Fault Detection and Fault-Tolerant Cooperative Control of Multi-UAVs under Actuator Faults, Sensor Faults, and Wind Disturbances
Fault detection (FD) and fault-tolerant cooperative control (FTCC) strategies are proposed in this paper for multiple fixed-wing unmanned aerial vehicles (UAVs) under actuator faults, sensor faults, and wind disturbances. Firstly, the faulty model is introduced while the effectiveness loss, deviatio...
Saved in:
Published in | Drones (Basel) Vol. 7; no. 8; p. 503 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fault detection (FD) and fault-tolerant cooperative control (FTCC) strategies are proposed in this paper for multiple fixed-wing unmanned aerial vehicles (UAVs) under actuator faults, sensor faults, and wind disturbances. Firstly, the faulty model is introduced while the effectiveness loss, deviation of thrust throttle setting, and pitot sensor faults are considered. Secondly, the faulty UAV model with wind disturbances is linearized and the system is then converted into two subsystems by using state and output transformations. Further, cooperative unknown input observers (UIOs) are developed to estimate the faults, disturbances, and states. By combining with the observers’ estimations, adaptive thresholds are designed to detect actuator and sensor faults in the system. Then, considering state constraints, a backstepping-based FTCC scheme is proposed for multiple UAVs (multi-UAVs) suffering from actuator faults, sensor faults, and wind disturbances. It is shown by Lyapunov analysis that the tracking errors are fixed-time convergent. Finally, the effectiveness of the FD and FTCC scheme is verified by numerical simulation. |
---|---|
AbstractList | Fault detection (FD) and fault-tolerant cooperative control (FTCC) strategies are proposed in this paper for multiple fixed-wing unmanned aerial vehicles (UAVs) under actuator faults, sensor faults, and wind disturbances. Firstly, the faulty model is introduced while the effectiveness loss, deviation of thrust throttle setting, and pitot sensor faults are considered. Secondly, the faulty UAV model with wind disturbances is linearized and the system is then converted into two subsystems by using state and output transformations. Further, cooperative unknown input observers (UIOs) are developed to estimate the faults, disturbances, and states. By combining with the observers’ estimations, adaptive thresholds are designed to detect actuator and sensor faults in the system. Then, considering state constraints, a backstepping-based FTCC scheme is proposed for multiple UAVs (multi-UAVs) suffering from actuator faults, sensor faults, and wind disturbances. It is shown by Lyapunov analysis that the tracking errors are fixed-time convergent. Finally, the effectiveness of the FD and FTCC scheme is verified by numerical simulation. |
Audience | Academic |
Author | Cheng, Yuehua Yu, Ziquan Xu, Guili Zhang, Youmin Yang, Zhongyu Li, Mengna |
Author_xml | – sequence: 1 givenname: Zhongyu surname: Yang fullname: Yang, Zhongyu – sequence: 2 givenname: Mengna surname: Li fullname: Li, Mengna – sequence: 3 givenname: Ziquan orcidid: 0000-0002-1026-4195 surname: Yu fullname: Yu, Ziquan – sequence: 4 givenname: Yuehua orcidid: 0000-0003-1985-0198 surname: Cheng fullname: Cheng, Yuehua – sequence: 5 givenname: Guili surname: Xu fullname: Xu, Guili – sequence: 6 givenname: Youmin orcidid: 0000-0002-9731-5943 surname: Zhang fullname: Zhang, Youmin |
BookMark | eNptUU1rFTEUDVLBWrt0P-DWqcnka7J8vFpbqLiwVXfhTuZOyWOaPJOM4M6f3ryOQhUJJOcezjnccF6SoxADEvKa0TPODX03pjpnTXsqKX9GjjtJRSuE-nb0BL8gpznvKKVdJ6Qy7Jj8uoBlLs05FnTFx9BAGJtHrr2JMyYIpdnGuK-o-B9YcSgpzk2cmo9V5NvbzZfcLGHE1GxcWaDEtPrz2-YzhvxkPER_9fU697ksaYDgML8izyeYM57-fk_I7cX7m-1le_3pw9V2c906QU1pkdNBaDRaDLwfwZgBmTI4IbB-ZEoi0yOg6iSj3cCQAR-loUYMgoI0g-Yn5GrNHSPs7D75e0g_bQRvH4mY7iyk4t2M1qmeGS4HLpkRKJiBocdJT0yDEopONevNmrVP8fuCudhdXFKo69uul5pSoRirqrNVdQc11IcplgSunhHvvattTb7yG606oSXnshr4anAp5pxwss4XOLRSjX62jNpD1favqqur_cf153P_1z8ARyCuBg |
CitedBy_id | crossref_primary_10_1002_rnc_7768 crossref_primary_10_3390_jmse12101818 crossref_primary_10_3390_drones8110618 crossref_primary_10_1109_JSEN_2024_3405630 |
Cites_doi | 10.1088/1361-6501/ac6146 10.1109/JSYST.2021.3128973 10.1109/TVT.2022.3223121 10.1109/IRASET48871.2020.9092141 10.1016/j.apm.2022.05.013 10.1007/s10846-022-01698-x 10.1177/01423312211027037 10.1061/(ASCE)AS.1943-5525.0000080 10.1016/j.isatra.2021.11.012 10.3390/machines11020211 10.1109/EAEEIE.2018.8534245 10.1109/ACCESS.2022.3202020 10.1177/0142331218809006 10.1016/j.jfranklin.2013.06.010 10.1109/TCYB.2020.3028171 10.1109/ICSIDP47821.2019.9173181 10.1016/j.ast.2010.08.011 10.1080/00207721.2016.1193257 10.3390/drones7020082 10.1016/j.automatica.2016.10.025 10.1007/s00138-009-0206-y 10.1016/j.automatica.2016.01.064 10.1109/Agro-Geoinformatics.2014.6910665 10.1007/978-3-030-57957-9 10.1109/ACCESS.2022.3225434 10.1002/acs.967 10.1002/rnc.4228 10.1016/j.cja.2019.02.010 10.1002/rnc.3481 10.1016/j.ast.2014.02.004 10.1109/CCWC.2019.8666471 10.1049/iet-cta.2018.6262 10.1155/2022/6447812 10.1109/TNNLS.2021.3059933 10.1016/j.isatra.2016.12.001 10.1016/j.actaastro.2023.04.006 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.3390/drones7080503 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-446X |
ExternalDocumentID | oai_doaj_org_article_c681935b35194e419ab8ef7f17a6460f A762475335 10_3390_drones7080503 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PMFND 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c409t-e30b47e974b38da99be169efea18d165e17dae625102b1e1a3d59094b40a59b73 |
IEDL.DBID | BENPR |
ISSN | 2504-446X |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Fri Jul 25 23:13:33 EDT 2025 Tue Jun 10 21:18:54 EDT 2025 Tue Jul 01 01:49:52 EDT 2025 Thu Apr 24 22:51:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-e30b47e974b38da99be169efea18d165e17dae625102b1e1a3d59094b40a59b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1026-4195 0000-0002-9731-5943 0000-0003-1985-0198 |
OpenAccessLink | https://www.proquest.com/docview/2857004611?pq-origsite=%requestingapplication% |
PQID | 2857004611 |
PQPubID | 5046906 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c681935b35194e419ab8ef7f17a6460f proquest_journals_2857004611 gale_infotracacademiconefile_A762475335 crossref_citationtrail_10_3390_drones7080503 crossref_primary_10_3390_drones7080503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Drones (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wu (ref_7) 2019; 32 Li (ref_27) 2022; 44 Yu (ref_37) 2021; 32 ref_14 Yin (ref_19) 2017; 76 ref_13 Peng (ref_8) 2010; 31 Yan (ref_24) 2022; 128 ref_10 Zhou (ref_33) 2016; 26 Lv (ref_41) 2020; 52 Lin (ref_42) 2014; 35 ref_38 ref_15 Atallah (ref_20) 2023; 208 Wu (ref_35) 2022; 2022 Bai (ref_11) 2014; 35 Liu (ref_16) 2022; 33 Cui (ref_32) 2017; 48 Cui (ref_39) 2021; 69 Yu (ref_34) 2019; 13 Zhang (ref_26) 2021; 16 Chen (ref_22) 2022; 10 Li (ref_4) 2010; 21 Zhang (ref_31) 2018; 28 Yu (ref_21) 2022; 109 Zhang (ref_17) 2013; 350 Yan (ref_40) 2007; 21 ref_1 ref_3 Wang (ref_25) 2021; 17 ref_2 No (ref_9) 2011; 15 Jin (ref_29) 2016; 68 Li (ref_30) 2011; 24 Aliyari (ref_23) 2022; 10 Zhou (ref_28) 2022; 72 Yu (ref_12) 2019; 41 ref_5 Wu (ref_18) 2017; 67 ref_6 Han (ref_36) 2022; 105 |
References_xml | – volume: 33 start-page: 075903 year: 2022 ident: ref_16 article-title: Fault diagnosis and accommodation for multi-actuator faults of a fixed-wing unmanned aerial vehicle publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac6146 – volume: 16 start-page: 4792 year: 2021 ident: ref_26 article-title: Distributed adaptive fixed-time fault-tolerant control for multiple 6-DOF UAVs with full-state constraints guarantee publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2021.3128973 – volume: 72 start-page: 4252 year: 2022 ident: ref_28 article-title: IBLF-based fixed-time fault-tolerant control for fixed-wing UAV with guaranteed time-varying state constraints publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3223121 – ident: ref_6 doi: 10.1109/IRASET48871.2020.9092141 – volume: 109 start-page: 651 year: 2022 ident: ref_21 article-title: A hierarchical control scheme for multiple aerial vehicle transportation systems with uncertainties and state/input constraints publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.05.013 – volume: 17 start-page: 639 year: 2021 ident: ref_25 article-title: Sliding mode fault tolerant control of quadrotor UAV with state constraints under actuator fault publication-title: Int. J. Innov. Comput. I – volume: 105 start-page: 80 year: 2022 ident: ref_36 article-title: Distributed fault estimation and fixed-time fault-tolerant formation control for multi-UAVs subject to sensor faults publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-022-01698-x – volume: 44 start-page: 880 year: 2022 ident: ref_27 article-title: Adaptive fault-tolerant tracking control of flying-wing unmanned aerial vehicle with system input saturation and state constraints publication-title: Trans. Inst. Meas. Control doi: 10.1177/01423312211027037 – volume: 24 start-page: 251 year: 2011 ident: ref_30 article-title: Fault tolerant attitude synchronization control during formation flying publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0000080 – volume: 128 start-page: 32 year: 2022 ident: ref_24 article-title: Adaptive tracking flight control for unmanned autonomous helicopter with full state constraints and actuator faults publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.11.012 – ident: ref_14 doi: 10.3390/machines11020211 – volume: 69 start-page: 494 year: 2021 ident: ref_39 article-title: Fixed-time prescribed performance adaptive trajectory tracking control for a QUAV publication-title: IEEE T. Circuits-II – ident: ref_5 doi: 10.1109/EAEEIE.2018.8534245 – volume: 10 start-page: 91750 year: 2022 ident: ref_23 article-title: Design and implementation of a constrained model predictive control approach for unmanned aerial vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3202020 – volume: 41 start-page: 975 year: 2019 ident: ref_12 article-title: Prescribed performance-based distributed fault-tolerant cooperative control for multi-UAVs publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331218809006 – volume: 35 start-page: 1022 year: 2014 ident: ref_11 article-title: Multiple UAV cooperative trajectory planning based on Gauss pseudospectral method publication-title: J. Astronaut. – volume: 350 start-page: 2581 year: 2013 ident: ref_17 article-title: Robust sensor fault estimation scheme for satellite attitude control systems publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2013.06.010 – volume: 52 start-page: 5184 year: 2020 ident: ref_41 article-title: Consensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based control publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2020.3028171 – ident: ref_1 doi: 10.1109/ICSIDP47821.2019.9173181 – volume: 15 start-page: 431 year: 2011 ident: ref_9 article-title: Cascade-type guidance law design for multiple-UAV formation keeping publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2010.08.011 – volume: 48 start-page: 559 year: 2017 ident: ref_32 article-title: Distributed adaptive neural network control for a class of heterogeneous nonlinear multi-agent systems subject to actuation failures publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2016.1193257 – ident: ref_15 doi: 10.3390/drones7020082 – volume: 76 start-page: 282 year: 2017 ident: ref_19 article-title: Descriptor reduced-order sliding mode observers design for switched systems with sensor and actuator faults publication-title: Automatica doi: 10.1016/j.automatica.2016.10.025 – volume: 31 start-page: 593 year: 2010 ident: ref_8 article-title: Multiple UAV cooperative area search based on distributed model predictive control publication-title: Acta Aeronaut. Astronaut. Sin. – volume: 21 start-page: 677 year: 2010 ident: ref_4 article-title: Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-009-0206-y – ident: ref_10 – volume: 68 start-page: 228 year: 2016 ident: ref_29 article-title: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints publication-title: Automatica doi: 10.1016/j.automatica.2016.01.064 – ident: ref_3 doi: 10.1109/Agro-Geoinformatics.2014.6910665 – ident: ref_38 doi: 10.1007/978-3-030-57957-9 – volume: 10 start-page: 126494 year: 2022 ident: ref_22 article-title: UAV formation control under communication constraints based on distributed model predictive control publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3225434 – volume: 21 start-page: 657 year: 2007 ident: ref_40 article-title: Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.967 – volume: 28 start-page: 4188 year: 2018 ident: ref_31 article-title: Fault-tolerant leader-follower formation control of marine surface vessels with unknown dynamics and actuator faults publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.4228 – ident: ref_13 – volume: 32 start-page: 1520 year: 2019 ident: ref_7 article-title: Mobility control of unmanned aerial vehicle as communication relay in airborne multi-user systems publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.02.010 – volume: 26 start-page: 2994 year: 2016 ident: ref_33 article-title: Distributed fault-tolerant control design for spacecraft finite-time attitude synchronization publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.3481 – volume: 35 start-page: 54 year: 2014 ident: ref_42 article-title: Distributed UAV formation control using differential game approach publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2014.02.004 – ident: ref_2 doi: 10.1109/CCWC.2019.8666471 – volume: 13 start-page: 2917 year: 2019 ident: ref_34 article-title: Distributed adaptive fractional-order fault-tolerant cooperative control of networked unmanned aerial vehicles via fuzzy neural networks publication-title: IET Contr. Theory Appl. doi: 10.1049/iet-cta.2018.6262 – volume: 2022 start-page: 6447812 year: 2022 ident: ref_35 article-title: Fixed-time fault-tolerant tracking control of fixed-wing UAVs with actuator fault and unmatched disturbances publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2022/6447812 – volume: 32 start-page: 5539 year: 2021 ident: ref_37 article-title: Fractional-order adaptive fault-tolerant synchronization tracking control of networked fixed-wing UAVs against actuator-sensor faults via intelligent learning mechanism publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3059933 – volume: 67 start-page: 183 year: 2017 ident: ref_18 article-title: Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices publication-title: ISA Trans. doi: 10.1016/j.isatra.2016.12.001 – volume: 208 start-page: 82 year: 2023 ident: ref_20 article-title: Optimal consensus control for multi-satellite assembly in elliptic orbit with input saturation publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2023.04.006 |
SSID | ssj0002245691 |
Score | 2.2686536 |
Snippet | Fault detection (FD) and fault-tolerant cooperative control (FTCC) strategies are proposed in this paper for multiple fixed-wing unmanned aerial vehicles... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 503 |
SubjectTerms | actuator fault Actuators Communication Communications networks Cooperative control Design Disturbances Drone aircraft Effectiveness Energy consumption Expected values Fault detection Fault location (Engineering) Fault tolerance fault-tolerant cooperative control Faults Geological faults Mathematical models Methods Observers sensor fault Sensors Subsystems Systems stability Tracking errors Unmanned aerial vehicles wind disturbance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09bxsxDBUKT1mKFk0Rt0mgIUgXC7Gsr9PoOjWMAO2SOMkmSCdqKAzbsM97fnqo09lwh6BLxhN0dwJJiXwQ-UjIlR9hEF6ZwEYyaiYtJFalAGwEIeikKyg3ur__6Nlc3j2r56NWXzknrNADF8Hd1Bp9llAhN5KTILn1oYJkEjdeSz1M-fRFn3cEpv62pC4YGFheSDUF4vqbuMnc9wYDJLVvkNU5oZar_60TuXUz00_kYxcf0nFZ12fyAZZfyMvU7xYNvYWmTZxaUoT_tB1jD6sFoLtp6GS1WkOh8aaTkn9OV4m2BbZsPn7c0lwutqHjXDGCQLu8vx3QewSyR4_5008I1OktGsBuE7JVbE_JfPrrYTJjXesEViNgaxiIYZAGECwEUUVvbQCuURHgeRW5VsBN9IDYB-OLwIF7EZVFpBfk0CsbjPhKeksU2BmhdqgCBo1CWQHSJFP5GqQSOiajYpS6TwZ7Wbq64xXP7S0WDvFFFr37R_R9cn2Yvi6EGm9N_JkVc5iUebDbAbQO11mH-5919MmPrFaXdysuqvZd0QH-J_NeuTH6AomITag-Od9r3nXbeOtGhf5fc_7tPVbznZzkbvUlf_Cc9JrNDi4wpmnCZWu-r2X99Qk priority: 102 providerName: Directory of Open Access Journals |
Title | Fault Detection and Fault-Tolerant Cooperative Control of Multi-UAVs under Actuator Faults, Sensor Faults, and Wind Disturbances |
URI | https://www.proquest.com/docview/2857004611 https://doaj.org/article/c681935b35194e419ab8ef7f17a6460f |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-GCQIBYKCsfEFxqdR2_T2i77VIhUSHoQm-RHU-4rDZLkr3z0xkn3gUO5RjHecgznpnPHn9DyBtfYBBuTWCFjJpJBzWzdQBWQAi61hbGHd1PN_p6JT_eqbu84NbltMq9TRwMdWyqtEZ-XoxM7Jrz99ufLFWNSruruYTGETlBE2wRfJ1cXN18_nJYZSnSvp7jI7mmQHx_HtvEgW8wUFL7QlnZGQ2c_fdZ5sHdLB-TRzlOpPNRsE_IA9g8Jb-Wfrfu6SX0QwLVhvpNpEMbu23WgG6np4um2cJI500XYx46bWo6HLRlq_m3jqZjYy2dp5MjCLjH57sz-hUB7V-X6dXfEbDTS1SEXRuSdnTPyGp5dbu4ZrmEAqsQuPUMxCxIAwgagrDROxeAaxQIeG4j1wq4iR4QA2GcEThwL6JyiPiCnHnlghHPyfEGB-wFoW6mAgaPQjkB0tTG-gqkEjrWRsUo9YSc7ceyrDK_eCpzsS4RZ6ShL_8Z-gl5e-i-HYk17ut4kQRz6JT4sIeGpv1R5ulVVhojG6FCKjcoQXLng4Xa1Nx4LfWsnpB3SaxlmrX4U5XPhw_wO4n_qpyjT5CI3ISakNO95Ms8nbvyj_K9_P_tV-Rhqkc_ZgiekuO-3cFrjFr6MCVHdvlhmhV0OmD_3_mI8EU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LjtMw0FqWA1wQCBCFBXzgcVlr4_iR5IBQaSld9nGhhb0FO54gpKopSSrEjS_iGxnHSYHDcttLpNiOY82M52HPg5BnJkYlPE0si6XTTGZQsrS0wGKwVpc6hXCje3au50v5_kJd7JFfQyyMd6sceGLHqF1V-DPyozhkYtecv958Y75qlL9dHUpoBLI4gR_f0WRrXh1PEb_P43j2djGZs76qACvQlmkZiMjKBFCPtiJ1JssscI1rBMNTx7UCnjgDaBag6LUcuBFOZWgEWRkZldlE4LzXyHUpROZ3VDp7tzvTif0tYsZDKk_sj45c7TPuJ6iWqaEsVy_6ugoBl8mBTrjNbpNbvVZKx4GM7pA9WN8lP2dmu2rpFNrOXWtNzdrRro0tqhWgkGvppKo2EJKH00nweqdVSbuwXrYcf2yoD1Kr6djHqaB5H75vDukHNJ__evVTf_qKjymS3ba2nhabe2R5JaC9T_bXCLAHhGaRsqiqCpUJkEmZpKYAqYR2ZaKck3pEDgdY5kWfzdwX1VjlaNV40Of_gH5EXuyGb0Iaj8sGvvGI2Q3y2be7hqr-kvebOS806lFCWV_cUILkmbEplEnJE6OljsoReenRmnsegYsqTB_qgP_x2bbyMUogiXaiUCNyMGA-75lHk_8h9Yf_735KbswXZ6f56fH5ySNyM0b9K_gmHpD9tt7CY9SXWvukI1JKPl_1rvgNexEpvw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEAgQCwV84HFptHH8Sg4IbXe7aimsKuhCb6kdT1Cl1WabZIW48bv4dYzzWOBQbr1EiuMk1szYM589D0JemgiN8FjbIBJOBSKBPIhzC0EE1qpcxdCe6H6cq6OFeH8uz3fIrz4WxrtV9mtis1C7IvN75KOozcSuGBvlnVvE6XT2bn0V-ApS_qS1L6fRisgJ_PiO8K16ezxFXr-Kotnh2eQo6CoMBBnimjoAHlqhAW1qy2NnksQCUzheMCx2TElg2hlAiIBq2DJghjuZICCyIjQysZrjd2-RXY2oKByQ3YPD-emn7Q5P5M8UE9Ym9uQ8CUeu9Pn3NRppsi_S1SnCpl7AdVqhUXWze-RuZ6PScStU98kOrB6QnzOzWdZ0CnXjvLWiZuVo0xacFUtAlVfTSVGsoU0lTietDzwtctoE-QaL8ZeK-pC1ko591AqC_fb9ap9-RjD9163_9NdLvExRCDel9ZJZPSSLGyHuIzJYIcEeE5qE0qLhymXCQehcxyYDIblyuZbOCTUk-z0t06zLbe5LbCxTxDie9Ok_pB-S19vu6zapx3UdDzxjtp18Lu6moSi_pd3UTjOFVhWX1pc6FCBYYmwMuc6ZNkqoMB-SN56tqV8xcFCZ6QIf8D8-91Y6Rn0kEDVyOSR7PefTbimp0j-C_-T_j1-Q2zgj0g_H85On5E6ExljrqLhHBnW5gWdoPNX2eSellFzc9MT4DR7jL1E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+and+Fault-Tolerant+Cooperative+Control+of+Multi-UAVs+under+Actuator+Faults%2C+Sensor+Faults%2C+and+Wind+Disturbances&rft.jtitle=Drones+%28Basel%29&rft.au=Yang%2C+Zhongyu&rft.au=Li%2C+Mengna&rft.au=Yu%2C+Ziquan&rft.au=Cheng%2C+Yuehua&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2504-446X&rft.eissn=2504-446X&rft.volume=7&rft.issue=8&rft_id=info:doi/10.3390%2Fdrones7080503&rft.externalDocID=A762475335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |