Developing an EEG-Based Emotion Recognition Using Ensemble Deep Learning Methods and Fusion of Brain Effective Connectivity Maps

The objective of this paper is to develop a novel emotion recognition system from electroencephalogram (EEG) signals using effective connectivity and deep learning methods. Emotion recognition is an important task for various applications such as human-computer interaction and, mental health diagnos...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 50949 - 50965
Main Authors Bagherzadeh, Sara, Shalbaf, Ahmad, Shoeibi, Afshin, Jafari, Mahboobeh, Tan, Ru-San, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this paper is to develop a novel emotion recognition system from electroencephalogram (EEG) signals using effective connectivity and deep learning methods. Emotion recognition is an important task for various applications such as human-computer interaction and, mental health diagnosis. The paper aims to improve the accuracy and robustness of emotion recognition by combining different effective connectivity (EC) methods and pre-trained convolutional neural networks (CNNs), as well as long short-term memory (LSTM). EC methods measure information flow in the brain during emotional states using EEG signals. We used three EC methods: transfer entropy (TE), partial directed coherence (PDC), and direct directed transfer function (dDTF). We estimated a fused image from these methods for each five-second window of 32-channel EEG signals. Then, we applied six pre-trained CNNs to classify the images into four emotion classes based on the two-dimensional valence-arousal model. We used the leave-one-subject-out cross-validation strategy to evaluate the classification results. We also used an ensemble model to select the best results from the best pre-trained CNNs using the majority voting approach. Moreover, we combined the CNNs with LSTM to improve recognition performance. We achieved the average accuracy and F-score of 98.76%, 98.86%, 98.66 and 98.88% for classifying emotions using DEAP and MAHNOB-HCI datasets, respectively. Our results show that fused images can increase the accuracy and that an ensemble and combination of pre-trained CNNs and LSTM can achieve high accuracy for automated emotion recognition. Our model outperformed other state-of-the-art systems using the same datasets for four-class emotion classification.
AbstractList The objective of this paper is to develop a novel emotion recognition system from electroencephalogram (EEG) signals using effective connectivity and deep learning methods. Emotion recognition is an important task for various applications such as human-computer interaction and, mental health diagnosis. The paper aims to improve the accuracy and robustness of emotion recognition by combining different effective connectivity (EC) methods and pre-trained convolutional neural networks (CNNs), as well as long short-term memory (LSTM). EC methods measure information flow in the brain during emotional states using EEG signals. We used three EC methods: transfer entropy (TE), partial directed coherence (PDC), and direct directed transfer function (dDTF). We estimated a fused image from these methods for each five-second window of 32-channel EEG signals. Then, we applied six pre-trained CNNs to classify the images into four emotion classes based on the two-dimensional valence-arousal model. We used the leave-one-subject-out cross-validation strategy to evaluate the classification results. We also used an ensemble model to select the best results from the best pre-trained CNNs using the majority voting approach. Moreover, we combined the CNNs with LSTM to improve recognition performance. We achieved the average accuracy and F-score of 98.76%, 98.86%, 98.66 and 98.88% for classifying emotions using DEAP and MAHNOB-HCI datasets, respectively. Our results show that fused images can increase the accuracy and that an ensemble and combination of pre-trained CNNs and LSTM can achieve high accuracy for automated emotion recognition. Our model outperformed other state-of-the-art systems using the same datasets for four-class emotion classification.
Author Shoeibi, Afshin
Jafari, Mahboobeh
Acharya, U. Rajendra
Bagherzadeh, Sara
Shalbaf, Ahmad
Tan, Ru-San
Author_xml – sequence: 1
  givenname: Sara
  orcidid: 0000-0003-2980-8866
  surname: Bagherzadeh
  fullname: Bagherzadeh, Sara
  organization: Department of Biomedical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
– sequence: 2
  givenname: Ahmad
  orcidid: 0000-0002-1595-7281
  surname: Shalbaf
  fullname: Shalbaf, Ahmad
  email: shalbaf@sbmu.ac.ir
  organization: Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 3
  givenname: Afshin
  orcidid: 0000-0003-0635-6799
  surname: Shoeibi
  fullname: Shoeibi, Afshin
  organization: Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
– sequence: 4
  givenname: Mahboobeh
  orcidid: 0000-0001-7964-4033
  surname: Jafari
  fullname: Jafari, Mahboobeh
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia
– sequence: 5
  givenname: Ru-San
  orcidid: 0000-0003-2086-6517
  surname: Tan
  fullname: Tan, Ru-San
  organization: National Heart Centre Singapore, Hospital Drive, Singapore
– sequence: 6
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia
BookMark eNp9UU1r3DAUNCWFpkl-QXsQ9Ozts-UP6Zg4ThrYEGias9BKT1stXsmVvIHc-tMrr1MIPVQXDfNmhsebj9mJ8w6z7FMBq6IA_vWy6_rHx1UJZbWilFUU6LvstCwantOaNidv8IfsIsYdpMcSVben2e9rfMbBj9ZtiXSk72_zKxlRk37vJ-sd-Y7Kb5094qc4y3oXcb8ZkFwjjmSNMriZvsfpp9cxpWhyc4iz3htyFaRNscagmuwzks47d4R2eiH3cozn2Xsjh4gXr_9Z9nTT_-i-5euH27vucp2rCviUa8OxaYykWGoKplVKt5xDCZSB1gahbqgpWa2waEAXUjdQowZUbaMr1IqeZXdLrvZyJ8Zg9zK8CC-tOBI-bIUMk1UDCtkapSnnumZ1tUHg1FDAlunasAI3MmV9WbLG4H8dME5i5w_BpfUFhQqgpozypOKLSgUfY0AjlJ3kfMgpHWUQBYi5P7H0J-b-xGt_yUv_8f7d-P-uz4vLIuIbR8VYlcZ_AKYWqe4
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1038_s41598_025_93241_9
crossref_primary_10_1016_j_heliyon_2025_e41767
crossref_primary_10_1016_j_bspc_2024_107473
crossref_primary_10_1007_s13198_024_02591_6
crossref_primary_10_1016_j_bspc_2024_106812
crossref_primary_10_1007_s10548_025_01106_1
crossref_primary_10_1007_s10586_024_04994_3
crossref_primary_10_1038_s41598_024_80448_5
crossref_primary_10_1016_j_knosys_2024_112270
crossref_primary_10_1109_ACCESS_2024_3460393
crossref_primary_10_1007_s12031_025_02329_4
crossref_primary_10_1016_j_heliyon_2024_e36411
crossref_primary_10_3390_app15052328
crossref_primary_10_1007_s11760_025_03896_0
Cites_doi 10.1002/cpe.4446
10.1002/hbm.20263
10.1002/9781118914564
10.1016/j.compbiomed.2022.105570
10.1109/ACCESS.2022.3155647
10.1016/j.bspc.2021.102648
10.1016/j.artmed.2021.102210
10.3390/s22093248
10.1109/CVPR.2017.243
10.1016/j.eij.2019.10.002
10.3389/fnbot.2019.00037
10.1145/3065386
10.3390/s23031404
10.1016/j.bspc.2021.103289
10.1088/1741-2552/ab0ab5
10.1037/h0077714
10.1016/j.compbiomed.2015.09.019
10.1109/TCDS.2022.3207350
10.3389/fnhum.2015.00570
10.1016/S0165-0270(03)00052-9
10.1016/j.jksuci.2019.11.003
10.1093/oso/9780195169157.003.0002
10.1142/S0129065721500222
10.1142/S0129065722500241
10.1016/j.cmpb.2023.107380
10.1007/s11571-019-09556-7
10.1016/j.asoc.2020.106954
10.1109/LSP.2022.3179946
10.3389/fnsys.2020.00043
10.1260/2040-2295.6.1.55
10.1016/j.bspc.2021.103361
10.1016/j.chb.2016.01.005
10.1016/j.engappai.2022.105349
10.1109/T-AFFC.2011.15
10.3390/s19214736
10.1016/j.bbr.2015.10.036
10.1007/s12021-013-9186-1
10.1016/j.bbe.2019.01.004
10.1109/TNSRE.2008.2010472
10.1109/JSEN.2022.3172133
10.1109/CVPR.2016.308
10.1016/j.inffus.2021.07.007
10.1109/CVPR.2018.00907
10.1016/j.bspc.2022.103544
10.1016/j.imavis.2012.10.002
10.1007/s11571-021-09756-0
10.1109/ACCESS.2021.3091487
10.1007/s13042-021-01414-5
10.1080/02699930903274322
10.1016/j.engappai.2022.105347
10.1016/j.bbe.2020.04.005
10.1109/T-AFFC.2011.25
10.1371/journal.pone.0242014
10.1016/j.ipm.2009.03.002
10.1109/TAFFC.2022.3145623
10.1142/S0129065721500325
10.1109/ACCESS.2022.3193768
10.1007/s11042-020-09354-y
10.1109/CVPR.2016.90
10.3389/fninf.2021.777977
10.1016/j.knosys.2023.110372
10.1016/j.compbiomed.2021.104696
10.1109/ACCESS.2023.3245830
10.1016/j.compbiomed.2023.106537
10.1016/j.compbiomed.2011.06.020
10.1109/TNNLS.2020.3008938
10.1016/j.bspc.2022.103547
10.1016/j.bbe.2021.06.006
10.1007/s11571-019-09553-w
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3384303
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 50965
ExternalDocumentID oai_doaj_org_article_a7fcd399d5854be093f30e78d5f81eba
10_1109_ACCESS_2024_3384303
10488403
Genre orig-research
GrantInformation_xml – fundername: Shahid Beheshti University of Medical Sciences
  grantid: 43004477
  funderid: 10.13039/501100005851
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-df9e66fa3e2d30f7ccd799020380ddfe0563f285ce160d1ad605ed0ec76d4edc3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:32:09 EDT 2025
Sun Jun 29 12:22:55 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Tue Jul 01 04:14:28 EDT 2025
Wed Aug 27 02:17:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-df9e66fa3e2d30f7ccd799020380ddfe0563f285ce160d1ad605ed0ec76d4edc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1595-7281
0000-0003-2086-6517
0000-0003-2980-8866
0000-0001-7964-4033
0000-0003-0635-6799
OpenAccessLink https://doaj.org/article/a7fcd399d5854be093f30e78d5f81eba
PQID 3040053839
PQPubID 4845423
PageCount 17
ParticipantIDs ieee_primary_10488403
crossref_primary_10_1109_ACCESS_2024_3384303
proquest_journals_3040053839
crossref_citationtrail_10_1109_ACCESS_2024_3384303
doaj_primary_oai_doaj_org_article_a7fcd399d5854be093f30e78d5f81eba
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Chollet (ref63) 2016
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
Mullen (ref20) 2010
ref32
ref2
ref1
ref39
ref38
Tan (ref61)
ref71
ref70
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref64
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
References_xml – ident: ref21
  doi: 10.1002/cpe.4446
– ident: ref56
  doi: 10.1002/hbm.20263
– start-page: 1
  volume-title: Source information flow toolbox (SIFT)
  year: 2010
  ident: ref20
– ident: ref65
  doi: 10.1002/9781118914564
– ident: ref16
  doi: 10.1016/j.compbiomed.2022.105570
– ident: ref41
  doi: 10.1109/ACCESS.2022.3155647
– ident: ref11
  doi: 10.1016/j.bspc.2021.102648
– ident: ref19
  doi: 10.1016/j.artmed.2021.102210
– ident: ref35
  doi: 10.3390/s22093248
– ident: ref60
  doi: 10.1109/CVPR.2017.243
– ident: ref22
  doi: 10.1016/j.eij.2019.10.002
– ident: ref28
  doi: 10.3389/fnbot.2019.00037
– ident: ref58
  doi: 10.1145/3065386
– ident: ref46
  doi: 10.3390/s23031404
– ident: ref72
  doi: 10.1016/j.bspc.2021.103289
– ident: ref26
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref47
  doi: 10.1037/h0077714
– ident: ref5
  doi: 10.1016/j.compbiomed.2015.09.019
– ident: ref30
  doi: 10.1109/TCDS.2022.3207350
– ident: ref52
  doi: 10.3389/fnhum.2015.00570
– ident: ref54
  doi: 10.1016/S0165-0270(03)00052-9
– ident: ref43
  doi: 10.1016/j.jksuci.2019.11.003
– ident: ref48
  doi: 10.1093/oso/9780195169157.003.0002
– ident: ref68
  doi: 10.1142/S0129065721500222
– ident: ref4
  doi: 10.1142/S0129065722500241
– ident: ref45
  doi: 10.1016/j.cmpb.2023.107380
– ident: ref55
  doi: 10.1007/s11571-019-09556-7
– year: 2016
  ident: ref63
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: arXiv:1610.02357
– ident: ref29
  doi: 10.1016/j.asoc.2020.106954
– ident: ref40
  doi: 10.1109/LSP.2022.3179946
– ident: ref25
  doi: 10.3389/fnsys.2020.00043
– ident: ref51
  doi: 10.1260/2040-2295.6.1.55
– ident: ref38
  doi: 10.1016/j.bspc.2021.103361
– ident: ref10
  doi: 10.1016/j.chb.2016.01.005
– ident: ref12
  doi: 10.1016/j.engappai.2022.105349
– ident: ref1
  doi: 10.1109/T-AFFC.2011.15
– ident: ref27
  doi: 10.3390/s19214736
– ident: ref3
  doi: 10.1016/j.bbr.2015.10.036
– ident: ref53
  doi: 10.1007/s12021-013-9186-1
– ident: ref9
  doi: 10.1016/j.bbe.2019.01.004
– ident: ref57
  doi: 10.1109/TNSRE.2008.2010472
– ident: ref34
  doi: 10.1109/JSEN.2022.3172133
– ident: ref62
  doi: 10.1109/CVPR.2016.308
– ident: ref39
  doi: 10.1016/j.inffus.2021.07.007
– ident: ref64
  doi: 10.1109/CVPR.2018.00907
– ident: ref32
  doi: 10.1016/j.bspc.2022.103544
– ident: ref50
  doi: 10.1016/j.imavis.2012.10.002
– ident: ref33
  doi: 10.1007/s11571-021-09756-0
– ident: ref17
  doi: 10.1109/ACCESS.2021.3091487
– ident: ref36
  doi: 10.1007/s13042-021-01414-5
– ident: ref49
  doi: 10.1080/02699930903274322
– ident: ref14
  doi: 10.1016/j.engappai.2022.105347
– ident: ref23
  doi: 10.1016/j.bbe.2020.04.005
– ident: ref2
  doi: 10.1109/T-AFFC.2011.25
– ident: ref6
  doi: 10.1371/journal.pone.0242014
– ident: ref66
  doi: 10.1016/j.ipm.2009.03.002
– ident: ref42
  doi: 10.1109/TAFFC.2022.3145623
– start-page: 6105
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref61
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref67
  doi: 10.1142/S0129065721500325
– ident: ref44
  doi: 10.1109/ACCESS.2022.3193768
– ident: ref24
  doi: 10.1007/s11042-020-09354-y
– ident: ref59
  doi: 10.1109/CVPR.2016.90
– ident: ref15
  doi: 10.3389/fninf.2021.777977
– ident: ref69
  doi: 10.1016/j.knosys.2023.110372
– ident: ref18
  doi: 10.1016/j.compbiomed.2021.104696
– ident: ref70
  doi: 10.1109/ACCESS.2023.3245830
– ident: ref71
  doi: 10.1016/j.compbiomed.2023.106537
– ident: ref8
  doi: 10.1016/j.compbiomed.2011.06.020
– ident: ref31
  doi: 10.1109/TNNLS.2020.3008938
– ident: ref37
  doi: 10.1016/j.bspc.2022.103547
– ident: ref7
  doi: 10.1016/j.bbe.2021.06.006
– ident: ref13
  doi: 10.1007/s11571-019-09553-w
SSID ssj0000816957
Score 2.4165294
Snippet The objective of this paper is to develop a novel emotion recognition system from electroencephalogram (EEG) signals using effective connectivity and deep...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50949
SubjectTerms Accuracy
Arousal
Artificial neural networks
Brain modeling
Datasets
Deep learning
Effective connectivity
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Feature extraction
Human-computer interface
Image classification
Information flow
Long short term memory
Machine learning
Medical imaging
Time-frequency analysis
Transfer functions
Transfer learning
Two dimensional models
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJzjwWcRCQT5wJIsTO3Z87G6zVEjtAVGpN8uxxxwo2VV398KJn874I6sKBOIWRXbiaMYev8n4PULeccmCVUxVg-9cJVrFKozzstIQU_nOSu4S2-elPL8Sn67b63JYPZ2FAYBUfAbzeJn-5fu128dUGc5wdDcRuT3vI3LLh7UOCZWoIKFbVZiFaqY_nC6X-BGIARsxRyQm-KSMVaJPIukvqip_LMUpvqwek8tpZLms5Nt8vxvm7sdvpI3_PfQn5FHZadLT7BpPyT0Yn5GHd_gHn5OfZ4cjU9SOtO8_VguMap72WdyHfp7Ki_A6FRfQftzC9-EG6BnAhhZ21q_0IglRb_Epnq72MQNH14Euov4EzQTJuKrSVFXjsl4FvbCb7TG5WvVfludVkWSoHALBXeWDBimD5dB4zoJyziuMZw3jHfM-AG6neGi61kEtma-tR7QEnoFT0gvwjr8gR-N6hJeE6pb7EBrEM9Etuk4LKWorutYiinEizEgzmcq4wlceZTNuTMItTJtsXxPta4p9Z-T9odMm03X8u_ki-sChaeTaTjfQdqZMXWNVcB73cR6RlRiAaR44A9X5NnQ1DHZGjqO977wvm3pGTiaXMmVh2BoeF00MMly_-ku31-RBHGJO85yQo93tHt7gxmc3vE0O_wsD7v8K
  priority: 102
  providerName: IEEE
Title Developing an EEG-Based Emotion Recognition Using Ensemble Deep Learning Methods and Fusion of Brain Effective Connectivity Maps
URI https://ieeexplore.ieee.org/document/10488403
https://www.proquest.com/docview/3040053839
https://doaj.org/article/a7fcd399d5854be093f30e78d5f81eba
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJ3qoCqXqtoB84NgUJ3Zs58guWVAleqhA4mY59rgXGlbd5c5PZ_yxq5WQ4MItihI79kxm5ln2e4SccsmCVUxVg9euEq1iFeZ5WXUQl_Kdldwlts_f8upW_Lpr77akvuKesEwPnCfuzKrgPGZRj3WtGAABeOAMlPZt0DUMqTTCnLcFplIM1rXsWlVohmrWnZ3PZjgiBISN-ImwTPC1TFZJRYmxv0isvIjLKdnMP5GPpUqk5_nr9skOjAfkwxZ34GfydLE57kTtSPv-sppiRvK0z8I89M96axBep40BtB-X8G-4B3oBsKCFWfUvvU4i0ktsxdP5Y1w9ow-BTqN2BM3kxhgRadoR47LWBL22i-UhuZ33N7OrqsgpVA5B3KryoQMpg-XQeM6Ccs4rzEUN45p5HwBLIR4a3TqoJfO19Yh0wDNwSnoB3vEvZHd8GOEroV3LfQgNYpFoUq07IUVthW4tIhAnwoQ065k1rnCNR8mLe5MwB-tMNoeJ5jDFHBPyY_PSIlNtvP74NJps82jkyU430HtM8R7zlvdMyGE0-FZ_GNBEbPxo7QGm_NRLw2PAwwTBu2_v0fd3shfHk9dzjsju6v8jHGOFsxpOkjOfpMOIzwng9wE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQewAOUKCIhRZ84EgWJ3ac5NjdZlmguwfUSr1Zjj3mQMmu2N0LJ34644-sqiIQtyiyE0cznvFMZt4j5C2XzOmKVVlna5OJsmIZ-nmZNeBT-UZLbgLa51LOr8Sn6_I6NauHXhgACMVnMPaX4V--XZmdT5XhDkd1Ex7b8xAdf5nHdq19SsVzSDRllbCFcta8P5tO8TMwCizEGGMxwQdurOR_Akx_4lX5wxgHDzN7TJbD2mJhybfxbtuNzc87sI3_vfgj8iidNelZVI4n5B70T8nDWwiEz8iv833TFNU9bdsP2QT9mqVtpPehX4YCI7wO5QW07TfwvbsBeg6wpgmf9StdBCrqDT7F0tnO5-DoytGJZ6CgESIZ7SoNdTUmMlbQhV5vjsnVrL2czrNEypAZDAW3mXUNSOk0h8Jy5ipjbIUerWC8ZtY6wAMVd0VdGsgls7m2GC-BZWAqaQVYw5-Tg37VwwtCm5Jb5wqMaLxi1HUjpMi1qEuNcYwRbkSKQVTKJMRyT5xxo0LkwhoV5au8fFWS74i8209aR8COfw-feB3YD_Vo2-EGyk6lzat05YzFk5zF2Ep0wBruOIOqtqWrc-j0iBx7ed96XxT1iJwMKqWSadgo7s0muhnevPzLtDfk_vxycaEuPi4_vyIP_HJj0ueEHGx_7OAUj0Hb7nVQ_t9xXAJi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+an+EEG-Based+Emotion+Recognition+Using+Ensemble+Deep+Learning+Methods+and+Fusion+of+Brain+Effective+Connectivity+Maps&rft.jtitle=IEEE+access&rft.au=Bagherzadeh%2C+Sara&rft.au=Shalbaf%2C+Ahmad&rft.au=Shoeibi%2C+Afshin&rft.au=Jafari%2C+Mahboobeh&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=50949&rft.epage=50965&rft_id=info:doi/10.1109%2FACCESS.2024.3384303&rft.externalDocID=10488403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon