Time–information uncertainty relations in thermodynamics

Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 16; no. 12; pp. 1211 - 1215
Main Authors Nicholson, Schuyler B., García-Pintos, Luis Pedro, del Campo, Adolfo, Green, Jason R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2020
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time–information uncertainty relation—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we establish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam–Tamm version of the time–energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics or their function. A time–information uncertainty relation in thermodynamics has been derived, analogous to the time–energy uncertainty relation in quantum mechanics, imposing limits on the speed of energy and entropy exchange between a system and external reservoirs.
AbstractList Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time–information uncertainty relation—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we establish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam–Tamm version of the time–energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics or their function. A time–information uncertainty relation in thermodynamics has been derived, analogous to the time–energy uncertainty relation in quantum mechanics, imposing limits on the speed of energy and entropy exchange between a system and external reservoirs.
Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time–information uncertainty relation—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we establish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam–Tamm version of the time–energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics or their function.A time–information uncertainty relation in thermodynamics has been derived, analogous to the time–energy uncertainty relation in quantum mechanics, imposing limits on the speed of energy and entropy exchange between a system and external reservoirs.
Not provided.
Author del Campo, Adolfo
Nicholson, Schuyler B.
García-Pintos, Luis Pedro
Green, Jason R.
Author_xml – sequence: 1
  givenname: Schuyler B.
  surname: Nicholson
  fullname: Nicholson, Schuyler B.
  organization: Department of Chemistry, University of Massachusetts Boston, Center for Quantum and Nonequilibrium Systems, University of Massachusetts Boston
– sequence: 2
  givenname: Luis Pedro
  surname: García-Pintos
  fullname: García-Pintos, Luis Pedro
  organization: Department of Physics, University of Massachusetts Boston, Joint Center for Quantum Information and Computer Science and Joint Quantum Institute, NIST/University of Maryland
– sequence: 3
  givenname: Adolfo
  surname: del Campo
  fullname: del Campo, Adolfo
  organization: Department of Physics, University of Massachusetts Boston, Donostia International Physics Center, IKERBASQUE, Basque Foundation for Science
– sequence: 4
  givenname: Jason R.
  orcidid: 0000-0003-2572-2838
  surname: Green
  fullname: Green, Jason R.
  email: jason.green@umb.edu
  organization: Department of Chemistry, University of Massachusetts Boston, Center for Quantum and Nonequilibrium Systems, University of Massachusetts Boston, Department of Physics, University of Massachusetts Boston
BackLink https://www.osti.gov/biblio/1852778$$D View this record in Osti.gov
BookMark eNp9kM1OAyEURonRxLb6AO4muh4FhhkYd6bxL2nipq4JZS6WpgMV6GJ2voNv6JM47RhNTHR1CfkOfPeM0aHzDhA6I_iS4EJcRUbKiueY4hzXguTdARoRzsqcMkEOv8-8OEbjGFcYM1qRYoSu57aFj7d364wPrUrWu2zrNISkrEtdFmC9v4yZdVlaQmh90znVWh1P0JFR6winX3OCnu9u59OHfPZ0_zi9meWa4TrlYIiqMKZVqZmuNPCaaW4MF3VTFliB4biqjDKmFkA1XbCiEbxegGhUZRhpigk6H971MVkZtU2gl9o7BzpJIkrKuehDF0NoE_zrFmKSK78Nru8ld1tTwXE_JogMKR18jAGM3ATbqtBJguXOoxw8yt6j3HmUXc_wX0zfYO8kBWXX_5J0IGP_i3uB8NPpb-gTY2yLcQ
CitedBy_id crossref_primary_10_1103_PhysRevA_106_012202
crossref_primary_10_1103_PhysRevA_108_012204
crossref_primary_10_1103_PhysRevResearch_5_013194
crossref_primary_10_3390_e23111393
crossref_primary_10_3390_sym14020314
crossref_primary_10_1038_s41467_023_38074_8
crossref_primary_10_1103_PhysRevE_110_014143
crossref_primary_10_1103_PhysRevE_111_014101
crossref_primary_10_7566_JPSJ_93_064006
crossref_primary_10_1038_s41567_023_02330_x
crossref_primary_10_1103_PhysRevE_108_L052103
crossref_primary_10_1109_TPWRS_2022_3146314
crossref_primary_10_1103_PhysRevA_107_022212
crossref_primary_10_1103_PhysRevE_108_064118
crossref_primary_10_1007_s11128_021_02992_7
crossref_primary_10_1103_PhysRevResearch_7_013307
crossref_primary_10_1038_s42005_022_00912_4
crossref_primary_10_1038_s42254_024_00720_5
crossref_primary_10_1515_jnet_2022_0104
crossref_primary_10_1103_PhysRevResearch_7_L012078
crossref_primary_10_1063_5_0165484
crossref_primary_10_1103_PhysRevX_11_031064
crossref_primary_10_1103_PhysRevResearch_3_043093
crossref_primary_10_1142_S0217979222300079
crossref_primary_10_37394_23209_2022_19_12
crossref_primary_10_1098_rspa_2024_0024
crossref_primary_10_1088_1361_6633_acacad
crossref_primary_10_1103_PhysRevE_109_044114
crossref_primary_10_1002_ange_202423536
crossref_primary_10_1140_epja_s10050_021_00538_0
crossref_primary_10_1103_PhysRevX_14_041002
crossref_primary_10_1088_1674_1056_ac0daf
crossref_primary_10_1103_PhysRevLett_127_240602
crossref_primary_10_1103_PhysRevE_106_044131
crossref_primary_10_1088_1751_8121_ac3fc2
crossref_primary_10_1103_PhysRevE_103_032105
crossref_primary_10_3390_e22121395
crossref_primary_10_1038_s41598_024_61872_z
crossref_primary_10_1088_1742_5468_acbc24
crossref_primary_10_1063_5_0106714
crossref_primary_10_1016_j_cnsns_2024_108256
crossref_primary_10_1103_PhysRevLett_129_120603
crossref_primary_10_3390_e23060694
crossref_primary_10_1088_1742_5468_ac21d6
crossref_primary_10_1038_s42005_024_01851_y
crossref_primary_10_1088_1742_5468_ac21d5
crossref_primary_10_1007_s11128_020_02964_3
crossref_primary_10_1103_PhysRevE_108_044139
crossref_primary_10_2139_ssrn_4000304
crossref_primary_10_1103_PRXQuantum_3_020319
crossref_primary_10_1103_PhysRevResearch_6_013018
crossref_primary_10_1209_0295_5075_ac8caf
crossref_primary_10_1038_s42005_022_00985_1
crossref_primary_10_1007_s10701_023_00672_3
crossref_primary_10_1088_2633_1357_abe99f
crossref_primary_10_1103_PhysRevResearch_5_L012016
crossref_primary_10_1103_PhysRevE_109_L042101
crossref_primary_10_1103_PhysRevLett_131_167101
crossref_primary_10_1140_epjp_s13360_022_03150_3
crossref_primary_10_1016_j_biosystems_2023_104956
crossref_primary_10_1103_PhysRevE_109_L052104
crossref_primary_10_1002_anie_202423536
crossref_primary_10_1103_PhysRevE_109_054126
crossref_primary_10_1103_PhysRevX_12_011038
crossref_primary_10_1016_j_physa_2024_129819
crossref_primary_10_1063_5_0084251
crossref_primary_10_1016_j_chaos_2024_115535
crossref_primary_10_1038_s41467_025_56451_3
crossref_primary_10_1007_s41884_023_00102_3
crossref_primary_10_1103_PhysRevLett_132_087102
crossref_primary_10_22331_q_2021_06_24_482
crossref_primary_10_1103_PhysRevLett_130_010402
crossref_primary_10_1021_acs_jpclett_2c03335
crossref_primary_10_3390_e23081087
crossref_primary_10_3390_e23030317
crossref_primary_10_1103_PhysRevLett_127_160601
crossref_primary_10_1103_PhysRevA_106_062438
crossref_primary_10_1103_PhysRevE_111_014133
crossref_primary_10_1088_1751_8121_acb5d6
crossref_primary_10_1103_PhysRevResearch_3_023128
crossref_primary_10_22331_q_2022_12_22_884
crossref_primary_10_1103_PhysRevResearch_5_023127
crossref_primary_10_1103_PhysRevE_109_064128
crossref_primary_10_1063_5_0125479
crossref_primary_10_1088_2632_072X_ac457a
crossref_primary_10_1103_PhysRevE_103_042114
crossref_primary_10_22331_q_2023_07_11_1055
crossref_primary_10_1016_j_aop_2022_168970
crossref_primary_10_1103_PhysRevE_106_054151
crossref_primary_10_1021_acsphotonics_4c01401
crossref_primary_10_1088_1367_2630_ac7346
crossref_primary_10_3390_e26040323
Cites_doi 10.1017/CBO9780511616907
10.1103/PhysRevE.93.062127
10.1088/1751-8113/49/17/175002
10.1146/annurev-conmatphys-062910-140506
10.1103/PhysRevE.96.012101
10.1103/PhysRevLett.121.070601
10.1103/PhysRevLett.120.070401
10.1002/9783527658701.ch6
10.1103/PhysRevLett.114.158101
10.1103/PhysRevLett.111.010402
10.1016/S0167-2789(98)00054-2
10.1088/1367-2630/aae512
10.1103/PhysRevD.23.357
10.1103/PhysRevE.98.032106
10.1103/PhysRevLett.119.160601
10.1063/1.3662140
10.1088/1367-2630/ab099e
10.1103/PhysRevLett.120.070402
10.1103/PhysRevX.10.021056
10.1103/PhysRevE.93.012129
10.1103/PhysRevLett.110.050402
10.1088/0034-4885/75/12/126001
10.1088/1367-2630/18/2/023049
10.1063/1.448337
10.1103/PhysRevLett.120.190602
10.1063/1.4895514
10.1103/PhysRevLett.51.1127
10.1016/j.physa.2014.04.035
10.1103/PhysRevLett.98.090401
10.1023/A:1018811305766
10.1073/pnas.1312165110
10.1103/PhysRevLett.72.3439
10.1103/PhysRevA.74.034301
10.1038/s41567-019-0702-6
10.1103/PhysRevLett.99.100602
10.1103/PhysRevE.99.062126
10.1088/1751-8121/aaf3ff
10.1002/j.1538-7305.1948.tb00917.x
10.1002/047174882X
10.1103/PhysRevLett.116.120601
10.1063/1.4907629
10.1016/0022-3697(88)90200-4
10.1103/PhysRevLett.110.050403
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
CorporateAuthor Univ. of Massachusetts, Amherst, MA (United States)
Duke Univ., Durham, NC (United States)
Univ. of Maryland, College Park, MD (United States)
CorporateAuthor_xml – name: Univ. of Maryland, College Park, MD (United States)
– name: Univ. of Massachusetts, Amherst, MA (United States)
– name: Duke Univ., Durham, NC (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/s41567-020-0981-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1215
ExternalDocumentID 1852778
10_1038_s41567_020_0981_y
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 1856250
  funderid: https://doi.org/10.13039/100000001
– fundername: John Templeton Foundation (JTF)
  funderid: https://doi.org/10.13039/100000925
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-14-1-0359; W911NF-14-1-0359
  funderid: https://doi.org/10.13039/100000183
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0019515
  funderid: https://doi.org/10.13039/100000015
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c409t-ef1a600265c4c6ce794c7ff789d530aef7066faff98e2c2b43d879be8da6f41d3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri May 19 00:46:42 EDT 2023
Sat Aug 23 13:24:59 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Tue Jul 01 00:25:40 EDT 2025
Fri Feb 21 02:37:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-ef1a600265c4c6ce794c7ff789d530aef7066faff98e2c2b43d879be8da6f41d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0019040; SC0019449; SC0019515; SC0020312
ORCID 0000-0003-2572-2838
0000000325722838
PQID 2473287047
PQPubID 27545
PageCount 5
ParticipantIDs osti_scitechconnect_1852778
proquest_journals_2473287047
crossref_primary_10_1038_s41567_020_0981_y
crossref_citationtrail_10_1038_s41567_020_0981_y
springer_journals_10_1038_s41567_020_0981_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References ZielińskiBZychMGeneralization of the Margolus-Levitin boundPhys. Rev. A2006740343012006PhRvA..74c4301Z10.1103/PhysRevA.74.034301
KimELeeUHeseltineJHollerbachRGeometric structure and geodesic in a solvable model of nonequilibrium processPhys. Rev. E2016930621272016PhRvE..93f2127K371318910.1103/PhysRevE.93.062127
BoydABCrutchfieldDMJPIdentifying functional thermodynamics in autonomous Maxwellian ratchetsNew J. Phys.2016180230492016NJPh...18b3049B10.1088/1367-2630/18/2/023049
GreenJRCostaABGrzybowskiBASzleiferIRelationship between dynamical entropy and energy dissipation far from thermodynamic equilibriumProc. Natl Acad. Sci. USA201311016339163432013PNAS..11016339G10.1073/pnas.1312165110
Cover, T. M. & Thomas, J. A. Elements of Information Theory 2nd edn (Wiley, 2006).
Reif, F. Fundamentals of Statistical and Thermal Physics (Waveland, 2009).
BraunsteinSLCavesCMStatistical distance and the geometry of quantum statesPhys. Rev. Lett.199472343934431994PhRvL..72.3439B127463110.1103/PhysRevLett.72.3439
NicholsJWFlynnSWGreenJROrder and disorder in irreversible decay processesJ. Chem. Phys.20151420641132015JChPh.142f4113N10.1063/1.4907629
del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D10.1103/PhysRevLett.110.050403
PietzonkaPSeifertUUniversal trade-off between power, efficiency, and constancy in steady-state heat enginesPhys. Rev. Lett.20181201906022018PhRvL.120s0602P10.1103/PhysRevLett.120.190602
CrooksGEMeasuring thermodynamic lengthPhys. Rev. Lett.2007991006022007PhRvL..99j0602C10.1103/PhysRevLett.99.100602
SchlöglFThermodynamic uncertainty relationJ. Phys. Chem. Solids1988496796831988JPCS...49..679S10.1016/0022-3697(88)90200-4
HorowitzJMGingrichTRThermodynamic uncertainty relations constrain non-equilibrium fluctuationsNat. Phys.201916152010.1038/s41567-019-0702-6
TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T10.1103/PhysRevLett.110.050402
BaratoACChetriteRFaggionatoAGabrielliDBounds on current fluctuations in periodically driven systemsNew J. Phys.20182010302310.1088/1367-2630/aae512
MaesCFrenetic bounds on the entropy productionPhys. Rev. Lett.20171191606012017PhRvL.119p0601M10.1103/PhysRevLett.119.160601
WoottersWKStatistical distance and Hilbert spacePhys. Rev. D1981233573621981PhRvD..23..357W59989710.1103/PhysRevD.23.357
Margolus, N. The finite-state character of physical dynamics. Preprint at https://arxiv.org/abs/1109.4994 (2011).
BaratoACSeifertUThermodynamic uncertainty relation for biomolecular processesPhys. Rev. Lett.20151141581012015PhRvL.114o8101B344865610.1103/PhysRevLett.114.158101
Messiah, A. Quantum Mechanics Vol. 1 (North-Holland, 1961).
MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. USSR19459249254153340060.45003
HeseltineJKimENovel mapping in non-equilibrium stochastic processesJ. Phys. A2016491750022016JPhA...49q5002H349117610.1088/1751-8113/49/17/175002
Groot, S. R. D. & Mazur, P. Non-Equilibrium Thermodynamics Vol. 1 (Dover, 1984).
MargolusNLevitinLBThe maximum speed of dynamical evolutionPhysica D19981201881951998PhyD..120..188M10.1016/S0167-2789(98)00054-2
UffinkJvan LithJThermodynamic uncertainty relationsFound. Phys.199929655692170918310.1023/A:1018811305766
HasegawaYVuTVUncertainty relations in stochastic processes: an information inequality approachPhys. Rev. E2019990621262019PhRvE..99f2126H10.1103/PhysRevE.99.062126
TakahashiKOhzekiMConflict between fastest relaxation of a Markov process and detailed balance conditionPhys. Rev. E2016930121292016PhRvE..93a2129T10.1103/PhysRevE.93.012129
Frieden, B. R. Science from Fisher Information 2nd Ed. (Cambridge University Press, 2004).
OkuyamaMOhzekiMQuantum speed limit is not quantumPhys. Rev. Lett.20181200704022018PhRvL.120g0402O376871010.1103/PhysRevLett.120.070402
SalamonPBerrySRThermodynamic length and dissipated availabilityPhys. Rev. Lett.198351112711301983PhRvL..51.1127S71735010.1103/PhysRevLett.51.1127
SeifertUStochastic thermodynamics, fluctuation theorems and molecular machinesRep. Prog. Phys.2012751260012012RPPh...75l6001S10.1088/0034-4885/75/12/126001
Sagawa, T. & Ueda, M. in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (eds Klages, R. et al.) 181–211 (Wiley-VCH, 2013).
Ito, S. & Dechant, A. Stochastic time evolution, information geometry and the Cramér-Rao bound. Phys. Rev. X10, 021056 (2020).
GingrichTRHorowitzJMPerunovNEnglandJLDissipation bounds all steady-state current fluctuationsPhys. Rev. Lett.20161161206012016PhRvL.116l0601G10.1103/PhysRevLett.116.120601
PietzonkaPRitortFSeifertUFinite-time generalization of the thermodynamic uncertainty relationPhys. Rev. E2017960121012017PhRvE..96a2101P10.1103/PhysRevE.96.012101
ShanahanBChenuAMargolusNdel CampoAQuantum speed limits across the quantum-to-classical transitionPhys. Rev. Lett.20181200704012018PhRvL.120g0401S10.1103/PhysRevLett.120.070401
ShannonCEA mathematical theory of communicationBell Syst. Tech. J.1948276236562628610.1002/j.1538-7305.1948.tb00917.x
FlynnSWZhaoHCGreenJRMeasuring disorder in irreversible decay processesJ. Chem. Phys.20141411041072014JChPh.141j4107F10.1063/1.4895514
GrantJJackRLWhitelamSAnalyzing mechanisms and microscopic reversibility of self-assemblyJ. Chem. Phys.20111352145052011JChPh.135u4505G10.1063/1.3662140
Casella, G. & Berger, R. L. Statistical Inference Vol. 2 (Duxbury, 2002).
DechantAMultidimensional thermodynamic uncertainty relationsJ. Phys. A2018520350012019JPhA...52c5001D389970210.1088/1751-8121/aaf3ff
NicholsonSBdel CampoAGreenJRNonequilibrium uncertainty principle from information geometryPhys. Rev. E2018980321062018PhRvE..98c2106N10.1103/PhysRevE.98.032106
García-PintosLdel CampoAQuantum speed limits under continuous quantum measurementsNew J. Phys.2019210330122019NJPh...21c3012G417091310.1088/1367-2630/ab099e
ShiraishiNFunoKSaitoKSpeed limit for classical stochastic processesPhys. Rev. Lett.20181210706012018PhRvL.121g0601S10.1103/PhysRevLett.121.070601
SalamonPNultonJDBerryRSLength in statistical thermodynamicsJ. Chem. Phys.198582243324361985JChPh..82.2433S78677710.1063/1.448337
BoixoSFlammiaSTCavesCMGeremiaJGeneralized limits for single-parameter quantum estimationPhys. Rev. Lett.2007980904012007PhRvL..98i0401B10.1103/PhysRevLett.98.090401
JarzynskiCEqualities and inequalities: irreversibility and the second law of thermodynamics at the nanoscaleAnnu. Rev. Condens. Matter Phys.201123293512011ARCMP...2..329J10.1146/annurev-conmatphys-062910-140506
Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 2nd edn (Wiley, 1985).
Van den BroeckCEspositoMEnsemble and trajectory thermodynamics: a brief introductionPhysica A20154186162015PhyA..418....6V10.1016/j.physa.2014.04.035
DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D10.1103/PhysRevLett.111.010402
S Deffner (981_CR25) 2013; 111
J Heseltine (981_CR43) 2016; 49
A del Campo (981_CR24) 2013; 110
B Zieliński (981_CR21) 2006; 74
C Maes (981_CR13) 2017; 119
N Margolus (981_CR3) 1998; 120
P Pietzonka (981_CR4) 2018; 120
CE Shannon (981_CR32) 1948; 27
WK Wootters (981_CR37) 1981; 23
L García-Pintos (981_CR26) 2019; 21
E Kim (981_CR44) 2016; 93
981_CR49
981_CR48
S Boixo (981_CR45) 2007; 98
AC Barato (981_CR7) 2018; 20
SB Nicholson (981_CR6) 2018; 98
M Okuyama (981_CR28) 2018; 120
U Seifert (981_CR15) 2012; 75
C Van den Broeck (981_CR16) 2015; 418
A Dechant (981_CR8) 2018; 52
F Schlögl (981_CR10) 1988; 49
981_CR47
981_CR46
MM Taddei (981_CR23) 2013; 110
JR Green (981_CR20) 2013; 110
981_CR42
AB Boyd (981_CR17) 2016; 18
Y Hasegawa (981_CR19) 2019; 99
JW Nichols (981_CR41) 2015; 142
C Jarzynski (981_CR14) 2011; 2
L Mandelstam (981_CR2) 1945; 9
981_CR34
981_CR33
J Grant (981_CR50) 2011; 135
SW Flynn (981_CR40) 2014; 141
P Salamon (981_CR35) 1983; 51
TR Gingrich (981_CR5) 2016; 116
B Shanahan (981_CR27) 2018; 120
N Shiraishi (981_CR30) 2018; 121
K Takahashi (981_CR29) 2016; 93
GE Crooks (981_CR39) 2007; 99
981_CR1
JM Horowitz (981_CR31) 2019; 16
981_CR22
P Pietzonka (981_CR12) 2017; 96
J Uffink (981_CR9) 1999; 29
981_CR18
P Salamon (981_CR36) 1985; 82
SL Braunstein (981_CR38) 1994; 72
AC Barato (981_CR11) 2015; 114
References_xml – reference: del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D10.1103/PhysRevLett.110.050403
– reference: ShannonCEA mathematical theory of communicationBell Syst. Tech. J.1948276236562628610.1002/j.1538-7305.1948.tb00917.x
– reference: Casella, G. & Berger, R. L. Statistical Inference Vol. 2 (Duxbury, 2002).
– reference: HasegawaYVuTVUncertainty relations in stochastic processes: an information inequality approachPhys. Rev. E2019990621262019PhRvE..99f2126H10.1103/PhysRevE.99.062126
– reference: Sagawa, T. & Ueda, M. in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (eds Klages, R. et al.) 181–211 (Wiley-VCH, 2013).
– reference: BraunsteinSLCavesCMStatistical distance and the geometry of quantum statesPhys. Rev. Lett.199472343934431994PhRvL..72.3439B127463110.1103/PhysRevLett.72.3439
– reference: TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T10.1103/PhysRevLett.110.050402
– reference: DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D10.1103/PhysRevLett.111.010402
– reference: MargolusNLevitinLBThe maximum speed of dynamical evolutionPhysica D19981201881951998PhyD..120..188M10.1016/S0167-2789(98)00054-2
– reference: GingrichTRHorowitzJMPerunovNEnglandJLDissipation bounds all steady-state current fluctuationsPhys. Rev. Lett.20161161206012016PhRvL.116l0601G10.1103/PhysRevLett.116.120601
– reference: SeifertUStochastic thermodynamics, fluctuation theorems and molecular machinesRep. Prog. Phys.2012751260012012RPPh...75l6001S10.1088/0034-4885/75/12/126001
– reference: SalamonPBerrySRThermodynamic length and dissipated availabilityPhys. Rev. Lett.198351112711301983PhRvL..51.1127S71735010.1103/PhysRevLett.51.1127
– reference: BoixoSFlammiaSTCavesCMGeremiaJGeneralized limits for single-parameter quantum estimationPhys. Rev. Lett.2007980904012007PhRvL..98i0401B10.1103/PhysRevLett.98.090401
– reference: ZielińskiBZychMGeneralization of the Margolus-Levitin boundPhys. Rev. A2006740343012006PhRvA..74c4301Z10.1103/PhysRevA.74.034301
– reference: ShiraishiNFunoKSaitoKSpeed limit for classical stochastic processesPhys. Rev. Lett.20181210706012018PhRvL.121g0601S10.1103/PhysRevLett.121.070601
– reference: MaesCFrenetic bounds on the entropy productionPhys. Rev. Lett.20171191606012017PhRvL.119p0601M10.1103/PhysRevLett.119.160601
– reference: Ito, S. & Dechant, A. Stochastic time evolution, information geometry and the Cramér-Rao bound. Phys. Rev. X10, 021056 (2020).
– reference: ShanahanBChenuAMargolusNdel CampoAQuantum speed limits across the quantum-to-classical transitionPhys. Rev. Lett.20181200704012018PhRvL.120g0401S10.1103/PhysRevLett.120.070401
– reference: PietzonkaPSeifertUUniversal trade-off between power, efficiency, and constancy in steady-state heat enginesPhys. Rev. Lett.20181201906022018PhRvL.120s0602P10.1103/PhysRevLett.120.190602
– reference: Frieden, B. R. Science from Fisher Information 2nd Ed. (Cambridge University Press, 2004).
– reference: TakahashiKOhzekiMConflict between fastest relaxation of a Markov process and detailed balance conditionPhys. Rev. E2016930121292016PhRvE..93a2129T10.1103/PhysRevE.93.012129
– reference: GreenJRCostaABGrzybowskiBASzleiferIRelationship between dynamical entropy and energy dissipation far from thermodynamic equilibriumProc. Natl Acad. Sci. USA201311016339163432013PNAS..11016339G10.1073/pnas.1312165110
– reference: DechantAMultidimensional thermodynamic uncertainty relationsJ. Phys. A2018520350012019JPhA...52c5001D389970210.1088/1751-8121/aaf3ff
– reference: Van den BroeckCEspositoMEnsemble and trajectory thermodynamics: a brief introductionPhysica A20154186162015PhyA..418....6V10.1016/j.physa.2014.04.035
– reference: García-PintosLdel CampoAQuantum speed limits under continuous quantum measurementsNew J. Phys.2019210330122019NJPh...21c3012G417091310.1088/1367-2630/ab099e
– reference: OkuyamaMOhzekiMQuantum speed limit is not quantumPhys. Rev. Lett.20181200704022018PhRvL.120g0402O376871010.1103/PhysRevLett.120.070402
– reference: WoottersWKStatistical distance and Hilbert spacePhys. Rev. D1981233573621981PhRvD..23..357W59989710.1103/PhysRevD.23.357
– reference: UffinkJvan LithJThermodynamic uncertainty relationsFound. Phys.199929655692170918310.1023/A:1018811305766
– reference: CrooksGEMeasuring thermodynamic lengthPhys. Rev. Lett.2007991006022007PhRvL..99j0602C10.1103/PhysRevLett.99.100602
– reference: Cover, T. M. & Thomas, J. A. Elements of Information Theory 2nd edn (Wiley, 2006).
– reference: BoydABCrutchfieldDMJPIdentifying functional thermodynamics in autonomous Maxwellian ratchetsNew J. Phys.2016180230492016NJPh...18b3049B10.1088/1367-2630/18/2/023049
– reference: NicholsJWFlynnSWGreenJROrder and disorder in irreversible decay processesJ. Chem. Phys.20151420641132015JChPh.142f4113N10.1063/1.4907629
– reference: BaratoACChetriteRFaggionatoAGabrielliDBounds on current fluctuations in periodically driven systemsNew J. Phys.20182010302310.1088/1367-2630/aae512
– reference: HeseltineJKimENovel mapping in non-equilibrium stochastic processesJ. Phys. A2016491750022016JPhA...49q5002H349117610.1088/1751-8113/49/17/175002
– reference: Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 2nd edn (Wiley, 1985).
– reference: HorowitzJMGingrichTRThermodynamic uncertainty relations constrain non-equilibrium fluctuationsNat. Phys.201916152010.1038/s41567-019-0702-6
– reference: BaratoACSeifertUThermodynamic uncertainty relation for biomolecular processesPhys. Rev. Lett.20151141581012015PhRvL.114o8101B344865610.1103/PhysRevLett.114.158101
– reference: NicholsonSBdel CampoAGreenJRNonequilibrium uncertainty principle from information geometryPhys. Rev. E2018980321062018PhRvE..98c2106N10.1103/PhysRevE.98.032106
– reference: JarzynskiCEqualities and inequalities: irreversibility and the second law of thermodynamics at the nanoscaleAnnu. Rev. Condens. Matter Phys.201123293512011ARCMP...2..329J10.1146/annurev-conmatphys-062910-140506
– reference: KimELeeUHeseltineJHollerbachRGeometric structure and geodesic in a solvable model of nonequilibrium processPhys. Rev. E2016930621272016PhRvE..93f2127K371318910.1103/PhysRevE.93.062127
– reference: Messiah, A. Quantum Mechanics Vol. 1 (North-Holland, 1961).
– reference: Reif, F. Fundamentals of Statistical and Thermal Physics (Waveland, 2009).
– reference: GrantJJackRLWhitelamSAnalyzing mechanisms and microscopic reversibility of self-assemblyJ. Chem. Phys.20111352145052011JChPh.135u4505G10.1063/1.3662140
– reference: SalamonPNultonJDBerryRSLength in statistical thermodynamicsJ. Chem. Phys.198582243324361985JChPh..82.2433S78677710.1063/1.448337
– reference: SchlöglFThermodynamic uncertainty relationJ. Phys. Chem. Solids1988496796831988JPCS...49..679S10.1016/0022-3697(88)90200-4
– reference: PietzonkaPRitortFSeifertUFinite-time generalization of the thermodynamic uncertainty relationPhys. Rev. E2017960121012017PhRvE..96a2101P10.1103/PhysRevE.96.012101
– reference: Margolus, N. The finite-state character of physical dynamics. Preprint at https://arxiv.org/abs/1109.4994 (2011).
– reference: FlynnSWZhaoHCGreenJRMeasuring disorder in irreversible decay processesJ. Chem. Phys.20141411041072014JChPh.141j4107F10.1063/1.4895514
– reference: Groot, S. R. D. & Mazur, P. Non-Equilibrium Thermodynamics Vol. 1 (Dover, 1984).
– reference: MandelstamLTammIThe uncertainty relation between energy and time in non-relativistic quantum mechanicsJ. Phys. USSR19459249254153340060.45003
– ident: 981_CR42
  doi: 10.1017/CBO9780511616907
– volume: 93
  start-page: 062127
  year: 2016
  ident: 981_CR44
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.062127
– volume: 49
  start-page: 175002
  year: 2016
  ident: 981_CR43
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/49/17/175002
– volume: 2
  start-page: 329
  year: 2011
  ident: 981_CR14
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-062910-140506
– volume: 96
  start-page: 012101
  year: 2017
  ident: 981_CR12
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.012101
– volume: 9
  start-page: 249
  year: 1945
  ident: 981_CR2
  publication-title: J. Phys. USSR
– volume: 121
  start-page: 070601
  year: 2018
  ident: 981_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.070601
– volume: 120
  start-page: 070401
  year: 2018
  ident: 981_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.070401
– ident: 981_CR18
  doi: 10.1002/9783527658701.ch6
– volume: 114
  start-page: 158101
  year: 2015
  ident: 981_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.158101
– volume: 111
  start-page: 010402
  year: 2013
  ident: 981_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.010402
– volume: 120
  start-page: 188
  year: 1998
  ident: 981_CR3
  publication-title: Physica D
  doi: 10.1016/S0167-2789(98)00054-2
– volume: 20
  start-page: 103023
  year: 2018
  ident: 981_CR7
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aae512
– volume: 23
  start-page: 357
  year: 1981
  ident: 981_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.23.357
– volume: 98
  start-page: 032106
  year: 2018
  ident: 981_CR6
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.032106
– volume: 119
  start-page: 160601
  year: 2017
  ident: 981_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.160601
– ident: 981_CR1
– volume: 135
  start-page: 214505
  year: 2011
  ident: 981_CR50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3662140
– volume: 21
  start-page: 033012
  year: 2019
  ident: 981_CR26
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab099e
– ident: 981_CR49
– volume: 120
  start-page: 070402
  year: 2018
  ident: 981_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.070402
– ident: 981_CR46
  doi: 10.1103/PhysRevX.10.021056
– volume: 93
  start-page: 012129
  year: 2016
  ident: 981_CR29
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.012129
– volume: 110
  start-page: 050402
  year: 2013
  ident: 981_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.050402
– volume: 75
  start-page: 126001
  year: 2012
  ident: 981_CR15
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/12/126001
– volume: 18
  start-page: 023049
  year: 2016
  ident: 981_CR17
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/023049
– volume: 82
  start-page: 2433
  year: 1985
  ident: 981_CR36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448337
– volume: 120
  start-page: 190602
  year: 2018
  ident: 981_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.190602
– ident: 981_CR34
– volume: 141
  start-page: 104107
  year: 2014
  ident: 981_CR40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4895514
– volume: 51
  start-page: 1127
  year: 1983
  ident: 981_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1127
– volume: 418
  start-page: 6
  year: 2015
  ident: 981_CR16
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.04.035
– volume: 98
  start-page: 090401
  year: 2007
  ident: 981_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.090401
– volume: 29
  start-page: 655
  year: 1999
  ident: 981_CR9
  publication-title: Found. Phys.
  doi: 10.1023/A:1018811305766
– volume: 110
  start-page: 16339
  year: 2013
  ident: 981_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1312165110
– ident: 981_CR22
– volume: 72
  start-page: 3439
  year: 1994
  ident: 981_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3439
– volume: 74
  start-page: 034301
  year: 2006
  ident: 981_CR21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.034301
– volume: 16
  start-page: 15
  year: 2019
  ident: 981_CR31
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0702-6
– volume: 99
  start-page: 100602
  year: 2007
  ident: 981_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.100602
– volume: 99
  start-page: 062126
  year: 2019
  ident: 981_CR19
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.062126
– ident: 981_CR33
– volume: 52
  start-page: 035001
  year: 2018
  ident: 981_CR8
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/aaf3ff
– volume: 27
  start-page: 623
  year: 1948
  ident: 981_CR32
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– ident: 981_CR48
  doi: 10.1002/047174882X
– volume: 116
  start-page: 120601
  year: 2016
  ident: 981_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.120601
– volume: 142
  start-page: 064113
  year: 2015
  ident: 981_CR41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4907629
– volume: 49
  start-page: 679
  year: 1988
  ident: 981_CR10
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(88)90200-4
– volume: 110
  start-page: 050403
  year: 2013
  ident: 981_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.050403
– ident: 981_CR47
SSID ssj0042613
Score 2.6566133
Snippet Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1211
SubjectTerms 639/766/530/2804
639/766/530/951
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Energy
Energy dissipation
Entropy
Heat exchange
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum mechanics
Quantum physics
Speed limits
Theoretical
Thermodynamic equilibrium
Thermodynamics
Uncertainty
Title Time–information uncertainty relations in thermodynamics
URI https://link.springer.com/article/10.1038/s41567-020-0981-y
https://www.proquest.com/docview/2473287047
https://www.osti.gov/biblio/1852778
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50F4_iE9fH0oMnJdhukib1Iq64iuAiouAtpGkCgu6qrYe9-R_8h_4SM22qKOi5bQpfMq_MzDcAu94H1TjynVjuNGFUD4g2uSaSJdaI1GhXs-tfjtPzW3Zxx-_ChVsZyipbnVgr6mJq8I78YMCQVkbETBw9PROcGoXZ1TBCYx66XgVL2YHu8HR8dd3qYowPaNMSyQmu0OY1qTwoMXQRBMOnOJMJmf2wTJ2pl7AfXuevRGltf0ZLsBgcx-i42ellmLOTFVioCzhNuQqH2Mvx8fYeiFAR7sibrCbhX82il7boLbqfROj0PU6LZhh9uQa3o9Obk3MS5iIQ46OxiliXaEynpdwwkxrrRcoI54TMCk5jbZ3wfoTTzmXSDswgZ7SQIsutLHTqWFLQdehMphO7AZGJc52kGeOcU8ZyrgVNpcyRhF4WWcF6ELeYKBNIw3F2xYOqk9dUqgZG5WFUCKOa9WDv65OnhjHjv5e3EGjlzT1y1hos7jGVwo5uIWQPtlv8VRCtUn0fhB7st3vy_fjPX23-v9gWRuxY3oeVKtvQqV5e7Y73N6q8D_NydNaH7vFoOBz3wxH7BESM1Q4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7RrapyQfRPXX7aHMqFyiKJ7dhBQgiVbpfycwKJm-s4tlQJssAGodx4B96Dh-JJ8CRxEUjlxjmxHX0ee2YyM98AfPM2qMaW78RypwmjOiXaFJpIllgjMqNdy66_f5CNj9jvY348A7ehFgbTKsOd2F7U5cTgP_K1lCGtjIiZ2Dw7J9g1CqOroYVGJxa7trnyLtt0Y2fb7-9Kmo5-Hv4Yk76rADHel6mJdYnGYFTGDTOZsV4gjXBOyLzkNNbWCa-FnXYulzY1acFoKUVeWFnqzLGkpH7eV_CaUa_JsTJ99Cvc_OiN0K4AkxP83hBFpXJtio6SIOisxblMSPNIDw4m_jw_snGfhGVbbTeah7neTI22Orl6BzO2eg9v2nRRM_0A61g5cnd909Ou4uZGXkF26QV1E12EFLvobxWhiXk6KZtKn_rBH-HoRfD6BINqUtnPEJm40EmWM845ZazgWtBMygIp72WZl2wIccBEmZ6iHDtlnKg2VE6l6mBUHkaFMKpmCKv_hpx1_BzPvbyIQCtvXCBDrsFUIlMrrB8XQg5hKeCv-oM8VQ9iN4TvYU8eHv93qYXnJ_sKb8eH-3tqb-dgdxFmU5SLNkdmCQb1xaVd9pZOXXxpxSuCPy8tz_et8Q_B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7RRVS9oBZasYXSHMqllbVJbMdOJVTxt-KvK1QViZvrOLaEBFlgU1W59R36Nn0cnqSeJC6iUrlxTmxH48-emczMNwDvvA2qseU7sdxpwqhOiTaFJpIl1ojMaNey63-eZPun7PCMn83B71ALg2mV4U5sL-pyavAf-ShlSCsjYiZGrk-LONkdf7q6JthBCiOtoZ1GB5Ej2_zw7tts82DX7_VGmo73vu7sk77DADHer6mJdYnGwFTGDTOZsR6cRjgnZF5yGmvrhNfITjuXS5uatGC0lCIvrCx15lhSUj_vE5gX6BUNYH57b3LyJegB9E1oV47JCX59iKlSOZqh2yQIum5xLhPS3NOKg6k_3fcs3n-CtK3uGz-Hxd5ojbY6lL2AOVstwUKbPGpmy_AR60huf_7qSVhxqyOvLrtkg7qJbkLCXXReRWhwXk7LptKXfvBLOH0Uib2CQTWt7ApEJi50kuWMc04ZK7gWNJOyQAJ8WeYlG0IcZKJMT1iOfTMuVBs4p1J1YlRejArFqJohvP875Kpj63jo5VUUtPKmBvLlGkwsMrXCanIh5BDWgvxVf6xn6g6EQ_gQ9uTu8X-Xev3wZG_hqceyOj6YHK3CsxRh0SbMrMGgvvlu33izpy7We3xF8O2xIf0HzP4VUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time%E2%80%93information+uncertainty+relations+in+thermodynamics&rft.jtitle=Nature+physics&rft.au=Nicholson%2C+Schuyler+B.&rft.au=Garc%C3%ADa-Pintos%2C+Luis+Pedro&rft.au=del+Campo%2C+Adolfo&rft.au=Green%2C+Jason+R.&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group+%28NPG%29&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=16&rft.issue=12&rft_id=info:doi/10.1038%2Fs41567-020-0981-y&rft.externalDocID=1852778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon