ROME: A Graph Contrastive Multi-View Framework From Hyperbolic Angular Space for MOOCs Recommendation

As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this doe...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 9691 - 9700
Main Authors Luo, Hao, Husin, Nor Azura, Aris, Teh Noranis Mohd
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3232552

Cover

Abstract As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this does not take into account the user's learning needs with some particular subjects. However, all existing graph models degrade performances either by ignoring the data sparsity issue caused by a large number of concepts, which may lead to biased recommendations, or by constructing improper contrasting pairs, which may result in graph noise. To overcome both challenges, we propose a g R aph c O ntrastive M ulti-view fram E work (ROME) from hyperbolic angular space to learn user and concept representations based on user-user and concept-concept relationships. The first step is to use hyperbolic and Euclidean space representations as different views of graph and maximize the mutual information between them. Furthermore, we maximize the angular decision margin in graph contrastive training objects to enhance pairwise discriminative power. Our experiments on a large-scale real-world MOOC dataset show that the proposed approach outperforms several baselines and state-of-the-art methods for predicting and recommending concepts of interest to users.
AbstractList As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this does not take into account the user's learning needs with some particular subjects. However, all existing graph models degrade performances either by ignoring the data sparsity issue caused by a large number of concepts, which may lead to biased recommendations, or by constructing improper contrasting pairs, which may result in graph noise. To overcome both challenges, we propose a g R aph c O ntrastive M ulti-view fram E work (ROME) from hyperbolic angular space to learn user and concept representations based on user-user and concept-concept relationships. The first step is to use hyperbolic and Euclidean space representations as different views of graph and maximize the mutual information between them. Furthermore, we maximize the angular decision margin in graph contrastive training objects to enhance pairwise discriminative power. Our experiments on a large-scale real-world MOOC dataset show that the proposed approach outperforms several baselines and state-of-the-art methods for predicting and recommending concepts of interest to users.
As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to keep students interested and boost their performance. In a typical roadmap, courses and videos are recommended using a graph model, but this does not take into account the user's learning needs with some particular subjects. However, all existing graph models degrade performances either by ignoring the data sparsity issue caused by a large number of concepts, which may lead to biased recommendations, or by constructing improper contrasting pairs, which may result in graph noise. To overcome both challenges, we propose a gRaph cOntrastive Multi-view framEwork (ROME) from hyperbolic angular space to learn user and concept representations based on user-user and concept-concept relationships. The first step is to use hyperbolic and Euclidean space representations as different views of graph and maximize the mutual information between them. Furthermore, we maximize the angular decision margin in graph contrastive training objects to enhance pairwise discriminative power. Our experiments on a large-scale real-world MOOC dataset show that the proposed approach outperforms several baselines and state-of-the-art methods for predicting and recommending concepts of interest to users.
Author Luo, Hao
Aris, Teh Noranis Mohd
Husin, Nor Azura
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-3735-6337
  surname: Luo
  fullname: Luo, Hao
  organization: Faculty of Science Computer and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
– sequence: 2
  givenname: Nor Azura
  surname: Husin
  fullname: Husin, Nor Azura
  email: n_azura@upm.edu.my
  organization: Faculty of Science Computer and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
– sequence: 3
  givenname: Teh Noranis Mohd
  orcidid: 0000-0002-9982-6245
  surname: Aris
  fullname: Aris, Teh Noranis Mohd
  organization: Faculty of Science Computer and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
BookMark eNqFUU1r3DAQFSGFptv8guYg6NlbWR9W1NtiNh-QZSHb5CrG8ijV1rZc2ZuQf18nDiX00rnM4zFv3jDvEznuYoeEfMnZMs-Z-bYqy_Vut-SM86XggivFj8gJzwuTCSWK43f4Izkdhj2b6nyilD4heLvdrL_TFb1M0P-kZezGBMMYHpFuDs0YsvuAT_QiQYtPMf2aUGzp1XOPqYpNcHTVPRwaSHTXg0PqY6Kb7bYc6C262LbY1TCG2H0mHzw0A56-9QW5u1j_KK-ym-3ldbm6yZxkZsxQ5TWyCuoCtOccVI1eM3TCVyC9AF4UE6yNwnOujc6lLLDWCr3RNWPaiwW5nvfWEfa2T6GF9GwjBPtKxPRgIY3BNWilUVWF2gkmuXRMGAMVgBaC14WvJn5Bvs67-hR_H3AY7T4eUjedb7nWQiompZmmxDzlUhyGhP6va87sSzx2jse-xGPf4plU5h-VC-Prp6bvh-Y_2rNZGxDxnRtjuVZK_AGvZZ9l
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s13198_024_02301_2
crossref_primary_10_1016_j_ipm_2024_103750
crossref_primary_10_1007_s10115_024_02240_1
crossref_primary_10_1007_s42979_025_03700_3
Cites_doi 10.1145/3477495.3531937
10.1145/3209978.3209991
10.1145/3447548.3467189
10.1145/345508.345545
10.1145/3394486.3403168
10.1145/3038912.3052569
10.1109/ICDE.2019.00140
10.1145/3397271.3401063
10.1007/978-0-387-39940-9_488
10.1145/3397271.3401142
10.1145/3314578
10.14778/3402707.3402736
10.1109/tkde.2023.3282907
10.1007/s00530-022-00989-5
10.1145/2481244.2481248
10.18653/v1/2020.emnlp-main.124
10.1145/502585.502627
10.1145/2736277.2741656
10.1109/TKDE.2018.2833443
10.1609/aaai.v34i01.5329
10.1145/3488560.3501396
10.18653/v1/2020.acl-main.285
10.1145/3097983.3098036
10.1109/TKDE.2018.2831682
10.1145/3397271.3401057
10.1109/IJCNN52387.2021.9533645
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3232552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 9700
ExternalDocumentID oai_doaj_org_article_495bbe7c30424c0399abaa7332d6fb7c
10_1109_ACCESS_2022_3232552
10001755
Genre orig-research
GrantInformation_xml – fundername: Ministry of Higher Education
  grantid: FRGS FRGS/1/2020/ICT02/UPM/02/2(08-01-20-2315FR)
  funderid: 10.13039/501100002385
– fundername: Baoshan University School Transformation Development Project
  grantid: ZKZX202001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-e51de0bad6a7f22a5def70ec3fba4f3a2663fbd95e827971446ed75ef97d007f3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:59 EDT 2025
Sun Jun 29 15:38:16 EDT 2025
Tue Jul 01 02:48:37 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
Wed Aug 27 02:48:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-e51de0bad6a7f22a5def70ec3fba4f3a2663fbd95e827971446ed75ef97d007f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3735-6337
0000-0002-9982-6245
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10001755
PQID 2773450449
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_primary_10_1109_ACCESS_2022_3232552
doaj_primary_oai_doaj_org_article_495bbe7c30424c0399abaa7332d6fb7c
proquest_journals_2773450449
crossref_citationtrail_10_1109_ACCESS_2022_3232552
ieee_primary_10001755
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref15
Rendle (ref36) 2012
ref37
Van Den Oord (ref12) 2018
ref31
ref30
ref11
ref10
ref32
ref2
ref17
ref39
ref18
Kondor (ref23)
Sun (ref20) 2019
Hassani (ref22)
You (ref1); 33
Kingma (ref38) 2014
Piao (ref5)
ref26
ref25
ref42
ref41
ref43
ref28
ref27
ref8
ref7
ref9
ref4
Wu (ref29)
ref3
ref6
Page (ref24) 1999
Kipf (ref35) 2016
Velickovic (ref19); 2
Chami (ref14); 32
Giorgi (ref16) 2020
ref40
Ganea (ref33); 31
Hjelm (ref21) 2018
Cannon (ref13) 1997; 31
References_xml – ident: ref11
  doi: 10.1145/3477495.3531937
– volume-title: arXiv:1609.02907
  year: 2016
  ident: ref35
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 31
  start-page: 2
  issue: 59
  year: 1997
  ident: ref13
  article-title: Hyperbolic geometry
  publication-title: Flavors geometry
– ident: ref7
  doi: 10.1145/3209978.3209991
– ident: ref3
  doi: 10.1145/3447548.3467189
– ident: ref42
  doi: 10.1145/345508.345545
– volume-title: arXiv:2006.03659
  year: 2020
  ident: ref16
  article-title: DeCLUTR: Deep contrastive learning for unsupervised textual representations
– start-page: 315
  volume-title: Proc. 19th Int. Conf. Mach. Learn.
  ident: ref23
  article-title: Diffusion kernels on graphs and other discrete structures
– ident: ref25
  doi: 10.1145/3394486.3403168
– ident: ref8
  doi: 10.1145/3038912.3052569
– ident: ref26
  doi: 10.1109/ICDE.2019.00140
– ident: ref30
  doi: 10.1145/3397271.3401063
– year: 1999
  ident: ref24
  article-title: The PageRank citation ranking: Bringing order to the web
– start-page: 6861
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref29
  article-title: Simplifying graph convolutional networks
– volume-title: arXiv:1908.01000
  year: 2019
  ident: ref20
  article-title: InfoGraph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref14
  article-title: Hyperbolic graph convolutional neural networks
– ident: ref43
  doi: 10.1007/978-0-387-39940-9_488
– ident: ref2
  doi: 10.1145/3397271.3401142
– ident: ref10
  doi: 10.1145/3314578
– ident: ref32
  doi: 10.14778/3402707.3402736
– ident: ref17
  doi: 10.1109/tkde.2023.3282907
– volume: 33
  start-page: 5812
  volume-title: Proc. NIPS
  ident: ref1
  article-title: Graph contrastive learning with augmentations
– volume: 2
  start-page: 4
  issue: 3
  volume-title: Proc. ICLR
  ident: ref19
  article-title: Deep graph infomax
– ident: ref6
  doi: 10.1007/s00530-022-00989-5
– ident: ref31
  doi: 10.1145/2481244.2481248
– volume-title: arXiv:1807.03748
  year: 2018
  ident: ref12
  article-title: Representation learning with contrastive predictive coding
– ident: ref15
  doi: 10.18653/v1/2020.emnlp-main.124
– ident: ref41
  doi: 10.1145/502585.502627
– ident: ref39
  doi: 10.1145/2736277.2741656
– ident: ref34
  doi: 10.1109/TKDE.2018.2833443
– ident: ref27
  doi: 10.1609/aaai.v34i01.5329
– volume-title: arXiv:1808.06670
  year: 2018
  ident: ref21
  article-title: Learning deep representations by mutual information estimation and maximization
– volume-title: arXiv:1205.2618
  year: 2012
  ident: ref36
  article-title: BPR: Bayesian personalized ranking from implicit feedback
– ident: ref18
  doi: 10.1145/3488560.3501396
– ident: ref37
  doi: 10.18653/v1/2020.acl-main.285
– ident: ref40
  doi: 10.1145/3097983.3098036
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Hyperbolic neural networks
– volume-title: arXiv:1412.6980
  year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
– ident: ref9
  doi: 10.1109/TKDE.2018.2831682
– ident: ref28
  doi: 10.1145/3397271.3401057
– start-page: 4116
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref22
  article-title: Contrastive multi-view representation learning on graphs
– ident: ref4
  doi: 10.1109/IJCNN52387.2021.9533645
– start-page: 1
  volume-title: Proc. 14th Int. Conf. Educ. Data Mining
  ident: ref5
  article-title: Recommending knowledge concepts on MOOC platforms with meta-path-based representation learning
SSID ssj0000816957
Score 2.2846727
Snippet As Massive Open Online Courses (MOOCs) expand and diversify, more and more researchers study recommender systems that take advantage of interaction data to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9691
SubjectTerms Electronic learning
Euclidean geometry
Euclidean space
Filtering
graph contrastive learning
manifold learning
Online instruction
Recommender system
Recommender systems
Representations
Task analysis
Tensors
Topology
Videos
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUhp-ZQ2iSlbtKgQ4_ZRtbHatWba-KagGNom5KbkLQjKNROsB369zuzKweXQHrpTSxatDszOzNvkd5j7IOOoU7J6KoGYyvdmFg1SbgKK63JWJMgdCRJs-t6eqOvbs3tjtQX7Qnr6YF7w11gAx8j2ESwWyeB9TTEEKxSsq1ztImyr3BiB0x1ObgZ1s7YQjM0FO5iNB7jGyEglPKjwjbCGPlXKeoY-4vEypO83BWbySv2snSJfNQ_3Wu2B8tDdrDDHXjE4Ot8dvmJj_gXopzmxDK1CmtKXrw7VFv9-Am_-WS79wpHdws-RdS5ikQFzEdLEqFf8W8ImoFj68pn8_l4zQmPLhZQtJaO2c3k8vt4WhXNhCohUttUYIYtiBjaOtgsZTAtZCsgqRyDzipgPcZh6ww00jpLaBBaayA726JrsnrD9pd3S3jLuEQkF7CAN6SRPkx1yKAQL9PJVpWbbAdMbs3nUyEUJ12LX74DFsL53uaebO6LzQfs_PGm-55P4_npn8kvj1OJDLu7gCHiS4j4f4XIgB2TV3fWo9pszICdbt3sy5e79tJapY3Q2r37H2ufsBckUN__tDll-5vVA7zHNmYTz7qI_QMp7Or1
  priority: 102
  providerName: Directory of Open Access Journals
Title ROME: A Graph Contrastive Multi-View Framework From Hyperbolic Angular Space for MOOCs Recommendation
URI https://ieeexplore.ieee.org/document/10001755
https://www.proquest.com/docview/2773450449
https://doaj.org/article/495bbe7c30424c0399abaa7332d6fb7c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELVoT3AACkUESuVDj2y68cd6l1uIGqJKaSSgqDfL9o4lVJqgfKhSfz0zXicqVCBu1srWevVsz7xZzxvGTpR3VQhaFRVoU6ha-6IOZVOgpdURbRK4JJI0vagml-r8Sl_lZPWUCwMA6fIZ9KmZ_uW3i7ChUNnpIMm7aL3H9nCddclau4AKVZBotMnKQoOyOR2ORvgRyAGF6Ev0HLQWv1mfJNKfq6o8OIqTfRk_YxfbmXXXSq77m7Xvh7s_RBv_e-rP2dPsafJhtzQO2COYv2BP7ukPvmTweTY9-8CH_BPJVnNSqlq6FR2APCXmFt--wy0fb-9vYWtxwyfIXJee5IT5cE6F7Jf8CxJv4Oj-8ulsNlpx4rQ3OKGuXtMhuxyffR1Nilx3oQjI9tYF6EELpXdt5UwUwukWoikhyOiditKhTcdm22iohWkMMUpojYbYmBbhjfIV258v5vCacYFs0KETUFOd9UGoXASJnJuyY2Wso-kxscXDhixKTrUxfthETsrGdiBaAtFmEHvs_W7Qz06T49_dPxLQu64kqJ0eIEA270-LPNF7MIGiOyqU6LY575yRUrRV9Cb02CGBeu99HZ49drRdNzbv_pUVxkilS6WaN38Z9pY9prr1XSzniO2vlxt4h97N2h-nqMBxWtu_AJeq9W0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHIBDebUifYAPHNl048d6l1saNQRoEgla1Jtle8cSgiYoDyHx65nxbqJCBeJmrWytV5_tmW_W8w1jr5R3RQhaZQVok6lS-6wMeZWhpdURbRK4JJI0nhSjS_X-Sl-1yeopFwYA0uUz6FIz_cuv52FNobKTXpJ30fouu4eGX-kmXWsbUqEaEpU2rbZQL69O-oMBfgayQCG6En0HrcVv9ifJ9Ld1VW4dxsnCDB-xyWZuzcWSr931ynfDzz9kG_978o_Zbutr8n6zOJ6wOzB7yh7eUCB8xuDjdHz2hvf5WxKu5qRVtXBLOgJ5Ss3NPn-BH3y4ucGFrfk1HyF3XXgSFOb9GZWyX_BPSL2BowPMx9PpYMmJ1V7jhJqKTXvscnh2MRhlbeWFLCDfW2WgezXk3tWFM1EIp2uIJocgo3cqSodWHZt1paEUpjLEKaE2GmJlagQ4yn22M5vP4DnjAvmgQzegpErrvVC4CBJZN-XHylhG02Fig4cNrSw5Vcf4ZhM9ySvbgGgJRNuC2GGvt4O-N6oc_-5-SkBvu5KkdnqAANl2h1pkit6DCRTfUSFHx81554yUoi6iN6HD9gjUG-9r8Oywo826se3-X1phjFQ6V6o6-Muwl-z-6GJ8bs_fTT4csgdUxb6J7ByxndViDcfo66z8i7TCfwHK__fF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROME%3A+A+Graph+Contrastive+Multi-View+Framework+From+Hyperbolic+Angular+Space+for+MOOCs+Recommendation&rft.jtitle=IEEE+access&rft.au=Luo%2C+Hao&rft.au=Husin%2C+Nor+Azura&rft.au=Aris%2C+Teh+Noranis+Mohd&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=9691&rft.epage=9700&rft_id=info:doi/10.1109%2FACCESS.2022.3232552&rft.externalDocID=10001755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon