Competing crack initiation behaviors of a laser additively manufactured nickel-based superalloy in high and very high cycle fatigue regimes

•The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar grains.•ΔK at the border of rough area corresponds to propagation threshold for long cracks.•Fatigue sensitivity of maximal micro-crack type, size,...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 136; p. 105580
Main Authors Yang, Kun, Huang, Qi, Wang, Qingyuan, Chen, Qiang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar grains.•ΔK at the border of rough area corresponds to propagation threshold for long cracks.•Fatigue sensitivity of maximal micro-crack type, size, and location increase successively. Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy in the as-deposited condition. The results indicate that the competition failure behavior between the surface and interior crack initiation results in the separate S-N curve. Both manufacturing defects (e.g., gas pore, lack of fusion) and columnar grains (matrix) observed in the microstructure could act as the original fatigue micro-cracks due to the effective restriction on manufacturing defects. The fatigue sensitivity levels increase successively in terms of the type, size, and location of the maximal micro-crack.
AbstractList •The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar grains.•ΔK at the border of rough area corresponds to propagation threshold for long cracks.•Fatigue sensitivity of maximal micro-crack type, size, and location increase successively. Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy in the as-deposited condition. The results indicate that the competition failure behavior between the surface and interior crack initiation results in the separate S-N curve. Both manufacturing defects (e.g., gas pore, lack of fusion) and columnar grains (matrix) observed in the microstructure could act as the original fatigue micro-cracks due to the effective restriction on manufacturing defects. The fatigue sensitivity levels increase successively in terms of the type, size, and location of the maximal micro-crack.
Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy in the as-deposited condition. The results indicate that the competition failure behavior between the surface and interior crack initiation results in the separate S-N curve. Both manufacturing defects (e.g., gas pore, lack of fusion) and columnar grains (matrix) observed in the microstructure could act as the original fatigue micro-cracks due to the effective restriction on manufacturing defects. The fatigue sensitivity levels increase successively in terms of the type, size, and location of the maximal micro-crack.
ArticleNumber 105580
Author Huang, Qi
Wang, Qingyuan
Chen, Qiang
Yang, Kun
Author_xml – sequence: 1
  givenname: Kun
  surname: Yang
  fullname: Yang, Kun
  email: scu_yangkun@163.com
  organization: Institute for Advanced Study, Chengdu University, Chengdu 610106, China
– sequence: 2
  givenname: Qi
  surname: Huang
  fullname: Huang, Qi
  organization: Department of Civil Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
– sequence: 3
  givenname: Qingyuan
  surname: Wang
  fullname: Wang, Qingyuan
  email: wangqy@scu.edu.cn
  organization: Institute for Advanced Study, Chengdu University, Chengdu 610106, China
– sequence: 4
  givenname: Qiang
  surname: Chen
  fullname: Chen, Qiang
  organization: Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
BookMark eNqNkMFu1DAQhi3USmxLn6GWOGexnTixDxyqFRSkSlzgbDn2eNdp1l7sZKU8Ay-Nt6k4cIHTaEb__8_Md4OuQgyA0D0lW0po-2HY-sHpye9n2DLCLlPOBXmDNlR0sqobzq7QhtCGVZSy-i26yXkghEjS8Q36tYvHE0w-7LFJ2jxjH_zkS1wMuIeDPvuYMo4OazzqDAlra4vgDOOCjzrMTptpTmBx8OYZxqovIovzfIKkxzEuJQ8f_P6AdbD4DGlZO7OYEfDr2TjB3h8hv0PXTo8Z7l7rLfrx-dP33Zfq6dvj193DU2UaIqcKGimgk71uuaO1q3mnGyqgla483sq6h1oQ3jIriLCsI9Iay0VNpJPC9H1b36L3a-4pxZ8z5EkNcU6hrFSME96xtmGsqD6uKpNizgmcMn56ATMl7UdFibrwV4P6w19d-KuVf_F3f_lPyR91Wv7D-bA6oUA4e0gqGw_BgPUJzKRs9P_M-A2Zpalw
CitedBy_id crossref_primary_10_1016_j_addma_2021_102324
crossref_primary_10_1016_j_msea_2024_146988
crossref_primary_10_1016_j_matpr_2021_02_547
crossref_primary_10_1016_j_ijfatigue_2021_106349
crossref_primary_10_3390_ma16247552
crossref_primary_10_1007_s11665_023_08327_0
crossref_primary_10_1016_j_ijfatigue_2022_106748
crossref_primary_10_1111_ffe_14582
crossref_primary_10_1016_j_ijfatigue_2023_107799
crossref_primary_10_1520_MPC20220088
crossref_primary_10_1108_IJSI_01_2024_0001
crossref_primary_10_1016_j_ijfatigue_2024_108640
crossref_primary_10_1016_j_apmt_2024_102367
crossref_primary_10_1016_j_jallcom_2024_175102
crossref_primary_10_1016_j_jmrt_2023_07_196
crossref_primary_10_1515_mt_2021_2121
crossref_primary_10_1016_j_engfracmech_2021_108015
crossref_primary_10_1016_j_msea_2022_142716
crossref_primary_10_1016_j_ijfatigue_2024_108514
crossref_primary_10_1111_ffe_13944
crossref_primary_10_1007_s11837_023_05820_8
crossref_primary_10_1016_j_actamat_2021_117565
crossref_primary_10_1016_j_ijfatigue_2021_106510
crossref_primary_10_1016_j_ijfatigue_2025_108811
crossref_primary_10_1016_j_surfcoat_2022_128872
crossref_primary_10_1016_j_tafmec_2024_104680
crossref_primary_10_3390_ma14041001
crossref_primary_10_1016_j_ijfatigue_2023_108013
crossref_primary_10_1016_j_engfracmech_2023_109507
crossref_primary_10_1016_j_msea_2022_142682
crossref_primary_10_1016_j_engfracmech_2023_109433
crossref_primary_10_1016_j_engfailanal_2021_106015
crossref_primary_10_1016_j_engfailanal_2023_107667
crossref_primary_10_1016_j_vacuum_2022_111265
crossref_primary_10_1016_j_ijfatigue_2025_108825
crossref_primary_10_1016_j_ijfatigue_2023_107894
crossref_primary_10_1016_j_jmrt_2022_02_077
crossref_primary_10_1016_j_ijfatigue_2020_105795
crossref_primary_10_1016_j_ijfatigue_2020_106005
crossref_primary_10_1016_j_vacuum_2024_113405
crossref_primary_10_1016_j_addma_2022_102871
crossref_primary_10_1016_j_tafmec_2022_103705
crossref_primary_10_1016_j_mtcomm_2024_111086
crossref_primary_10_1007_s10338_023_00380_5
crossref_primary_10_1016_j_jmrt_2025_02_041
crossref_primary_10_1111_ffe_13520
crossref_primary_10_1111_ffe_14451
crossref_primary_10_1016_j_mtadv_2024_100553
crossref_primary_10_1016_j_ijfatigue_2022_107002
crossref_primary_10_1177_02670836241245214
crossref_primary_10_1016_j_ijfatigue_2023_107665
crossref_primary_10_1007_s00170_022_09693_0
crossref_primary_10_1016_j_jmatprotec_2024_118425
crossref_primary_10_1016_j_matdes_2024_113165
crossref_primary_10_1016_j_msea_2022_144484
crossref_primary_10_1016_j_ijfatigue_2021_106250
crossref_primary_10_1016_j_msea_2023_145112
crossref_primary_10_1016_j_msea_2024_146465
crossref_primary_10_1016_j_tafmec_2022_103322
crossref_primary_10_1016_j_ijfatigue_2021_106700
crossref_primary_10_1111_ffe_13573
crossref_primary_10_1111_ffe_13691
crossref_primary_10_1016_j_engfailanal_2024_109227
crossref_primary_10_1016_j_ijfatigue_2023_107512
crossref_primary_10_1007_s11665_021_05554_1
crossref_primary_10_1016_j_pmatsci_2022_101066
crossref_primary_10_1016_j_ijfatigue_2024_108723
crossref_primary_10_1016_j_addma_2024_104151
crossref_primary_10_1016_j_ijfatigue_2023_107599
crossref_primary_10_3390_met12030515
crossref_primary_10_1007_s10853_020_04845_7
crossref_primary_10_1016_j_msea_2024_147403
crossref_primary_10_1016_j_engfailanal_2022_106191
crossref_primary_10_1080_17452759_2022_2068447
crossref_primary_10_1016_j_mtla_2021_101272
crossref_primary_10_1016_j_msea_2024_146833
crossref_primary_10_1016_j_matchar_2023_112960
crossref_primary_10_3390_ma15248925
crossref_primary_10_3390_app10238761
crossref_primary_10_1111_ffe_13584
crossref_primary_10_1111_ffe_14152
crossref_primary_10_1016_j_jmps_2024_106008
crossref_primary_10_3390_cryst10100905
crossref_primary_10_1111_ffe_13985
crossref_primary_10_1016_j_engfracmech_2025_110891
crossref_primary_10_1016_j_ijfatigue_2024_108433
crossref_primary_10_1016_j_ijfatigue_2023_107764
crossref_primary_10_1111_ffe_13467
crossref_primary_10_1016_j_ijfatigue_2024_108431
crossref_primary_10_1016_j_actamat_2021_117240
crossref_primary_10_1016_j_engfailanal_2024_108433
crossref_primary_10_1016_j_msea_2022_143215
crossref_primary_10_3390_ma13235358
crossref_primary_10_1080_17452759_2024_2302556
crossref_primary_10_1016_j_engfailanal_2022_106975
crossref_primary_10_1016_j_jmrt_2022_12_112
crossref_primary_10_1016_j_ijfatigue_2021_106446
crossref_primary_10_1016_j_msea_2024_146930
crossref_primary_10_1016_j_msea_2020_140693
crossref_primary_10_1111_ffe_14094
crossref_primary_10_1016_j_engfracmech_2022_108254
crossref_primary_10_1111_ffe_14532
crossref_primary_10_3390_met12050856
crossref_primary_10_1111_ffe_13567
crossref_primary_10_1016_j_ijfatigue_2020_106038
crossref_primary_10_1016_j_msea_2020_140685
crossref_primary_10_1016_j_addma_2022_103355
crossref_primary_10_1002_adma_202306570
crossref_primary_10_1016_j_engfracmech_2023_109801
Cites_doi 10.1016/j.jallcom.2011.10.107
10.1016/j.ijfatigue.2015.08.013
10.1016/j.matdes.2018.107552
10.1038/s41563-019-0408-2
10.1016/j.actamat.2011.12.032
10.1016/j.ijfatigue.2016.04.016
10.1016/j.msea.2007.05.079
10.1016/j.msea.2016.09.098
10.1016/S0921-5093(03)00136-9
10.1016/j.jallcom.2013.09.171
10.1299/kikaia.67.1980
10.1016/j.ijfatigue.2016.11.032
10.1016/j.ijfatigue.2005.04.018
10.1016/j.ijfatigue.2015.08.021
10.1016/j.ijfatigue.2016.06.020
10.1111/ffe.12989
10.1016/j.ijfatigue.2018.08.002
10.1111/j.1460-2695.2011.01658.x
10.1016/j.ijfatigue.2015.11.029
10.1016/j.ijfatigue.2018.10.002
10.1016/j.ijfatigue.2016.06.003
10.1111/ffe.12830
10.1016/j.matchar.2013.12.012
10.1016/j.tafmec.2016.10.003
10.1016/0013-7944(79)90081-X
10.1016/j.ijfatigue.2016.05.024
10.1016/j.ijfatigue.2017.05.004
10.1016/j.msea.2016.05.089
10.1038/nmat5021
10.1016/j.ijfatigue.2016.03.012
10.1016/j.matdes.2018.04.022
10.1016/j.ijfatigue.2005.08.015
10.1016/j.ijfatigue.2018.05.032
10.1016/j.ijfatigue.2005.07.022
10.1016/j.ijfatigue.2013.02.023
10.1046/j.1460-2695.1999.00187.x
10.1016/j.ijfatigue.2005.09.020
10.1016/j.ijfatigue.2016.05.018
10.1126/science.aax7616
10.1016/j.msea.2018.03.127
10.1016/j.msea.2017.03.098
10.1016/S0142-1123(02)00037-3
10.1115/1.3656900
10.1016/j.msea.2019.06.003
10.1016/j.actamat.2018.07.036
10.1126/science.aax8760
10.1007/s11433-013-5013-9
10.1111/ffe.12331
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2020.105580
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
ExternalDocumentID 10_1016_j_ijfatigue_2020_105580
S0142112320301110
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c409t-e498e79ba65f13f357a418e69f055693be380562d808d2709dcd58309f98cbb63
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Fri Jul 25 07:40:49 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Tue Jul 01 01:54:34 EDT 2025
Fri Feb 23 02:46:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Very high cycle fatigue
Additive manufacturing
Selective laser melting
Fatigue sensitivity level
Fatigue crack initiation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-e498e79ba65f13f357a418e69f055693be380562d808d2709dcd58309f98cbb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2505726422
PQPubID 2045465
ParticipantIDs proquest_journals_2505726422
crossref_citationtrail_10_1016_j_ijfatigue_2020_105580
crossref_primary_10_1016_j_ijfatigue_2020_105580
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Saha, Wang, Nguyen, Chang, Oakdale, Chen (b0025) 2019; 366
Murakami, Nagata, Matsunaga (b0230) 2006
Chen, Kawagoishi, Wang, Yan, Ono, Hashiguchi (b0095) 2005; 27
Hong, Lei, Sun, Zhao (b0170) 2014; 58
Yang, He, Huang, Huang, Wang, Wang (b0070) 2017; 99, Part 1
He, Wu, Peng, Su, Chen, Yuan (b0140) 2019; 119
Tillmann, Schaak, Nellesen, Schaper, Aydinöz, Hoyer (b0035) 2017; 13
Aydinöz, Brenne, Schaper, Schaak, Tillmann, Nellesen (b0065) 2016; 669
Kevinsanny, Okazaki, Takakuwa, Ogawa, Okita, Funakoshi (b0210) 2019; 42
DebRoy, Mukherjee, Milewski, Elmer, Ribic, Blecher (b0020) 2019; 18
Amato, Gaytan, Murr, Martinez, Shindo, Hernandez (b0100) 2012; 60
Shao, Khonsari, Guo, Meng, Li (b0050) 2019; 29
Sun, Xie, Zhao, Lei, Hong (b0225) 2012; 35
Hou, Simsek, Ma, Johnson, Qian, Cissé (b0015) 2019; 366
Wang, Bathias, Kawagoishi, Chen (b0080) 2002; 24
Kitagawa, Takahashi (b0200) 1976
Yoo, Book, Sangid, Kacher (b0125) 2018; 724
Murakami, Nomoto, Ueda (b0160) 1999; 22
Zhao, Chen, Lin, Huang (b0130) 2008; 478
Prithivirajan, Sangid (b0115) 2018; 150
Sakai, Sato, Nagano, Takeda, Oguma (b0150) 2006; 28
Murakami (b0165) 2002
He, Liu, Dong, Wang, Wagner, Bathias (b0195) 2016; 82
Li, Zhang, Fei, Liu, Li (b0255) 2016; 82
Sui, Chen, Fan, Yang, Lin, Huang (b0145) 2017; 695
Shiozawa, Morii, Nishino, Lu (b0155) 2006; 28
Hong, Liu, Lei, Sun (b0185) 2016; 89
Parimi, Ravi, Clark, Attallah (b0030) 2014; 89
Beretta, Romano (b0215) 2017; 94
Sakai, Sato, Oguma (b0240) 2001; 67
Tridello, Biffi, Fiocchi, Bassani, Chiandussi, Rossetto (b0085) 2018; 41
Watring, Carter, Crouse, Raeymaekers, Spear (b0060) 2019; 761
Cao, Ravi Chandran (b0265) 2017; 102
Jia, Gu (b0120) 2014; 585
Yoshinaka, Nakamura, Takaku (b0190) 2016; 91, Part 1
Chapetti, Tagawa, Miyata (b0250) 2003; 356
Texier, Cormier, Villechaise, Stinville, Torbet, Pierret (b0135) 2016; 678
Konečná, Kunz, Nicoletto, Bača (b0180) 2016; 92
Schönbauer, Yanase, Endo (b0260) 2017; 87
Wang, Voisin, McKeown, Ye, Calta, Li (b0010) 2018; 17
Siddique, Imran, Walther (b0075) 2017; 94
Yamashita, Murakami, Mihara, Okada, Murakami (b0045) 2018; 117
Matsunaga, Sun, Hong, Murakami (b0245) 2015; 38
Bathias (b0105) 2006; 28
Yamashita, Murakami (b0220) 2016; 93
Zhu, Jin, Xuan (b0175) 2018; 157
Zhang, Duan, Shi (b0090) 2013; 56
Liu, Shin (b0005) 2019; 164
El Haddad, Topper, Smith (b0205) 1979; 11
Wang, Guan, Gao, Li, Chen, Zeng (b0110) 2012; 513
Guenther, Krewerth, Lippmann, Leuders, Troester, Weidner (b0040) 2017; 94
Paris, Erdogan (b0235) 1963; 85
Yang, Zhong, Huang, He, Huang, Wang (b0055) 2018; 116
Yang (10.1016/j.ijfatigue.2020.105580_b0070) 2017; 99, Part 1
Sakai (10.1016/j.ijfatigue.2020.105580_b0150) 2006; 28
Bathias (10.1016/j.ijfatigue.2020.105580_b0105) 2006; 28
Yamashita (10.1016/j.ijfatigue.2020.105580_b0220) 2016; 93
Li (10.1016/j.ijfatigue.2020.105580_b0255) 2016; 82
Prithivirajan (10.1016/j.ijfatigue.2020.105580_b0115) 2018; 150
He (10.1016/j.ijfatigue.2020.105580_b0195) 2016; 82
Watring (10.1016/j.ijfatigue.2020.105580_b0060) 2019; 761
Zhu (10.1016/j.ijfatigue.2020.105580_b0175) 2018; 157
Yoshinaka (10.1016/j.ijfatigue.2020.105580_b0190) 2016; 91, Part 1
Sakai (10.1016/j.ijfatigue.2020.105580_b0240) 2001; 67
Zhao (10.1016/j.ijfatigue.2020.105580_b0130) 2008; 478
Jia (10.1016/j.ijfatigue.2020.105580_b0120) 2014; 585
Hong (10.1016/j.ijfatigue.2020.105580_b0185) 2016; 89
Paris (10.1016/j.ijfatigue.2020.105580_b0235) 1963; 85
Chapetti (10.1016/j.ijfatigue.2020.105580_b0250) 2003; 356
Hou (10.1016/j.ijfatigue.2020.105580_b0015) 2019; 366
Wang (10.1016/j.ijfatigue.2020.105580_b0080) 2002; 24
Wang (10.1016/j.ijfatigue.2020.105580_b0010) 2018; 17
Sun (10.1016/j.ijfatigue.2020.105580_b0225) 2012; 35
Shao (10.1016/j.ijfatigue.2020.105580_b0050) 2019; 29
Murakami (10.1016/j.ijfatigue.2020.105580_b0230) 2006
Guenther (10.1016/j.ijfatigue.2020.105580_b0040) 2017; 94
Parimi (10.1016/j.ijfatigue.2020.105580_b0030) 2014; 89
Yoo (10.1016/j.ijfatigue.2020.105580_b0125) 2018; 724
Yang (10.1016/j.ijfatigue.2020.105580_b0055) 2018; 116
Texier (10.1016/j.ijfatigue.2020.105580_b0135) 2016; 678
Shiozawa (10.1016/j.ijfatigue.2020.105580_b0155) 2006; 28
Kitagawa (10.1016/j.ijfatigue.2020.105580_b0200) 1976
Murakami (10.1016/j.ijfatigue.2020.105580_b0160) 1999; 22
Siddique (10.1016/j.ijfatigue.2020.105580_b0075) 2017; 94
Amato (10.1016/j.ijfatigue.2020.105580_b0100) 2012; 60
Tridello (10.1016/j.ijfatigue.2020.105580_b0085) 2018; 41
Zhang (10.1016/j.ijfatigue.2020.105580_b0090) 2013; 56
Saha (10.1016/j.ijfatigue.2020.105580_b0025) 2019; 366
He (10.1016/j.ijfatigue.2020.105580_b0140) 2019; 119
Beretta (10.1016/j.ijfatigue.2020.105580_b0215) 2017; 94
El Haddad (10.1016/j.ijfatigue.2020.105580_b0205) 1979; 11
Sui (10.1016/j.ijfatigue.2020.105580_b0145) 2017; 695
Aydinöz (10.1016/j.ijfatigue.2020.105580_b0065) 2016; 669
Chen (10.1016/j.ijfatigue.2020.105580_b0095) 2005; 27
Schönbauer (10.1016/j.ijfatigue.2020.105580_b0260) 2017; 87
Hong (10.1016/j.ijfatigue.2020.105580_b0170) 2014; 58
Matsunaga (10.1016/j.ijfatigue.2020.105580_b0245) 2015; 38
Wang (10.1016/j.ijfatigue.2020.105580_b0110) 2012; 513
Liu (10.1016/j.ijfatigue.2020.105580_b0005) 2019; 164
DebRoy (10.1016/j.ijfatigue.2020.105580_b0020) 2019; 18
Tillmann (10.1016/j.ijfatigue.2020.105580_b0035) 2017; 13
Yamashita (10.1016/j.ijfatigue.2020.105580_b0045) 2018; 117
Konečná (10.1016/j.ijfatigue.2020.105580_b0180) 2016; 92
Kevinsanny (10.1016/j.ijfatigue.2020.105580_b0210) 2019; 42
Murakami (10.1016/j.ijfatigue.2020.105580_b0165) 2002
Cao (10.1016/j.ijfatigue.2020.105580_b0265) 2017; 102
References_xml – volume: 60
  start-page: 2229
  year: 2012
  end-page: 2239
  ident: b0100
  article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting
  publication-title: Acta Mater
– volume: 35
  start-page: 638
  year: 2012
  end-page: 647
  ident: b0225
  article-title: A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 366
  start-page: 105
  year: 2019
  end-page: 109
  ident: b0025
  article-title: Scalable submicrometer additive manufacturing
  publication-title: Science
– volume: 478
  start-page: 119
  year: 2008
  end-page: 124
  ident: b0130
  article-title: Study on microstructure and mechanical properties of laser rapid forming Inconel 718
  publication-title: Mater Sci Eng, A
– volume: 669
  start-page: 246
  year: 2016
  end-page: 258
  ident: b0065
  article-title: On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading
  publication-title: Mater Sci Eng, A
– volume: 724
  start-page: 444
  year: 2018
  end-page: 451
  ident: b0125
  article-title: Identifying strain localization and dislocation processes in fatigued Inconel 718 manufactured from selective laser melting
  publication-title: Mater Sci Eng, A
– volume: 150
  start-page: 139
  year: 2018
  end-page: 153
  ident: b0115
  article-title: The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity
  publication-title: Mater Des
– volume: 678
  start-page: 122
  year: 2016
  end-page: 136
  ident: b0135
  article-title: Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions
  publication-title: Mater Sci Eng, A
– year: 2002
  ident: b0165
  article-title: Metal fatigue: effects of small defects and nonmetallic inclusions
– volume: 92
  start-page: 499
  year: 2016
  end-page: 506
  ident: b0180
  article-title: Long fatigue crack growth in Inconel 718 produced by selective laser melting
  publication-title: Int J Fatigue
– volume: 102
  start-page: 48
  year: 2017
  end-page: 58
  ident: b0265
  article-title: The role of crack origin size and early stage crack growth on high cycle fatigue of powder metallurgy Ti-6Al-4V alloy
  publication-title: Int J Fatigue
– volume: 87
  start-page: 35
  year: 2017
  end-page: 49
  ident: b0260
  article-title: The influence of various types of small defects on the fatigue limit of precipitation-hardened 17–4PH stainless steel
  publication-title: Theor Appl Fract Mech
– volume: 27
  start-page: 1227
  year: 2005
  end-page: 1232
  ident: b0095
  article-title: Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue
  publication-title: Int J Fatigue
– year: 2006
  ident: b0230
  article-title: Factors affecting ultralong life fatigue and design method for components
  publication-title: Proceedings of the 9th international congress on fatigue
– volume: 18
  start-page: 1026
  year: 2019
  end-page: 1032
  ident: b0020
  article-title: Scientific, technological and economic issues in metal printing and their solutions
  publication-title: Nat Mater
– volume: 24
  start-page: 1269
  year: 2002
  end-page: 1274
  ident: b0080
  article-title: Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength
  publication-title: Int J Fatigue
– volume: 117
  start-page: 485
  year: 2018
  end-page: 495
  ident: b0045
  article-title: Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting
  publication-title: Int J Fatigue
– volume: 28
  start-page: 1438
  year: 2006
  end-page: 1445
  ident: b0105
  article-title: Piezoelectric fatigue testing machines and devices
  publication-title: Int J Fatigue
– volume: 89
  start-page: 108
  year: 2016
  end-page: 118
  ident: b0185
  article-title: The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels
  publication-title: Int J Fatigue
– volume: 42
  start-page: 1203
  year: 2019
  end-page: 1213
  ident: b0210
  article-title: Matsunaga, Effect of defects on the fatigue limit of Ni-based superalloy 718 with different grain sizes
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 99, Part 1
  start-page: 35
  year: 2017
  end-page: 43
  ident: b0070
  article-title: Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios
  publication-title: Int J Fatigue
– volume: 761
  year: 2019
  ident: b0060
  article-title: Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion
  publication-title: Mater Sci Eng, A
– volume: 89
  start-page: 102
  year: 2014
  end-page: 111
  ident: b0030
  article-title: Microstructural and texture development in direct laser fabricated IN718
  publication-title: Mater Charact
– volume: 13
  start-page: 93
  year: 2017
  end-page: 102
  ident: b0035
  article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting
  publication-title: Addit Manuf
– volume: 38
  start-page: 1274
  year: 2015
  end-page: 1284
  ident: b0245
  article-title: Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 157
  start-page: 259
  year: 2018
  end-page: 275
  ident: b0175
  article-title: Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes
  publication-title: Acta Mater
– volume: 695
  start-page: 6
  year: 2017
  end-page: 13
  ident: b0145
  article-title: The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718
  publication-title: Mater Sci Eng, A
– volume: 17
  start-page: 63
  year: 2018
  end-page: 71
  ident: b0010
  article-title: Additively manufactured hierarchical stainless steels with high strength and ductility
  publication-title: Nat Mater
– volume: 67
  start-page: 1980
  year: 2001
  end-page: 1987
  ident: b0240
  article-title: Characteristic S-N property of high carbon chromium bearing steel under axial loading in long life fatigue
  publication-title: Trans Japan Soc Mech Eng Ser A
– volume: 85
  start-page: 528
  year: 1963
  end-page: 533
  ident: b0235
  article-title: A critical analysis of crack propagation laws
  publication-title: J Basic Eng
– volume: 94
  start-page: 236
  year: 2017
  end-page: 245
  ident: b0040
  article-title: Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime
  publication-title: Int J Fatigue
– volume: 41
  start-page: 1918
  year: 2018
  end-page: 1928
  ident: b0085
  article-title: VHCF response of as-built SLM AlSi10Mg specimens with large loaded volume
  publication-title: Fatigue Fract Eng Mater Struct
– start-page: 627
  year: 1976
  end-page: 631
  ident: b0200
  article-title: Applicability of fracture mechanics to very small cracks or the cracks in the early stage
  publication-title: in: Proceeding of the second international conference on mechanical behavior of materials, Cleveland
– volume: 82
  start-page: 402
  year: 2016
  end-page: 410
  ident: b0255
  article-title: On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime
  publication-title: Int J Fatigue
– volume: 116
  start-page: 80
  year: 2018
  end-page: 89
  ident: b0055
  article-title: Stress ratio effect on notched fatigue behavior of a Ti-8Al-1Mo-1V alloy in the very high cycle fatigue regime
  publication-title: Int J Fatigue
– volume: 22
  start-page: 581
  year: 1999
  end-page: 590
  ident: b0160
  article-title: Factors influencing the mechanism of superlong fatigue failure in steels
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 91, Part 1
  start-page: 29
  year: 2016
  end-page: 38
  ident: b0190
  article-title: Effects of vacuum environment on small fatigue crack propagation in Ti–6Al–4V
  publication-title: Int J Fatigue
– volume: 82
  start-page: 379
  year: 2016
  end-page: 386
  ident: b0195
  article-title: Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime
  publication-title: Int J Fatigue
– volume: 94
  start-page: 246
  year: 2017
  end-page: 254
  ident: b0075
  article-title: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy
  publication-title: Int J Fatigue
– volume: 28
  start-page: 1521
  year: 2006
  end-page: 1532
  ident: b0155
  article-title: Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime
  publication-title: Int J Fatigue
– volume: 366
  start-page: 1116
  year: 2019
  end-page: 1121
  ident: b0015
  article-title: Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing
  publication-title: Science
– volume: 119
  start-page: 311
  year: 2019
  end-page: 319
  ident: b0140
  article-title: Effect of microstructure on small fatigue crack initiation and early propagation behavior in Mg-10Gd-3Y-0.3Zr alloy
  publication-title: Int J Fatigue
– volume: 29
  year: 2019
  ident: b0050
  article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life
  publication-title: Addit Manuf
– volume: 94
  start-page: 178
  year: 2017
  end-page: 191
  ident: b0215
  article-title: A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes
  publication-title: Int J Fatigue
– volume: 93
  start-page: 406
  year: 2016
  end-page: 414
  ident: b0220
  article-title: Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel
  publication-title: Int J Fatigue
– volume: 513
  start-page: 518
  year: 2012
  end-page: 523
  ident: b0110
  article-title: The microstructure and mechanical properties of deposited-IN718 by selective laser melting
  publication-title: J Alloy Compd
– volume: 356
  start-page: 236
  year: 2003
  end-page: 244
  ident: b0250
  article-title: Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure from internal inclusions
  publication-title: Mater Sci Eng, A
– volume: 56
  start-page: 617
  year: 2013
  end-page: 623
  ident: b0090
  article-title: Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies
  publication-title: Sci China Phys, Mech Astron
– volume: 585
  start-page: 713
  year: 2014
  end-page: 721
  ident: b0120
  article-title: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties
  publication-title: J Alloy Compd
– volume: 28
  start-page: 1547
  year: 2006
  end-page: 1554
  ident: b0150
  article-title: Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading
  publication-title: Int J Fatigue
– volume: 58
  start-page: 144
  year: 2014
  end-page: 151
  ident: b0170
  article-title: Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels
  publication-title: Int J Fatigue
– volume: 164
  year: 2019
  ident: b0005
  article-title: Additive manufacturing of Ti6Al4V alloy: a review
  publication-title: Mater Des
– volume: 11
  start-page: 573
  year: 1979
  end-page: 584
  ident: b0205
  article-title: Prediction of non propagating cracks
  publication-title: Eng Fract Mech
– volume: 513
  start-page: 518
  year: 2012
  ident: 10.1016/j.ijfatigue.2020.105580_b0110
  article-title: The microstructure and mechanical properties of deposited-IN718 by selective laser melting
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2011.10.107
– volume: 82
  start-page: 379
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0195
  article-title: Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2015.08.013
– volume: 164
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0005
  article-title: Additive manufacturing of Ti6Al4V alloy: a review
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.107552
– volume: 18
  start-page: 1026
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0020
  article-title: Scientific, technological and economic issues in metal printing and their solutions
  publication-title: Nat Mater
  doi: 10.1038/s41563-019-0408-2
– year: 2006
  ident: 10.1016/j.ijfatigue.2020.105580_b0230
  article-title: Factors affecting ultralong life fatigue and design method for components
– volume: 60
  start-page: 2229
  year: 2012
  ident: 10.1016/j.ijfatigue.2020.105580_b0100
  article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.12.032
– volume: 93
  start-page: 406
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0220
  article-title: Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.04.016
– volume: 478
  start-page: 119
  year: 2008
  ident: 10.1016/j.ijfatigue.2020.105580_b0130
  article-title: Study on microstructure and mechanical properties of laser rapid forming Inconel 718
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2007.05.079
– volume: 678
  start-page: 122
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0135
  article-title: Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2016.09.098
– volume: 356
  start-page: 236
  year: 2003
  ident: 10.1016/j.ijfatigue.2020.105580_b0250
  article-title: Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure from internal inclusions
  publication-title: Mater Sci Eng, A
  doi: 10.1016/S0921-5093(03)00136-9
– volume: 585
  start-page: 713
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105580_b0120
  article-title: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2013.09.171
– volume: 67
  start-page: 1980
  year: 2001
  ident: 10.1016/j.ijfatigue.2020.105580_b0240
  article-title: Characteristic S-N property of high carbon chromium bearing steel under axial loading in long life fatigue
  publication-title: Trans Japan Soc Mech Eng Ser A
  doi: 10.1299/kikaia.67.1980
– volume: 29
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0050
  article-title: Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life
  publication-title: Addit Manuf
– volume: 99, Part 1
  start-page: 35
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0070
  article-title: Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.11.032
– volume: 28
  start-page: 1547
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105580_b0150
  article-title: Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.04.018
– volume: 82
  start-page: 402
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0255
  article-title: On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2015.08.021
– volume: 94
  start-page: 178
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0215
  article-title: A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.06.020
– volume: 42
  start-page: 1203
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0210
  article-title: Matsunaga, Effect of defects on the fatigue limit of Ni-based superalloy 718 with different grain sizes
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12989
– volume: 117
  start-page: 485
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105580_b0045
  article-title: Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.08.002
– volume: 35
  start-page: 638
  year: 2012
  ident: 10.1016/j.ijfatigue.2020.105580_b0225
  article-title: A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/j.1460-2695.2011.01658.x
– volume: 89
  start-page: 108
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0185
  article-title: The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2015.11.029
– volume: 119
  start-page: 311
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0140
  article-title: Effect of microstructure on small fatigue crack initiation and early propagation behavior in Mg-10Gd-3Y-0.3Zr alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.10.002
– volume: 94
  start-page: 246
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0075
  article-title: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.06.003
– volume: 41
  start-page: 1918
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105580_b0085
  article-title: VHCF response of as-built SLM AlSi10Mg specimens with large loaded volume
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12830
– volume: 89
  start-page: 102
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105580_b0030
  article-title: Microstructural and texture development in direct laser fabricated IN718
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2013.12.012
– volume: 87
  start-page: 35
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0260
  article-title: The influence of various types of small defects on the fatigue limit of precipitation-hardened 17–4PH stainless steel
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2016.10.003
– volume: 11
  start-page: 573
  year: 1979
  ident: 10.1016/j.ijfatigue.2020.105580_b0205
  article-title: Prediction of non propagating cracks
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(79)90081-X
– volume: 91, Part 1
  start-page: 29
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0190
  article-title: Effects of vacuum environment on small fatigue crack propagation in Ti–6Al–4V
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.05.024
– start-page: 627
  year: 1976
  ident: 10.1016/j.ijfatigue.2020.105580_b0200
  article-title: Applicability of fracture mechanics to very small cracks or the cracks in the early stage
– volume: 102
  start-page: 48
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0265
  article-title: The role of crack origin size and early stage crack growth on high cycle fatigue of powder metallurgy Ti-6Al-4V alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.05.004
– volume: 669
  start-page: 246
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0065
  article-title: On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2016.05.089
– volume: 17
  start-page: 63
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105580_b0010
  article-title: Additively manufactured hierarchical stainless steels with high strength and ductility
  publication-title: Nat Mater
  doi: 10.1038/nmat5021
– volume: 92
  start-page: 499
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105580_b0180
  article-title: Long fatigue crack growth in Inconel 718 produced by selective laser melting
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.03.012
– volume: 150
  start-page: 139
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105580_b0115
  article-title: The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.04.022
– volume: 28
  start-page: 1521
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105580_b0155
  article-title: Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.08.015
– volume: 116
  start-page: 80
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105580_b0055
  article-title: Stress ratio effect on notched fatigue behavior of a Ti-8Al-1Mo-1V alloy in the very high cycle fatigue regime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.05.032
– volume: 27
  start-page: 1227
  year: 2005
  ident: 10.1016/j.ijfatigue.2020.105580_b0095
  article-title: Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.07.022
– volume: 58
  start-page: 144
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105580_b0170
  article-title: Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2013.02.023
– volume: 22
  start-page: 581
  year: 1999
  ident: 10.1016/j.ijfatigue.2020.105580_b0160
  article-title: Factors influencing the mechanism of superlong fatigue failure in steels
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1046/j.1460-2695.1999.00187.x
– volume: 13
  start-page: 93
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0035
  article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting
  publication-title: Addit Manuf
– volume: 28
  start-page: 1438
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105580_b0105
  article-title: Piezoelectric fatigue testing machines and devices
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.09.020
– volume: 94
  start-page: 236
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0040
  article-title: Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.05.018
– volume: 366
  start-page: 1116
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0015
  article-title: Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing
  publication-title: Science
  doi: 10.1126/science.aax7616
– volume: 724
  start-page: 444
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105580_b0125
  article-title: Identifying strain localization and dislocation processes in fatigued Inconel 718 manufactured from selective laser melting
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2018.03.127
– volume: 695
  start-page: 6
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105580_b0145
  article-title: The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2017.03.098
– year: 2002
  ident: 10.1016/j.ijfatigue.2020.105580_b0165
– volume: 24
  start-page: 1269
  year: 2002
  ident: 10.1016/j.ijfatigue.2020.105580_b0080
  article-title: Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(02)00037-3
– volume: 85
  start-page: 528
  year: 1963
  ident: 10.1016/j.ijfatigue.2020.105580_b0235
  article-title: A critical analysis of crack propagation laws
  publication-title: J Basic Eng
  doi: 10.1115/1.3656900
– volume: 761
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0060
  article-title: Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2019.06.003
– volume: 157
  start-page: 259
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105580_b0175
  article-title: Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.07.036
– volume: 366
  start-page: 105
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105580_b0025
  article-title: Scalable submicrometer additive manufacturing
  publication-title: Science
  doi: 10.1126/science.aax8760
– volume: 56
  start-page: 617
  year: 2013
  ident: 10.1016/j.ijfatigue.2020.105580_b0090
  article-title: Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies
  publication-title: Sci China Phys, Mech Astron
  doi: 10.1007/s11433-013-5013-9
– volume: 38
  start-page: 1274
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105580_b0245
  article-title: Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12331
SSID ssj0009075
Score 2.59141
Snippet •The separate S-N curves are firstly detected in additively manufactured metals.•Fatigue cracks originate from gas pores, lack of fusions, and columnar...
Ultrasonic fatigue tests were performed to investigate high and very high cycle fatigue behaviors of a laser additively manufactured Inconel 718 (IN718) alloy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105580
SubjectTerms Additive manufacturing
Crack initiation
Fatigue crack initiation
Fatigue cracks
Fatigue failure
Fatigue life
Fatigue sensitivity level
Fatigue tests
High cycle fatigue
Manufacturing defects
Materials fatigue
Microcracks
Nickel base alloys
S N diagrams
Selective laser melting
Superalloys
Very high cycle fatigue
Title Competing crack initiation behaviors of a laser additively manufactured nickel-based superalloy in high and very high cycle fatigue regimes
URI https://dx.doi.org/10.1016/j.ijfatigue.2020.105580
https://www.proquest.com/docview/2505726422
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA2iFz2IKy6j1MFrnJ5eE28yKKOiJwVvobNB69gzzHKYiz_gT1vVixuCB-lLd5OEJFWpvISqV4ydBIEj2jLPMyM0j72OuNax5an3aS8PPaoQxTvf3qWDh_j6MXlcYv02FobcKhvbX9v0ylo3f7rNbHbHRdEltyQ8vSAiqFB9FWYVxxlp-enrp5uHrMl2qTCn0t98vIonj-OnK5IQYRPlvE2IH_L3HeqHra42oMsNtt4gRzivO7fJlly5xda-8Alus7d-hYLxHcwkN89QkGtQNffQxuNPYeQhBwTNbgLkTUT2briAl7ycU5TDfOIslAUu7iGnLc7CdD6mi6vhaIHtAfEbQ15awDWwqL_MAjsEzRiBUj28uOkOe7i8uO8PeJNtgRs84824i6VwmdR5mvhe5KMky-OecKn0xLcjI-0iQWjJikDYMAukNTYRUSC9FEbrNNply-WodHsMnBahiVJ8MhEnNpRGSOdRJ3Kn8Tjp91nazrAyDRU5ZcQYqtbn7El9iEaRaFQtmn0WfFQc12wcf1c5a0WovimWwj3j78qdVuiqWdtTRaAxQxwZhgf_afuQrdJX7frbYcuzydwdIcCZ6eNKg4_ZyvnVzeDuHYvM_WY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQOLQ9VEBblRJgDr1a2ezT5hZFoFAgJ5C4WeuXtDRsojwO-Q38aWZ2vRSqShyqvezL1u7MeOazNfOZsZ9R5Ii2zPPCCM1TrxOudWp57n0-LGOPJkT1zjfTfHKX_rrP7nfYuKuFobTK4Ptbn95463BnEKQ5WFTVgNKScPaCiKBB9VRmtUvsVFmP7Y4urybTP9y7Ld8uvc-pwZs0r-rBowholSRG5ETb3mZEEfnvIPWXu25i0MUe-xzAI4za79tnO64-YJ9eUQp-YU_jBgjjOZhlaX5DRdlBjfihK8lfwdxDCYib3RIooYhc3mwLj2W9oUKHzdJZqCsc3zNOUc7CarOgtavZfIv9AVEcQ1lbwGGwba_MFj8Iwj8C7fbw6FZf2d3F-e14wsOGC9zgNG_NXSqFK6Qu88wPE59kRZkOhculJ8odmWiXCAJMVkTCxkUkrbGZSCLppTBa58k31qvntfvOwGkRmyTHoxBpZmNphHQezaJ0GmeU_pDlnYSVCWzktCnGTHVpZw_qRTWKVKNa1Ryy6KXhoiXkeL_JWadC9ca2FIaN9xv3O6WrMLxXinBjgVAyjn_8T9-n7MPk9uZaXV9Or47YR3rSZgL3WW-93LhjxDtrfRLs-RkwywAm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competing+crack+initiation+behaviors+of+a+laser+additively+manufactured+nickel-based+superalloy+in+high+and+very+high+cycle+fatigue+regimes&rft.jtitle=International+journal+of+fatigue&rft.au=Yang%2C+Kun&rft.au=Huang%2C+Qi&rft.au=Wang%2C+Qingyuan&rft.au=Chen%2C+Qiang&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=136&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105580&rft.externalDocID=S0142112320301110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon