusNdel CampoAQuantum speed limits across the quantum-to-classical transitionPhys. Rev. Lett.20181200704012018PhRvL.120g0401S10.1103/PhysRevLett.120.070401 ShannonCEA mathematical theory of communicationBell Syst. Tech. J.1948276236562628610.1002/j.1538-7305.1948.tb00917.x FlynnSWZhaoHCGreenJRMeasuring disorder in irreversible decay processesJ. Chem. Phys.20141411041072014JChPh.141j4107F10.1063/1.4895514 GrantJJackRLWhitelamSAnalyzing mechanisms and microscopic reversibility of self-assemblyJ. Chem. Phys.20111352145052011JChPh.135u4505G10.1063/1.3662140 Casella, G. & Berger, R. L. Statistical Inference Vol. 2 (Duxbury, 2002). DechantAMultidimensional thermodynamic uncertainty relationsJ. Phys. A2018520350012019JPhA...52c5001D389970210.1088/1751-8121/aaf3ff NicholsonSBdel CampoAGreenJRNonequilibrium uncertainty principle from information geometryPhys. Rev. E2018980321062018PhRvE..98c2106N10.1103/PhysRevE.98.032106 García-PintosLdel CampoAQuantum speed limits under continuous quantum measurementsNew J. Phys.2019210330122019NJPh...21c3012G417091310.1088/1367-2630/ab099e ShiraishiNFunoKSaitoKSpeed limit for classical stochastic processesPhys. Rev. Lett.20181210706012018PhRvL.121g0601S10.1103/PhysRevLett.121.070601 SalamonPNultonJDBerryRSLength in statistical thermodynamicsJ. Chem. Phys.198582243324361985JChPh..82.2433S78677710.1063/1.448337 BoixoSFlammiaSTCavesCMGeremiaJGeneralized limits for single-parameter quantum estimationPhys. Rev. Lett.2007980904012007PhRvL..98i0401B10.1103/PhysRevLett.98.090401 JarzynskiCEqualities and inequalities: irreversibility and the second law of thermodynamics at the nanoscaleAnnu. Rev. Condens. Matter Phys.201123293512011ARCMP...2..329J10.1146/annurev-conmatphys-062910-140506 Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 2nd edn (Wiley, 1985). Van den BroeckCEspositoMEnsemble and trajectory thermodynamics: a brief introductionPhysica A20154186162015PhyA..418....6V10.1016/j.physa.2014.04.035 DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D10.1103/PhysRevLett.111.010402 S Deffner (981_CR25) 2013; 111 J Heseltine (981_CR43) 2016; 49 A del Campo (981_CR24) 2013; 110 B Zieliński (981_CR21) 2006; 74 C Maes (981_CR13) 2017; 119 N Margolus (981_CR3) 1998; 120 P Pietzonka (981_CR4) 2018; 120 CE Shannon (981_CR32) 1948; 27 WK Wootters (981_CR37) 1981; 23 L García-Pintos (981_CR26) 2019; 21 E Kim (981_CR44) 2016; 93 981_CR49 981_CR48 S Boixo (981_CR45) 2007; 98 AC Barato (981_CR7) 2018; 20 SB Nicholson (981_CR6) 2018; 98 M Okuyama (981_CR28) 2018; 120 U Seifert (981_CR15) 2012; 75 C Van den Broeck (981_CR16) 2015; 418 A Dechant (981_CR8) 2018; 52 F Schlögl (981_CR10) 1988; 49 981_CR47 981_CR46 MM Taddei (981_CR23) 2013; 110 JR Green (981_CR20) 2013; 110 981_CR42 AB Boyd (981_CR17) 2016; 18 Y Hasegawa (981_CR19) 2019; 99 JW Nichols (981_CR41) 2015; 142 C Jarzynski (981_CR14) 2011; 2 L Mandelstam (981_CR2) 1945; 9 981_CR34 981_CR33 J Grant (981_CR50) 2011; 135 SW Flynn (981_CR40) 2014; 141 P Salamon (981_CR35) 1983; 51 TR Gingrich (981_CR5) 2016; 116 B Shanahan (981_CR27) 2018; 120 N Shiraishi (981_CR30) 2018; 121 K Takahashi (981_CR29) 2016; 93 GE Crooks (981_CR39) 2007; 99 981_CR1 JM Horowitz (981_CR31) 2019; 16 981_CR22 P Pietzonka (981_CR12) 2017; 96 J Uffink (981_CR9) 1999; 29 981_CR18 P Salamon (981_CR36) 1985; 82 SL Braunstein (981_CR38) 1994; 72 AC Barato (981_CR11) 2015; 114 |
References_xml | – reference: del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D10.1103/PhysRevLett.110.050403 – reference: ShannonCEA mathematical theory of communicationBell Syst. Tech. J.1948276236562628610.1002/j.1538-7305.1948.tb00917.x – reference: Casella, G. & Berger, R. L. Statistical Inference Vol. 2 (Duxbury, 2002). – reference: HasegawaYVuTVUncertainty relations in stochastic processes: an information inequality approachPhys. Rev. E2019990621262019PhRvE..99f2126H10.1103/PhysRevE.99.062126 – reference: Sagawa, T. & Ueda, M. in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (eds Klages, R. et al.) 181–211 (Wiley-VCH, 2013). – reference: BraunsteinSLCavesCMStatistical distance and the geometry of quantum statesPhys. Rev. Lett.199472343934431994PhRvL..72.3439B127463110.1103/PhysRevLett.72.3439 – reference: TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T10.1103/PhysRevLett.110.050402 – reference: DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D10.1103/PhysRevLett.111.010402 – reference: MargolusNLevitinLBThe maximum speed of dynamical evolutionPhysica D19981201881951998PhyD..120..188M10.1016/S0167-2789(98)00054-2 – reference: GingrichTRHorowitzJMPerunovNEnglandJLDissipation bounds all steady-state current fluctuationsPhys. Rev. Lett.20161161206012016PhRvL.116l0601G10.1103/PhysRevLett.116.120601 – reference: SeifertUStochastic thermodynamics, fluctuation theorems and molecular machinesRep. Prog. Phys.2012751260012012RPPh...75l6001S10.1088/0034-4885/75/12/126001 – reference: SalamonPBerrySRThermodynamic length and dissipated availabilityPhys. Rev. Lett.198351112711301983PhRvL..51.1127S71735010.1103/PhysRevLett.51.1127 – reference: BoixoSFlammiaSTCavesCMGeremiaJGeneralized limits for single-parameter quantum estimationPhys. Rev. Lett.2007980904012007PhRvL..98i0401B10.1103/PhysRevLett.98.090401 – reference: ZielińskiBZychMGeneralization of the Margolus-Levitin boundPhys. Rev. A2006740343012006PhRvA..74c4301Z10.1103/PhysRevA.74.034301 – reference: ShiraishiNFunoKSaitoKSpeed limit for classical stochastic processesPhys. Rev. Lett.20181210706012018PhRvL.121g0601S10.1103/PhysRevLett.121.070601 – reference: MaesCFrenetic bounds on the entropy productionPhys. Rev. Lett.20171191606012017PhRvL.119p0601M10.1103/PhysRevLett.119.160601 – reference: Ito, S. & Dechant, A. Stochastic time evolution, information geometry and the Cramér-Rao bound. Phys. Rev. X10, 021056 (2020). – reference: ShanahanBChenuAMargolusNdel CampoAQuantum speed limits across the quantum-to-classical transitionPhys. Rev. Lett.20181200704012018PhRvL.120g0401S10.1103/PhysRevLett.120.070401 – reference: PietzonkaPSeifertUUniversal trade-off between power, efficiency, and constancy in steady-state heat enginesPhys. Rev. Lett.20181201906022018PhRvL.120s0602P10.1103/PhysRevLett.120.190602 – reference: Frieden, B. R. Science from Fisher Information 2nd Ed. (Cambridge University Press, 2004). – reference: TakahashiKOhzekiMConflict between fastest relaxation of a Markov process and detailed balance conditionPhys. Rev. E2016930121292016PhRvE..93a2129T10.1103/PhysRevE.93.012129 – reference: GreenJRCostaABGrzybowskiBASzleiferIRelationship between dynamical entropy and energy dissipation far from thermodynamic equilibriumProc. Natl Acad. Sci. USA201311016339163432013PNAS..11016339G10.1073/pnas.1312165110 – reference: DechantAMultidimensional thermodynamic uncertainty relationsJ. Phys. A2018520350012019JPhA...52c5001D389970210.1088/1751-8121/aaf3ff – reference: Van den BroeckCEspositoMEnsemble and trajectory thermodynamics: a brief introductionPhysica A20154186162015PhyA..418....6V10.1016/j.physa.2014.04.035 – reference: García-PintosLdel CampoAQuantum speed limits under continuous quantum measurementsNew J. Phys.2019210330122019NJPh...21c3012G417091310.1088/1367-2630/ab099e – reference: OkuyamaMOhzekiMQuantum speed limit is not quantumPhys. Rev. Lett.20181200704022018PhRvL.120g0402O376871010.1103/PhysRevLett.120.070402 – reference: WoottersWKStatistical distance and Hilbert spacePhys. Rev. D1981233573621981PhRvD..23..357W59989710.1103/PhysRevD.23.357 – reference: UffinkJvan LithJThermodynamic uncertainty relationsFound. Phys.199929655692170918310.1023/A:1018811305766 – reference: CrooksGEMeasuring thermodynamic lengthPhys. Rev. Lett.2007991006022007PhRvL..99j0602C10.1103/PhysRevLett.99.100602 – reference: Cover, T. M. & Thomas, J. A. Elements of Information Theory 2nd edn (Wiley, 2006). – reference: BoydABCrutchfieldDMJPIdentifying functional thermodynamics in autonomous Maxwellian ratchetsNew J. Phys.2016180230492016NJPh...18b3049B10.1088/1367-2630/18/2/023049 – reference: NicholsJWFlynnSWGreenJROrder and disorder in irreversible decay processesJ. Chem. Phys.20151420641132015JChPh.142f4113N10.1063/1.4907629 – reference: BaratoACChetriteRFaggionatoAGabrielliDBounds on current fluctuations in periodically driven systemsNew J. Phys.20182010302310.1088/1367-2630/aae512 – reference: HeseltineJKimENovel mapping in non-equilibrium stochastic processesJ. Phys. A2016491750022016JPhA...49q5002H349117610.1088/1751-8113/49/17/175002 – reference: Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 2nd edn (Wiley, 1985). – reference: HorowitzJMGingrichTRThermodynamic uncertainty relations constrain non-equilibrium fluctuationsNat. Phys.201916152010.1038/s41567-019-0702-6 – reference: BaratoACSeifertUThermodynamic uncertainty relation for biomolecular processesPhys. Rev. Lett.20151141581012015PhRvL.114o8101B344865610.1103/PhysRevLett.114.158101 – reference: NicholsonSBdel CampoAGreenJRNonequilibrium uncertainty principle from information geometryPhys. Rev. E2018980321062018PhRvE..98c2106N10.1103/PhysRevE.98.032106 – reference: JarzynskiCEqualities and inequalities: irreversibility and the second law of thermodynamics at the nanoscaleAnnu. Rev. Condens. Matter Phys.201123293512011ARCMP...2..329J10.1146/annurev-conmatphys-062910-140506 – reference: KimELeeUHeseltineJHollerbachRGeometric structure and geodesic in a solvable model of nonequilibrium processPhys. Rev. E2016930621272016PhRvE..93f2127K371318910.1103/PhysRevE.93.062127 – reference: Messiah, A. Quantum Mechanics Vol. 1 (North-Holland, 1961). – reference: Reif, F. Fundamentals of Statistical and Thermal Physics (Waveland, 2009). – reference: GrantJJackRLWhitelamSAnalyzing mechanisms and microscopic reversibility of self-assemblyJ. Chem. Phys.20111352145052011JChPh.135u4505G10.1063/1.3662140 – reference: SalamonPNultonJDBerryRSLength in statistical thermodynamicsJ. Chem. Phys.198582243324361985JChPh..82.2433S78677710.1063/1.448337 – reference: SchlöglFThermodynamic uncertainty relationJ. Phys. Chem. Solids1988496796831988JPCS...49..679S10.1016/0022-3697(88)90200-4 – reference: PietzonkaPRitortFSeifertUFinite-time generalization of the thermodynamic uncertainty relationPhys. Rev. E2017960121012017PhRvE..96a2101P10.1103/PhysRevE.96.012101 – reference: Margolus, N. The finite-state character of physical dynamics. Preprint at https://arxiv.org/abs/1109.4994 (2011). – reference: FlynnSWZhaoHCGreenJRMeasuring disorder in irreversible decay processesJ. Chem. Phys.20141411041072014JChPh.141j4107F10.1063/1.4895514 – reference: Groot, S. R. D. & Mazur, P. Non-Equilibrium Thermodynamics Vol. 1 (Dover, 1984). – reference: MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. USSR19459249254153340060.45003 – ident: 981_CR42 doi: 10.1017/CBO9780511616907 – volume: 93 start-page: 062127 year: 2016 ident: 981_CR44 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.062127 – volume: 49 start-page: 175002 year: 2016 ident: 981_CR43 publication-title: J. Phys. A doi: 10.1088/1751-8113/49/17/175002 – volume: 2 start-page: 329 year: 2011 ident: 981_CR14 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-062910-140506 – volume: 96 start-page: 012101 year: 2017 ident: 981_CR12 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.012101 – volume: 9 start-page: 249 year: 1945 ident: 981_CR2 publication-title: J. Phys. USSR – volume: 121 start-page: 070601 year: 2018 ident: 981_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.070601 – volume: 120 start-page: 070401 year: 2018 ident: 981_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.070401 – ident: 981_CR18 doi: 10.1002/9783527658701.ch6 – volume: 114 start-page: 158101 year: 2015 ident: 981_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.158101 – volume: 111 start-page: 010402 year: 2013 ident: 981_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.010402 – volume: 120 start-page: 188 year: 1998 ident: 981_CR3 publication-title: Physica D doi: 10.1016/S0167-2789(98)00054-2 – volume: 20 start-page: 103023 year: 2018 ident: 981_CR7 publication-title: New J. Phys. doi: 10.1088/1367-2630/aae512 – volume: 23 start-page: 357 year: 1981 ident: 981_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.23.357 – volume: 98 start-page: 032106 year: 2018 ident: 981_CR6 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.032106 – volume: 119 start-page: 160601 year: 2017 ident: 981_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.160601 – ident: 981_CR1 – volume: 135 start-page: 214505 year: 2011 ident: 981_CR50 publication-title: J. Chem. Phys. doi: 10.1063/1.3662140 – volume: 21 start-page: 033012 year: 2019 ident: 981_CR26 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab099e – ident: 981_CR49 – volume: 120 start-page: 070402 year: 2018 ident: 981_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.070402 – ident: 981_CR46 doi: 10.1103/PhysRevX.10.021056 – volume: 93 start-page: 012129 year: 2016 ident: 981_CR29 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.012129 – volume: 110 start-page: 050402 year: 2013 ident: 981_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.050402 – volume: 75 start-page: 126001 year: 2012 ident: 981_CR15 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/12/126001 – volume: 18 start-page: 023049 year: 2016 ident: 981_CR17 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/023049 – volume: 82 start-page: 2433 year: 1985 ident: 981_CR36 publication-title: J. Chem. Phys. doi: 10.1063/1.448337 – volume: 120 start-page: 190602 year: 2018 ident: 981_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.190602 – ident: 981_CR34 – volume: 141 start-page: 104107 year: 2014 ident: 981_CR40 publication-title: J. Chem. Phys. doi: 10.1063/1.4895514 – volume: 51 start-page: 1127 year: 1983 ident: 981_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.1127 – volume: 418 start-page: 6 year: 2015 ident: 981_CR16 publication-title: Physica A doi: 10.1016/j.physa.2014.04.035 – volume: 98 start-page: 090401 year: 2007 ident: 981_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.090401 – volume: 29 start-page: 655 year: 1999 ident: 981_CR9 publication-title: Found. Phys. doi: 10.1023/A:1018811305766 – volume: 110 start-page: 16339 year: 2013 ident: 981_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1312165110 – ident: 981_CR22 – volume: 72 start-page: 3439 year: 1994 ident: 981_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3439 – volume: 74 start-page: 034301 year: 2006 ident: 981_CR21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.034301 – volume: 16 start-page: 15 year: 2019 ident: 981_CR31 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0702-6 – volume: 99 start-page: 100602 year: 2007 ident: 981_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.100602 – volume: 99 start-page: 062126 year: 2019 ident: 981_CR19 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.062126 – ident: 981_CR33 – volume: 52 start-page: 035001 year: 2018 ident: 981_CR8 publication-title: J. Phys. A doi: 10.1088/1751-8121/aaf3ff – volume: 27 start-page: 623 year: 1948 ident: 981_CR32 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb00917.x – ident: 981_CR48 doi: 10.1002/047174882X – volume: 116 start-page: 120601 year: 2016 ident: 981_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.120601 – volume: 142 start-page: 064113 year: 2015 ident: 981_CR41 publication-title: J. Chem. Phys. doi: 10.1063/1.4907629 – volume: 49 start-page: 679 year: 1988 ident: 981_CR10 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(88)90200-4 – volume: 110 start-page: 050403 year: 2013 ident: 981_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.050403 – ident: 981_CR47 |
SSID | ssj0042613 |
Score | 2.6566133 |
Snippet | Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1211 |
SubjectTerms | 639/766/530/2804 639/766/530/951 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Energy Energy dissipation Entropy Heat exchange Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Quantum mechanics Quantum physics Speed limits Theoretical Thermodynamic equilibrium Thermodynamics Uncertainty |
Title | Time–information uncertainty relations in thermodynamics |
URI | https://link.springer.com/article/10.1038/s41567-020-0981-y https://www.proquest.com/docview/2473287047 https://www.osti.gov/biblio/1852778 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50F4_iE9fH0oMnJdhukib1Iq64iuAiouAtpGkCgu6qrYe9-R_8h_4SM22qKOi5bQpfMq_MzDcAu94H1TjynVjuNGFUD4g2uSaSJdaI1GhXs-tfjtPzW3Zxx-_ChVsZyipbnVgr6mJq8I78YMCQVkbETBw9PROcGoXZ1TBCYx66XgVL2YHu8HR8dd3qYowPaNMSyQmu0OY1qTwoMXQRBMOnOJMJmf2wTJ2pl7AfXuevRGltf0ZLsBgcx-i42ellmLOTFVioCzhNuQqH2Mvx8fYeiFAR7sibrCbhX82il7boLbqfROj0PU6LZhh9uQa3o9Obk3MS5iIQ46OxiliXaEynpdwwkxrrRcoI54TMCk5jbZ3wfoTTzmXSDswgZ7SQIsutLHTqWFLQdehMphO7AZGJc52kGeOcU8ZyrgVNpcyRhF4WWcF6ELeYKBNIw3F2xYOqk9dUqgZG5WFUCKOa9WDv65OnhjHjv5e3EGjlzT1y1hos7jGVwo5uIWQPtlv8VRCtUn0fhB7st3vy_fjPX23-v9gWRuxY3oeVKtvQqV5e7Y73N6q8D_NydNaH7vFoOBz3wxH7BESM1Q4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7RrapyQfRPXX7aHMqFyiKJ7dhBQgiVbpfycwKJm-s4tlQJssAGodx4B96Dh-JJ8CRxEUjlxjmxHX0ee2YyM98AfPM2qMaW78RypwmjOiXaFJpIllgjMqNdy66_f5CNj9jvY348A7ehFgbTKsOd2F7U5cTgP_K1lCGtjIiZ2Dw7J9g1CqOroYVGJxa7trnyLtt0Y2fb7-9Kmo5-Hv4Yk76rADHel6mJdYnGYFTGDTOZsV4gjXBOyLzkNNbWCa-FnXYulzY1acFoKUVeWFnqzLGkpH7eV_CaUa_JsTJ99Cvc_OiN0K4AkxP83hBFpXJtio6SIOisxblMSPNIDw4m_jw_snGfhGVbbTeah7neTI22Orl6BzO2eg9v2nRRM_0A61g5cnd909Ou4uZGXkF26QV1E12EFLvobxWhiXk6KZtKn_rBH-HoRfD6BINqUtnPEJm40EmWM845ZazgWtBMygIp72WZl2wIccBEmZ6iHDtlnKg2VE6l6mBUHkaFMKpmCKv_hpx1_BzPvbyIQCtvXCBDrsFUIlMrrB8XQg5hKeCv-oM8VQ9iN4TvYU8eHv93qYXnJ_sKb8eH-3tqb-dgdxFmU5SLNkdmCQb1xaVd9pZOXXxpxSuCPy8tz_et8Q_B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7RRVS9oBZasYXSHMqllbVJbMdOJVTxt-KvK1QViZvrOLaEBFlgU1W59R36Nn0cnqSeJC6iUrlxTmxH48-emczMNwDvvA2qseU7sdxpwqhOiTaFJpIl1ojMaNey63-eZPun7PCMn83B71ALg2mV4U5sL-pyavAf-ShlSCsjYiZGrk-LONkdf7q6JthBCiOtoZ1GB5Ej2_zw7tts82DX7_VGmo73vu7sk77DADHer6mJdYnGwFTGDTOZsR6cRjgnZF5yGmvrhNfITjuXS5uatGC0lCIvrCx15lhSUj_vE5gX6BUNYH57b3LyJegB9E1oV47JCX59iKlSOZqh2yQIum5xLhPS3NOKg6k_3fcs3n-CtK3uGz-Hxd5ojbY6lL2AOVstwUKbPGpmy_AR60huf_7qSVhxqyOvLrtkg7qJbkLCXXReRWhwXk7LptKXfvBLOH0Uib2CQTWt7ApEJi50kuWMc04ZK7gWNJOyQAJ8WeYlG0IcZKJMT1iOfTMuVBs4p1J1YlRejArFqJohvP875Kpj63jo5VUUtPKmBvLlGkwsMrXCanIh5BDWgvxVf6xn6g6EQ_gQ9uTu8X-Xev3wZG_hqceyOj6YHK3CsxRh0SbMrMGgvvlu33izpy7We3xF8O2xIf0HzP4VUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time%E2%80%93information+uncertainty+relations+in+thermodynamics&rft.jtitle=Nature+physics&rft.au=Nicholson%2C+Schuyler+B.&rft.au=Garc%C3%ADa-Pintos%2C+Luis+Pedro&rft.au=del+Campo%2C+Adolfo&rft.au=Green%2C+Jason+R.&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group+%28NPG%29&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=16&rft.issue=12&rft_id=info:doi/10.1038%2Fs41567-020-0981-y&rft.externalDocID=1852778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |