Competing crack initiation behaviors of a laser additively manufactured nickel-based superalloy in high and very high cycle fatigue regimes
•The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar grains.•ΔK at the border of rough area corresponds to propagation threshold for long cracks.•Fatigue sensitivity of maximal micro-crack type, size,...
Saved in:
Published in | International journal of fatigue Vol. 136; p. 105580 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.07.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar grains.•ΔK at the border of rough area corresponds to propagation threshold for long cracks.•Fatigue sensitivity of maximal micro-crack type, size, and location increase successively.
Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy in the as-deposited condition. The results indicate that the competition failure behavior between the surface and interior crack initiation results in the separate S-N curve. Both manufacturing defects (e.g., gas pore, lack of fusion) and columnar grains (matrix) observed in the microstructure could act as the original fatigue micro-cracks due to the effective restriction on manufacturing defects. The fatigue sensitivity levels increase successively in terms of the type, size, and location of the maximal micro-crack. |
---|---|
AbstractList | •The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar grains.•ΔK at the border of rough area corresponds to propagation threshold for long cracks.•Fatigue sensitivity of maximal micro-crack type, size, and location increase successively.
Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy in the as-deposited condition. The results indicate that the competition failure behavior between the surface and interior crack initiation results in the separate S-N curve. Both manufacturing defects (e.g., gas pore, lack of fusion) and columnar grains (matrix) observed in the microstructure could act as the original fatigue micro-cracks due to the effective restriction on manufacturing defects. The fatigue sensitivity levels increase successively in terms of the type, size, and location of the maximal micro-crack. Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy in the as-deposited condition. The results indicate that the competition failure behavior between the surface and interior crack initiation results in the separate S-N curve. Both manufacturing defects (e.g., gas pore, lack of fusion) and columnar grains (matrix) observed in the microstructure could act as the original fatigue micro-cracks due to the effective restriction on manufacturing defects. The fatigue sensitivity levels increase successively in terms of the type, size, and location of the maximal micro-crack. |
ArticleNumber | 105580 |
Author | Huang, Qi Wang, Qingyuan Chen, Qiang Yang, Kun |
Author_xml | – sequence: 1 givenname: Kun surname: Yang fullname: Yang, Kun email: scu_yangkun@163.com organization: Institute for Advanced Study, Chengdu University, Chengdu 610106, China – sequence: 2 givenname: Qi surname: Huang fullname: Huang, Qi organization: Department of Civil Engineering, Sichuan College of Architectural Technology, Deyang 618000, China – sequence: 3 givenname: Qingyuan surname: Wang fullname: Wang, Qingyuan email: wangqy@scu.edu.cn organization: Institute for Advanced Study, Chengdu University, Chengdu 610106, China – sequence: 4 givenname: Qiang surname: Chen fullname: Chen, Qiang organization: Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan |
BookMark | eNqNkMFu1DAQhi3USmxLn6GWOGexnTixDxyqFRSkSlzgbDn2eNdp1l7sZKU8Ay-Nt6k4cIHTaEb__8_Md4OuQgyA0D0lW0po-2HY-sHpye9n2DLCLlPOBXmDNlR0sqobzq7QhtCGVZSy-i26yXkghEjS8Q36tYvHE0w-7LFJ2jxjH_zkS1wMuIeDPvuYMo4OazzqDAlra4vgDOOCjzrMTptpTmBx8OYZxqovIovzfIKkxzEuJQ8f_P6AdbD4DGlZO7OYEfDr2TjB3h8hv0PXTo8Z7l7rLfrx-dP33Zfq6dvj193DU2UaIqcKGimgk71uuaO1q3mnGyqgla483sq6h1oQ3jIriLCsI9Iay0VNpJPC9H1b36L3a-4pxZ8z5EkNcU6hrFSME96xtmGsqD6uKpNizgmcMn56ATMl7UdFibrwV4P6w19d-KuVf_F3f_lPyR91Wv7D-bA6oUA4e0gqGw_BgPUJzKRs9P_M-A2Zpalw |
CitedBy_id | crossref_primary_10_1016_j_addma_2021_102324 crossref_primary_10_1016_j_msea_2024_146988 crossref_primary_10_1016_j_matpr_2021_02_547 crossref_primary_10_1016_j_ijfatigue_2021_106349 crossref_primary_10_3390_ma16247552 crossref_primary_10_1007_s11665_023_08327_0 crossref_primary_10_1016_j_ijfatigue_2022_106748 crossref_primary_10_1111_ffe_14582 crossref_primary_10_1016_j_ijfatigue_2023_107799 crossref_primary_10_1520_MPC20220088 crossref_primary_10_1108_IJSI_01_2024_0001 crossref_primary_10_1016_j_ijfatigue_2024_108640 crossref_primary_10_1016_j_apmt_2024_102367 crossref_primary_10_1016_j_jallcom_2024_175102 crossref_primary_10_1016_j_jmrt_2023_07_196 crossref_primary_10_1515_mt_2021_2121 crossref_primary_10_1016_j_engfracmech_2021_108015 crossref_primary_10_1016_j_msea_2022_142716 crossref_primary_10_1016_j_ijfatigue_2024_108514 crossref_primary_10_1111_ffe_13944 crossref_primary_10_1007_s11837_023_05820_8 crossref_primary_10_1016_j_actamat_2021_117565 crossref_primary_10_1016_j_ijfatigue_2021_106510 crossref_primary_10_1016_j_ijfatigue_2025_108811 crossref_primary_10_1016_j_surfcoat_2022_128872 crossref_primary_10_1016_j_tafmec_2024_104680 crossref_primary_10_3390_ma14041001 crossref_primary_10_1016_j_ijfatigue_2023_108013 crossref_primary_10_1016_j_engfracmech_2023_109507 crossref_primary_10_1016_j_msea_2022_142682 crossref_primary_10_1016_j_engfracmech_2023_109433 crossref_primary_10_1016_j_engfailanal_2021_106015 crossref_primary_10_1016_j_engfailanal_2023_107667 crossref_primary_10_1016_j_vacuum_2022_111265 crossref_primary_10_1016_j_ijfatigue_2025_108825 crossref_primary_10_1016_j_ijfatigue_2023_107894 crossref_primary_10_1016_j_jmrt_2022_02_077 crossref_primary_10_1016_j_ijfatigue_2020_105795 crossref_primary_10_1016_j_ijfatigue_2020_106005 crossref_primary_10_1016_j_vacuum_2024_113405 crossref_primary_10_1016_j_addma_2022_102871 crossref_primary_10_1016_j_tafmec_2022_103705 crossref_primary_10_1016_j_mtcomm_2024_111086 crossref_primary_10_1007_s10338_023_00380_5 crossref_primary_10_1016_j_jmrt_2025_02_041 crossref_primary_10_1111_ffe_13520 crossref_primary_10_1111_ffe_14451 crossref_primary_10_1016_j_mtadv_2024_100553 crossref_primary_10_1016_j_ijfatigue_2022_107002 crossref_primary_10_1177_02670836241245214 crossref_primary_10_1016_j_ijfatigue_2023_107665 crossref_primary_10_1007_s00170_022_09693_0 crossref_primary_10_1016_j_jmatprotec_2024_118425 crossref_primary_10_1016_j_matdes_2024_113165 crossref_primary_10_1016_j_msea_2022_144484 crossref_primary_10_1016_j_ijfatigue_2021_106250 crossref_primary_10_1016_j_msea_2023_145112 crossref_primary_10_1016_j_msea_2024_146465 crossref_primary_10_1016_j_tafmec_2022_103322 crossref_primary_10_1016_j_ijfatigue_2021_106700 crossref_primary_10_1111_ffe_13573 crossref_primary_10_1111_ffe_13691 crossref_primary_10_1016_j_engfailanal_2024_109227 crossref_primary_10_1016_j_ijfatigue_2023_107512 crossref_primary_10_1007_s11665_021_05554_1 crossref_primary_10_1016_j_pmatsci_2022_101066 crossref_primary_10_1016_j_ijfatigue_2024_108723 crossref_primary_10_1016_j_addma_2024_104151 crossref_primary_10_1016_j_ijfatigue_2023_107599 crossref_primary_10_3390_met12030515 crossref_primary_10_1007_s10853_020_04845_7 crossref_primary_10_1016_j_msea_2024_147403 crossref_primary_10_1016_j_engfailanal_2022_106191 crossref_primary_10_1080_17452759_2022_2068447 crossref_primary_10_1016_j_mtla_2021_101272 crossref_primary_10_1016_j_msea_2024_146833 crossref_primary_10_1016_j_matchar_2023_112960 crossref_primary_10_3390_ma15248925 crossref_primary_10_3390_app10238761 crossref_primary_10_1111_ffe_13584 crossref_primary_10_1111_ffe_14152 crossref_primary_10_1016_j_jmps_2024_106008 crossref_primary_10_3390_cryst10100905 crossref_primary_10_1111_ffe_13985 crossref_primary_10_1016_j_engfracmech_2025_110891 crossref_primary_10_1016_j_ijfatigue_2024_108433 crossref_primary_10_1016_j_ijfatigue_2023_107764 crossref_primary_10_1111_ffe_13467 crossref_primary_10_1016_j_ijfatigue_2024_108431 crossref_primary_10_1016_j_actamat_2021_117240 crossref_primary_10_1016_j_engfailanal_2024_108433 crossref_primary_10_1016_j_msea_2022_143215 crossref_primary_10_3390_ma13235358 crossref_primary_10_1080_17452759_2024_2302556 crossref_primary_10_1016_j_engfailanal_2022_106975 crossref_primary_10_1016_j_jmrt_2022_12_112 crossref_primary_10_1016_j_ijfatigue_2021_106446 crossref_primary_10_1016_j_msea_2024_146930 crossref_primary_10_1016_j_msea_2020_140693 crossref_primary_10_1111_ffe_14094 crossref_primary_10_1016_j_engfracmech_2022_108254 crossref_primary_10_1111_ffe_14532 crossref_primary_10_3390_met12050856 crossref_primary_10_1111_ffe_13567 crossref_primary_10_1016_j_ijfatigue_2020_106038 crossref_primary_10_1016_j_msea_2020_140685 crossref_primary_10_1016_j_addma_2022_103355 crossref_primary_10_1002_adma_202306570 crossref_primary_10_1016_j_engfracmech_2023_109801 |
Cites_doi | 10.1016/j.jallcom.2011.10.107 10.1016/j.ijfatigue.2015.08.013 10.1016/j.matdes.2018.107552 10.1038/s41563-019-0408-2 10.1016/j.actamat.2011.12.032 10.1016/j.ijfatigue.2016.04.016 10.1016/j.msea.2007.05.079 10.1016/j.msea.2016.09.098 10.1016/S0921-5093(03)00136-9 10.1016/j.jallcom.2013.09.171 10.1299/kikaia.67.1980 10.1016/j.ijfatigue.2016.11.032 10.1016/j.ijfatigue.2005.04.018 10.1016/j.ijfatigue.2015.08.021 10.1016/j.ijfatigue.2016.06.020 10.1111/ffe.12989 10.1016/j.ijfatigue.2018.08.002 10.1111/j.1460-2695.2011.01658.x 10.1016/j.ijfatigue.2015.11.029 10.1016/j.ijfatigue.2018.10.002 10.1016/j.ijfatigue.2016.06.003 10.1111/ffe.12830 10.1016/j.matchar.2013.12.012 10.1016/j.tafmec.2016.10.003 10.1016/0013-7944(79)90081-X 10.1016/j.ijfatigue.2016.05.024 10.1016/j.ijfatigue.2017.05.004 10.1016/j.msea.2016.05.089 10.1038/nmat5021 10.1016/j.ijfatigue.2016.03.012 10.1016/j.matdes.2018.04.022 10.1016/j.ijfatigue.2005.08.015 10.1016/j.ijfatigue.2018.05.032 10.1016/j.ijfatigue.2005.07.022 10.1016/j.ijfatigue.2013.02.023 10.1046/j.1460-2695.1999.00187.x 10.1016/j.ijfatigue.2005.09.020 10.1016/j.ijfatigue.2016.05.018 10.1126/science.aax7616 10.1016/j.msea.2018.03.127 10.1016/j.msea.2017.03.098 10.1016/S0142-1123(02)00037-3 10.1115/1.3656900 10.1016/j.msea.2019.06.003 10.1016/j.actamat.2018.07.036 10.1126/science.aax8760 10.1007/s11433-013-5013-9 10.1111/ffe.12331 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jul 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2020.105580 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
ExternalDocumentID | 10_1016_j_ijfatigue_2020_105580 S0142112320301110 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c409t-e498e79ba65f13f357a418e69f055693be380562d808d2709dcd58309f98cbb63 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Fri Jul 25 07:40:49 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Tue Jul 01 01:54:34 EDT 2025 Fri Feb 23 02:46:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Very high cycle fatigue Additive manufacturing Selective laser melting Fatigue sensitivity level Fatigue crack initiation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-e498e79ba65f13f357a418e69f055693be380562d808d2709dcd58309f98cbb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2505726422 |
PQPubID | 2045465 |
ParticipantIDs | proquest_journals_2505726422 crossref_citationtrail_10_1016_j_ijfatigue_2020_105580 crossref_primary_10_1016_j_ijfatigue_2020_105580 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Saha, Wang, Nguyen, Chang, Oakdale, Chen (b0025) 2019; 366 Murakami, Nagata, Matsunaga (b0230) 2006 Chen, Kawagoishi, Wang, Yan, Ono, Hashiguchi (b0095) 2005; 27 Hong, Lei, Sun, Zhao (b0170) 2014; 58 Yang, He, Huang, Huang, Wang, Wang (b0070) 2017; 99, Part 1 He, Wu, Peng, Su, Chen, Yuan (b0140) 2019; 119 Tillmann, Schaak, Nellesen, Schaper, Aydinöz, Hoyer (b0035) 2017; 13 Aydinöz, Brenne, Schaper, Schaak, Tillmann, Nellesen (b0065) 2016; 669 Kevinsanny, Okazaki, Takakuwa, Ogawa, Okita, Funakoshi (b0210) 2019; 42 DebRoy, Mukherjee, Milewski, Elmer, Ribic, Blecher (b0020) 2019; 18 Amato, Gaytan, Murr, Martinez, Shindo, Hernandez (b0100) 2012; 60 Shao, Khonsari, Guo, Meng, Li (b0050) 2019; 29 Sun, Xie, Zhao, Lei, Hong (b0225) 2012; 35 Hou, Simsek, Ma, Johnson, Qian, Cissé (b0015) 2019; 366 Wang, Bathias, Kawagoishi, Chen (b0080) 2002; 24 Kitagawa, Takahashi (b0200) 1976 Yoo, Book, Sangid, Kacher (b0125) 2018; 724 Murakami, Nomoto, Ueda (b0160) 1999; 22 Zhao, Chen, Lin, Huang (b0130) 2008; 478 Prithivirajan, Sangid (b0115) 2018; 150 Sakai, Sato, Nagano, Takeda, Oguma (b0150) 2006; 28 Murakami (b0165) 2002 He, Liu, Dong, Wang, Wagner, Bathias (b0195) 2016; 82 Li, Zhang, Fei, Liu, Li (b0255) 2016; 82 Sui, Chen, Fan, Yang, Lin, Huang (b0145) 2017; 695 Shiozawa, Morii, Nishino, Lu (b0155) 2006; 28 Hong, Liu, Lei, Sun (b0185) 2016; 89 Parimi, Ravi, Clark, Attallah (b0030) 2014; 89 Beretta, Romano (b0215) 2017; 94 Sakai, Sato, Oguma (b0240) 2001; 67 Tridello, Biffi, Fiocchi, Bassani, Chiandussi, Rossetto (b0085) 2018; 41 Watring, Carter, Crouse, Raeymaekers, Spear (b0060) 2019; 761 Cao, Ravi Chandran (b0265) 2017; 102 Jia, Gu (b0120) 2014; 585 Yoshinaka, Nakamura, Takaku (b0190) 2016; 91, Part 1 Chapetti, Tagawa, Miyata (b0250) 2003; 356 Texier, Cormier, Villechaise, Stinville, Torbet, Pierret (b0135) 2016; 678 Konečná, Kunz, Nicoletto, Bača (b0180) 2016; 92 Schönbauer, Yanase, Endo (b0260) 2017; 87 Wang, Voisin, McKeown, Ye, Calta, Li (b0010) 2018; 17 Siddique, Imran, Walther (b0075) 2017; 94 Yamashita, Murakami, Mihara, Okada, Murakami (b0045) 2018; 117 Matsunaga, Sun, Hong, Murakami (b0245) 2015; 38 Bathias (b0105) 2006; 28 Yamashita, Murakami (b0220) 2016; 93 Zhu, Jin, Xuan (b0175) 2018; 157 Zhang, Duan, Shi (b0090) 2013; 56 Liu, Shin (b0005) 2019; 164 El Haddad, Topper, Smith (b0205) 1979; 11 Wang, Guan, Gao, Li, Chen, Zeng (b0110) 2012; 513 Guenther, Krewerth, Lippmann, Leuders, Troester, Weidner (b0040) 2017; 94 Paris, Erdogan (b0235) 1963; 85 Yang, Zhong, Huang, He, Huang, Wang (b0055) 2018; 116 Yang (10.1016/j.ijfatigue.2020.105580_b0070) 2017; 99, Part 1 Sakai (10.1016/j.ijfatigue.2020.105580_b0150) 2006; 28 Bathias (10.1016/j.ijfatigue.2020.105580_b0105) 2006; 28 Yamashita (10.1016/j.ijfatigue.2020.105580_b0220) 2016; 93 Li (10.1016/j.ijfatigue.2020.105580_b0255) 2016; 82 Prithivirajan (10.1016/j.ijfatigue.2020.105580_b0115) 2018; 150 He (10.1016/j.ijfatigue.2020.105580_b0195) 2016; 82 Watring (10.1016/j.ijfatigue.2020.105580_b0060) 2019; 761 Zhu (10.1016/j.ijfatigue.2020.105580_b0175) 2018; 157 Yoshinaka (10.1016/j.ijfatigue.2020.105580_b0190) 2016; 91, Part 1 Sakai (10.1016/j.ijfatigue.2020.105580_b0240) 2001; 67 Zhao (10.1016/j.ijfatigue.2020.105580_b0130) 2008; 478 Jia (10.1016/j.ijfatigue.2020.105580_b0120) 2014; 585 Hong (10.1016/j.ijfatigue.2020.105580_b0185) 2016; 89 Paris (10.1016/j.ijfatigue.2020.105580_b0235) 1963; 85 Chapetti (10.1016/j.ijfatigue.2020.105580_b0250) 2003; 356 Hou (10.1016/j.ijfatigue.2020.105580_b0015) 2019; 366 Wang (10.1016/j.ijfatigue.2020.105580_b0080) 2002; 24 Wang (10.1016/j.ijfatigue.2020.105580_b0010) 2018; 17 Sun (10.1016/j.ijfatigue.2020.105580_b0225) 2012; 35 Shao (10.1016/j.ijfatigue.2020.105580_b0050) 2019; 29 Murakami (10.1016/j.ijfatigue.2020.105580_b0230) 2006 Guenther (10.1016/j.ijfatigue.2020.105580_b0040) 2017; 94 Parimi (10.1016/j.ijfatigue.2020.105580_b0030) 2014; 89 Yoo (10.1016/j.ijfatigue.2020.105580_b0125) 2018; 724 Yang (10.1016/j.ijfatigue.2020.105580_b0055) 2018; 116 Texier (10.1016/j.ijfatigue.2020.105580_b0135) 2016; 678 Shiozawa (10.1016/j.ijfatigue.2020.105580_b0155) 2006; 28 Kitagawa (10.1016/j.ijfatigue.2020.105580_b0200) 1976 Murakami (10.1016/j.ijfatigue.2020.105580_b0160) 1999; 22 Siddique (10.1016/j.ijfatigue.2020.105580_b0075) 2017; 94 Amato (10.1016/j.ijfatigue.2020.105580_b0100) 2012; 60 Tridello (10.1016/j.ijfatigue.2020.105580_b0085) 2018; 41 Zhang (10.1016/j.ijfatigue.2020.105580_b0090) 2013; 56 Saha (10.1016/j.ijfatigue.2020.105580_b0025) 2019; 366 He (10.1016/j.ijfatigue.2020.105580_b0140) 2019; 119 Beretta (10.1016/j.ijfatigue.2020.105580_b0215) 2017; 94 El Haddad (10.1016/j.ijfatigue.2020.105580_b0205) 1979; 11 Sui (10.1016/j.ijfatigue.2020.105580_b0145) 2017; 695 Aydinöz (10.1016/j.ijfatigue.2020.105580_b0065) 2016; 669 Chen (10.1016/j.ijfatigue.2020.105580_b0095) 2005; 27 Schönbauer (10.1016/j.ijfatigue.2020.105580_b0260) 2017; 87 Hong (10.1016/j.ijfatigue.2020.105580_b0170) 2014; 58 Matsunaga (10.1016/j.ijfatigue.2020.105580_b0245) 2015; 38 Wang (10.1016/j.ijfatigue.2020.105580_b0110) 2012; 513 Liu (10.1016/j.ijfatigue.2020.105580_b0005) 2019; 164 DebRoy (10.1016/j.ijfatigue.2020.105580_b0020) 2019; 18 Tillmann (10.1016/j.ijfatigue.2020.105580_b0035) 2017; 13 Yamashita (10.1016/j.ijfatigue.2020.105580_b0045) 2018; 117 Konečná (10.1016/j.ijfatigue.2020.105580_b0180) 2016; 92 Kevinsanny (10.1016/j.ijfatigue.2020.105580_b0210) 2019; 42 Murakami (10.1016/j.ijfatigue.2020.105580_b0165) 2002 Cao (10.1016/j.ijfatigue.2020.105580_b0265) 2017; 102 |
References_xml | – volume: 60 start-page: 2229 year: 2012 end-page: 2239 ident: b0100 article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting publication-title: Acta Mater – volume: 35 start-page: 638 year: 2012 end-page: 647 ident: b0225 article-title: A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes publication-title: Fatigue Fract Eng Mater Struct – volume: 366 start-page: 105 year: 2019 end-page: 109 ident: b0025 article-title: Scalable submicrometer additive manufacturing publication-title: Science – volume: 478 start-page: 119 year: 2008 end-page: 124 ident: b0130 article-title: Study on microstructure and mechanical properties of laser rapid forming Inconel 718 publication-title: Mater Sci Eng, A – volume: 669 start-page: 246 year: 2016 end-page: 258 ident: b0065 article-title: On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading publication-title: Mater Sci Eng, A – volume: 724 start-page: 444 year: 2018 end-page: 451 ident: b0125 article-title: Identifying strain localization and dislocation processes in fatigued Inconel 718 manufactured from selective laser melting publication-title: Mater Sci Eng, A – volume: 150 start-page: 139 year: 2018 end-page: 153 ident: b0115 article-title: The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity publication-title: Mater Des – volume: 678 start-page: 122 year: 2016 end-page: 136 ident: b0135 article-title: Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions publication-title: Mater Sci Eng, A – year: 2002 ident: b0165 article-title: Metal fatigue: effects of small defects and nonmetallic inclusions – volume: 92 start-page: 499 year: 2016 end-page: 506 ident: b0180 article-title: Long fatigue crack growth in Inconel 718 produced by selective laser melting publication-title: Int J Fatigue – volume: 102 start-page: 48 year: 2017 end-page: 58 ident: b0265 article-title: The role of crack origin size and early stage crack growth on high cycle fatigue of powder metallurgy Ti-6Al-4V alloy publication-title: Int J Fatigue – volume: 87 start-page: 35 year: 2017 end-page: 49 ident: b0260 article-title: The influence of various types of small defects on the fatigue limit of precipitation-hardened 17–4PH stainless steel publication-title: Theor Appl Fract Mech – volume: 27 start-page: 1227 year: 2005 end-page: 1232 ident: b0095 article-title: Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue publication-title: Int J Fatigue – year: 2006 ident: b0230 article-title: Factors affecting ultralong life fatigue and design method for components publication-title: Proceedings of the 9th international congress on fatigue – volume: 18 start-page: 1026 year: 2019 end-page: 1032 ident: b0020 article-title: Scientific, technological and economic issues in metal printing and their solutions publication-title: Nat Mater – volume: 24 start-page: 1269 year: 2002 end-page: 1274 ident: b0080 article-title: Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength publication-title: Int J Fatigue – volume: 117 start-page: 485 year: 2018 end-page: 495 ident: b0045 article-title: Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting publication-title: Int J Fatigue – volume: 28 start-page: 1438 year: 2006 end-page: 1445 ident: b0105 article-title: Piezoelectric fatigue testing machines and devices publication-title: Int J Fatigue – volume: 89 start-page: 108 year: 2016 end-page: 118 ident: b0185 article-title: The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels publication-title: Int J Fatigue – volume: 42 start-page: 1203 year: 2019 end-page: 1213 ident: b0210 article-title: Matsunaga, Effect of defects on the fatigue limit of Ni-based superalloy 718 with different grain sizes publication-title: Fatigue Fract Eng Mater Struct – volume: 99, Part 1 start-page: 35 year: 2017 end-page: 43 ident: b0070 article-title: Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios publication-title: Int J Fatigue – volume: 761 year: 2019 ident: b0060 article-title: Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion publication-title: Mater Sci Eng, A – volume: 89 start-page: 102 year: 2014 end-page: 111 ident: b0030 article-title: Microstructural and texture development in direct laser fabricated IN718 publication-title: Mater Charact – volume: 13 start-page: 93 year: 2017 end-page: 102 ident: b0035 article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting publication-title: Addit Manuf – volume: 38 start-page: 1274 year: 2015 end-page: 1284 ident: b0245 article-title: Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components publication-title: Fatigue Fract Eng Mater Struct – volume: 157 start-page: 259 year: 2018 end-page: 275 ident: b0175 article-title: Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes publication-title: Acta Mater – volume: 695 start-page: 6 year: 2017 end-page: 13 ident: b0145 article-title: The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718 publication-title: Mater Sci Eng, A – volume: 17 start-page: 63 year: 2018 end-page: 71 ident: b0010 article-title: Additively manufactured hierarchical stainless steels with high strength and ductility publication-title: Nat Mater – volume: 67 start-page: 1980 year: 2001 end-page: 1987 ident: b0240 article-title: Characteristic S-N property of high carbon chromium bearing steel under axial loading in long life fatigue publication-title: Trans Japan Soc Mech Eng Ser A – volume: 85 start-page: 528 year: 1963 end-page: 533 ident: b0235 article-title: A critical analysis of crack propagation laws publication-title: J Basic Eng – volume: 94 start-page: 236 year: 2017 end-page: 245 ident: b0040 article-title: Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime publication-title: Int J Fatigue – volume: 41 start-page: 1918 year: 2018 end-page: 1928 ident: b0085 article-title: VHCF response of as-built SLM AlSi10Mg specimens with large loaded volume publication-title: Fatigue Fract Eng Mater Struct – start-page: 627 year: 1976 end-page: 631 ident: b0200 article-title: Applicability of fracture mechanics to very small cracks or the cracks in the early stage publication-title: in: Proceeding of the second international conference on mechanical behavior of materials, Cleveland – volume: 82 start-page: 402 year: 2016 end-page: 410 ident: b0255 article-title: On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime publication-title: Int J Fatigue – volume: 116 start-page: 80 year: 2018 end-page: 89 ident: b0055 article-title: Stress ratio effect on notched fatigue behavior of a Ti-8Al-1Mo-1V alloy in the very high cycle fatigue regime publication-title: Int J Fatigue – volume: 22 start-page: 581 year: 1999 end-page: 590 ident: b0160 article-title: Factors influencing the mechanism of superlong fatigue failure in steels publication-title: Fatigue Fract Eng Mater Struct – volume: 91, Part 1 start-page: 29 year: 2016 end-page: 38 ident: b0190 article-title: Effects of vacuum environment on small fatigue crack propagation in Ti–6Al–4V publication-title: Int J Fatigue – volume: 82 start-page: 379 year: 2016 end-page: 386 ident: b0195 article-title: Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime publication-title: Int J Fatigue – volume: 94 start-page: 246 year: 2017 end-page: 254 ident: b0075 article-title: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy publication-title: Int J Fatigue – volume: 28 start-page: 1521 year: 2006 end-page: 1532 ident: b0155 article-title: Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime publication-title: Int J Fatigue – volume: 366 start-page: 1116 year: 2019 end-page: 1121 ident: b0015 article-title: Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing publication-title: Science – volume: 119 start-page: 311 year: 2019 end-page: 319 ident: b0140 article-title: Effect of microstructure on small fatigue crack initiation and early propagation behavior in Mg-10Gd-3Y-0.3Zr alloy publication-title: Int J Fatigue – volume: 29 year: 2019 ident: b0050 article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life publication-title: Addit Manuf – volume: 94 start-page: 178 year: 2017 end-page: 191 ident: b0215 article-title: A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes publication-title: Int J Fatigue – volume: 93 start-page: 406 year: 2016 end-page: 414 ident: b0220 article-title: Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel publication-title: Int J Fatigue – volume: 513 start-page: 518 year: 2012 end-page: 523 ident: b0110 article-title: The microstructure and mechanical properties of deposited-IN718 by selective laser melting publication-title: J Alloy Compd – volume: 356 start-page: 236 year: 2003 end-page: 244 ident: b0250 article-title: Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure from internal inclusions publication-title: Mater Sci Eng, A – volume: 56 start-page: 617 year: 2013 end-page: 623 ident: b0090 article-title: Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies publication-title: Sci China Phys, Mech Astron – volume: 585 start-page: 713 year: 2014 end-page: 721 ident: b0120 article-title: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties publication-title: J Alloy Compd – volume: 28 start-page: 1547 year: 2006 end-page: 1554 ident: b0150 article-title: Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading publication-title: Int J Fatigue – volume: 58 start-page: 144 year: 2014 end-page: 151 ident: b0170 article-title: Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels publication-title: Int J Fatigue – volume: 164 year: 2019 ident: b0005 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater Des – volume: 11 start-page: 573 year: 1979 end-page: 584 ident: b0205 article-title: Prediction of non propagating cracks publication-title: Eng Fract Mech – volume: 513 start-page: 518 year: 2012 ident: 10.1016/j.ijfatigue.2020.105580_b0110 article-title: The microstructure and mechanical properties of deposited-IN718 by selective laser melting publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2011.10.107 – volume: 82 start-page: 379 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0195 article-title: Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.08.013 – volume: 164 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0005 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater Des doi: 10.1016/j.matdes.2018.107552 – volume: 18 start-page: 1026 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0020 article-title: Scientific, technological and economic issues in metal printing and their solutions publication-title: Nat Mater doi: 10.1038/s41563-019-0408-2 – year: 2006 ident: 10.1016/j.ijfatigue.2020.105580_b0230 article-title: Factors affecting ultralong life fatigue and design method for components – volume: 60 start-page: 2229 year: 2012 ident: 10.1016/j.ijfatigue.2020.105580_b0100 article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting publication-title: Acta Mater doi: 10.1016/j.actamat.2011.12.032 – volume: 93 start-page: 406 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0220 article-title: Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.04.016 – volume: 478 start-page: 119 year: 2008 ident: 10.1016/j.ijfatigue.2020.105580_b0130 article-title: Study on microstructure and mechanical properties of laser rapid forming Inconel 718 publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2007.05.079 – volume: 678 start-page: 122 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0135 article-title: Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2016.09.098 – volume: 356 start-page: 236 year: 2003 ident: 10.1016/j.ijfatigue.2020.105580_b0250 article-title: Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure from internal inclusions publication-title: Mater Sci Eng, A doi: 10.1016/S0921-5093(03)00136-9 – volume: 585 start-page: 713 year: 2014 ident: 10.1016/j.ijfatigue.2020.105580_b0120 article-title: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2013.09.171 – volume: 67 start-page: 1980 year: 2001 ident: 10.1016/j.ijfatigue.2020.105580_b0240 article-title: Characteristic S-N property of high carbon chromium bearing steel under axial loading in long life fatigue publication-title: Trans Japan Soc Mech Eng Ser A doi: 10.1299/kikaia.67.1980 – volume: 29 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0050 article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life publication-title: Addit Manuf – volume: 99, Part 1 start-page: 35 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0070 article-title: Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.11.032 – volume: 28 start-page: 1547 year: 2006 ident: 10.1016/j.ijfatigue.2020.105580_b0150 article-title: Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.04.018 – volume: 82 start-page: 402 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0255 article-title: On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.08.021 – volume: 94 start-page: 178 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0215 article-title: A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.06.020 – volume: 42 start-page: 1203 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0210 article-title: Matsunaga, Effect of defects on the fatigue limit of Ni-based superalloy 718 with different grain sizes publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12989 – volume: 117 start-page: 485 year: 2018 ident: 10.1016/j.ijfatigue.2020.105580_b0045 article-title: Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.08.002 – volume: 35 start-page: 638 year: 2012 ident: 10.1016/j.ijfatigue.2020.105580_b0225 article-title: A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/j.1460-2695.2011.01658.x – volume: 89 start-page: 108 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0185 article-title: The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.11.029 – volume: 119 start-page: 311 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0140 article-title: Effect of microstructure on small fatigue crack initiation and early propagation behavior in Mg-10Gd-3Y-0.3Zr alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.10.002 – volume: 94 start-page: 246 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0075 article-title: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.06.003 – volume: 41 start-page: 1918 year: 2018 ident: 10.1016/j.ijfatigue.2020.105580_b0085 article-title: VHCF response of as-built SLM AlSi10Mg specimens with large loaded volume publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12830 – volume: 89 start-page: 102 year: 2014 ident: 10.1016/j.ijfatigue.2020.105580_b0030 article-title: Microstructural and texture development in direct laser fabricated IN718 publication-title: Mater Charact doi: 10.1016/j.matchar.2013.12.012 – volume: 87 start-page: 35 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0260 article-title: The influence of various types of small defects on the fatigue limit of precipitation-hardened 17–4PH stainless steel publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2016.10.003 – volume: 11 start-page: 573 year: 1979 ident: 10.1016/j.ijfatigue.2020.105580_b0205 article-title: Prediction of non propagating cracks publication-title: Eng Fract Mech doi: 10.1016/0013-7944(79)90081-X – volume: 91, Part 1 start-page: 29 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0190 article-title: Effects of vacuum environment on small fatigue crack propagation in Ti–6Al–4V publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.05.024 – start-page: 627 year: 1976 ident: 10.1016/j.ijfatigue.2020.105580_b0200 article-title: Applicability of fracture mechanics to very small cracks or the cracks in the early stage – volume: 102 start-page: 48 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0265 article-title: The role of crack origin size and early stage crack growth on high cycle fatigue of powder metallurgy Ti-6Al-4V alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.05.004 – volume: 669 start-page: 246 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0065 article-title: On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2016.05.089 – volume: 17 start-page: 63 year: 2018 ident: 10.1016/j.ijfatigue.2020.105580_b0010 article-title: Additively manufactured hierarchical stainless steels with high strength and ductility publication-title: Nat Mater doi: 10.1038/nmat5021 – volume: 92 start-page: 499 year: 2016 ident: 10.1016/j.ijfatigue.2020.105580_b0180 article-title: Long fatigue crack growth in Inconel 718 produced by selective laser melting publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.03.012 – volume: 150 start-page: 139 year: 2018 ident: 10.1016/j.ijfatigue.2020.105580_b0115 article-title: The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity publication-title: Mater Des doi: 10.1016/j.matdes.2018.04.022 – volume: 28 start-page: 1521 year: 2006 ident: 10.1016/j.ijfatigue.2020.105580_b0155 article-title: Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.08.015 – volume: 116 start-page: 80 year: 2018 ident: 10.1016/j.ijfatigue.2020.105580_b0055 article-title: Stress ratio effect on notched fatigue behavior of a Ti-8Al-1Mo-1V alloy in the very high cycle fatigue regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.05.032 – volume: 27 start-page: 1227 year: 2005 ident: 10.1016/j.ijfatigue.2020.105580_b0095 article-title: Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.07.022 – volume: 58 start-page: 144 year: 2014 ident: 10.1016/j.ijfatigue.2020.105580_b0170 article-title: Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.02.023 – volume: 22 start-page: 581 year: 1999 ident: 10.1016/j.ijfatigue.2020.105580_b0160 article-title: Factors influencing the mechanism of superlong fatigue failure in steels publication-title: Fatigue Fract Eng Mater Struct doi: 10.1046/j.1460-2695.1999.00187.x – volume: 13 start-page: 93 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0035 article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting publication-title: Addit Manuf – volume: 28 start-page: 1438 year: 2006 ident: 10.1016/j.ijfatigue.2020.105580_b0105 article-title: Piezoelectric fatigue testing machines and devices publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.09.020 – volume: 94 start-page: 236 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0040 article-title: Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.05.018 – volume: 366 start-page: 1116 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0015 article-title: Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing publication-title: Science doi: 10.1126/science.aax7616 – volume: 724 start-page: 444 year: 2018 ident: 10.1016/j.ijfatigue.2020.105580_b0125 article-title: Identifying strain localization and dislocation processes in fatigued Inconel 718 manufactured from selective laser melting publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2018.03.127 – volume: 695 start-page: 6 year: 2017 ident: 10.1016/j.ijfatigue.2020.105580_b0145 article-title: The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718 publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2017.03.098 – year: 2002 ident: 10.1016/j.ijfatigue.2020.105580_b0165 – volume: 24 start-page: 1269 year: 2002 ident: 10.1016/j.ijfatigue.2020.105580_b0080 article-title: Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength publication-title: Int J Fatigue doi: 10.1016/S0142-1123(02)00037-3 – volume: 85 start-page: 528 year: 1963 ident: 10.1016/j.ijfatigue.2020.105580_b0235 article-title: A critical analysis of crack propagation laws publication-title: J Basic Eng doi: 10.1115/1.3656900 – volume: 761 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0060 article-title: Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2019.06.003 – volume: 157 start-page: 259 year: 2018 ident: 10.1016/j.ijfatigue.2020.105580_b0175 article-title: Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes publication-title: Acta Mater doi: 10.1016/j.actamat.2018.07.036 – volume: 366 start-page: 105 year: 2019 ident: 10.1016/j.ijfatigue.2020.105580_b0025 article-title: Scalable submicrometer additive manufacturing publication-title: Science doi: 10.1126/science.aax8760 – volume: 56 start-page: 617 year: 2013 ident: 10.1016/j.ijfatigue.2020.105580_b0090 article-title: Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies publication-title: Sci China Phys, Mech Astron doi: 10.1007/s11433-013-5013-9 – volume: 38 start-page: 1274 year: 2015 ident: 10.1016/j.ijfatigue.2020.105580_b0245 article-title: Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12331 |
SSID | ssj0009075 |
Score | 2.59141 |
Snippet | •The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar... Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105580 |
SubjectTerms | Additive manufacturing Crack initiation Fatigue crack initiation Fatigue cracks Fatigue failure Fatigue life Fatigue sensitivity level Fatigue tests High cycle fatigue Manufacturing defects Materials fatigue Microcracks Nickel base alloys S N diagrams Selective laser melting Superalloys Very high cycle fatigue |
Title | Competing crack initiation behaviors of a laser additively manufactured nickel-based superalloy in high and very high cycle fatigue regimes |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2020.105580 https://www.proquest.com/docview/2505726422 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA2iFz2IKy6j1MFrnJ5eE28yKKOiJwVvobNB69gzzHKYiz_gT1vVixuCB-lLd5OEJFWpvISqV4ydBIEj2jLPMyM0j72OuNax5an3aS8PPaoQxTvf3qWDh_j6MXlcYv02FobcKhvbX9v0ylo3f7rNbHbHRdEltyQ8vSAiqFB9FWYVxxlp-enrp5uHrMl2qTCn0t98vIonj-OnK5IQYRPlvE2IH_L3HeqHra42oMsNtt4gRzivO7fJlly5xda-8Alus7d-hYLxHcwkN89QkGtQNffQxuNPYeQhBwTNbgLkTUT2briAl7ycU5TDfOIslAUu7iGnLc7CdD6mi6vhaIHtAfEbQ15awDWwqL_MAjsEzRiBUj28uOkOe7i8uO8PeJNtgRs84824i6VwmdR5mvhe5KMky-OecKn0xLcjI-0iQWjJikDYMAukNTYRUSC9FEbrNNply-WodHsMnBahiVJ8MhEnNpRGSOdRJ3Kn8Tjp91nazrAyDRU5ZcQYqtbn7El9iEaRaFQtmn0WfFQc12wcf1c5a0WovimWwj3j78qdVuiqWdtTRaAxQxwZhgf_afuQrdJX7frbYcuzydwdIcCZ6eNKg4_ZyvnVzeDuHYvM_WY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQOLQ9VEBblRJgDr1a2ezT5hZFoFAgJ5C4WeuXtDRsojwO-Q38aWZ2vRSqShyqvezL1u7MeOazNfOZsZ9R5Ii2zPPCCM1TrxOudWp57n0-LGOPJkT1zjfTfHKX_rrP7nfYuKuFobTK4Ptbn95463BnEKQ5WFTVgNKScPaCiKBB9VRmtUvsVFmP7Y4urybTP9y7Ld8uvc-pwZs0r-rBowholSRG5ETb3mZEEfnvIPWXu25i0MUe-xzAI4za79tnO64-YJ9eUQp-YU_jBgjjOZhlaX5DRdlBjfihK8lfwdxDCYib3RIooYhc3mwLj2W9oUKHzdJZqCsc3zNOUc7CarOgtavZfIv9AVEcQ1lbwGGwba_MFj8Iwj8C7fbw6FZf2d3F-e14wsOGC9zgNG_NXSqFK6Qu88wPE59kRZkOhculJ8odmWiXCAJMVkTCxkUkrbGZSCLppTBa58k31qvntfvOwGkRmyTHoxBpZmNphHQezaJ0GmeU_pDlnYSVCWzktCnGTHVpZw_qRTWKVKNa1Ryy6KXhoiXkeL_JWadC9ca2FIaN9xv3O6WrMLxXinBjgVAyjn_8T9-n7MPk9uZaXV9Or47YR3rSZgL3WW-93LhjxDtrfRLs-RkwywAm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competing+crack+initiation+behaviors+of+a+laser+additively+manufactured+nickel-based+superalloy+in+high+and+very+high+cycle+fatigue+regimes&rft.jtitle=International+journal+of+fatigue&rft.au=Yang%2C+Kun&rft.au=Huang%2C+Qi&rft.au=Wang%2C+Qingyuan&rft.au=Chen%2C+Qiang&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=136&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105580&rft.externalDocID=S0142112320301110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |