Revealing the decomposition behavior of hexanitrostilbene and aluminum nanoparticles composites: A reactive molecular dynamics simulation
Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition beh...
Saved in:
Published in | Acta astronautica Vol. 177; pp. 320 - 331 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.12.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition behavior of nanometer aluminized hexanitrostilbene. Aluminum nanoparticles and the corresponding surface oxidized ones were mixtured with the hexanitrostilbene to build nanometer aluminized composites. The simulation results show that aluminum nanoparticles lead to an earlier decomposition of hexanitrostilbene in a new way. Aluminum nanoparticles follow diffusion oxidation theory in the heating. At high temperatures, Aluminum nanoparticle quickly splits and exposes active aluminum to participate in the reaction. The presence of oxide layer in surface oxidized aluminum nanoparticle is less attractive to oxygen, carbon and nitrogen atoms, and surface oxidized aluminum nanoparticle is difficult to split into small particles during ignition and detonation. Aluminum nanoparticles prevent the formation of larger carbon clusters and cause hydrogen and oxygen atoms escape from carbon clusters. This is the main reason for the increasing detonation pressure and energy outputs of nanometer aluminized Hexanitrostilbene. Adiabatic simulation shows that nanometer aluminized hexanitrostilbene decomposes faster and releases more energy than pure hexanitrostilbene. This work provides insights for the application of aluminized hexanitrostilbene composites in aerospace.
•ReaxFF-lg is used to simulate the thermal decomposition of nano-aluminized HNS.•Al nanoparticles lead to an earlier decomposition of HNS in a new pathway.•Evolution behavior of nano-Al during heating follows diffusion oxidation theory.•Nano-Al prevents the agglomeration of carbon.•Gas production and energy outputs of nano-aluminized HNS are greatly improved. |
---|---|
AbstractList | Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition behavior of nanometer aluminized hexanitrostilbene. Aluminum nanoparticles and the corresponding surface oxidized ones were mixtured with the hexanitrostilbene to build nanometer aluminized composites. The simulation results show that aluminum nanoparticles lead to an earlier decomposition of hexanitrostilbene in a new way. Aluminum nanoparticles follow diffusion oxidation theory in the heating. At high temperatures, Aluminum nanoparticle quickly splits and exposes active aluminum to participate in the reaction. The presence of oxide layer in surface oxidized aluminum nanoparticle is less attractive to oxygen, carbon and nitrogen atoms, and surface oxidized aluminum nanoparticle is difficult to split into small particles during ignition and detonation. Aluminum nanoparticles prevent the formation of larger carbon clusters and cause hydrogen and oxygen atoms escape from carbon clusters. This is the main reason for the increasing detonation pressure and energy outputs of nanometer aluminized Hexanitrostilbene. Adiabatic simulation shows that nanometer aluminized hexanitrostilbene decomposes faster and releases more energy than pure hexanitrostilbene. This work provides insights for the application of aluminized hexanitrostilbene composites in aerospace. Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition behavior of nanometer aluminized hexanitrostilbene. Aluminum nanoparticles and the corresponding surface oxidized ones were mixtured with the hexanitrostilbene to build nanometer aluminized composites. The simulation results show that aluminum nanoparticles lead to an earlier decomposition of hexanitrostilbene in a new way. Aluminum nanoparticles follow diffusion oxidation theory in the heating. At high temperatures, Aluminum nanoparticle quickly splits and exposes active aluminum to participate in the reaction. The presence of oxide layer in surface oxidized aluminum nanoparticle is less attractive to oxygen, carbon and nitrogen atoms, and surface oxidized aluminum nanoparticle is difficult to split into small particles during ignition and detonation. Aluminum nanoparticles prevent the formation of larger carbon clusters and cause hydrogen and oxygen atoms escape from carbon clusters. This is the main reason for the increasing detonation pressure and energy outputs of nanometer aluminized Hexanitrostilbene. Adiabatic simulation shows that nanometer aluminized hexanitrostilbene decomposes faster and releases more energy than pure hexanitrostilbene. This work provides insights for the application of aluminized hexanitrostilbene composites in aerospace. •ReaxFF-lg is used to simulate the thermal decomposition of nano-aluminized HNS.•Al nanoparticles lead to an earlier decomposition of HNS in a new pathway.•Evolution behavior of nano-Al during heating follows diffusion oxidation theory.•Nano-Al prevents the agglomeration of carbon.•Gas production and energy outputs of nano-aluminized HNS are greatly improved. |
Author | Ju, Xue-Hai Zhao, Feng-Qi Xu, Si-Yu Zhao, Jiang-Shan Zhao, Ying |
Author_xml | – sequence: 1 givenname: Ying surname: Zhao fullname: Zhao, Ying organization: Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China – sequence: 2 givenname: Jiang-Shan surname: Zhao fullname: Zhao, Jiang-Shan organization: Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China – sequence: 3 givenname: Feng-Qi surname: Zhao fullname: Zhao, Feng-Qi organization: Science and Technology on Combustion and Explosion Laboratory, Xian Modern Chemistry Research Institute, Xian, 710065, PR China – sequence: 4 givenname: Si-Yu surname: Xu fullname: Xu, Si-Yu organization: Science and Technology on Combustion and Explosion Laboratory, Xian Modern Chemistry Research Institute, Xian, 710065, PR China – sequence: 5 givenname: Xue-Hai surname: Ju fullname: Ju, Xue-Hai email: xhju@njust.edu.cn organization: Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China |
BookMark | eNqNkM2KFDEQx4Os4OzqMxjw3G0l6e50Cx6GxVVhQRA9h-p0xcnQnYxJZnAfwbe2x1EPXvRUUNT_o37X7CrEQIw9F1ALEN3LfY22IOaSYi1BQg26hkY-YhvR66GSoOCKbQCGpmp11z5h1znvAUDLftiw7x_pRDj78IWXHfGJbFwOMfviY-Aj7fDkY-LR8R19w-DXkFz8PFIgjmHiOB8XH44LDxjiAVPxdqbMf5tQfsW3PNHa0J-IL3Eme5wx8ekh4OJt5tkv6-Kc9pQ9djhnevZr3rDPd28-3b6r7j-8fX-7va9sA0OpqO2l1bodO9cpN3bUg3Wicz1iMzg1jN0gpRBOYk8TTUqNWigEp4RTo1ONumEvLr6HFL8eKRezj8cU1kgjm77ruxZavV69vlzZ9eOcyBnry8-eJaGfjQBzpm_25g99c6ZvQJuV_qrXf-kPyS-YHv5Dub0oaYVw8pRMtp6CpcknssVM0f_T4weOlavN |
CitedBy_id | crossref_primary_10_1007_s44205_022_00010_1 crossref_primary_10_1039_D2CP01424F crossref_primary_10_1080_00102202_2023_2240451 crossref_primary_10_3390_app15031486 crossref_primary_10_1016_j_powtec_2024_120397 crossref_primary_10_1016_j_enmf_2023_10_003 crossref_primary_10_1016_j_actaastro_2023_05_024 crossref_primary_10_1016_j_fuel_2024_132916 crossref_primary_10_1016_j_comptc_2024_115059 crossref_primary_10_1016_j_partic_2023_06_008 crossref_primary_10_1016_j_partic_2025_01_003 |
Cites_doi | 10.1016/j.tca.2013.01.011 10.1016/j.molstruc.2019.127358 10.1080/07370652.2017.1337828 10.1002/1521-4087(200211)27:5<300::AID-PREP300>3.0.CO;2-# 10.1016/j.ijhydene.2014.04.150 10.1515/zpch-1934-2707 10.1039/C7SE00004A 10.1080/07370652.2018.1539787 10.1002/prep.201800325 10.1016/j.combustflame.2018.12.033 10.1021/jp202059v 10.1016/j.actaastro.2015.08.013 10.1021/acs.jpcc.8b03463 10.1002/pssa.2210870204 10.1021/jp004368u 10.1007/BF01328124 10.1016/j.dt.2019.06.006 10.1006/jcph.1995.1039 10.1088/0965-0393/18/1/015012 10.1007/s00894-019-4269-z 10.1016/j.jhazmat.2016.03.043 10.1016/j.actaastro.2017.07.032 10.1016/j.cej.2019.123110 10.1016/j.powtec.2014.09.048 10.1016/j.commatsci.2020.109556 10.1007/s11051-019-4513-6 10.1039/C8CP01621F 10.1007/s11224-011-9937-2 10.1021/jp012894v 10.1021/jp201599t |
ContentType | Journal Article |
Copyright | 2020 IAA Copyright Elsevier BV Dec 2020 |
Copyright_xml | – notice: 2020 IAA – notice: Copyright Elsevier BV Dec 2020 |
DBID | AAYXX CITATION 7TB 7TG 8FD FR3 H8D KL. L7M |
DOI | 10.1016/j.actaastro.2020.07.042 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2030 |
EndPage | 331 |
ExternalDocumentID | 10_1016_j_actaastro_2020_07_042 S0094576520304690 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7TB 7TG 8FD EFKBS FR3 H8D KL. L7M |
ID | FETCH-LOGICAL-c409t-e582c775b6f63fb6e80cf16f8aa49f39b692211f2a8eded33b713a0f31f3bf343 |
IEDL.DBID | .~1 |
ISSN | 0094-5765 |
IngestDate | Wed Aug 13 05:55:14 EDT 2025 Tue Jul 01 01:39:44 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Sun Apr 06 06:53:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Clusters Aluminium nanoparticle Decomposition behavior Energy outputs Hexanitrostilbene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-e582c775b6f63fb6e80cf16f8aa49f39b692211f2a8eded33b713a0f31f3bf343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2486865057 |
PQPubID | 2045287 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2486865057 crossref_citationtrail_10_1016_j_actaastro_2020_07_042 crossref_primary_10_1016_j_actaastro_2020_07_042 elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_07_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Elmsford |
PublicationPlace_xml | – name: Elmsford |
PublicationTitle | Acta astronautica |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | (bib23) 2013 Li, Mei, Zhao, Xu, Ju (bib17) 2018; 20 Ott (bib26) 1924; 22 van Duin, Dasgupta, Lorant, Goddard (bib14) 2001; 105 Ju, Li, Zhao, Pang, Jia, Mo (bib8) 2011; 19 Wang, Song, Song, Liang, An, Wang (bib4) 2016; 312 Cao, Guan, Yang, Yan, Ma, Fan, Liu, Huang (bib6) 2019; 37 Liu, Liu, Wang (bib34) 2019; 201 Tsirelson, Antipin, Gerr, Ozerov (bib24) 1985; 87 Babar, Malik (bib9) 2015; 12 Rom, Zybin, van Duin, Goddard, Zeiri, Katz, Kosloff (bib36) 2011; 115 Liu, Liu, Zybin, Sun, Goddard (bib18) 2011; 115 Chandrasekaran, Oommen, Kumar, Lukin, Abrukov, Anufrieva (bib1) 2019; 44 Wang, Shi, Gong, Xiao (bib5) 2009; 11 Huang, Yang, Li, Zheng, Yan, Guan, Luo, Li, Nie (bib11) 2019; 383 Julien, Bergthorson (bib7) 2017; 1 Smirnov, Betelin, Nikitin, Stamov, Altoukhov (bib37) 2015; 117 C Zhang, Pan, Huang, Yang, Zhang (bib2) 2019; 1202 Maggi, Dossi, Paravan, DeLuca, Liljedahl (bib13) 2015; 270 APADoyle (bib27) 1976; 35 Zhao, Zhao, Xu, Ju (bib20) 2020; 177 Plimpton (bib22) 1995; 117 Zhou, Ju, Gu, Zhao, Yi (bib33) 2012; 23 Gérard, Hardy (bib28) 2010; 44 Pouretedal, Damiri, Bighamian (bib29) 2020; 16 Brousseau, Anderson (bib10) 2002; 27 Smirnov, Betelin, Shagaliev, Nikitin, Belyakov, Deryuguin, Aksenov, Korchazhkin (bib38) 2014; 39 Yan, Zeman, Zhao, Elbeih (bib31) 2013; 566 Chen, Wang, Wang, Geng, Wu, Lu (bib19) 2018; 122 Stukowski (bib21) 2010; 18 Stackelberg, Schnorrenberg (bib25) 1934; 27B Jensen, Moxnes, Unneberg, Christensen (bib3) 2020; 26 Long, Brems, Wight (bib30) 2002; 106 Yang, Peddakotla, Kumar, Park (bib16) 2020 Song, Wang, Zhao, An, Wang, Zhang (bib32) 2018; 36 Sun, Liu, Qi, Liu, Ding (bib15) 2019; 21 Sun, C Wang, Wu, Zhu, Pan (bib12) 2017; 139 Liu, Duan, Ma, Long, Han (bib35) 2020; 10 Chen (10.1016/j.actaastro.2020.07.042_bib19) 2018; 122 Julien (10.1016/j.actaastro.2020.07.042_bib7) 2017; 1 Zhao (10.1016/j.actaastro.2020.07.042_bib20) 2020; 177 APADoyle (10.1016/j.actaastro.2020.07.042_bib27) 1976; 35 (10.1016/j.actaastro.2020.07.042_bib23) 2013 Liu (10.1016/j.actaastro.2020.07.042_bib34) 2019; 201 Smirnov (10.1016/j.actaastro.2020.07.042_bib37) 2015; 117 Brousseau (10.1016/j.actaastro.2020.07.042_bib10) 2002; 27 Yang (10.1016/j.actaastro.2020.07.042_bib16) 2020 Gérard (10.1016/j.actaastro.2020.07.042_bib28) 2010; 44 Rom (10.1016/j.actaastro.2020.07.042_bib36) 2011; 115 Liu (10.1016/j.actaastro.2020.07.042_bib18) 2011; 115 Zhou (10.1016/j.actaastro.2020.07.042_bib33) 2012; 23 Sun (10.1016/j.actaastro.2020.07.042_bib12) 2017; 139 Li (10.1016/j.actaastro.2020.07.042_bib17) 2018; 20 C Zhang (10.1016/j.actaastro.2020.07.042_bib2) 2019; 1202 Stukowski (10.1016/j.actaastro.2020.07.042_bib21) 2010; 18 Song (10.1016/j.actaastro.2020.07.042_bib32) 2018; 36 Ju (10.1016/j.actaastro.2020.07.042_bib8) 2011; 19 Smirnov (10.1016/j.actaastro.2020.07.042_bib38) 2014; 39 Jensen (10.1016/j.actaastro.2020.07.042_bib3) 2020; 26 Yan (10.1016/j.actaastro.2020.07.042_bib31) 2013; 566 Wang (10.1016/j.actaastro.2020.07.042_bib4) 2016; 312 Stackelberg (10.1016/j.actaastro.2020.07.042_bib25) 1934; 27B Maggi (10.1016/j.actaastro.2020.07.042_bib13) 2015; 270 Plimpton (10.1016/j.actaastro.2020.07.042_bib22) 1995; 117 Tsirelson (10.1016/j.actaastro.2020.07.042_bib24) 1985; 87 Long (10.1016/j.actaastro.2020.07.042_bib30) 2002; 106 van Duin (10.1016/j.actaastro.2020.07.042_bib14) 2001; 105 Wang (10.1016/j.actaastro.2020.07.042_bib5) 2009; 11 Ott (10.1016/j.actaastro.2020.07.042_bib26) 1924; 22 Huang (10.1016/j.actaastro.2020.07.042_bib11) 2019; 383 Sun (10.1016/j.actaastro.2020.07.042_bib15) 2019; 21 Chandrasekaran (10.1016/j.actaastro.2020.07.042_bib1) 2019; 44 Liu (10.1016/j.actaastro.2020.07.042_bib35) 2020; 10 Babar (10.1016/j.actaastro.2020.07.042_bib9) 2015; 12 Pouretedal (10.1016/j.actaastro.2020.07.042_bib29) 2020; 16 Cao (10.1016/j.actaastro.2020.07.042_bib6) 2019; 37 |
References_xml | – volume: 177 start-page: 109556 year: 2020 ident: bib20 article-title: Molecular reaction dynamics simulation of thermal decomposition for aluminiferous RDX composites publication-title: Comput. Mater. Sci. – volume: 26 start-page: 65 year: 2020 ident: bib3 article-title: Models for predicting impact sensitivity of energetic materials based on the trigger linkage hypothesis and Arrhenius kinetics publication-title: J. Mol. Model. – volume: 39 start-page: 10748 year: 2014 end-page: 10756 ident: bib38 article-title: Hydrogen fuel rocket engines simulation using LOGOS code publication-title: Int. J. Hydrogen Energy – year: 2020 ident: bib16 article-title: Effect of Argon Gas in Oxygen Catalytic Recombination on a Silica Surface: A Reactive Molecular Dynamics Study – volume: 27 start-page: 300 year: 2002 end-page: 306 ident: bib10 article-title: Nanometric aluminum in explosives publication-title: Propellants, Explos. Pyrotech. – volume: 35 start-page: 408 year: 1976 ident: bib27 article-title: Aluminum alloys: structure and properties publication-title: Metal – volume: 37 start-page: 90 year: 2019 end-page: 97 ident: bib6 article-title: An energetic derivative of 2,2',4,4',6,6'-hexanitrostilbene (HNS) and its DMF solvate crystallized from HNS solution with tertiary amine additives publication-title: J. Energetic Mater. – volume: 36 start-page: 179 year: 2018 end-page: 190 ident: bib32 article-title: Characterization and thermal decomposition of nanometer 2,2,4,4,6,6-hexanitro-stilbene and 1,3,5-triamino-2,4,6-trinitrobenzene fabricated by a mechanical milling method publication-title: J. Energetic Mater. – volume: 21 start-page: 72 year: 2019 ident: bib15 article-title: Molecular dynamic simulations of ether-coated aluminum nano-particles as a novel hydrogen source publication-title: J. Nanoparticle Res. – volume: 115 start-page: 11016 year: 2011 end-page: 11022 ident: bib18 article-title: Reaxff-lg: correction of the Reaxff reactive force field for London dispersion, with applications to the equations of state for energetic materials publication-title: J. Phys. Chem. – year: 2013 ident: bib23 article-title: Material Studio 7.0 – volume: 20 start-page: 14192 year: 2018 end-page: 14199 ident: bib17 article-title: Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles publication-title: Phys. Chem. Chem. Phys. – volume: 566 start-page: 6 year: 2013 end-page: 12 ident: bib31 article-title: Noniso-thermal analysis of C4 bonded explosives containing different cyclic nitramines publication-title: Thermochim. Acta – volume: 106 start-page: 4022 year: 2002 end-page: 4026 ident: bib30 article-title: Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis publication-title: J. Phys. Chem. B – volume: 44 start-page: 579 year: 2019 end-page: 587 ident: bib1 article-title: Prediction of detonation velocity and N−O composition of high energy C−H−N−O explosives by means of artificial neural networks publication-title: Propellants, Explos. Pyrotech. – volume: 19 start-page: 232 year: 2011 end-page: 239 ident: bib8 article-title: Review on application of nano-metal powders in explosive and propellants publication-title: Chin. J. Energetic Mater. – volume: 201 start-page: 276 year: 2019 end-page: 289 ident: bib34 article-title: Ignition and combustion of nano-sized aluminum particles: a reactive molecular dynamics study publication-title: Combust. Flame – volume: 23 start-page: 921 year: 2012 end-page: 930 ident: bib33 article-title: Adsorption of 2,4,6-trinitrotoluene on Al(111) ultrathin film: periodic DFT calculations publication-title: Struct. Chem. – volume: 16 start-page: 251 year: 2020 end-page: 256 ident: bib29 article-title: The non-isothermal gravimetric method for study the thermal decomposition kinetic of HNBB and HNS explosives publication-title: Def. Technol. – volume: 1202 start-page: 127358 year: 2019 ident: bib2 article-title: The enhanced properties of energetic materials through ring replacement strategy publication-title: J. Mol. Struct. – volume: 11 start-page: 1318 year: 2009 end-page: 1326 ident: bib5 article-title: Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS publication-title: J. Phys. Chem. – volume: 18 year: 2010 ident: bib21 article-title: Visualization and analysis of atomistic simulation data with OVITO — the open visualization tool publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 22 start-page: 201 year: 1924 end-page: 214 ident: bib26 article-title: Das Gitter des Aluminiumnitrids (AlN) publication-title: Z. Physik – volume: 122 start-page: 19309 year: 2018 end-page: 19318 ident: bib19 article-title: Thermal decomposition mechanism of 2,2',4,4 ',6,6 '-Hexanitrostilbene by ReaxFF reactive molecular dynamics simulations publication-title: J. Phys. Chem. C – volume: 87 start-page: 425 year: 1985 end-page: 433 ident: bib24 article-title: Ruby structure peculiarities derived from X-ray diffraction data localization of chromium atoms and electron deformation density publication-title: Phys. Status Solidi – volume: 117 start-page: 338 year: 2015 end-page: 355 ident: bib37 article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics publication-title: Acta Astronaut. – volume: 1 start-page: 615 year: 2017 end-page: 625 ident: bib7 article-title: Enabling the metal fuel economy: green recycling of metal fuels publication-title: Sustain. Energy Fuels – volume: 12 start-page: 579 year: 2015 end-page: 592 ident: bib9 article-title: Thermal decomposition, ignition and kinetic evaluation of magnesium and aluminum fuelled pyrotechnic compositions publication-title: Cent. Eur. J. Energ. Mater. – volume: 383 start-page: 123110 year: 2019 ident: bib11 article-title: Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity publication-title: Chem. Eng. J. – volume: 270 start-page: 46 year: 2015 end-page: 52 ident: bib13 article-title: Activated aluminum powders for space propulsion publication-title: Powder Technol. – volume: 10 start-page: 5 year: 2020 ident: bib35 article-title: Review on the exploration of condensed carbon formation mechanism in detonation products publication-title: AIP Adv. – volume: 115 start-page: 10181 year: 2011 end-page: 10202 ident: bib36 article-title: Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF publication-title: J. Phys. Chem. – volume: 139 start-page: 428 year: 2017 end-page: 434 ident: bib12 article-title: Numerical simulation of the combustion of nano-aluminum in carbon dioxide publication-title: Acta Astronaut. – volume: 312 start-page: 73 year: 2016 end-page: 83 ident: bib4 article-title: Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites publication-title: J. Hazard Mater. – volume: 105 start-page: 9396 year: 2001 end-page: 9409 ident: bib14 article-title: ReaxFF: a reactive force field for hydrocarbons publication-title: J. Phys. Chem. – volume: 27B year: 1934 ident: bib25 article-title: Die Struktur des Aluminiumcarbids Al publication-title: Z. Phys. Chem. – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib22 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. – volume: 44 start-page: 1283 year: 2010 end-page: 1287 ident: bib28 article-title: Structure de l'hexanitro-2,2',4,4',6,6' stilbène, HNS, et comparaison avec le trinitro-2,4,6 toluène, TNT publication-title: Acta Crystallogr. – volume: 566 start-page: 6 year: 2013 ident: 10.1016/j.actaastro.2020.07.042_bib31 article-title: Noniso-thermal analysis of C4 bonded explosives containing different cyclic nitramines publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.01.011 – volume: 1202 start-page: 127358 year: 2019 ident: 10.1016/j.actaastro.2020.07.042_bib2 article-title: The enhanced properties of energetic materials through ring replacement strategy publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2019.127358 – volume: 36 start-page: 179 year: 2018 ident: 10.1016/j.actaastro.2020.07.042_bib32 article-title: Characterization and thermal decomposition of nanometer 2,2,4,4,6,6-hexanitro-stilbene and 1,3,5-triamino-2,4,6-trinitrobenzene fabricated by a mechanical milling method publication-title: J. Energetic Mater. doi: 10.1080/07370652.2017.1337828 – volume: 27 start-page: 300 year: 2002 ident: 10.1016/j.actaastro.2020.07.042_bib10 article-title: Nanometric aluminum in explosives publication-title: Propellants, Explos. Pyrotech. doi: 10.1002/1521-4087(200211)27:5<300::AID-PREP300>3.0.CO;2-# – volume: 39 start-page: 10748 year: 2014 ident: 10.1016/j.actaastro.2020.07.042_bib38 article-title: Hydrogen fuel rocket engines simulation using LOGOS code publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.04.150 – volume: 11 start-page: 1318 year: 2009 ident: 10.1016/j.actaastro.2020.07.042_bib5 article-title: Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS publication-title: J. Phys. Chem. – year: 2020 ident: 10.1016/j.actaastro.2020.07.042_bib16 – volume: 27B year: 1934 ident: 10.1016/j.actaastro.2020.07.042_bib25 article-title: Die Struktur des Aluminiumcarbids Al4C3 publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1934-2707 – volume: 1 start-page: 615 year: 2017 ident: 10.1016/j.actaastro.2020.07.042_bib7 article-title: Enabling the metal fuel economy: green recycling of metal fuels publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00004A – volume: 37 start-page: 90 year: 2019 ident: 10.1016/j.actaastro.2020.07.042_bib6 article-title: An energetic derivative of 2,2',4,4',6,6'-hexanitrostilbene (HNS) and its DMF solvate crystallized from HNS solution with tertiary amine additives publication-title: J. Energetic Mater. doi: 10.1080/07370652.2018.1539787 – volume: 44 start-page: 579 year: 2019 ident: 10.1016/j.actaastro.2020.07.042_bib1 article-title: Prediction of detonation velocity and N−O composition of high energy C−H−N−O explosives by means of artificial neural networks publication-title: Propellants, Explos. Pyrotech. doi: 10.1002/prep.201800325 – year: 2013 ident: 10.1016/j.actaastro.2020.07.042_bib23 – volume: 201 start-page: 276 year: 2019 ident: 10.1016/j.actaastro.2020.07.042_bib34 article-title: Ignition and combustion of nano-sized aluminum particles: a reactive molecular dynamics study publication-title: Combust. Flame doi: 10.1016/j.combustflame.2018.12.033 – volume: 115 start-page: 10181 year: 2011 ident: 10.1016/j.actaastro.2020.07.042_bib36 article-title: Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF publication-title: J. Phys. Chem. doi: 10.1021/jp202059v – volume: 35 start-page: 408 year: 1976 ident: 10.1016/j.actaastro.2020.07.042_bib27 article-title: Aluminum alloys: structure and properties publication-title: Metal – volume: 117 start-page: 338 year: 2015 ident: 10.1016/j.actaastro.2020.07.042_bib37 article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.08.013 – volume: 44 start-page: 1283 year: 2010 ident: 10.1016/j.actaastro.2020.07.042_bib28 article-title: Structure de l'hexanitro-2,2',4,4',6,6' stilbène, HNS, et comparaison avec le trinitro-2,4,6 toluène, TNT publication-title: Acta Crystallogr. – volume: 122 start-page: 19309 year: 2018 ident: 10.1016/j.actaastro.2020.07.042_bib19 article-title: Thermal decomposition mechanism of 2,2',4,4 ',6,6 '-Hexanitrostilbene by ReaxFF reactive molecular dynamics simulations publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03463 – volume: 12 start-page: 579 year: 2015 ident: 10.1016/j.actaastro.2020.07.042_bib9 article-title: Thermal decomposition, ignition and kinetic evaluation of magnesium and aluminum fuelled pyrotechnic compositions publication-title: Cent. Eur. J. Energ. Mater. – volume: 87 start-page: 425 year: 1985 ident: 10.1016/j.actaastro.2020.07.042_bib24 article-title: Ruby structure peculiarities derived from X-ray diffraction data localization of chromium atoms and electron deformation density publication-title: Phys. Status Solidi doi: 10.1002/pssa.2210870204 – volume: 105 start-page: 9396 year: 2001 ident: 10.1016/j.actaastro.2020.07.042_bib14 article-title: ReaxFF: a reactive force field for hydrocarbons publication-title: J. Phys. Chem. doi: 10.1021/jp004368u – volume: 22 start-page: 201 year: 1924 ident: 10.1016/j.actaastro.2020.07.042_bib26 article-title: Das Gitter des Aluminiumnitrids (AlN) publication-title: Z. Physik doi: 10.1007/BF01328124 – volume: 16 start-page: 251 year: 2020 ident: 10.1016/j.actaastro.2020.07.042_bib29 article-title: The non-isothermal gravimetric method for study the thermal decomposition kinetic of HNBB and HNS explosives publication-title: Def. Technol. doi: 10.1016/j.dt.2019.06.006 – volume: 117 start-page: 1 year: 1995 ident: 10.1016/j.actaastro.2020.07.042_bib22 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 18 year: 2010 ident: 10.1016/j.actaastro.2020.07.042_bib21 article-title: Visualization and analysis of atomistic simulation data with OVITO — the open visualization tool publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 26 start-page: 65 year: 2020 ident: 10.1016/j.actaastro.2020.07.042_bib3 article-title: Models for predicting impact sensitivity of energetic materials based on the trigger linkage hypothesis and Arrhenius kinetics publication-title: J. Mol. Model. doi: 10.1007/s00894-019-4269-z – volume: 312 start-page: 73 year: 2016 ident: 10.1016/j.actaastro.2020.07.042_bib4 article-title: Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.03.043 – volume: 139 start-page: 428 year: 2017 ident: 10.1016/j.actaastro.2020.07.042_bib12 article-title: Numerical simulation of the combustion of nano-aluminum in carbon dioxide publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.07.032 – volume: 383 start-page: 123110 year: 2019 ident: 10.1016/j.actaastro.2020.07.042_bib11 article-title: Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123110 – volume: 270 start-page: 46 year: 2015 ident: 10.1016/j.actaastro.2020.07.042_bib13 article-title: Activated aluminum powders for space propulsion publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.09.048 – volume: 177 start-page: 109556 year: 2020 ident: 10.1016/j.actaastro.2020.07.042_bib20 article-title: Molecular reaction dynamics simulation of thermal decomposition for aluminiferous RDX composites publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.109556 – volume: 21 start-page: 72 year: 2019 ident: 10.1016/j.actaastro.2020.07.042_bib15 article-title: Molecular dynamic simulations of ether-coated aluminum nano-particles as a novel hydrogen source publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-019-4513-6 – volume: 10 start-page: 5 year: 2020 ident: 10.1016/j.actaastro.2020.07.042_bib35 article-title: Review on the exploration of condensed carbon formation mechanism in detonation products publication-title: AIP Adv. – volume: 20 start-page: 14192 year: 2018 ident: 10.1016/j.actaastro.2020.07.042_bib17 article-title: Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01621F – volume: 23 start-page: 921 year: 2012 ident: 10.1016/j.actaastro.2020.07.042_bib33 article-title: Adsorption of 2,4,6-trinitrotoluene on Al(111) ultrathin film: periodic DFT calculations publication-title: Struct. Chem. doi: 10.1007/s11224-011-9937-2 – volume: 106 start-page: 4022 year: 2002 ident: 10.1016/j.actaastro.2020.07.042_bib30 article-title: Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis publication-title: J. Phys. Chem. B doi: 10.1021/jp012894v – volume: 115 start-page: 11016 year: 2011 ident: 10.1016/j.actaastro.2020.07.042_bib18 article-title: Reaxff-lg: correction of the Reaxff reactive force field for London dispersion, with applications to the equations of state for energetic materials publication-title: J. Phys. Chem. doi: 10.1021/jp201599t – volume: 19 start-page: 232 year: 2011 ident: 10.1016/j.actaastro.2020.07.042_bib8 article-title: Review on application of nano-metal powders in explosive and propellants publication-title: Chin. J. Energetic Mater. |
SSID | ssj0007289 |
Score | 2.3149269 |
Snippet | Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 320 |
SubjectTerms | Aluminium nanoparticle Aluminizing Aluminum Carbon Clusters Composite materials Decomposition Decomposition behavior Decomposition reactions Detonation Energy outputs Hexanitrostilbene High temperature Hydrogen Molecular dynamics Nanoparticles Nitrogen atoms Oxidation Oxygen Oxygen atoms Simulation |
Title | Revealing the decomposition behavior of hexanitrostilbene and aluminum nanoparticles composites: A reactive molecular dynamics simulation |
URI | https://dx.doi.org/10.1016/j.actaastro.2020.07.042 https://www.proquest.com/docview/2486865057 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T4YwEG6MLjoYP-N3OriiQEuhbm-M5lWjg9HErWlpGzG-aAQd3f3X3kHxKzEObkC4hvSOu-fguTtCdnF8uZWZj7AdVsRtIiLtfBZxCeiUWWNigx_0zy_E-Jqf3mQ3U-RwqIVBWmXw_b1P77x1uLIfdnP_saqwxldyQMtZ2v3dk5i3c56jle-9ftI88rToIbDkEd79jeOly1brpn3CKsA07rp48vS3CPXDV3cB6HiBzAfkSEf9wy2SKVcvkbkv_QSXydulewHgB8cUcB21DgnjgZVFh4J8-uDpLVa1VC1WfFT3Btwd1bWlGhxVVT9PaK1ryKUDZY4Oi7jmgI4ogMzORdLJMFiX2n6qfUObahKmga2Q6-Ojq8NxFGYtRCVkeG3ksiIt8zwzwgvmjXBFXPpE-EJrLj2TRsgUckWf6sJZZxkzkN3q2LPEM-MZZ6tkun6o3RqhVlqQxEEycclLWxiIgEmeZN6YXOTGrRMx7K8qQyNynIdxrwbG2Z36UIxCxag4V6CYdRJ_CD72vTj-FjkYFKi-mZWCiPG38NagchXe7EalvBCFwLRu4z9rb5JZPOuJMVtkun16dtsAb1qz09nvDpkZnZyNL94Ba87_iw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG6MHtSD8RlXV-3BKwq0FLq3zUazPg9GE29NS9uIcXEj6NG7_9opFF-J8eCNAENIp51-A9_Mh9C-ky_XPLGBa4cVUB2xQBqbBJQDOiVaqVC5D_oXl2x8Q09vk9sZNOpqYRyt0sf-NqY30dqfOfSjeTgtClfjyymg5SRu_u5xyNvnKCxfJ2Nw8PrJ80jjrMXAnAbu9m8kL5nXUlb1kysDjMOmjSeNf9uifgTrZgc6XkZLHjriYft2K2jGlKto8UtDwTX0dmVeAPnBMQZgh7VxjHFPy8JdRT5-tPjOlbUUtSv5KB4UxDssS40lRKqifJ7gUpaQTHvOHO4eYqoBHmJAmU2MxJNOWRfrVta-wlUx8XJg6-jm-Oh6NA682EKQQ4pXBybJ4jxNE8UsI1Yxk4W5jZjNpKTcEq4YjyFZtLHMjDaaEAXprQwtiSxRllCygWbLx9JsIqy5BkunJBPmNNeZgi0wSqPEKpWyVJkeYt34itx3IneCGA-io5zdiw_HCOcYEaYCHNND4YfhtG3G8bfJoHOg-DavBGwZfxv3O5cLv7QrEdOMZczldVv_efYemh9fX5yL85PLs2204K60LJk-mq2fns0OYJ1a7TZz-R0wzgEo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+decomposition+behavior+of+hexanitrostilbene+and+aluminum+nanoparticles+composites%3A+A+reactive+molecular+dynamics+simulation&rft.jtitle=Acta+astronautica&rft.au=Zhao%2C+Ying&rft.au=Zhao%2C+Jiang-Shan&rft.au=Zhao%2C+Feng-Qi&rft.au=Xu%2C+Si-Yu&rft.date=2020-12-01&rft.issn=0094-5765&rft.volume=177&rft.spage=320&rft.epage=331&rft_id=info:doi/10.1016%2Fj.actaastro.2020.07.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actaastro_2020_07_042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |