Revealing the decomposition behavior of hexanitrostilbene and aluminum nanoparticles composites: A reactive molecular dynamics simulation

Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition beh...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 177; pp. 320 - 331
Main Authors Zhao, Ying, Zhao, Jiang-Shan, Zhao, Feng-Qi, Xu, Si-Yu, Ju, Xue-Hai
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.12.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition behavior of nanometer aluminized hexanitrostilbene. Aluminum nanoparticles and the corresponding surface oxidized ones were mixtured with the hexanitrostilbene to build nanometer aluminized composites. The simulation results show that aluminum nanoparticles lead to an earlier decomposition of hexanitrostilbene in a new way. Aluminum nanoparticles follow diffusion oxidation theory in the heating. At high temperatures, Aluminum nanoparticle quickly splits and exposes active aluminum to participate in the reaction. The presence of oxide layer in surface oxidized aluminum nanoparticle is less attractive to oxygen, carbon and nitrogen atoms, and surface oxidized aluminum nanoparticle is difficult to split into small particles during ignition and detonation. Aluminum nanoparticles prevent the formation of larger carbon clusters and cause hydrogen and oxygen atoms escape from carbon clusters. This is the main reason for the increasing detonation pressure and energy outputs of nanometer aluminized Hexanitrostilbene. Adiabatic simulation shows that nanometer aluminized hexanitrostilbene decomposes faster and releases more energy than pure hexanitrostilbene. This work provides insights for the application of aluminized hexanitrostilbene composites in aerospace. •ReaxFF-lg is used to simulate the thermal decomposition of nano-aluminized HNS.•Al nanoparticles lead to an earlier decomposition of HNS in a new pathway.•Evolution behavior of nano-Al during heating follows diffusion oxidation theory.•Nano-Al prevents the agglomeration of carbon.•Gas production and energy outputs of nano-aluminized HNS are greatly improved.
AbstractList Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition behavior of nanometer aluminized hexanitrostilbene. Aluminum nanoparticles and the corresponding surface oxidized ones were mixtured with the hexanitrostilbene to build nanometer aluminized composites. The simulation results show that aluminum nanoparticles lead to an earlier decomposition of hexanitrostilbene in a new way. Aluminum nanoparticles follow diffusion oxidation theory in the heating. At high temperatures, Aluminum nanoparticle quickly splits and exposes active aluminum to participate in the reaction. The presence of oxide layer in surface oxidized aluminum nanoparticle is less attractive to oxygen, carbon and nitrogen atoms, and surface oxidized aluminum nanoparticle is difficult to split into small particles during ignition and detonation. Aluminum nanoparticles prevent the formation of larger carbon clusters and cause hydrogen and oxygen atoms escape from carbon clusters. This is the main reason for the increasing detonation pressure and energy outputs of nanometer aluminized Hexanitrostilbene. Adiabatic simulation shows that nanometer aluminized hexanitrostilbene decomposes faster and releases more energy than pure hexanitrostilbene. This work provides insights for the application of aluminized hexanitrostilbene composites in aerospace.
Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the explosion seriously affects its detonation performance. A newly parameterized reactive force field was used to simulate the decomposition behavior of nanometer aluminized hexanitrostilbene. Aluminum nanoparticles and the corresponding surface oxidized ones were mixtured with the hexanitrostilbene to build nanometer aluminized composites. The simulation results show that aluminum nanoparticles lead to an earlier decomposition of hexanitrostilbene in a new way. Aluminum nanoparticles follow diffusion oxidation theory in the heating. At high temperatures, Aluminum nanoparticle quickly splits and exposes active aluminum to participate in the reaction. The presence of oxide layer in surface oxidized aluminum nanoparticle is less attractive to oxygen, carbon and nitrogen atoms, and surface oxidized aluminum nanoparticle is difficult to split into small particles during ignition and detonation. Aluminum nanoparticles prevent the formation of larger carbon clusters and cause hydrogen and oxygen atoms escape from carbon clusters. This is the main reason for the increasing detonation pressure and energy outputs of nanometer aluminized Hexanitrostilbene. Adiabatic simulation shows that nanometer aluminized hexanitrostilbene decomposes faster and releases more energy than pure hexanitrostilbene. This work provides insights for the application of aluminized hexanitrostilbene composites in aerospace. •ReaxFF-lg is used to simulate the thermal decomposition of nano-aluminized HNS.•Al nanoparticles lead to an earlier decomposition of HNS in a new pathway.•Evolution behavior of nano-Al during heating follows diffusion oxidation theory.•Nano-Al prevents the agglomeration of carbon.•Gas production and energy outputs of nano-aluminized HNS are greatly improved.
Author Ju, Xue-Hai
Zhao, Feng-Qi
Xu, Si-Yu
Zhao, Jiang-Shan
Zhao, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhao
  fullname: Zhao, Ying
  organization: Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
– sequence: 2
  givenname: Jiang-Shan
  surname: Zhao
  fullname: Zhao, Jiang-Shan
  organization: Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
– sequence: 3
  givenname: Feng-Qi
  surname: Zhao
  fullname: Zhao, Feng-Qi
  organization: Science and Technology on Combustion and Explosion Laboratory, Xian Modern Chemistry Research Institute, Xian, 710065, PR China
– sequence: 4
  givenname: Si-Yu
  surname: Xu
  fullname: Xu, Si-Yu
  organization: Science and Technology on Combustion and Explosion Laboratory, Xian Modern Chemistry Research Institute, Xian, 710065, PR China
– sequence: 5
  givenname: Xue-Hai
  surname: Ju
  fullname: Ju, Xue-Hai
  email: xhju@njust.edu.cn
  organization: Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
BookMark eNqNkM2KFDEQx4Os4OzqMxjw3G0l6e50Cx6GxVVhQRA9h-p0xcnQnYxJZnAfwbe2x1EPXvRUUNT_o37X7CrEQIw9F1ALEN3LfY22IOaSYi1BQg26hkY-YhvR66GSoOCKbQCGpmp11z5h1znvAUDLftiw7x_pRDj78IWXHfGJbFwOMfviY-Aj7fDkY-LR8R19w-DXkFz8PFIgjmHiOB8XH44LDxjiAVPxdqbMf5tQfsW3PNHa0J-IL3Eme5wx8ekh4OJt5tkv6-Kc9pQ9djhnevZr3rDPd28-3b6r7j-8fX-7va9sA0OpqO2l1bodO9cpN3bUg3Wicz1iMzg1jN0gpRBOYk8TTUqNWigEp4RTo1ONumEvLr6HFL8eKRezj8cU1kgjm77ruxZavV69vlzZ9eOcyBnry8-eJaGfjQBzpm_25g99c6ZvQJuV_qrXf-kPyS-YHv5Dub0oaYVw8pRMtp6CpcknssVM0f_T4weOlavN
CitedBy_id crossref_primary_10_1007_s44205_022_00010_1
crossref_primary_10_1039_D2CP01424F
crossref_primary_10_1080_00102202_2023_2240451
crossref_primary_10_3390_app15031486
crossref_primary_10_1016_j_powtec_2024_120397
crossref_primary_10_1016_j_enmf_2023_10_003
crossref_primary_10_1016_j_actaastro_2023_05_024
crossref_primary_10_1016_j_fuel_2024_132916
crossref_primary_10_1016_j_comptc_2024_115059
crossref_primary_10_1016_j_partic_2023_06_008
crossref_primary_10_1016_j_partic_2025_01_003
Cites_doi 10.1016/j.tca.2013.01.011
10.1016/j.molstruc.2019.127358
10.1080/07370652.2017.1337828
10.1002/1521-4087(200211)27:5<300::AID-PREP300>3.0.CO;2-#
10.1016/j.ijhydene.2014.04.150
10.1515/zpch-1934-2707
10.1039/C7SE00004A
10.1080/07370652.2018.1539787
10.1002/prep.201800325
10.1016/j.combustflame.2018.12.033
10.1021/jp202059v
10.1016/j.actaastro.2015.08.013
10.1021/acs.jpcc.8b03463
10.1002/pssa.2210870204
10.1021/jp004368u
10.1007/BF01328124
10.1016/j.dt.2019.06.006
10.1006/jcph.1995.1039
10.1088/0965-0393/18/1/015012
10.1007/s00894-019-4269-z
10.1016/j.jhazmat.2016.03.043
10.1016/j.actaastro.2017.07.032
10.1016/j.cej.2019.123110
10.1016/j.powtec.2014.09.048
10.1016/j.commatsci.2020.109556
10.1007/s11051-019-4513-6
10.1039/C8CP01621F
10.1007/s11224-011-9937-2
10.1021/jp012894v
10.1021/jp201599t
ContentType Journal Article
Copyright 2020 IAA
Copyright Elsevier BV Dec 2020
Copyright_xml – notice: 2020 IAA
– notice: Copyright Elsevier BV Dec 2020
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2020.07.042
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 331
ExternalDocumentID 10_1016_j_actaastro_2020_07_042
S0094576520304690
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7TB
7TG
8FD
EFKBS
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c409t-e582c775b6f63fb6e80cf16f8aa49f39b692211f2a8eded33b713a0f31f3bf343
IEDL.DBID .~1
ISSN 0094-5765
IngestDate Wed Aug 13 05:55:14 EDT 2025
Tue Jul 01 01:39:44 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Sun Apr 06 06:53:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Clusters
Aluminium nanoparticle
Decomposition behavior
Energy outputs
Hexanitrostilbene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-e582c775b6f63fb6e80cf16f8aa49f39b692211f2a8eded33b713a0f31f3bf343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2486865057
PQPubID 2045287
PageCount 12
ParticipantIDs proquest_journals_2486865057
crossref_citationtrail_10_1016_j_actaastro_2020_07_042
crossref_primary_10_1016_j_actaastro_2020_07_042
elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_07_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (bib23) 2013
Li, Mei, Zhao, Xu, Ju (bib17) 2018; 20
Ott (bib26) 1924; 22
van Duin, Dasgupta, Lorant, Goddard (bib14) 2001; 105
Ju, Li, Zhao, Pang, Jia, Mo (bib8) 2011; 19
Wang, Song, Song, Liang, An, Wang (bib4) 2016; 312
Cao, Guan, Yang, Yan, Ma, Fan, Liu, Huang (bib6) 2019; 37
Liu, Liu, Wang (bib34) 2019; 201
Tsirelson, Antipin, Gerr, Ozerov (bib24) 1985; 87
Babar, Malik (bib9) 2015; 12
Rom, Zybin, van Duin, Goddard, Zeiri, Katz, Kosloff (bib36) 2011; 115
Liu, Liu, Zybin, Sun, Goddard (bib18) 2011; 115
Chandrasekaran, Oommen, Kumar, Lukin, Abrukov, Anufrieva (bib1) 2019; 44
Wang, Shi, Gong, Xiao (bib5) 2009; 11
Huang, Yang, Li, Zheng, Yan, Guan, Luo, Li, Nie (bib11) 2019; 383
Julien, Bergthorson (bib7) 2017; 1
Smirnov, Betelin, Nikitin, Stamov, Altoukhov (bib37) 2015; 117
C Zhang, Pan, Huang, Yang, Zhang (bib2) 2019; 1202
Maggi, Dossi, Paravan, DeLuca, Liljedahl (bib13) 2015; 270
APADoyle (bib27) 1976; 35
Zhao, Zhao, Xu, Ju (bib20) 2020; 177
Plimpton (bib22) 1995; 117
Zhou, Ju, Gu, Zhao, Yi (bib33) 2012; 23
Gérard, Hardy (bib28) 2010; 44
Pouretedal, Damiri, Bighamian (bib29) 2020; 16
Brousseau, Anderson (bib10) 2002; 27
Smirnov, Betelin, Shagaliev, Nikitin, Belyakov, Deryuguin, Aksenov, Korchazhkin (bib38) 2014; 39
Yan, Zeman, Zhao, Elbeih (bib31) 2013; 566
Chen, Wang, Wang, Geng, Wu, Lu (bib19) 2018; 122
Stukowski (bib21) 2010; 18
Stackelberg, Schnorrenberg (bib25) 1934; 27B
Jensen, Moxnes, Unneberg, Christensen (bib3) 2020; 26
Long, Brems, Wight (bib30) 2002; 106
Yang, Peddakotla, Kumar, Park (bib16) 2020
Song, Wang, Zhao, An, Wang, Zhang (bib32) 2018; 36
Sun, Liu, Qi, Liu, Ding (bib15) 2019; 21
Sun, C Wang, Wu, Zhu, Pan (bib12) 2017; 139
Liu, Duan, Ma, Long, Han (bib35) 2020; 10
Chen (10.1016/j.actaastro.2020.07.042_bib19) 2018; 122
Julien (10.1016/j.actaastro.2020.07.042_bib7) 2017; 1
Zhao (10.1016/j.actaastro.2020.07.042_bib20) 2020; 177
APADoyle (10.1016/j.actaastro.2020.07.042_bib27) 1976; 35
(10.1016/j.actaastro.2020.07.042_bib23) 2013
Liu (10.1016/j.actaastro.2020.07.042_bib34) 2019; 201
Smirnov (10.1016/j.actaastro.2020.07.042_bib37) 2015; 117
Brousseau (10.1016/j.actaastro.2020.07.042_bib10) 2002; 27
Yang (10.1016/j.actaastro.2020.07.042_bib16) 2020
Gérard (10.1016/j.actaastro.2020.07.042_bib28) 2010; 44
Rom (10.1016/j.actaastro.2020.07.042_bib36) 2011; 115
Liu (10.1016/j.actaastro.2020.07.042_bib18) 2011; 115
Zhou (10.1016/j.actaastro.2020.07.042_bib33) 2012; 23
Sun (10.1016/j.actaastro.2020.07.042_bib12) 2017; 139
Li (10.1016/j.actaastro.2020.07.042_bib17) 2018; 20
C Zhang (10.1016/j.actaastro.2020.07.042_bib2) 2019; 1202
Stukowski (10.1016/j.actaastro.2020.07.042_bib21) 2010; 18
Song (10.1016/j.actaastro.2020.07.042_bib32) 2018; 36
Ju (10.1016/j.actaastro.2020.07.042_bib8) 2011; 19
Smirnov (10.1016/j.actaastro.2020.07.042_bib38) 2014; 39
Jensen (10.1016/j.actaastro.2020.07.042_bib3) 2020; 26
Yan (10.1016/j.actaastro.2020.07.042_bib31) 2013; 566
Wang (10.1016/j.actaastro.2020.07.042_bib4) 2016; 312
Stackelberg (10.1016/j.actaastro.2020.07.042_bib25) 1934; 27B
Maggi (10.1016/j.actaastro.2020.07.042_bib13) 2015; 270
Plimpton (10.1016/j.actaastro.2020.07.042_bib22) 1995; 117
Tsirelson (10.1016/j.actaastro.2020.07.042_bib24) 1985; 87
Long (10.1016/j.actaastro.2020.07.042_bib30) 2002; 106
van Duin (10.1016/j.actaastro.2020.07.042_bib14) 2001; 105
Wang (10.1016/j.actaastro.2020.07.042_bib5) 2009; 11
Ott (10.1016/j.actaastro.2020.07.042_bib26) 1924; 22
Huang (10.1016/j.actaastro.2020.07.042_bib11) 2019; 383
Sun (10.1016/j.actaastro.2020.07.042_bib15) 2019; 21
Chandrasekaran (10.1016/j.actaastro.2020.07.042_bib1) 2019; 44
Liu (10.1016/j.actaastro.2020.07.042_bib35) 2020; 10
Babar (10.1016/j.actaastro.2020.07.042_bib9) 2015; 12
Pouretedal (10.1016/j.actaastro.2020.07.042_bib29) 2020; 16
Cao (10.1016/j.actaastro.2020.07.042_bib6) 2019; 37
References_xml – volume: 177
  start-page: 109556
  year: 2020
  ident: bib20
  article-title: Molecular reaction dynamics simulation of thermal decomposition for aluminiferous RDX composites
  publication-title: Comput. Mater. Sci.
– volume: 26
  start-page: 65
  year: 2020
  ident: bib3
  article-title: Models for predicting impact sensitivity of energetic materials based on the trigger linkage hypothesis and Arrhenius kinetics
  publication-title: J. Mol. Model.
– volume: 39
  start-page: 10748
  year: 2014
  end-page: 10756
  ident: bib38
  article-title: Hydrogen fuel rocket engines simulation using LOGOS code
  publication-title: Int. J. Hydrogen Energy
– year: 2020
  ident: bib16
  article-title: Effect of Argon Gas in Oxygen Catalytic Recombination on a Silica Surface: A Reactive Molecular Dynamics Study
– volume: 27
  start-page: 300
  year: 2002
  end-page: 306
  ident: bib10
  article-title: Nanometric aluminum in explosives
  publication-title: Propellants, Explos. Pyrotech.
– volume: 35
  start-page: 408
  year: 1976
  ident: bib27
  article-title: Aluminum alloys: structure and properties
  publication-title: Metal
– volume: 37
  start-page: 90
  year: 2019
  end-page: 97
  ident: bib6
  article-title: An energetic derivative of 2,2',4,4',6,6'-hexanitrostilbene (HNS) and its DMF solvate crystallized from HNS solution with tertiary amine additives
  publication-title: J. Energetic Mater.
– volume: 36
  start-page: 179
  year: 2018
  end-page: 190
  ident: bib32
  article-title: Characterization and thermal decomposition of nanometer 2,2,4,4,6,6-hexanitro-stilbene and 1,3,5-triamino-2,4,6-trinitrobenzene fabricated by a mechanical milling method
  publication-title: J. Energetic Mater.
– volume: 21
  start-page: 72
  year: 2019
  ident: bib15
  article-title: Molecular dynamic simulations of ether-coated aluminum nano-particles as a novel hydrogen source
  publication-title: J. Nanoparticle Res.
– volume: 115
  start-page: 11016
  year: 2011
  end-page: 11022
  ident: bib18
  article-title: Reaxff-lg: correction of the Reaxff reactive force field for London dispersion, with applications to the equations of state for energetic materials
  publication-title: J. Phys. Chem.
– year: 2013
  ident: bib23
  article-title: Material Studio 7.0
– volume: 20
  start-page: 14192
  year: 2018
  end-page: 14199
  ident: bib17
  article-title: Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles
  publication-title: Phys. Chem. Chem. Phys.
– volume: 566
  start-page: 6
  year: 2013
  end-page: 12
  ident: bib31
  article-title: Noniso-thermal analysis of C4 bonded explosives containing different cyclic nitramines
  publication-title: Thermochim. Acta
– volume: 106
  start-page: 4022
  year: 2002
  end-page: 4026
  ident: bib30
  article-title: Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis
  publication-title: J. Phys. Chem. B
– volume: 44
  start-page: 579
  year: 2019
  end-page: 587
  ident: bib1
  article-title: Prediction of detonation velocity and N−O composition of high energy C−H−N−O explosives by means of artificial neural networks
  publication-title: Propellants, Explos. Pyrotech.
– volume: 19
  start-page: 232
  year: 2011
  end-page: 239
  ident: bib8
  article-title: Review on application of nano-metal powders in explosive and propellants
  publication-title: Chin. J. Energetic Mater.
– volume: 201
  start-page: 276
  year: 2019
  end-page: 289
  ident: bib34
  article-title: Ignition and combustion of nano-sized aluminum particles: a reactive molecular dynamics study
  publication-title: Combust. Flame
– volume: 23
  start-page: 921
  year: 2012
  end-page: 930
  ident: bib33
  article-title: Adsorption of 2,4,6-trinitrotoluene on Al(111) ultrathin film: periodic DFT calculations
  publication-title: Struct. Chem.
– volume: 16
  start-page: 251
  year: 2020
  end-page: 256
  ident: bib29
  article-title: The non-isothermal gravimetric method for study the thermal decomposition kinetic of HNBB and HNS explosives
  publication-title: Def. Technol.
– volume: 1202
  start-page: 127358
  year: 2019
  ident: bib2
  article-title: The enhanced properties of energetic materials through ring replacement strategy
  publication-title: J. Mol. Struct.
– volume: 11
  start-page: 1318
  year: 2009
  end-page: 1326
  ident: bib5
  article-title: Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS
  publication-title: J. Phys. Chem.
– volume: 18
  year: 2010
  ident: bib21
  article-title: Visualization and analysis of atomistic simulation data with OVITO — the open visualization tool
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 22
  start-page: 201
  year: 1924
  end-page: 214
  ident: bib26
  article-title: Das Gitter des Aluminiumnitrids (AlN)
  publication-title: Z. Physik
– volume: 122
  start-page: 19309
  year: 2018
  end-page: 19318
  ident: bib19
  article-title: Thermal decomposition mechanism of 2,2',4,4 ',6,6 '-Hexanitrostilbene by ReaxFF reactive molecular dynamics simulations
  publication-title: J. Phys. Chem. C
– volume: 87
  start-page: 425
  year: 1985
  end-page: 433
  ident: bib24
  article-title: Ruby structure peculiarities derived from X-ray diffraction data localization of chromium atoms and electron deformation density
  publication-title: Phys. Status Solidi
– volume: 117
  start-page: 338
  year: 2015
  end-page: 355
  ident: bib37
  article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics
  publication-title: Acta Astronaut.
– volume: 1
  start-page: 615
  year: 2017
  end-page: 625
  ident: bib7
  article-title: Enabling the metal fuel economy: green recycling of metal fuels
  publication-title: Sustain. Energy Fuels
– volume: 12
  start-page: 579
  year: 2015
  end-page: 592
  ident: bib9
  article-title: Thermal decomposition, ignition and kinetic evaluation of magnesium and aluminum fuelled pyrotechnic compositions
  publication-title: Cent. Eur. J. Energ. Mater.
– volume: 383
  start-page: 123110
  year: 2019
  ident: bib11
  article-title: Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity
  publication-title: Chem. Eng. J.
– volume: 270
  start-page: 46
  year: 2015
  end-page: 52
  ident: bib13
  article-title: Activated aluminum powders for space propulsion
  publication-title: Powder Technol.
– volume: 10
  start-page: 5
  year: 2020
  ident: bib35
  article-title: Review on the exploration of condensed carbon formation mechanism in detonation products
  publication-title: AIP Adv.
– volume: 115
  start-page: 10181
  year: 2011
  end-page: 10202
  ident: bib36
  article-title: Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF
  publication-title: J. Phys. Chem.
– volume: 139
  start-page: 428
  year: 2017
  end-page: 434
  ident: bib12
  article-title: Numerical simulation of the combustion of nano-aluminum in carbon dioxide
  publication-title: Acta Astronaut.
– volume: 312
  start-page: 73
  year: 2016
  end-page: 83
  ident: bib4
  article-title: Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites
  publication-title: J. Hazard Mater.
– volume: 105
  start-page: 9396
  year: 2001
  end-page: 9409
  ident: bib14
  article-title: ReaxFF: a reactive force field for hydrocarbons
  publication-title: J. Phys. Chem.
– volume: 27B
  year: 1934
  ident: bib25
  article-title: Die Struktur des Aluminiumcarbids Al
  publication-title: Z. Phys. Chem.
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib22
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
– volume: 44
  start-page: 1283
  year: 2010
  end-page: 1287
  ident: bib28
  article-title: Structure de l'hexanitro-2,2',4,4',6,6' stilbène, HNS, et comparaison avec le trinitro-2,4,6 toluène, TNT
  publication-title: Acta Crystallogr.
– volume: 566
  start-page: 6
  year: 2013
  ident: 10.1016/j.actaastro.2020.07.042_bib31
  article-title: Noniso-thermal analysis of C4 bonded explosives containing different cyclic nitramines
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2013.01.011
– volume: 1202
  start-page: 127358
  year: 2019
  ident: 10.1016/j.actaastro.2020.07.042_bib2
  article-title: The enhanced properties of energetic materials through ring replacement strategy
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2019.127358
– volume: 36
  start-page: 179
  year: 2018
  ident: 10.1016/j.actaastro.2020.07.042_bib32
  article-title: Characterization and thermal decomposition of nanometer 2,2,4,4,6,6-hexanitro-stilbene and 1,3,5-triamino-2,4,6-trinitrobenzene fabricated by a mechanical milling method
  publication-title: J. Energetic Mater.
  doi: 10.1080/07370652.2017.1337828
– volume: 27
  start-page: 300
  year: 2002
  ident: 10.1016/j.actaastro.2020.07.042_bib10
  article-title: Nanometric aluminum in explosives
  publication-title: Propellants, Explos. Pyrotech.
  doi: 10.1002/1521-4087(200211)27:5<300::AID-PREP300>3.0.CO;2-#
– volume: 39
  start-page: 10748
  year: 2014
  ident: 10.1016/j.actaastro.2020.07.042_bib38
  article-title: Hydrogen fuel rocket engines simulation using LOGOS code
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.04.150
– volume: 11
  start-page: 1318
  year: 2009
  ident: 10.1016/j.actaastro.2020.07.042_bib5
  article-title: Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS
  publication-title: J. Phys. Chem.
– year: 2020
  ident: 10.1016/j.actaastro.2020.07.042_bib16
– volume: 27B
  year: 1934
  ident: 10.1016/j.actaastro.2020.07.042_bib25
  article-title: Die Struktur des Aluminiumcarbids Al4C3
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1934-2707
– volume: 1
  start-page: 615
  year: 2017
  ident: 10.1016/j.actaastro.2020.07.042_bib7
  article-title: Enabling the metal fuel economy: green recycling of metal fuels
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C7SE00004A
– volume: 37
  start-page: 90
  year: 2019
  ident: 10.1016/j.actaastro.2020.07.042_bib6
  article-title: An energetic derivative of 2,2',4,4',6,6'-hexanitrostilbene (HNS) and its DMF solvate crystallized from HNS solution with tertiary amine additives
  publication-title: J. Energetic Mater.
  doi: 10.1080/07370652.2018.1539787
– volume: 44
  start-page: 579
  year: 2019
  ident: 10.1016/j.actaastro.2020.07.042_bib1
  article-title: Prediction of detonation velocity and N−O composition of high energy C−H−N−O explosives by means of artificial neural networks
  publication-title: Propellants, Explos. Pyrotech.
  doi: 10.1002/prep.201800325
– year: 2013
  ident: 10.1016/j.actaastro.2020.07.042_bib23
– volume: 201
  start-page: 276
  year: 2019
  ident: 10.1016/j.actaastro.2020.07.042_bib34
  article-title: Ignition and combustion of nano-sized aluminum particles: a reactive molecular dynamics study
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2018.12.033
– volume: 115
  start-page: 10181
  year: 2011
  ident: 10.1016/j.actaastro.2020.07.042_bib36
  article-title: Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp202059v
– volume: 35
  start-page: 408
  year: 1976
  ident: 10.1016/j.actaastro.2020.07.042_bib27
  article-title: Aluminum alloys: structure and properties
  publication-title: Metal
– volume: 117
  start-page: 338
  year: 2015
  ident: 10.1016/j.actaastro.2020.07.042_bib37
  article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.08.013
– volume: 44
  start-page: 1283
  year: 2010
  ident: 10.1016/j.actaastro.2020.07.042_bib28
  article-title: Structure de l'hexanitro-2,2',4,4',6,6' stilbène, HNS, et comparaison avec le trinitro-2,4,6 toluène, TNT
  publication-title: Acta Crystallogr.
– volume: 122
  start-page: 19309
  year: 2018
  ident: 10.1016/j.actaastro.2020.07.042_bib19
  article-title: Thermal decomposition mechanism of 2,2',4,4 ',6,6 '-Hexanitrostilbene by ReaxFF reactive molecular dynamics simulations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03463
– volume: 12
  start-page: 579
  year: 2015
  ident: 10.1016/j.actaastro.2020.07.042_bib9
  article-title: Thermal decomposition, ignition and kinetic evaluation of magnesium and aluminum fuelled pyrotechnic compositions
  publication-title: Cent. Eur. J. Energ. Mater.
– volume: 87
  start-page: 425
  year: 1985
  ident: 10.1016/j.actaastro.2020.07.042_bib24
  article-title: Ruby structure peculiarities derived from X-ray diffraction data localization of chromium atoms and electron deformation density
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.2210870204
– volume: 105
  start-page: 9396
  year: 2001
  ident: 10.1016/j.actaastro.2020.07.042_bib14
  article-title: ReaxFF: a reactive force field for hydrocarbons
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp004368u
– volume: 22
  start-page: 201
  year: 1924
  ident: 10.1016/j.actaastro.2020.07.042_bib26
  article-title: Das Gitter des Aluminiumnitrids (AlN)
  publication-title: Z. Physik
  doi: 10.1007/BF01328124
– volume: 16
  start-page: 251
  year: 2020
  ident: 10.1016/j.actaastro.2020.07.042_bib29
  article-title: The non-isothermal gravimetric method for study the thermal decomposition kinetic of HNBB and HNS explosives
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2019.06.006
– volume: 117
  start-page: 1
  year: 1995
  ident: 10.1016/j.actaastro.2020.07.042_bib22
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 18
  year: 2010
  ident: 10.1016/j.actaastro.2020.07.042_bib21
  article-title: Visualization and analysis of atomistic simulation data with OVITO — the open visualization tool
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
– volume: 26
  start-page: 65
  year: 2020
  ident: 10.1016/j.actaastro.2020.07.042_bib3
  article-title: Models for predicting impact sensitivity of energetic materials based on the trigger linkage hypothesis and Arrhenius kinetics
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-019-4269-z
– volume: 312
  start-page: 73
  year: 2016
  ident: 10.1016/j.actaastro.2020.07.042_bib4
  article-title: Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.03.043
– volume: 139
  start-page: 428
  year: 2017
  ident: 10.1016/j.actaastro.2020.07.042_bib12
  article-title: Numerical simulation of the combustion of nano-aluminum in carbon dioxide
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.07.032
– volume: 383
  start-page: 123110
  year: 2019
  ident: 10.1016/j.actaastro.2020.07.042_bib11
  article-title: Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123110
– volume: 270
  start-page: 46
  year: 2015
  ident: 10.1016/j.actaastro.2020.07.042_bib13
  article-title: Activated aluminum powders for space propulsion
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.09.048
– volume: 177
  start-page: 109556
  year: 2020
  ident: 10.1016/j.actaastro.2020.07.042_bib20
  article-title: Molecular reaction dynamics simulation of thermal decomposition for aluminiferous RDX composites
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.109556
– volume: 21
  start-page: 72
  year: 2019
  ident: 10.1016/j.actaastro.2020.07.042_bib15
  article-title: Molecular dynamic simulations of ether-coated aluminum nano-particles as a novel hydrogen source
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-019-4513-6
– volume: 10
  start-page: 5
  year: 2020
  ident: 10.1016/j.actaastro.2020.07.042_bib35
  article-title: Review on the exploration of condensed carbon formation mechanism in detonation products
  publication-title: AIP Adv.
– volume: 20
  start-page: 14192
  year: 2018
  ident: 10.1016/j.actaastro.2020.07.042_bib17
  article-title: Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01621F
– volume: 23
  start-page: 921
  year: 2012
  ident: 10.1016/j.actaastro.2020.07.042_bib33
  article-title: Adsorption of 2,4,6-trinitrotoluene on Al(111) ultrathin film: periodic DFT calculations
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-011-9937-2
– volume: 106
  start-page: 4022
  year: 2002
  ident: 10.1016/j.actaastro.2020.07.042_bib30
  article-title: Thermal activation of the high explosive NTO: sublimation, decomposition, and autocatalysis
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp012894v
– volume: 115
  start-page: 11016
  year: 2011
  ident: 10.1016/j.actaastro.2020.07.042_bib18
  article-title: Reaxff-lg: correction of the Reaxff reactive force field for London dispersion, with applications to the equations of state for energetic materials
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp201599t
– volume: 19
  start-page: 232
  year: 2011
  ident: 10.1016/j.actaastro.2020.07.042_bib8
  article-title: Review on application of nano-metal powders in explosive and propellants
  publication-title: Chin. J. Energetic Mater.
SSID ssj0007289
Score 2.3149269
Snippet Hexanitrostilbene plays an important role in aerospace and space technology because of its excellent chemical stability. However, carbon deposition during the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 320
SubjectTerms Aluminium nanoparticle
Aluminizing
Aluminum
Carbon
Clusters
Composite materials
Decomposition
Decomposition behavior
Decomposition reactions
Detonation
Energy outputs
Hexanitrostilbene
High temperature
Hydrogen
Molecular dynamics
Nanoparticles
Nitrogen atoms
Oxidation
Oxygen
Oxygen atoms
Simulation
Title Revealing the decomposition behavior of hexanitrostilbene and aluminum nanoparticles composites: A reactive molecular dynamics simulation
URI https://dx.doi.org/10.1016/j.actaastro.2020.07.042
https://www.proquest.com/docview/2486865057
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T4YwEG6MLjoYP-N3OriiQEuhbm-M5lWjg9HErWlpGzG-aAQd3f3X3kHxKzEObkC4hvSOu-fguTtCdnF8uZWZj7AdVsRtIiLtfBZxCeiUWWNigx_0zy_E-Jqf3mQ3U-RwqIVBWmXw_b1P77x1uLIfdnP_saqwxldyQMtZ2v3dk5i3c56jle-9ftI88rToIbDkEd79jeOly1brpn3CKsA07rp48vS3CPXDV3cB6HiBzAfkSEf9wy2SKVcvkbkv_QSXydulewHgB8cUcB21DgnjgZVFh4J8-uDpLVa1VC1WfFT3Btwd1bWlGhxVVT9PaK1ryKUDZY4Oi7jmgI4ogMzORdLJMFiX2n6qfUObahKmga2Q6-Ojq8NxFGYtRCVkeG3ksiIt8zwzwgvmjXBFXPpE-EJrLj2TRsgUckWf6sJZZxkzkN3q2LPEM-MZZ6tkun6o3RqhVlqQxEEycclLWxiIgEmeZN6YXOTGrRMx7K8qQyNynIdxrwbG2Z36UIxCxag4V6CYdRJ_CD72vTj-FjkYFKi-mZWCiPG38NagchXe7EalvBCFwLRu4z9rb5JZPOuJMVtkun16dtsAb1qz09nvDpkZnZyNL94Ba87_iw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG6MHtSD8RlXV-3BKwq0FLq3zUazPg9GE29NS9uIcXEj6NG7_9opFF-J8eCNAENIp51-A9_Mh9C-ky_XPLGBa4cVUB2xQBqbBJQDOiVaqVC5D_oXl2x8Q09vk9sZNOpqYRyt0sf-NqY30dqfOfSjeTgtClfjyymg5SRu_u5xyNvnKCxfJ2Nw8PrJ80jjrMXAnAbu9m8kL5nXUlb1kysDjMOmjSeNf9uifgTrZgc6XkZLHjriYft2K2jGlKto8UtDwTX0dmVeAPnBMQZgh7VxjHFPy8JdRT5-tPjOlbUUtSv5KB4UxDssS40lRKqifJ7gUpaQTHvOHO4eYqoBHmJAmU2MxJNOWRfrVta-wlUx8XJg6-jm-Oh6NA682EKQQ4pXBybJ4jxNE8UsI1Yxk4W5jZjNpKTcEq4YjyFZtLHMjDaaEAXprQwtiSxRllCygWbLx9JsIqy5BkunJBPmNNeZgi0wSqPEKpWyVJkeYt34itx3IneCGA-io5zdiw_HCOcYEaYCHNND4YfhtG3G8bfJoHOg-DavBGwZfxv3O5cLv7QrEdOMZczldVv_efYemh9fX5yL85PLs2204K60LJk-mq2fns0OYJ1a7TZz-R0wzgEo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+decomposition+behavior+of+hexanitrostilbene+and+aluminum+nanoparticles+composites%3A+A+reactive+molecular+dynamics+simulation&rft.jtitle=Acta+astronautica&rft.au=Zhao%2C+Ying&rft.au=Zhao%2C+Jiang-Shan&rft.au=Zhao%2C+Feng-Qi&rft.au=Xu%2C+Si-Yu&rft.date=2020-12-01&rft.issn=0094-5765&rft.volume=177&rft.spage=320&rft.epage=331&rft_id=info:doi/10.1016%2Fj.actaastro.2020.07.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actaastro_2020_07_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon