Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V
[Display omitted] •Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated and compared with the experiment.•Porosity forms due to improper melting in the powder bed.•The solidification parameters are calculated to es...
Saved in:
Published in | Optics and laser technology Vol. 111; pp. 227 - 239 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0030-3992 1879-2545 |
DOI | 10.1016/j.optlastec.2018.09.054 |
Cover
Loading…
Abstract | [Display omitted]
•Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated and compared with the experiment.•Porosity forms due to improper melting in the powder bed.•The solidification parameters are calculated to estimate solidified grain structure.
A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are performed by varying the two key process parameters-laser power and scan speed. The model is validated with the published experimental results for melt pool shape, size and temperature. The predictions are in good agreement with the experiments at low to medium energy density. The validated model is used for investigating the thermo-fluidic transport during SLM of Ti6Al4V and examining the dependence of the melt pool characteristics on the process parameters. As-solidified porosity is calculated numerically for the multi-track simulations and its formation is delineated with the transport phenomena. The predicted porosity compares reasonably well with the experimental values. Solidification parameters, such as temperature gradients and cooling rate are calculated at the instantaneous location of the solidification front and analyzed. This analysis suggests the formation of fully columnar grains of different sizes along the width and depth of the melt pool. Overall, the model provides a good description of thermo-fluidic transport in SLM of Ti6Al4V powder and the resulting temperature field, melt pool characteristics, as-solidified porosity and the expected grain structure. Based on the current analysis, an optimum processing window of 50–70 J mm−3 energy density is suggested for SLM of Ti6Al4V powder. |
---|---|
AbstractList | [Display omitted]
•Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated and compared with the experiment.•Porosity forms due to improper melting in the powder bed.•The solidification parameters are calculated to estimate solidified grain structure.
A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are performed by varying the two key process parameters-laser power and scan speed. The model is validated with the published experimental results for melt pool shape, size and temperature. The predictions are in good agreement with the experiments at low to medium energy density. The validated model is used for investigating the thermo-fluidic transport during SLM of Ti6Al4V and examining the dependence of the melt pool characteristics on the process parameters. As-solidified porosity is calculated numerically for the multi-track simulations and its formation is delineated with the transport phenomena. The predicted porosity compares reasonably well with the experimental values. Solidification parameters, such as temperature gradients and cooling rate are calculated at the instantaneous location of the solidification front and analyzed. This analysis suggests the formation of fully columnar grains of different sizes along the width and depth of the melt pool. Overall, the model provides a good description of thermo-fluidic transport in SLM of Ti6Al4V powder and the resulting temperature field, melt pool characteristics, as-solidified porosity and the expected grain structure. Based on the current analysis, an optimum processing window of 50–70 J mm−3 energy density is suggested for SLM of Ti6Al4V powder. A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are performed by varying the two key process parameters-laser power and scan speed. The model is validated with the published experimental results for melt pool shape, size and temperature. The predictions are in good agreement with the experiments at low to medium energy density. The validated model is used for investigating the thermo-fluidic transport during SLM of Ti6Al4V and examining the dependence of the melt pool characteristics on the process parameters. As-solidified porosity is calculated numerically for the multi-track simulations and its formation is delineated with the transport phenomena. The predicted porosity compares reasonably well with the experimental values. Solidification parameters, such as temperature gradients and cooling rate are calculated at the instantaneous location of the solidification front and analyzed. This analysis suggests the formation of fully columnar grains of different sizes along the width and depth of the melt pool. Overall, the model provides a good description of thermo-fluidic transport in SLM of Ti6Al4V powder and the resulting temperature field, melt pool characteristics, as-solidified porosity and the expected grain structure. Based on the current analysis, an optimum processing window of 50–70 J mm−3 energy density is suggested for SLM of Ti6Al4V powder. |
Author | Mishra, Ashish Kumar Kumar, Arvind |
Author_xml | – sequence: 1 givenname: Ashish Kumar surname: Mishra fullname: Mishra, Ashish Kumar – sequence: 2 givenname: Arvind surname: Kumar fullname: Kumar, Arvind email: arvindkr@iitk.ac.in |
BookMark | eNqNkc-OFCEQxolZE2dXn0ESzz3S3dDdHDxMNv5LNnpZvRIaipUJAy0wo_M-PqjVjvHgRS-Qqny_qtT3XZOrmCIQ8rxl25a1w8v9Ni016FLBbDvWTlsmt0zwR2TTTqNsOsHFFdkw1rOml7J7Qq5L2TPG-CD6Dfnx4XiA7I0OVEdL4fuC1QFi_dXQ4Vx8ocnR-gUoOAemrtUpBcQqchQi5Icz1XNJeak-ReojXdI3C5kGfcYXW0jngw6NC0dvEapZx7KkXFdxgYBj_QlQX1B_gFB9fFj33PthF_jnp-Sx06HAs9__Dfn05vX97bvm7uPb97e7u8ZwJmtjjYVhlPPkOph7x3rhRmH4OAg7MqOFMJOcGJ9537rOzv0g-TxPWnJwxk2262_Ii8vcJaevRyhV7dMxowtFde3ARYeWDah6dVGZnErJ4JTxVa-n41k-qJapNRi1V3-CUWswikmFwSA__sUvaLnO5_8gdxcS0ISTh6yK8RANWJ_RQmWT_-eMn8hPtO4 |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2022_108587 crossref_primary_10_3390_ma18020368 crossref_primary_10_2474_trol_15_126 crossref_primary_10_1016_S1003_6326_21_65700_X crossref_primary_10_1115_1_4047733 crossref_primary_10_3788_LOP222436 crossref_primary_10_1016_j_aej_2021_09_014 crossref_primary_10_1016_j_mtcomm_2024_108539 crossref_primary_10_1515_ijmr_2022_0139 crossref_primary_10_1016_j_ijleo_2022_170483 crossref_primary_10_1016_j_matdes_2019_107780 crossref_primary_10_1016_j_heliyon_2022_e11725 crossref_primary_10_1108_RPJ_03_2020_0050 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_1016_j_tsep_2022_101478 crossref_primary_10_1016_j_addlet_2023_100141 crossref_primary_10_1016_j_addma_2024_104157 crossref_primary_10_1016_j_optlastec_2022_108708 crossref_primary_10_1016_j_corsci_2023_110999 crossref_primary_10_1016_j_optlastec_2019_105924 crossref_primary_10_1016_j_addma_2021_102139 crossref_primary_10_3390_mi15010104 crossref_primary_10_1016_j_scriptamat_2023_115479 crossref_primary_10_1021_acsnano_2c07829 crossref_primary_10_1016_j_optlastec_2024_111201 crossref_primary_10_1007_s00170_022_09017_2 crossref_primary_10_1016_j_jmrt_2024_03_007 crossref_primary_10_1016_j_jmrt_2023_12_240 crossref_primary_10_1007_s12540_021_01160_x crossref_primary_10_1007_s40192_022_00252_9 crossref_primary_10_1088_1361_651X_ad8fbf crossref_primary_10_1016_j_jmatprotec_2021_117452 crossref_primary_10_3390_ma14030512 crossref_primary_10_1016_j_optlastec_2021_107009 crossref_primary_10_3390_met11050801 crossref_primary_10_1016_j_msea_2021_141299 crossref_primary_10_1038_s41598_020_63281_4 crossref_primary_10_3390_ma17112565 crossref_primary_10_1007_s00170_021_08374_8 crossref_primary_10_1016_j_addma_2020_101198 crossref_primary_10_1002_adem_202100938 crossref_primary_10_1016_j_matdes_2020_109033 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126538 crossref_primary_10_1016_j_ijmecsci_2019_105230 crossref_primary_10_1016_j_matchar_2022_112297 crossref_primary_10_1007_s00170_019_03764_5 crossref_primary_10_1016_j_matpr_2019_12_357 crossref_primary_10_1016_j_optlastec_2022_108402 crossref_primary_10_3389_fmtec_2024_1411971 crossref_primary_10_1016_j_ijrmhm_2023_106110 crossref_primary_10_1016_j_optlastec_2020_106147 crossref_primary_10_1016_j_optlastec_2024_110565 crossref_primary_10_2139_ssrn_4159884 crossref_primary_10_1007_s11771_021_4720_z crossref_primary_10_1016_j_jmapro_2024_09_078 crossref_primary_10_1089_3dp_2021_0161 crossref_primary_10_1016_j_ceramint_2022_02_024 crossref_primary_10_1016_j_optmat_2024_115576 crossref_primary_10_1016_j_tsep_2023_101698 crossref_primary_10_1016_j_optlastec_2019_02_003 crossref_primary_10_1016_j_ijleo_2019_163760 crossref_primary_10_1016_j_optlastec_2024_110683 crossref_primary_10_1016_j_optlastec_2024_111134 crossref_primary_10_1115_1_4064738 crossref_primary_10_1016_j_jmapro_2025_01_056 crossref_primary_10_3390_ma15051658 crossref_primary_10_1016_j_surfcoat_2021_127494 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121602 crossref_primary_10_1007_s00170_020_04995_7 crossref_primary_10_1016_j_ijthermalsci_2019_106075 crossref_primary_10_1016_j_optlastec_2019_105666 crossref_primary_10_1016_j_optlastec_2020_106277 crossref_primary_10_1016_j_surfcoat_2021_127865 crossref_primary_10_1016_j_surfcoat_2021_127027 crossref_primary_10_2139_ssrn_4089066 crossref_primary_10_3390_ma16010324 crossref_primary_10_1115_1_4047788 crossref_primary_10_1016_j_amc_2020_125386 crossref_primary_10_1016_j_optlastec_2023_109243 crossref_primary_10_3390_s20164451 crossref_primary_10_1016_j_procir_2024_08_129 crossref_primary_10_1016_j_camwa_2021_08_024 crossref_primary_10_1016_j_jmapro_2022_02_024 crossref_primary_10_1016_j_tsep_2021_101021 crossref_primary_10_3390_coatings14040401 crossref_primary_10_1016_j_jmrt_2022_07_121 crossref_primary_10_1016_j_mtcomm_2024_109930 crossref_primary_10_1016_j_msea_2021_141237 crossref_primary_10_1007_s12540_021_01129_w crossref_primary_10_1007_s12666_023_03177_9 crossref_primary_10_1007_s40516_023_00243_4 crossref_primary_10_1016_j_cma_2024_116977 crossref_primary_10_1016_j_addma_2023_103453 crossref_primary_10_3390_ma13173895 crossref_primary_10_1002_eng2_13040 |
Cites_doi | 10.1007/s11663-004-0025-5 10.1016/j.matdes.2015.10.002 10.1016/j.matdes.2014.07.006 10.1016/j.jmatprotec.2017.11.055 10.1016/j.optlastec.2017.08.015 10.1016/j.ijheatmasstransfer.2003.10.002 10.1016/j.jmapro.2014.04.001 10.1007/s40964-017-0030-2 10.1016/j.matdes.2018.01.022 10.1016/j.actamat.2009.08.027 10.1016/j.optlastec.2017.05.006 10.1016/j.jmatprotec.2016.10.005 10.1016/j.jmatprotec.2017.11.032 10.1016/j.optlastec.2017.07.034 10.1016/j.aej.2015.12.027 10.1016/S1359-6454(02)00567-0 10.1016/j.jmatprotec.2018.02.005 10.1063/1.1948509 10.1080/10407780701632585 10.1088/0022-3727/40/18/037 10.4028/www.scientific.net/MSF.828-829.474 10.1016/j.proeng.2016.06.704 10.1016/j.applthermaleng.2009.06.026 10.1007/s00170-015-7609-x |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Apr 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2019 |
DBID | AAYXX CITATION 7SP 7U5 8FD F28 FR3 H8D L7M |
DOI | 10.1016/j.optlastec.2018.09.054 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2545 |
EndPage | 239 |
ExternalDocumentID | 10_1016_j_optlastec_2018_09_054 S0030399218311988 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7U5 8FD EFKBS F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c409t-dcde679b8f2eb3f035f75c4765d70ca55c89804b431f2db3694bb8a94efcf8d23 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Fri Jul 25 06:00:51 EDT 2025 Tue Jul 01 01:38:33 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Fri Feb 23 02:48:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Experimental validation Single and multi-track build Porosity Selective laser melting Solidification interface parameters Volumetric heat absorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-dcde679b8f2eb3f035f75c4765d70ca55c89804b431f2db3694bb8a94efcf8d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2164526536 |
PQPubID | 2045422 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2164526536 crossref_citationtrail_10_1016_j_optlastec_2018_09_054 crossref_primary_10_1016_j_optlastec_2018_09_054 elsevier_sciencedirect_doi_10_1016_j_optlastec_2018_09_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Optics and laser technology |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Dai, Gu, Zhang, Xiong, Ma, Hong, Poprawe (b0045) 2018; 99 Li, Gu (b0020) 2014; 63 Zhirnov, Yadroitsova, Yadroitsev (b0035) 2015; 828–829 Winczek, Modrzycka, Gawronska (b0070) 2016; 149 Cheng, Shrestha, Chou (b0085) 2016; 12 Liu, Zhu, Peng, Yin, Zeng (b0080) 2018; 142 Li, Gu (b0025) 2014; 1–4 Antony, Arivazhagan, Senthilkumaran (b0015) 2014; 16 Yin, Zhu, Ke, Hu, He, Zhang, Zeng (b0090) 2016; 83 Dilip, Zhang, Teng, Zeng, Robinson, Pal, Stucker (b0060) 2017; 2 Fisher, Romano, Weber, Karapatis, Boillat, Glardon (b0115) 2003; 51 Aversa, Moshiri, Libera, Hadi, Marchese, Manfredi, Lorusso, Calignano, Biamino, Lombardi, Pavese (b0005) 2018; 255 Rombouts, Froyen, Gusarov, Bentefour, Glorieux (b0105) 2005; 98 Z. Fan, F. Liou, Numerical modeling of the additive manufacturing (AM) processes of titanium alloy, in: A.K.M. Nurul Amin (Ed. 2012), InTech Verhaeghe, Craeghs, Heulens, Pandelaers (b0095) 2009; 57 Promoppatum, Onler, Yao (b0055) 2017; 240 Shah, Kumar, Ramkumar (b0140) 2018; 256 Liu, Zhang, Pang (b0040) 2018; 98 Arghode, Kumar, Sundarraj, Dutta (b0120) 2008; 53 Wu, San, Chang, Lin, Marwan, Baba, Hwang (b0010) 2018; 254 . Wang, Wang, Wu (b0050) 2017; 96 Vahabzadeh, Fakour, Ganji, Bakhshi (b0065) 2016; 55 Lee, Zhang (b0030) 2016; 12 Li, Li, Scott (b0075) 2004; 47 Foroozmehr, Badrossamay, Foroozmehr (b0110) 2016; 89 Pathak, Kumar, Yadav, Dutta (b0125) 2009; 29 Rai, Elmer, Palmer, Debroy (b0100) 2007; 40 Semiatin, Ivanchenko, Akhonin, Ivasishin (b0135) 2004; 35 Shah (10.1016/j.optlastec.2018.09.054_b0140) 2018; 256 Semiatin (10.1016/j.optlastec.2018.09.054_b0135) 2004; 35 Arghode (10.1016/j.optlastec.2018.09.054_b0120) 2008; 53 Dai (10.1016/j.optlastec.2018.09.054_b0045) 2018; 99 Promoppatum (10.1016/j.optlastec.2018.09.054_b0055) 2017; 240 Verhaeghe (10.1016/j.optlastec.2018.09.054_b0095) 2009; 57 Rombouts (10.1016/j.optlastec.2018.09.054_b0105) 2005; 98 Liu (10.1016/j.optlastec.2018.09.054_b0080) 2018; 142 Cheng (10.1016/j.optlastec.2018.09.054_b0085) 2016; 12 Yin (10.1016/j.optlastec.2018.09.054_b0090) 2016; 83 Antony (10.1016/j.optlastec.2018.09.054_b0015) 2014; 16 Zhirnov (10.1016/j.optlastec.2018.09.054_b0035) 2015; 828–829 Vahabzadeh (10.1016/j.optlastec.2018.09.054_b0065) 2016; 55 Lee (10.1016/j.optlastec.2018.09.054_b0030) 2016; 12 Fisher (10.1016/j.optlastec.2018.09.054_b0115) 2003; 51 Aversa (10.1016/j.optlastec.2018.09.054_b0005) 2018; 255 Wang (10.1016/j.optlastec.2018.09.054_b0050) 2017; 96 Winczek (10.1016/j.optlastec.2018.09.054_b0070) 2016; 149 Wu (10.1016/j.optlastec.2018.09.054_b0010) 2018; 254 Li (10.1016/j.optlastec.2018.09.054_b0020) 2014; 63 10.1016/j.optlastec.2018.09.054_b0130 Dilip (10.1016/j.optlastec.2018.09.054_b0060) 2017; 2 Li (10.1016/j.optlastec.2018.09.054_b0075) 2004; 47 Foroozmehr (10.1016/j.optlastec.2018.09.054_b0110) 2016; 89 Li (10.1016/j.optlastec.2018.09.054_b0025) 2014; 1–4 Pathak (10.1016/j.optlastec.2018.09.054_b0125) 2009; 29 Liu (10.1016/j.optlastec.2018.09.054_b0040) 2018; 98 Rai (10.1016/j.optlastec.2018.09.054_b0100) 2007; 40 |
References_xml | – volume: 57 start-page: 6006 year: 2009 end-page: 6012 ident: b0095 article-title: A pragmatic model for selective laser melting with evaporation publication-title: Acta Mater. – volume: 255 start-page: 17 year: 2018 end-page: 25 ident: b0005 article-title: Single scan track analyses on aluminium based powders publication-title: J. Mater. Process. Technol. – volume: 63 start-page: 856 year: 2014 end-page: 867 ident: b0020 article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder publication-title: Mater. Des. – volume: 240 start-page: 262 year: 2017 end-page: 273 ident: b0055 article-title: Numerical and experimental investigations of micro and macrocharacteristics of direct metal laser sintered Ti-6Al-4V products publication-title: J. Mater. Process. Technol. – volume: 254 start-page: 72 year: 2018 end-page: 78 ident: b0010 article-title: Numerical modeling of melt pool behaviour in selective laser melting with random powder distribution and experimental validation publication-title: J. Mater. Process. Technol. – volume: 96 start-page: 88 year: 2017 end-page: 96 ident: b0050 article-title: Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting publication-title: Opt. Laser Technol. – volume: 142 start-page: 319 year: 2018 end-page: 328 ident: b0080 article-title: Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis publication-title: Mater. Des. – volume: 35 start-page: 235 year: 2004 end-page: 245 ident: b0135 article-title: Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys publication-title: Metall. Mater. Trans. B – volume: 55 start-page: 113 year: 2016 end-page: 117 ident: b0065 article-title: Analytical investigation of the one dimensional heat transfer in logarithmic various surfaces publication-title: Alexandria Eng. J. – volume: 99 start-page: 91 year: 2018 end-page: 100 ident: b0045 article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melted additive manufactured aluminum based parts publication-title: Opt. Laser Technol. – volume: 12 start-page: 178 year: 2016 end-page: 188 ident: b0030 article-title: Modelling of heat transfer, fluid flow and solidification microstructure of Nickel base superalloy fabricated by laser powder layer fusion publication-title: Addit. Manuf. – volume: 89 start-page: 255 year: 2016 end-page: 263 ident: b0110 article-title: Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder layer publication-title: Mater. Des. – volume: 40 start-page: 5753 year: 2007 end-page: 5766 ident: b0100 article-title: Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti6Al4V, 304L stainless steel and vanadium publication-title: J. Phys. D Appl. Phys. – volume: 2 start-page: 157 year: 2017 end-page: 167 ident: b0060 article-title: Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting publication-title: Prog. Addit. Manuf. – volume: 51 start-page: 1651 year: 2003 end-page: 1662 ident: b0115 article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source publication-title: Acta Mater. – volume: 53 start-page: 432 year: 2008 end-page: 455 ident: b0120 article-title: Computational modeling of GMAW process for joining dissimilar aluminum alloys publication-title: Numer. Heat Transf. Part A: Appl. – volume: 149 start-page: 553 year: 2016 end-page: 558 ident: b0070 article-title: Analytical description of the temperature field induced by laser heat source with any trajectory publication-title: Procedia Eng. – volume: 29 start-page: 3669 year: 2009 end-page: 3678 ident: b0125 article-title: Effects of mould filling on evolution of the solid-liquid interface during solidification publication-title: Appl. Therm. Eng. – volume: 256 start-page: 109 year: 2018 end-page: 120 ident: b0140 article-title: Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel publication-title: J. Mater. Process. Technol. – volume: 1–4 start-page: 99 year: 2014 end-page: 109 ident: b0025 article-title: Thermal behaviour during selective laser melting of commercially pure Titanium powder: numerical simulation and experimental study publication-title: Addit. Manuf. – volume: 12 start-page: 240 year: 2016 end-page: 251 ident: b0085 article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting publication-title: Addit. Manuf. – volume: 828–829 start-page: 474 year: 2015 end-page: 481 ident: b0035 article-title: Optical monitoring and numerical simulation of temperature distribution at selective laser melting of Ti6Al4V alloy publication-title: Mater. Sci. Forum – volume: 98 year: 2005 ident: b0105 article-title: Light extinction in metallic powder layers: correlation with powder structure publication-title: J. Appl. Phys. – reference: . – volume: 83 start-page: 1847 year: 2016 end-page: 1859 ident: b0090 article-title: A finite element model of thermal evolution in laser micro sintering publication-title: Int. J. Adv. Manuf. Technol. – volume: 16 start-page: 345 year: 2014 end-page: 355 ident: b0015 article-title: Numerical and experimental investigations on laser melting of stainless steel 316L metal powder publication-title: J. Manuf. Processes – volume: 47 start-page: 1159 year: 2004 end-page: 1174 ident: b0075 article-title: Comparison of volumetric and surface heating sources in the modelling of laser melting of ceramic materials publication-title: Int. J. Heat Mass Transf. – volume: 98 start-page: 23 year: 2018 end-page: 32 ident: b0040 article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel publication-title: Opt. Laser Technol. – reference: Z. Fan, F. Liou, Numerical modeling of the additive manufacturing (AM) processes of titanium alloy, in: A.K.M. Nurul Amin (Ed. 2012), InTech, – ident: 10.1016/j.optlastec.2018.09.054_b0130 – volume: 35 start-page: 235 year: 2004 ident: 10.1016/j.optlastec.2018.09.054_b0135 article-title: Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-004-0025-5 – volume: 89 start-page: 255 year: 2016 ident: 10.1016/j.optlastec.2018.09.054_b0110 article-title: Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder layer publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.10.002 – volume: 12 start-page: 240 year: 2016 ident: 10.1016/j.optlastec.2018.09.054_b0085 article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting publication-title: Addit. Manuf. – volume: 63 start-page: 856 year: 2014 ident: 10.1016/j.optlastec.2018.09.054_b0020 article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.07.006 – volume: 255 start-page: 17 year: 2018 ident: 10.1016/j.optlastec.2018.09.054_b0005 article-title: Single scan track analyses on aluminium based powders publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.11.055 – volume: 99 start-page: 91 year: 2018 ident: 10.1016/j.optlastec.2018.09.054_b0045 article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melted additive manufactured aluminum based parts publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2017.08.015 – volume: 47 start-page: 1159 year: 2004 ident: 10.1016/j.optlastec.2018.09.054_b0075 article-title: Comparison of volumetric and surface heating sources in the modelling of laser melting of ceramic materials publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2003.10.002 – volume: 16 start-page: 345 year: 2014 ident: 10.1016/j.optlastec.2018.09.054_b0015 article-title: Numerical and experimental investigations on laser melting of stainless steel 316L metal powder publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2014.04.001 – volume: 2 start-page: 157 year: 2017 ident: 10.1016/j.optlastec.2018.09.054_b0060 article-title: Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-017-0030-2 – volume: 142 start-page: 319 year: 2018 ident: 10.1016/j.optlastec.2018.09.054_b0080 article-title: Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.01.022 – volume: 57 start-page: 6006 year: 2009 ident: 10.1016/j.optlastec.2018.09.054_b0095 article-title: A pragmatic model for selective laser melting with evaporation publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.08.027 – volume: 96 start-page: 88 year: 2017 ident: 10.1016/j.optlastec.2018.09.054_b0050 article-title: Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2017.05.006 – volume: 240 start-page: 262 year: 2017 ident: 10.1016/j.optlastec.2018.09.054_b0055 article-title: Numerical and experimental investigations of micro and macrocharacteristics of direct metal laser sintered Ti-6Al-4V products publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.10.005 – volume: 254 start-page: 72 year: 2018 ident: 10.1016/j.optlastec.2018.09.054_b0010 article-title: Numerical modeling of melt pool behaviour in selective laser melting with random powder distribution and experimental validation publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.11.032 – volume: 98 start-page: 23 year: 2018 ident: 10.1016/j.optlastec.2018.09.054_b0040 article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2017.07.034 – volume: 12 start-page: 178 year: 2016 ident: 10.1016/j.optlastec.2018.09.054_b0030 article-title: Modelling of heat transfer, fluid flow and solidification microstructure of Nickel base superalloy fabricated by laser powder layer fusion publication-title: Addit. Manuf. – volume: 1–4 start-page: 99 year: 2014 ident: 10.1016/j.optlastec.2018.09.054_b0025 article-title: Thermal behaviour during selective laser melting of commercially pure Titanium powder: numerical simulation and experimental study publication-title: Addit. Manuf. – volume: 55 start-page: 113 year: 2016 ident: 10.1016/j.optlastec.2018.09.054_b0065 article-title: Analytical investigation of the one dimensional heat transfer in logarithmic various surfaces publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2015.12.027 – volume: 51 start-page: 1651 year: 2003 ident: 10.1016/j.optlastec.2018.09.054_b0115 article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00567-0 – volume: 256 start-page: 109 year: 2018 ident: 10.1016/j.optlastec.2018.09.054_b0140 article-title: Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.02.005 – volume: 98 year: 2005 ident: 10.1016/j.optlastec.2018.09.054_b0105 article-title: Light extinction in metallic powder layers: correlation with powder structure publication-title: J. Appl. Phys. doi: 10.1063/1.1948509 – volume: 53 start-page: 432 year: 2008 ident: 10.1016/j.optlastec.2018.09.054_b0120 article-title: Computational modeling of GMAW process for joining dissimilar aluminum alloys publication-title: Numer. Heat Transf. Part A: Appl. doi: 10.1080/10407780701632585 – volume: 40 start-page: 5753 year: 2007 ident: 10.1016/j.optlastec.2018.09.054_b0100 article-title: Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti6Al4V, 304L stainless steel and vanadium publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/18/037 – volume: 828–829 start-page: 474 year: 2015 ident: 10.1016/j.optlastec.2018.09.054_b0035 article-title: Optical monitoring and numerical simulation of temperature distribution at selective laser melting of Ti6Al4V alloy publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.828-829.474 – volume: 149 start-page: 553 year: 2016 ident: 10.1016/j.optlastec.2018.09.054_b0070 article-title: Analytical description of the temperature field induced by laser heat source with any trajectory publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.06.704 – volume: 29 start-page: 3669 year: 2009 ident: 10.1016/j.optlastec.2018.09.054_b0125 article-title: Effects of mould filling on evolution of the solid-liquid interface during solidification publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.06.026 – volume: 83 start-page: 1847 year: 2016 ident: 10.1016/j.optlastec.2018.09.054_b0090 article-title: A finite element model of thermal evolution in laser micro sintering publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7609-x |
SSID | ssj0004653 |
Score | 2.5066457 |
Snippet | [Display omitted]
•Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated... A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 227 |
SubjectTerms | Computer simulation Cooling rate Dependence Energy absorption Experimental validation Flux density Grain structure Laser beam melting Lasers Mathematical models Melting Numerical analysis Porosity Predictions Process parameters Selective laser melting Single and multi-track build Solidification Solidification interface parameters Temperature distribution Temperature gradients Titanium base alloys Transport phenomena Volumetric heat absorption |
Title | Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V |
URI | https://dx.doi.org/10.1016/j.optlastec.2018.09.054 https://www.proquest.com/docview/2164526536 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZWVEhwQO1CxbZb5EOvgTxsJ-a2WhVtW3VPgLhZ8UtKFZLVblbc-mv4oczkgZZKiANHW3YSeSbffJZnPhPynRkHcdHrIBHGBcwKEehUiyCVJg5tJKQVWI38ZykWN-zXHb8bkflQC4NplT32d5jeonXfc9Gv5sWqKLDGF-BXSozxEWydseCXsRS9_PxftFMb2StRJoA3MPpFjle9aoCjNg61DKOsFTzl7LUI9R9WtwHo6iM56pkjnXUf94mMXDUmhzt6gmOy3-Zzms0xeVxuu6OYkuaVpbs6_tDR6ZDQ2lOgf7RL6cBWB1Wo2U9dWxNIc72p1y2q0KKiq_rBujUtc-DpFLqQPN7nZeDLbWFhUjMopePgTXvDDoApjAc_p_euxBRrfM91IWYluz0hN1c_rueLoL-QITCwDWwCa6wTqdSZj2EP7sOE-5QbWHNu09DknJtMZiHTQEp8bHUiJNM6yyVz3vjMxslnslfVlTsl1KDOO3BLHuae5ToBUM4y8BsnuWaAfBMiBiMo06uV46UZpRrS0v6qZ-sptJ4KpQLrTUj4PHHVCXa8PeVysLJ64XsKwsrbk6eDX6j-99-oOMLzYvA88eU9z_5KDqAlu0ShKdlr1lv3DThQo89aJz8jH2Y_fy-WT21wC-U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrRBwQFCoKBTwgWvUbGI7NrdVRbWl7Z62qDcr_pKC0mS1m1X_UH8o48SptkioB45xPEmUGb15lmeeAb5R4zAvep3k3LiEWs4TXWieFNJkqZ1yaXnoRr5a8Pk1_XnDbvbgdOyFCWWVEfsHTO_ROo6cxL95sqqq0OOL8CtlyPFTXDqLZ7Af1KnYBPZn5xfzxU57ZBSjzBFy0OBRmVe76pCmdi7IGU5Fr3nK6L-S1F9w3eegszfwOpJHMhu-7y3sueYAXu1ICh7A876k02zewf1iO-zG1KRsLNmV8seBQYqEtJ4gAyRDVUe4GtAqyPYT17cFklJv2nUPLKRqyKq9s25N6hKpOsGhwB9vyzrx9bayaNSNYulh8qY_ZAfxFOdjqJNbV4cq6_CeZcVnNf31Hq7PfixP50k8kyExuBLsEmus44XUwme4DPdpznzBDC04s0VqSsaMkCKlGnmJz6zOuaRai1JS540XNssPYdK0jfsAxASpd6SXLC09LXWOuCwEho6TTFMEvyPgoxOUiYLl4dyMWo2Vab_Vg_dU8J5KpULvHUH6YLgaNDueNvk-elk9Cj-FmeVp4-MxLlREgI3KpmHLGCOPf_yfZ3-FF_Pl1aW6PF9cfIKXeEcOdUPHMOnWW_cZKVGnv8SQ_wOD9Q6W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+experimental+analysis+of+the+effect+of+volumetric+energy+absorption+in+powder+layer+on+thermal-fluidic+transport+in+selective+laser+melting+of+Ti6Al4V&rft.jtitle=Optics+and+laser+technology&rft.au=Mishra%2C+Ashish+Kumar&rft.au=Kumar%2C+Arvind&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=111&rft.spage=227&rft_id=info:doi/10.1016%2Fj.optlastec.2018.09.054&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |