Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V

[Display omitted] •Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated and compared with the experiment.•Porosity forms due to improper melting in the powder bed.•The solidification parameters are calculated to es...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 111; pp. 227 - 239
Main Authors Mishra, Ashish Kumar, Kumar, Arvind
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0030-3992
1879-2545
DOI10.1016/j.optlastec.2018.09.054

Cover

Loading…
Abstract [Display omitted] •Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated and compared with the experiment.•Porosity forms due to improper melting in the powder bed.•The solidification parameters are calculated to estimate solidified grain structure. A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are performed by varying the two key process parameters-laser power and scan speed. The model is validated with the published experimental results for melt pool shape, size and temperature. The predictions are in good agreement with the experiments at low to medium energy density. The validated model is used for investigating the thermo-fluidic transport during SLM of Ti6Al4V and examining the dependence of the melt pool characteristics on the process parameters. As-solidified porosity is calculated numerically for the multi-track simulations and its formation is delineated with the transport phenomena. The predicted porosity compares reasonably well with the experimental values. Solidification parameters, such as temperature gradients and cooling rate are calculated at the instantaneous location of the solidification front and analyzed. This analysis suggests the formation of fully columnar grains of different sizes along the width and depth of the melt pool. Overall, the model provides a good description of thermo-fluidic transport in SLM of Ti6Al4V powder and the resulting temperature field, melt pool characteristics, as-solidified porosity and the expected grain structure. Based on the current analysis, an optimum processing window of 50–70 J mm−3 energy density is suggested for SLM of Ti6Al4V powder.
AbstractList [Display omitted] •Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated and compared with the experiment.•Porosity forms due to improper melting in the powder bed.•The solidification parameters are calculated to estimate solidified grain structure. A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are performed by varying the two key process parameters-laser power and scan speed. The model is validated with the published experimental results for melt pool shape, size and temperature. The predictions are in good agreement with the experiments at low to medium energy density. The validated model is used for investigating the thermo-fluidic transport during SLM of Ti6Al4V and examining the dependence of the melt pool characteristics on the process parameters. As-solidified porosity is calculated numerically for the multi-track simulations and its formation is delineated with the transport phenomena. The predicted porosity compares reasonably well with the experimental values. Solidification parameters, such as temperature gradients and cooling rate are calculated at the instantaneous location of the solidification front and analyzed. This analysis suggests the formation of fully columnar grains of different sizes along the width and depth of the melt pool. Overall, the model provides a good description of thermo-fluidic transport in SLM of Ti6Al4V powder and the resulting temperature field, melt pool characteristics, as-solidified porosity and the expected grain structure. Based on the current analysis, an optimum processing window of 50–70 J mm−3 energy density is suggested for SLM of Ti6Al4V powder.
A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are performed by varying the two key process parameters-laser power and scan speed. The model is validated with the published experimental results for melt pool shape, size and temperature. The predictions are in good agreement with the experiments at low to medium energy density. The validated model is used for investigating the thermo-fluidic transport during SLM of Ti6Al4V and examining the dependence of the melt pool characteristics on the process parameters. As-solidified porosity is calculated numerically for the multi-track simulations and its formation is delineated with the transport phenomena. The predicted porosity compares reasonably well with the experimental values. Solidification parameters, such as temperature gradients and cooling rate are calculated at the instantaneous location of the solidification front and analyzed. This analysis suggests the formation of fully columnar grains of different sizes along the width and depth of the melt pool. Overall, the model provides a good description of thermo-fluidic transport in SLM of Ti6Al4V powder and the resulting temperature field, melt pool characteristics, as-solidified porosity and the expected grain structure. Based on the current analysis, an optimum processing window of 50–70 J mm−3 energy density is suggested for SLM of Ti6Al4V powder.
Author Mishra, Ashish Kumar
Kumar, Arvind
Author_xml – sequence: 1
  givenname: Ashish Kumar
  surname: Mishra
  fullname: Mishra, Ashish Kumar
– sequence: 2
  givenname: Arvind
  surname: Kumar
  fullname: Kumar, Arvind
  email: arvindkr@iitk.ac.in
BookMark eNqNkc-OFCEQxolZE2dXn0ESzz3S3dDdHDxMNv5LNnpZvRIaipUJAy0wo_M-PqjVjvHgRS-Qqny_qtT3XZOrmCIQ8rxl25a1w8v9Ni016FLBbDvWTlsmt0zwR2TTTqNsOsHFFdkw1rOml7J7Qq5L2TPG-CD6Dfnx4XiA7I0OVEdL4fuC1QFi_dXQ4Vx8ocnR-gUoOAemrtUpBcQqchQi5Icz1XNJeak-ReojXdI3C5kGfcYXW0jngw6NC0dvEapZx7KkXFdxgYBj_QlQX1B_gFB9fFj33PthF_jnp-Sx06HAs9__Dfn05vX97bvm7uPb97e7u8ZwJmtjjYVhlPPkOph7x3rhRmH4OAg7MqOFMJOcGJ9537rOzv0g-TxPWnJwxk2262_Ii8vcJaevRyhV7dMxowtFde3ARYeWDah6dVGZnErJ4JTxVa-n41k-qJapNRi1V3-CUWswikmFwSA__sUvaLnO5_8gdxcS0ISTh6yK8RANWJ_RQmWT_-eMn8hPtO4
CitedBy_id crossref_primary_10_1016_j_optlastec_2022_108587
crossref_primary_10_3390_ma18020368
crossref_primary_10_2474_trol_15_126
crossref_primary_10_1016_S1003_6326_21_65700_X
crossref_primary_10_1115_1_4047733
crossref_primary_10_3788_LOP222436
crossref_primary_10_1016_j_aej_2021_09_014
crossref_primary_10_1016_j_mtcomm_2024_108539
crossref_primary_10_1515_ijmr_2022_0139
crossref_primary_10_1016_j_ijleo_2022_170483
crossref_primary_10_1016_j_matdes_2019_107780
crossref_primary_10_1016_j_heliyon_2022_e11725
crossref_primary_10_1108_RPJ_03_2020_0050
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_1016_j_tsep_2022_101478
crossref_primary_10_1016_j_addlet_2023_100141
crossref_primary_10_1016_j_addma_2024_104157
crossref_primary_10_1016_j_optlastec_2022_108708
crossref_primary_10_1016_j_corsci_2023_110999
crossref_primary_10_1016_j_optlastec_2019_105924
crossref_primary_10_1016_j_addma_2021_102139
crossref_primary_10_3390_mi15010104
crossref_primary_10_1016_j_scriptamat_2023_115479
crossref_primary_10_1021_acsnano_2c07829
crossref_primary_10_1016_j_optlastec_2024_111201
crossref_primary_10_1007_s00170_022_09017_2
crossref_primary_10_1016_j_jmrt_2024_03_007
crossref_primary_10_1016_j_jmrt_2023_12_240
crossref_primary_10_1007_s12540_021_01160_x
crossref_primary_10_1007_s40192_022_00252_9
crossref_primary_10_1088_1361_651X_ad8fbf
crossref_primary_10_1016_j_jmatprotec_2021_117452
crossref_primary_10_3390_ma14030512
crossref_primary_10_1016_j_optlastec_2021_107009
crossref_primary_10_3390_met11050801
crossref_primary_10_1016_j_msea_2021_141299
crossref_primary_10_1038_s41598_020_63281_4
crossref_primary_10_3390_ma17112565
crossref_primary_10_1007_s00170_021_08374_8
crossref_primary_10_1016_j_addma_2020_101198
crossref_primary_10_1002_adem_202100938
crossref_primary_10_1016_j_matdes_2020_109033
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126538
crossref_primary_10_1016_j_ijmecsci_2019_105230
crossref_primary_10_1016_j_matchar_2022_112297
crossref_primary_10_1007_s00170_019_03764_5
crossref_primary_10_1016_j_matpr_2019_12_357
crossref_primary_10_1016_j_optlastec_2022_108402
crossref_primary_10_3389_fmtec_2024_1411971
crossref_primary_10_1016_j_ijrmhm_2023_106110
crossref_primary_10_1016_j_optlastec_2020_106147
crossref_primary_10_1016_j_optlastec_2024_110565
crossref_primary_10_2139_ssrn_4159884
crossref_primary_10_1007_s11771_021_4720_z
crossref_primary_10_1016_j_jmapro_2024_09_078
crossref_primary_10_1089_3dp_2021_0161
crossref_primary_10_1016_j_ceramint_2022_02_024
crossref_primary_10_1016_j_optmat_2024_115576
crossref_primary_10_1016_j_tsep_2023_101698
crossref_primary_10_1016_j_optlastec_2019_02_003
crossref_primary_10_1016_j_ijleo_2019_163760
crossref_primary_10_1016_j_optlastec_2024_110683
crossref_primary_10_1016_j_optlastec_2024_111134
crossref_primary_10_1115_1_4064738
crossref_primary_10_1016_j_jmapro_2025_01_056
crossref_primary_10_3390_ma15051658
crossref_primary_10_1016_j_surfcoat_2021_127494
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121602
crossref_primary_10_1007_s00170_020_04995_7
crossref_primary_10_1016_j_ijthermalsci_2019_106075
crossref_primary_10_1016_j_optlastec_2019_105666
crossref_primary_10_1016_j_optlastec_2020_106277
crossref_primary_10_1016_j_surfcoat_2021_127865
crossref_primary_10_1016_j_surfcoat_2021_127027
crossref_primary_10_2139_ssrn_4089066
crossref_primary_10_3390_ma16010324
crossref_primary_10_1115_1_4047788
crossref_primary_10_1016_j_amc_2020_125386
crossref_primary_10_1016_j_optlastec_2023_109243
crossref_primary_10_3390_s20164451
crossref_primary_10_1016_j_procir_2024_08_129
crossref_primary_10_1016_j_camwa_2021_08_024
crossref_primary_10_1016_j_jmapro_2022_02_024
crossref_primary_10_1016_j_tsep_2021_101021
crossref_primary_10_3390_coatings14040401
crossref_primary_10_1016_j_jmrt_2022_07_121
crossref_primary_10_1016_j_mtcomm_2024_109930
crossref_primary_10_1016_j_msea_2021_141237
crossref_primary_10_1007_s12540_021_01129_w
crossref_primary_10_1007_s12666_023_03177_9
crossref_primary_10_1007_s40516_023_00243_4
crossref_primary_10_1016_j_cma_2024_116977
crossref_primary_10_1016_j_addma_2023_103453
crossref_primary_10_3390_ma13173895
crossref_primary_10_1002_eng2_13040
Cites_doi 10.1007/s11663-004-0025-5
10.1016/j.matdes.2015.10.002
10.1016/j.matdes.2014.07.006
10.1016/j.jmatprotec.2017.11.055
10.1016/j.optlastec.2017.08.015
10.1016/j.ijheatmasstransfer.2003.10.002
10.1016/j.jmapro.2014.04.001
10.1007/s40964-017-0030-2
10.1016/j.matdes.2018.01.022
10.1016/j.actamat.2009.08.027
10.1016/j.optlastec.2017.05.006
10.1016/j.jmatprotec.2016.10.005
10.1016/j.jmatprotec.2017.11.032
10.1016/j.optlastec.2017.07.034
10.1016/j.aej.2015.12.027
10.1016/S1359-6454(02)00567-0
10.1016/j.jmatprotec.2018.02.005
10.1063/1.1948509
10.1080/10407780701632585
10.1088/0022-3727/40/18/037
10.4028/www.scientific.net/MSF.828-829.474
10.1016/j.proeng.2016.06.704
10.1016/j.applthermaleng.2009.06.026
10.1007/s00170-015-7609-x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Apr 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2019
DBID AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
H8D
L7M
DOI 10.1016/j.optlastec.2018.09.054
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
EndPage 239
ExternalDocumentID 10_1016_j_optlastec_2018_09_054
S0030399218311988
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7U5
8FD
EFKBS
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c409t-dcde679b8f2eb3f035f75c4765d70ca55c89804b431f2db3694bb8a94efcf8d23
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Fri Jul 25 06:00:51 EDT 2025
Tue Jul 01 01:38:33 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Fri Feb 23 02:48:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Experimental validation
Single and multi-track build
Porosity
Selective laser melting
Solidification interface parameters
Volumetric heat absorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-dcde679b8f2eb3f035f75c4765d70ca55c89804b431f2db3694bb8a94efcf8d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2164526536
PQPubID 2045422
PageCount 13
ParticipantIDs proquest_journals_2164526536
crossref_citationtrail_10_1016_j_optlastec_2018_09_054
crossref_primary_10_1016_j_optlastec_2018_09_054
elsevier_sciencedirect_doi_10_1016_j_optlastec_2018_09_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Optics and laser technology
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dai, Gu, Zhang, Xiong, Ma, Hong, Poprawe (b0045) 2018; 99
Li, Gu (b0020) 2014; 63
Zhirnov, Yadroitsova, Yadroitsev (b0035) 2015; 828–829
Winczek, Modrzycka, Gawronska (b0070) 2016; 149
Cheng, Shrestha, Chou (b0085) 2016; 12
Liu, Zhu, Peng, Yin, Zeng (b0080) 2018; 142
Li, Gu (b0025) 2014; 1–4
Antony, Arivazhagan, Senthilkumaran (b0015) 2014; 16
Yin, Zhu, Ke, Hu, He, Zhang, Zeng (b0090) 2016; 83
Dilip, Zhang, Teng, Zeng, Robinson, Pal, Stucker (b0060) 2017; 2
Fisher, Romano, Weber, Karapatis, Boillat, Glardon (b0115) 2003; 51
Aversa, Moshiri, Libera, Hadi, Marchese, Manfredi, Lorusso, Calignano, Biamino, Lombardi, Pavese (b0005) 2018; 255
Rombouts, Froyen, Gusarov, Bentefour, Glorieux (b0105) 2005; 98
Z. Fan, F. Liou, Numerical modeling of the additive manufacturing (AM) processes of titanium alloy, in: A.K.M. Nurul Amin (Ed. 2012), InTech
Verhaeghe, Craeghs, Heulens, Pandelaers (b0095) 2009; 57
Promoppatum, Onler, Yao (b0055) 2017; 240
Shah, Kumar, Ramkumar (b0140) 2018; 256
Liu, Zhang, Pang (b0040) 2018; 98
Arghode, Kumar, Sundarraj, Dutta (b0120) 2008; 53
Wu, San, Chang, Lin, Marwan, Baba, Hwang (b0010) 2018; 254
.
Wang, Wang, Wu (b0050) 2017; 96
Vahabzadeh, Fakour, Ganji, Bakhshi (b0065) 2016; 55
Lee, Zhang (b0030) 2016; 12
Li, Li, Scott (b0075) 2004; 47
Foroozmehr, Badrossamay, Foroozmehr (b0110) 2016; 89
Pathak, Kumar, Yadav, Dutta (b0125) 2009; 29
Rai, Elmer, Palmer, Debroy (b0100) 2007; 40
Semiatin, Ivanchenko, Akhonin, Ivasishin (b0135) 2004; 35
Shah (10.1016/j.optlastec.2018.09.054_b0140) 2018; 256
Semiatin (10.1016/j.optlastec.2018.09.054_b0135) 2004; 35
Arghode (10.1016/j.optlastec.2018.09.054_b0120) 2008; 53
Dai (10.1016/j.optlastec.2018.09.054_b0045) 2018; 99
Promoppatum (10.1016/j.optlastec.2018.09.054_b0055) 2017; 240
Verhaeghe (10.1016/j.optlastec.2018.09.054_b0095) 2009; 57
Rombouts (10.1016/j.optlastec.2018.09.054_b0105) 2005; 98
Liu (10.1016/j.optlastec.2018.09.054_b0080) 2018; 142
Cheng (10.1016/j.optlastec.2018.09.054_b0085) 2016; 12
Yin (10.1016/j.optlastec.2018.09.054_b0090) 2016; 83
Antony (10.1016/j.optlastec.2018.09.054_b0015) 2014; 16
Zhirnov (10.1016/j.optlastec.2018.09.054_b0035) 2015; 828–829
Vahabzadeh (10.1016/j.optlastec.2018.09.054_b0065) 2016; 55
Lee (10.1016/j.optlastec.2018.09.054_b0030) 2016; 12
Fisher (10.1016/j.optlastec.2018.09.054_b0115) 2003; 51
Aversa (10.1016/j.optlastec.2018.09.054_b0005) 2018; 255
Wang (10.1016/j.optlastec.2018.09.054_b0050) 2017; 96
Winczek (10.1016/j.optlastec.2018.09.054_b0070) 2016; 149
Wu (10.1016/j.optlastec.2018.09.054_b0010) 2018; 254
Li (10.1016/j.optlastec.2018.09.054_b0020) 2014; 63
10.1016/j.optlastec.2018.09.054_b0130
Dilip (10.1016/j.optlastec.2018.09.054_b0060) 2017; 2
Li (10.1016/j.optlastec.2018.09.054_b0075) 2004; 47
Foroozmehr (10.1016/j.optlastec.2018.09.054_b0110) 2016; 89
Li (10.1016/j.optlastec.2018.09.054_b0025) 2014; 1–4
Pathak (10.1016/j.optlastec.2018.09.054_b0125) 2009; 29
Liu (10.1016/j.optlastec.2018.09.054_b0040) 2018; 98
Rai (10.1016/j.optlastec.2018.09.054_b0100) 2007; 40
References_xml – volume: 57
  start-page: 6006
  year: 2009
  end-page: 6012
  ident: b0095
  article-title: A pragmatic model for selective laser melting with evaporation
  publication-title: Acta Mater.
– volume: 255
  start-page: 17
  year: 2018
  end-page: 25
  ident: b0005
  article-title: Single scan track analyses on aluminium based powders
  publication-title: J. Mater. Process. Technol.
– volume: 63
  start-page: 856
  year: 2014
  end-page: 867
  ident: b0020
  article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder
  publication-title: Mater. Des.
– volume: 240
  start-page: 262
  year: 2017
  end-page: 273
  ident: b0055
  article-title: Numerical and experimental investigations of micro and macrocharacteristics of direct metal laser sintered Ti-6Al-4V products
  publication-title: J. Mater. Process. Technol.
– volume: 254
  start-page: 72
  year: 2018
  end-page: 78
  ident: b0010
  article-title: Numerical modeling of melt pool behaviour in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Mater. Process. Technol.
– volume: 96
  start-page: 88
  year: 2017
  end-page: 96
  ident: b0050
  article-title: Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting
  publication-title: Opt. Laser Technol.
– volume: 142
  start-page: 319
  year: 2018
  end-page: 328
  ident: b0080
  article-title: Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis
  publication-title: Mater. Des.
– volume: 35
  start-page: 235
  year: 2004
  end-page: 245
  ident: b0135
  article-title: Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys
  publication-title: Metall. Mater. Trans. B
– volume: 55
  start-page: 113
  year: 2016
  end-page: 117
  ident: b0065
  article-title: Analytical investigation of the one dimensional heat transfer in logarithmic various surfaces
  publication-title: Alexandria Eng. J.
– volume: 99
  start-page: 91
  year: 2018
  end-page: 100
  ident: b0045
  article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melted additive manufactured aluminum based parts
  publication-title: Opt. Laser Technol.
– volume: 12
  start-page: 178
  year: 2016
  end-page: 188
  ident: b0030
  article-title: Modelling of heat transfer, fluid flow and solidification microstructure of Nickel base superalloy fabricated by laser powder layer fusion
  publication-title: Addit. Manuf.
– volume: 89
  start-page: 255
  year: 2016
  end-page: 263
  ident: b0110
  article-title: Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder layer
  publication-title: Mater. Des.
– volume: 40
  start-page: 5753
  year: 2007
  end-page: 5766
  ident: b0100
  article-title: Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti6Al4V, 304L stainless steel and vanadium
  publication-title: J. Phys. D Appl. Phys.
– volume: 2
  start-page: 157
  year: 2017
  end-page: 167
  ident: b0060
  article-title: Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting
  publication-title: Prog. Addit. Manuf.
– volume: 51
  start-page: 1651
  year: 2003
  end-page: 1662
  ident: b0115
  article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source
  publication-title: Acta Mater.
– volume: 53
  start-page: 432
  year: 2008
  end-page: 455
  ident: b0120
  article-title: Computational modeling of GMAW process for joining dissimilar aluminum alloys
  publication-title: Numer. Heat Transf. Part A: Appl.
– volume: 149
  start-page: 553
  year: 2016
  end-page: 558
  ident: b0070
  article-title: Analytical description of the temperature field induced by laser heat source with any trajectory
  publication-title: Procedia Eng.
– volume: 29
  start-page: 3669
  year: 2009
  end-page: 3678
  ident: b0125
  article-title: Effects of mould filling on evolution of the solid-liquid interface during solidification
  publication-title: Appl. Therm. Eng.
– volume: 256
  start-page: 109
  year: 2018
  end-page: 120
  ident: b0140
  article-title: Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel
  publication-title: J. Mater. Process. Technol.
– volume: 1–4
  start-page: 99
  year: 2014
  end-page: 109
  ident: b0025
  article-title: Thermal behaviour during selective laser melting of commercially pure Titanium powder: numerical simulation and experimental study
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 240
  year: 2016
  end-page: 251
  ident: b0085
  article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting
  publication-title: Addit. Manuf.
– volume: 828–829
  start-page: 474
  year: 2015
  end-page: 481
  ident: b0035
  article-title: Optical monitoring and numerical simulation of temperature distribution at selective laser melting of Ti6Al4V alloy
  publication-title: Mater. Sci. Forum
– volume: 98
  year: 2005
  ident: b0105
  article-title: Light extinction in metallic powder layers: correlation with powder structure
  publication-title: J. Appl. Phys.
– reference: .
– volume: 83
  start-page: 1847
  year: 2016
  end-page: 1859
  ident: b0090
  article-title: A finite element model of thermal evolution in laser micro sintering
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 16
  start-page: 345
  year: 2014
  end-page: 355
  ident: b0015
  article-title: Numerical and experimental investigations on laser melting of stainless steel 316L metal powder
  publication-title: J. Manuf. Processes
– volume: 47
  start-page: 1159
  year: 2004
  end-page: 1174
  ident: b0075
  article-title: Comparison of volumetric and surface heating sources in the modelling of laser melting of ceramic materials
  publication-title: Int. J. Heat Mass Transf.
– volume: 98
  start-page: 23
  year: 2018
  end-page: 32
  ident: b0040
  article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel
  publication-title: Opt. Laser Technol.
– reference: Z. Fan, F. Liou, Numerical modeling of the additive manufacturing (AM) processes of titanium alloy, in: A.K.M. Nurul Amin (Ed. 2012), InTech,
– ident: 10.1016/j.optlastec.2018.09.054_b0130
– volume: 35
  start-page: 235
  year: 2004
  ident: 10.1016/j.optlastec.2018.09.054_b0135
  article-title: Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-004-0025-5
– volume: 89
  start-page: 255
  year: 2016
  ident: 10.1016/j.optlastec.2018.09.054_b0110
  article-title: Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder layer
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.10.002
– volume: 12
  start-page: 240
  year: 2016
  ident: 10.1016/j.optlastec.2018.09.054_b0085
  article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting
  publication-title: Addit. Manuf.
– volume: 63
  start-page: 856
  year: 2014
  ident: 10.1016/j.optlastec.2018.09.054_b0020
  article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.07.006
– volume: 255
  start-page: 17
  year: 2018
  ident: 10.1016/j.optlastec.2018.09.054_b0005
  article-title: Single scan track analyses on aluminium based powders
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.11.055
– volume: 99
  start-page: 91
  year: 2018
  ident: 10.1016/j.optlastec.2018.09.054_b0045
  article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melted additive manufactured aluminum based parts
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2017.08.015
– volume: 47
  start-page: 1159
  year: 2004
  ident: 10.1016/j.optlastec.2018.09.054_b0075
  article-title: Comparison of volumetric and surface heating sources in the modelling of laser melting of ceramic materials
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2003.10.002
– volume: 16
  start-page: 345
  year: 2014
  ident: 10.1016/j.optlastec.2018.09.054_b0015
  article-title: Numerical and experimental investigations on laser melting of stainless steel 316L metal powder
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2014.04.001
– volume: 2
  start-page: 157
  year: 2017
  ident: 10.1016/j.optlastec.2018.09.054_b0060
  article-title: Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-017-0030-2
– volume: 142
  start-page: 319
  year: 2018
  ident: 10.1016/j.optlastec.2018.09.054_b0080
  article-title: Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.01.022
– volume: 57
  start-page: 6006
  year: 2009
  ident: 10.1016/j.optlastec.2018.09.054_b0095
  article-title: A pragmatic model for selective laser melting with evaporation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.08.027
– volume: 96
  start-page: 88
  year: 2017
  ident: 10.1016/j.optlastec.2018.09.054_b0050
  article-title: Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2017.05.006
– volume: 240
  start-page: 262
  year: 2017
  ident: 10.1016/j.optlastec.2018.09.054_b0055
  article-title: Numerical and experimental investigations of micro and macrocharacteristics of direct metal laser sintered Ti-6Al-4V products
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.10.005
– volume: 254
  start-page: 72
  year: 2018
  ident: 10.1016/j.optlastec.2018.09.054_b0010
  article-title: Numerical modeling of melt pool behaviour in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.11.032
– volume: 98
  start-page: 23
  year: 2018
  ident: 10.1016/j.optlastec.2018.09.054_b0040
  article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2017.07.034
– volume: 12
  start-page: 178
  year: 2016
  ident: 10.1016/j.optlastec.2018.09.054_b0030
  article-title: Modelling of heat transfer, fluid flow and solidification microstructure of Nickel base superalloy fabricated by laser powder layer fusion
  publication-title: Addit. Manuf.
– volume: 1–4
  start-page: 99
  year: 2014
  ident: 10.1016/j.optlastec.2018.09.054_b0025
  article-title: Thermal behaviour during selective laser melting of commercially pure Titanium powder: numerical simulation and experimental study
  publication-title: Addit. Manuf.
– volume: 55
  start-page: 113
  year: 2016
  ident: 10.1016/j.optlastec.2018.09.054_b0065
  article-title: Analytical investigation of the one dimensional heat transfer in logarithmic various surfaces
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2015.12.027
– volume: 51
  start-page: 1651
  year: 2003
  ident: 10.1016/j.optlastec.2018.09.054_b0115
  article-title: Sintering of commercially pure titanium powder with a Nd:YAG laser source
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00567-0
– volume: 256
  start-page: 109
  year: 2018
  ident: 10.1016/j.optlastec.2018.09.054_b0140
  article-title: Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2018.02.005
– volume: 98
  year: 2005
  ident: 10.1016/j.optlastec.2018.09.054_b0105
  article-title: Light extinction in metallic powder layers: correlation with powder structure
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1948509
– volume: 53
  start-page: 432
  year: 2008
  ident: 10.1016/j.optlastec.2018.09.054_b0120
  article-title: Computational modeling of GMAW process for joining dissimilar aluminum alloys
  publication-title: Numer. Heat Transf. Part A: Appl.
  doi: 10.1080/10407780701632585
– volume: 40
  start-page: 5753
  year: 2007
  ident: 10.1016/j.optlastec.2018.09.054_b0100
  article-title: Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti6Al4V, 304L stainless steel and vanadium
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/40/18/037
– volume: 828–829
  start-page: 474
  year: 2015
  ident: 10.1016/j.optlastec.2018.09.054_b0035
  article-title: Optical monitoring and numerical simulation of temperature distribution at selective laser melting of Ti6Al4V alloy
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.828-829.474
– volume: 149
  start-page: 553
  year: 2016
  ident: 10.1016/j.optlastec.2018.09.054_b0070
  article-title: Analytical description of the temperature field induced by laser heat source with any trajectory
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.06.704
– volume: 29
  start-page: 3669
  year: 2009
  ident: 10.1016/j.optlastec.2018.09.054_b0125
  article-title: Effects of mould filling on evolution of the solid-liquid interface during solidification
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.06.026
– volume: 83
  start-page: 1847
  year: 2016
  ident: 10.1016/j.optlastec.2018.09.054_b0090
  article-title: A finite element model of thermal evolution in laser micro sintering
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7609-x
SSID ssj0004653
Score 2.5066457
Snippet [Display omitted] •Volumetric heat source has been used in modeling of SLM of Ti6Al4V.•Simulation of moving single scan and multi-scan.•Porosity is estimated...
A volumetric heat source is used in numerical modeling of selective laser melting (SLM) of Ti6Al4V powder. Single track and multi-track SLM simulations are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Computer simulation
Cooling rate
Dependence
Energy absorption
Experimental validation
Flux density
Grain structure
Laser beam melting
Lasers
Mathematical models
Melting
Numerical analysis
Porosity
Predictions
Process parameters
Selective laser melting
Single and multi-track build
Solidification
Solidification interface parameters
Temperature distribution
Temperature gradients
Titanium base alloys
Transport phenomena
Volumetric heat absorption
Title Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V
URI https://dx.doi.org/10.1016/j.optlastec.2018.09.054
https://www.proquest.com/docview/2164526536
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZWVEhwQO1CxbZb5EOvgTxsJ-a2WhVtW3VPgLhZ8UtKFZLVblbc-mv4oczkgZZKiANHW3YSeSbffJZnPhPynRkHcdHrIBHGBcwKEehUiyCVJg5tJKQVWI38ZykWN-zXHb8bkflQC4NplT32d5jeonXfc9Gv5sWqKLDGF-BXSozxEWydseCXsRS9_PxftFMb2StRJoA3MPpFjle9aoCjNg61DKOsFTzl7LUI9R9WtwHo6iM56pkjnXUf94mMXDUmhzt6gmOy3-Zzms0xeVxuu6OYkuaVpbs6_tDR6ZDQ2lOgf7RL6cBWB1Wo2U9dWxNIc72p1y2q0KKiq_rBujUtc-DpFLqQPN7nZeDLbWFhUjMopePgTXvDDoApjAc_p_euxBRrfM91IWYluz0hN1c_rueLoL-QITCwDWwCa6wTqdSZj2EP7sOE-5QbWHNu09DknJtMZiHTQEp8bHUiJNM6yyVz3vjMxslnslfVlTsl1KDOO3BLHuae5ToBUM4y8BsnuWaAfBMiBiMo06uV46UZpRrS0v6qZ-sptJ4KpQLrTUj4PHHVCXa8PeVysLJ64XsKwsrbk6eDX6j-99-oOMLzYvA88eU9z_5KDqAlu0ShKdlr1lv3DThQo89aJz8jH2Y_fy-WT21wC-U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrRBwQFCoKBTwgWvUbGI7NrdVRbWl7Z62qDcr_pKC0mS1m1X_UH8o48SptkioB45xPEmUGb15lmeeAb5R4zAvep3k3LiEWs4TXWieFNJkqZ1yaXnoRr5a8Pk1_XnDbvbgdOyFCWWVEfsHTO_ROo6cxL95sqqq0OOL8CtlyPFTXDqLZ7Af1KnYBPZn5xfzxU57ZBSjzBFy0OBRmVe76pCmdi7IGU5Fr3nK6L-S1F9w3eegszfwOpJHMhu-7y3sueYAXu1ICh7A876k02zewf1iO-zG1KRsLNmV8seBQYqEtJ4gAyRDVUe4GtAqyPYT17cFklJv2nUPLKRqyKq9s25N6hKpOsGhwB9vyzrx9bayaNSNYulh8qY_ZAfxFOdjqJNbV4cq6_CeZcVnNf31Hq7PfixP50k8kyExuBLsEmus44XUwme4DPdpznzBDC04s0VqSsaMkCKlGnmJz6zOuaRai1JS540XNssPYdK0jfsAxASpd6SXLC09LXWOuCwEho6TTFMEvyPgoxOUiYLl4dyMWo2Vab_Vg_dU8J5KpULvHUH6YLgaNDueNvk-elk9Cj-FmeVp4-MxLlREgI3KpmHLGCOPf_yfZ3-FF_Pl1aW6PF9cfIKXeEcOdUPHMOnWW_cZKVGnv8SQ_wOD9Q6W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+experimental+analysis+of+the+effect+of+volumetric+energy+absorption+in+powder+layer+on+thermal-fluidic+transport+in+selective+laser+melting+of+Ti6Al4V&rft.jtitle=Optics+and+laser+technology&rft.au=Mishra%2C+Ashish+Kumar&rft.au=Kumar%2C+Arvind&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=111&rft.spage=227&rft_id=info:doi/10.1016%2Fj.optlastec.2018.09.054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon