ROME: A Graph Contrastive Multi-View Framework From Hyperbolic Angular Space for MOOCs Recommendation
As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this doe...
Saved in:
Published in | IEEE access Vol. 11; pp. 9691 - 9700 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2022.3232552 |
Cover
Abstract | As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this does not take into account the user's learning needs with some particular subjects. However, all existing graph models degrade performances either by ignoring the data sparsity issue caused by a large number of concepts, which may lead to biased recommendations, or by constructing improper contrasting pairs, which may result in graph noise. To overcome both challenges, we propose a g R aph c O ntrastive M ulti-view fram E work (ROME) from hyperbolic angular space to learn user and concept representations based on user-user and concept-concept relationships. The first step is to use hyperbolic and Euclidean space representations as different views of graph and maximize the mutual information between them. Furthermore, we maximize the angular decision margin in graph contrastive training objects to enhance pairwise discriminative power. Our experiments on a large-scale real-world MOOC dataset show that the proposed approach outperforms several baselines and state-of-the-art methods for predicting and recommending concepts of interest to users. |
---|---|
AbstractList | As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this does not take into account the user's learning needs with some particular subjects. However, all existing graph models degrade performances either by ignoring the data sparsity issue caused by a large number of concepts, which may lead to biased recommendations, or by constructing improper contrasting pairs, which may result in graph noise. To overcome both challenges, we propose a g R aph c O ntrastive M ulti-view fram E work (ROME) from hyperbolic angular space to learn user and concept representations based on user-user and concept-concept relationships. The first step is to use hyperbolic and Euclidean space representations as different views of graph and maximize the mutual information between them. Furthermore, we maximize the angular decision margin in graph contrastive training objects to enhance pairwise discriminative power. Our experiments on a large-scale real-world MOOC dataset show that the proposed approach outperforms several baselines and state-of-the-art methods for predicting and recommending concepts of interest to users. As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this does not take into account the user's learning needs with some particular subjects. However, all existing graph models degrade performances either by ignoring the data sparsity issue caused by a large number of concepts, which may lead to biased recommendations, or by constructing improper contrasting pairs, which may result in graph noise. To overcome both challenges, we propose a gRaph cOntrastive Multi-view framEwork (ROME) from hyperbolic angular space to learn user and concept representations based on user-user and concept-concept relationships. The first step is to use hyperbolic and Euclidean space representations as different views of graph and maximize the mutual information between them. Furthermore, we maximize the angular decision margin in graph contrastive training objects to enhance pairwise discriminative power. Our experiments on a large-scale real-world MOOC dataset show that the proposed approach outperforms several baselines and state-of-the-art methods for predicting and recommending concepts of interest to users. |
Author | Luo, Hao Aris, Teh Noranis Mohd Husin, Nor Azura |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-3735-6337 surname: Luo fullname: Luo, Hao organization: Faculty of Science Computer and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia – sequence: 2 givenname: Nor Azura surname: Husin fullname: Husin, Nor Azura email: n_azura@upm.edu.my organization: Faculty of Science Computer and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia – sequence: 3 givenname: Teh Noranis Mohd orcidid: 0000-0002-9982-6245 surname: Aris fullname: Aris, Teh Noranis Mohd organization: Faculty of Science Computer and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia |
BookMark | eNqFUU1r3DAQFSGFptv8guYg6NlbWR9W1NtiNh-QZSHb5CrG8ijV1rZc2ZuQf18nDiX00rnM4zFv3jDvEznuYoeEfMnZMs-Z-bYqy_Vut-SM86XggivFj8gJzwuTCSWK43f4Izkdhj2b6nyilD4heLvdrL_TFb1M0P-kZezGBMMYHpFuDs0YsvuAT_QiQYtPMf2aUGzp1XOPqYpNcHTVPRwaSHTXg0PqY6Kb7bYc6C262LbY1TCG2H0mHzw0A56-9QW5u1j_KK-ym-3ldbm6yZxkZsxQ5TWyCuoCtOccVI1eM3TCVyC9AF4UE6yNwnOujc6lLLDWCr3RNWPaiwW5nvfWEfa2T6GF9GwjBPtKxPRgIY3BNWilUVWF2gkmuXRMGAMVgBaC14WvJn5Bvs67-hR_H3AY7T4eUjedb7nWQiompZmmxDzlUhyGhP6va87sSzx2jse-xGPf4plU5h-VC-Prp6bvh-Y_2rNZGxDxnRtjuVZK_AGvZZ9l |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s13198_024_02301_2 crossref_primary_10_1016_j_ipm_2024_103750 crossref_primary_10_1007_s10115_024_02240_1 crossref_primary_10_1007_s42979_025_03700_3 |
Cites_doi | 10.1145/3477495.3531937 10.1145/3209978.3209991 10.1145/3447548.3467189 10.1145/345508.345545 10.1145/3394486.3403168 10.1145/3038912.3052569 10.1109/ICDE.2019.00140 10.1145/3397271.3401063 10.1007/978-0-387-39940-9_488 10.1145/3397271.3401142 10.1145/3314578 10.14778/3402707.3402736 10.1109/tkde.2023.3282907 10.1007/s00530-022-00989-5 10.1145/2481244.2481248 10.18653/v1/2020.emnlp-main.124 10.1145/502585.502627 10.1145/2736277.2741656 10.1109/TKDE.2018.2833443 10.1609/aaai.v34i01.5329 10.1145/3488560.3501396 10.18653/v1/2020.acl-main.285 10.1145/3097983.3098036 10.1109/TKDE.2018.2831682 10.1145/3397271.3401057 10.1109/IJCNN52387.2021.9533645 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3232552 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 9700 |
ExternalDocumentID | oai_doaj_org_article_495bbe7c30424c0399abaa7332d6fb7c 10_1109_ACCESS_2022_3232552 10001755 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Higher Education grantid: FRGS FRGS/1/2020/ICT02/UPM/02/2(08-01-20-2315FR) funderid: 10.13039/501100002385 – fundername: Baoshan University School Transformation Development Project grantid: ZKZX202001 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-e51de0bad6a7f22a5def70ec3fba4f3a2663fbd95e827971446ed75ef97d007f3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:59 EDT 2025 Sun Jun 29 15:38:16 EDT 2025 Tue Jul 01 02:48:37 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Wed Aug 27 02:48:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-e51de0bad6a7f22a5def70ec3fba4f3a2663fbd95e827971446ed75ef97d007f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3735-6337 0000-0002-9982-6245 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10001755 |
PQID | 2773450449 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2022_3232552 doaj_primary_oai_doaj_org_article_495bbe7c30424c0399abaa7332d6fb7c proquest_journals_2773450449 crossref_citationtrail_10_1109_ACCESS_2022_3232552 ieee_primary_10001755 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref15 Rendle (ref36) 2012 ref37 Van Den Oord (ref12) 2018 ref31 ref30 ref11 ref10 ref32 ref2 ref17 ref39 ref18 Kondor (ref23) Sun (ref20) 2019 Hassani (ref22) You (ref1); 33 Kingma (ref38) 2014 Piao (ref5) ref26 ref25 ref42 ref41 ref43 ref28 ref27 ref8 ref7 ref9 ref4 Wu (ref29) ref3 ref6 Page (ref24) 1999 Kipf (ref35) 2016 Velickovic (ref19); 2 Chami (ref14); 32 Giorgi (ref16) 2020 ref40 Ganea (ref33); 31 Hjelm (ref21) 2018 Cannon (ref13) 1997; 31 |
References_xml | – ident: ref11 doi: 10.1145/3477495.3531937 – volume-title: arXiv:1609.02907 year: 2016 ident: ref35 article-title: Semi-supervised classification with graph convolutional networks – volume: 31 start-page: 2 issue: 59 year: 1997 ident: ref13 article-title: Hyperbolic geometry publication-title: Flavors geometry – ident: ref7 doi: 10.1145/3209978.3209991 – ident: ref3 doi: 10.1145/3447548.3467189 – ident: ref42 doi: 10.1145/345508.345545 – volume-title: arXiv:2006.03659 year: 2020 ident: ref16 article-title: DeCLUTR: Deep contrastive learning for unsupervised textual representations – start-page: 315 volume-title: Proc. 19th Int. Conf. Mach. Learn. ident: ref23 article-title: Diffusion kernels on graphs and other discrete structures – ident: ref25 doi: 10.1145/3394486.3403168 – ident: ref8 doi: 10.1145/3038912.3052569 – ident: ref26 doi: 10.1109/ICDE.2019.00140 – ident: ref30 doi: 10.1145/3397271.3401063 – year: 1999 ident: ref24 article-title: The PageRank citation ranking: Bringing order to the web – start-page: 6861 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref29 article-title: Simplifying graph convolutional networks – volume-title: arXiv:1908.01000 year: 2019 ident: ref20 article-title: InfoGraph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref14 article-title: Hyperbolic graph convolutional neural networks – ident: ref43 doi: 10.1007/978-0-387-39940-9_488 – ident: ref2 doi: 10.1145/3397271.3401142 – ident: ref10 doi: 10.1145/3314578 – ident: ref32 doi: 10.14778/3402707.3402736 – ident: ref17 doi: 10.1109/tkde.2023.3282907 – volume: 33 start-page: 5812 volume-title: Proc. NIPS ident: ref1 article-title: Graph contrastive learning with augmentations – volume: 2 start-page: 4 issue: 3 volume-title: Proc. ICLR ident: ref19 article-title: Deep graph infomax – ident: ref6 doi: 10.1007/s00530-022-00989-5 – ident: ref31 doi: 10.1145/2481244.2481248 – volume-title: arXiv:1807.03748 year: 2018 ident: ref12 article-title: Representation learning with contrastive predictive coding – ident: ref15 doi: 10.18653/v1/2020.emnlp-main.124 – ident: ref41 doi: 10.1145/502585.502627 – ident: ref39 doi: 10.1145/2736277.2741656 – ident: ref34 doi: 10.1109/TKDE.2018.2833443 – ident: ref27 doi: 10.1609/aaai.v34i01.5329 – volume-title: arXiv:1808.06670 year: 2018 ident: ref21 article-title: Learning deep representations by mutual information estimation and maximization – volume-title: arXiv:1205.2618 year: 2012 ident: ref36 article-title: BPR: Bayesian personalized ranking from implicit feedback – ident: ref18 doi: 10.1145/3488560.3501396 – ident: ref37 doi: 10.18653/v1/2020.acl-main.285 – ident: ref40 doi: 10.1145/3097983.3098036 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref33 article-title: Hyperbolic neural networks – volume-title: arXiv:1412.6980 year: 2014 ident: ref38 article-title: Adam: A method for stochastic optimization – ident: ref9 doi: 10.1109/TKDE.2018.2831682 – ident: ref28 doi: 10.1145/3397271.3401057 – start-page: 4116 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref22 article-title: Contrastive multi-view representation learning on graphs – ident: ref4 doi: 10.1109/IJCNN52387.2021.9533645 – start-page: 1 volume-title: Proc. 14th Int. Conf. Educ. Data Mining ident: ref5 article-title: Recommending knowledge concepts on MOOC platforms with meta-path-based representation learning |
SSID | ssj0000816957 |
Score | 2.2846727 |
Snippet | As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9691 |
SubjectTerms | Electronic learning Euclidean geometry Euclidean space Filtering graph contrastive learning manifold learning Online instruction Recommender system Recommender systems Representations Task analysis Tensors Topology Videos |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUhp-ZQ2iSlbtKgQ4_ZRtbHatWba-KagGNom5KbkLQjKNROsB369zuzKweXQHrpTSxatDszOzNvkd5j7IOOoU7J6KoGYyvdmFg1SbgKK63JWJMgdCRJs-t6eqOvbs3tjtQX7Qnr6YF7w11gAx8j2ESwWyeB9TTEEKxSsq1ztImyr3BiB0x1ObgZ1s7YQjM0FO5iNB7jGyEglPKjwjbCGPlXKeoY-4vEypO83BWbySv2snSJfNQ_3Wu2B8tDdrDDHXjE4Ot8dvmJj_gXopzmxDK1CmtKXrw7VFv9-Am_-WS79wpHdws-RdS5ikQFzEdLEqFf8W8ImoFj68pn8_l4zQmPLhZQtJaO2c3k8vt4WhXNhCohUttUYIYtiBjaOtgsZTAtZCsgqRyDzipgPcZh6ww00jpLaBBaayA726JrsnrD9pd3S3jLuEQkF7CAN6SRPkx1yKAQL9PJVpWbbAdMbs3nUyEUJ12LX74DFsL53uaebO6LzQfs_PGm-55P4_npn8kvj1OJDLu7gCHiS4j4f4XIgB2TV3fWo9pszICdbt3sy5e79tJapY3Q2r37H2ufsBckUN__tDll-5vVA7zHNmYTz7qI_QMp7Or1 priority: 102 providerName: Directory of Open Access Journals |
Title | ROME: A Graph Contrastive Multi-View Framework From Hyperbolic Angular Space for MOOCs Recommendation |
URI | https://ieeexplore.ieee.org/document/10001755 https://www.proquest.com/docview/2773450449 https://doaj.org/article/495bbe7c30424c0399abaa7332d6fb7c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELVoT3AACkUESuVDj2y68cd6l1uIGqJKaSSgqDfL9o4lVJqgfKhSfz0zXicqVCBu1srWevVsz7xZzxvGTpR3VQhaFRVoU6ha-6IOZVOgpdURbRK4JJI0vagml-r8Sl_lZPWUCwMA6fIZ9KmZ_uW3i7ChUNnpIMm7aL3H9nCddclau4AKVZBotMnKQoOyOR2ORvgRyAGF6Ev0HLQWv1mfJNKfq6o8OIqTfRk_YxfbmXXXSq77m7Xvh7s_RBv_e-rP2dPsafJhtzQO2COYv2BP7ukPvmTweTY9-8CH_BPJVnNSqlq6FR2APCXmFt--wy0fb-9vYWtxwyfIXJee5IT5cE6F7Jf8CxJv4Oj-8ulsNlpx4rQ3OKGuXtMhuxyffR1Nilx3oQjI9tYF6EELpXdt5UwUwukWoikhyOiditKhTcdm22iohWkMMUpojYbYmBbhjfIV258v5vCacYFs0KETUFOd9UGoXASJnJuyY2Wso-kxscXDhixKTrUxfthETsrGdiBaAtFmEHvs_W7Qz06T49_dPxLQu64kqJ0eIEA270-LPNF7MIGiOyqU6LY575yRUrRV9Cb02CGBeu99HZ49drRdNzbv_pUVxkilS6WaN38Z9pY9prr1XSzniO2vlxt4h97N2h-nqMBxWtu_AJeq9W0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHIBDebUifYAPHNl048d6l1saNQRoEgla1Jtle8cSgiYoDyHx65nxbqJCBeJmrWytV5_tmW_W8w1jr5R3RQhaZQVok6lS-6wMeZWhpdURbRK4JJI0nhSjS_X-Sl-1yeopFwYA0uUz6FIz_cuv52FNobKTXpJ30fouu4eGX-kmXWsbUqEaEpU2rbZQL69O-oMBfgayQCG6En0HrcVv9ifJ9Ld1VW4dxsnCDB-xyWZuzcWSr931ynfDzz9kG_978o_Zbutr8n6zOJ6wOzB7yh7eUCB8xuDjdHz2hvf5WxKu5qRVtXBLOgJ5Ss3NPn-BH3y4ucGFrfk1HyF3XXgSFOb9GZWyX_BPSL2BowPMx9PpYMmJ1V7jhJqKTXvscnh2MRhlbeWFLCDfW2WgezXk3tWFM1EIp2uIJocgo3cqSodWHZt1paEUpjLEKaE2GmJlagQ4yn22M5vP4DnjAvmgQzegpErrvVC4CBJZN-XHylhG02Fig4cNrSw5Vcf4ZhM9ySvbgGgJRNuC2GGvt4O-N6oc_-5-SkBvu5KkdnqAANl2h1pkit6DCRTfUSFHx81554yUoi6iN6HD9gjUG-9r8Oywo826se3-X1phjFQ6V6o6-Muwl-z-6GJ8bs_fTT4csgdUxb6J7ByxndViDcfo66z8i7TCfwHK__fF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROME%3A+A+Graph+Contrastive+Multi-View+Framework+From+Hyperbolic+Angular+Space+for+MOOCs+Recommendation&rft.jtitle=IEEE+access&rft.au=Luo%2C+Hao&rft.au=Husin%2C+Nor+Azura&rft.au=Aris%2C+Teh+Noranis+Mohd&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=9691&rft.epage=9700&rft_id=info:doi/10.1109%2FACCESS.2022.3232552&rft.externalDocID=10001755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |