Effects of loading regimes on the structural behavior of RC beam-column sub-assemblages against disproportionate collapse

•Failure modes of RC beam-column sub-assemblages under progressive collapse were affected by loading regimes.•Load resisting mechanisms of RC sub-assemblages under different loading regimes were compared and discussed.•Structural resistance against progressive collapse was decomposed at different lo...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 251; p. 113470
Main Authors Qian, Kai, Geng, Song-Yuan, Liang, Shi-Lin, Fu, Feng, Yu, Jun
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Failure modes of RC beam-column sub-assemblages under progressive collapse were affected by loading regimes.•Load resisting mechanisms of RC sub-assemblages under different loading regimes were compared and discussed.•Structural resistance against progressive collapse was decomposed at different loading stages.•Analytical models were proposed and compared for assessing catenary action capacity of RC frames. The majority of previous quasi-static tests on disproportionate collapse simulated the column removal through applying concentrated load/displacement on the top of the removed column until failure. However, uniformly distributed service load always exists on the frames. Therefore, to reflect the actual load condition more accurately, uniformly distributed load should be applied along the beams first. Then, the temporary support is gradually removed to simulate the process of column removal. By this way, the beams may undergo only a small deflection as the dynamic effect is neglected. Thus, a subsequent concentrated loading process is employed to evaluate the behavior of the beams at the ultimate stage, which may be reached if the dynamic effect is considered. Such a loading process is named sequential loading regime. To evaluate the effects of loading regimes on the behavior of reinforced concrete (RC) frames under a middle column removal scenario, two series of half-scale RC beam-column sub-assemblages were tested in this study. It is found that the conventional concentrated loading regime could accurately estimate the yield strength and the compressive arch action capacity of the RC beam-column sub-assemblages, but it may over-estimate the catenary action (CA) capacity and the deformation capacity. Moreover, although the concentrated loading regime is convenient and able to demonstrate the load transfer mechanisms of the sub-assemblages against disproportionate collapse, it may mistakenly identify the locations of critical sections. Furthermore, based on the failure modes and local strain gauge results, analytical models were proposed for predicting the CA capacity of the tested specimens under two loading regimes. Results suggest that the analytical models could predict the CA capacity well.
AbstractList The majority of previous quasi-static tests on disproportionate collapse simulated the column removal through applying concentrated load/displacement on the top of the removed column until failure. However, uniformly distributed service load always exists on the frames. Therefore, to reflect the actual load condition more accurately, uniformly distributed load should be applied along the beams first. Then, the temporary support is gradually removed to simulate the process of column removal. By this way, the beams may undergo only a small deflection as the dynamic effect is neglected. Thus, a subsequent concentrated loading process is employed to evaluate the behavior of the beams at the ultimate stage, which may be reached if the dynamic effect is considered. Such a loading process is named sequential loading regime. To evaluate the effects of loading regimes on the behavior of reinforced concrete (RC) frames under a middle column removal scenario, two series of half-scale RC beam-column sub-assemblages were tested in this study. It is found that the conventional concentrated loading regime could accurately estimate the yield strength and the compressive arch action capacity of the RC beam-column sub-assemblages, but it may over-estimate the catenary action (CA) capacity and the deformation capacity. Moreover, although the concentrated loading regime is convenient and able to demonstrate the load transfer mechanisms of the sub-assemblages against disproportionate collapse, it may mistakenly identify the locations of critical sections. Furthermore, based on the failure modes and local strain gauge results, analytical models were proposed for predicting the CA capacity of the tested specimens under two loading regimes. Results suggest that the analytical models could predict the CA capacity well.
•Failure modes of RC beam-column sub-assemblages under progressive collapse were affected by loading regimes.•Load resisting mechanisms of RC sub-assemblages under different loading regimes were compared and discussed.•Structural resistance against progressive collapse was decomposed at different loading stages.•Analytical models were proposed and compared for assessing catenary action capacity of RC frames. The majority of previous quasi-static tests on disproportionate collapse simulated the column removal through applying concentrated load/displacement on the top of the removed column until failure. However, uniformly distributed service load always exists on the frames. Therefore, to reflect the actual load condition more accurately, uniformly distributed load should be applied along the beams first. Then, the temporary support is gradually removed to simulate the process of column removal. By this way, the beams may undergo only a small deflection as the dynamic effect is neglected. Thus, a subsequent concentrated loading process is employed to evaluate the behavior of the beams at the ultimate stage, which may be reached if the dynamic effect is considered. Such a loading process is named sequential loading regime. To evaluate the effects of loading regimes on the behavior of reinforced concrete (RC) frames under a middle column removal scenario, two series of half-scale RC beam-column sub-assemblages were tested in this study. It is found that the conventional concentrated loading regime could accurately estimate the yield strength and the compressive arch action capacity of the RC beam-column sub-assemblages, but it may over-estimate the catenary action (CA) capacity and the deformation capacity. Moreover, although the concentrated loading regime is convenient and able to demonstrate the load transfer mechanisms of the sub-assemblages against disproportionate collapse, it may mistakenly identify the locations of critical sections. Furthermore, based on the failure modes and local strain gauge results, analytical models were proposed for predicting the CA capacity of the tested specimens under two loading regimes. Results suggest that the analytical models could predict the CA capacity well.
ArticleNumber 113470
Author Geng, Song-Yuan
Qian, Kai
Liang, Shi-Lin
Yu, Jun
Fu, Feng
Author_xml – sequence: 1
  givenname: Kai
  surname: Qian
  fullname: Qian, Kai
  organization: GuangXi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin 541004, China
– sequence: 2
  givenname: Song-Yuan
  surname: Geng
  fullname: Geng, Song-Yuan
  organization: GuangXi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin 541004, China
– sequence: 3
  givenname: Shi-Lin
  surname: Liang
  fullname: Liang, Shi-Lin
  organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
– sequence: 4
  givenname: Feng
  surname: Fu
  fullname: Fu, Feng
  organization: School of Mathematics, Computer Science and Engineering, City, University of London, UK
– sequence: 5
  givenname: Jun
  surname: Yu
  fullname: Yu, Jun
  email: yujun@hhu.edu.cn
  organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
BookMark eNqNkUtLxDAUhYMoOI7-BgOuOyZ9pgsXwzA-QBBE1yFNbjsZ2mRM0gH_vSkVF250EW4Sznfu5dwLdGqsAYSuKVlRQsvb_QpM54MbZVilJKUrSrO8IidoQVmVJVWWZqdoQWhOE5LW5Tm68H5PCEkZIwv0uW1bkMFj2-LeCqVNhx10eoD4ZXDYAZ69Ryd63MBOHLV1k_p1E59iSKTtx8FgPzaJ8B6GphddhEUntPEBK-0Pzh6sC9oaEQBHfS8OHi7RWSt6D1ffdYne77dvm8fk-eXhabN-TmRO6pCouswrlTHaskaBiHdVUqDxNFLWINuC1YLlsk5lJdtMMkKLtGgIUaWEiVyim9k3jvExgg98b0dnYkuelpTRsiAFi6q7WSWd9d5By6UOYpo5OKF7Tgmf0uZ7_pM2n9Lmc9qRr37xB6cH4T7_Qa5nEmIIRw2Oe6nBSFDaxc1wZfWfHl_9RqTJ
CitedBy_id crossref_primary_10_1016_j_jcsr_2022_107643
crossref_primary_10_1016_j_engstruct_2022_115090
crossref_primary_10_1016_j_engstruct_2024_119379
crossref_primary_10_1016_j_istruc_2023_03_041
crossref_primary_10_1016_j_istruc_2023_03_087
crossref_primary_10_1016_j_engfailanal_2025_109543
crossref_primary_10_1016_j_engstruct_2022_114536
crossref_primary_10_1016_j_compstruct_2022_115674
crossref_primary_10_1016_j_compstruct_2022_116325
crossref_primary_10_1177_13694332231200356
crossref_primary_10_3390_polym14091675
crossref_primary_10_1061_JSENDH_STENG_13876
crossref_primary_10_1016_j_engstruct_2025_120138
crossref_primary_10_1016_j_jobe_2022_105119
crossref_primary_10_1016_j_jcsr_2022_107456
crossref_primary_10_1016_j_jobe_2023_107472
crossref_primary_10_1016_j_istruc_2022_05_062
crossref_primary_10_1016_j_engfailanal_2024_108044
crossref_primary_10_1016_j_istruc_2023_03_172
crossref_primary_10_1016_j_jobe_2023_105971
crossref_primary_10_1016_j_engstruct_2024_118335
crossref_primary_10_1016_j_engstruct_2024_119301
crossref_primary_10_1016_j_engstruct_2025_120099
crossref_primary_10_1016_j_engstruct_2024_117820
crossref_primary_10_1016_j_engstruct_2024_119206
crossref_primary_10_1016_j_istruc_2022_09_117
crossref_primary_10_1680_jstbu_22_00066
crossref_primary_10_1016_j_engstruct_2022_114602
crossref_primary_10_1016_j_jobe_2024_111659
crossref_primary_10_1186_s40069_022_00575_z
crossref_primary_10_1016_j_engstruct_2023_116309
crossref_primary_10_1016_j_engfailanal_2023_107138
crossref_primary_10_1016_j_engstruct_2022_114604
crossref_primary_10_1186_s40069_024_00700_0
crossref_primary_10_1016_j_istruc_2024_107104
crossref_primary_10_1007_s12205_024_0672_9
crossref_primary_10_1016_j_istruc_2022_07_065
crossref_primary_10_1016_j_soildyn_2022_107499
crossref_primary_10_1002_suco_202100801
crossref_primary_10_1016_j_cscm_2022_e01421
crossref_primary_10_1016_j_engstruct_2022_114010
crossref_primary_10_1007_s43452_022_00526_1
crossref_primary_10_1016_j_engstruct_2023_116450
crossref_primary_10_1016_j_engstruct_2023_116174
crossref_primary_10_1016_j_jobe_2022_104952
crossref_primary_10_1061_JSENDH_STENG_11504
crossref_primary_10_1016_j_jobe_2023_105889
Cites_doi 10.1016/j.engstruct.2016.07.042
10.1016/j.engstruct.2017.12.038
10.1016/j.engstruct.2012.12.011
10.1016/j.jobe.2020.101461
10.1016/j.engstruct.2012.04.016
10.14359/51686739
10.1016/j.engstruct.2019.109776
10.1061/(ASCE)ST.1943-541X.0003065
10.1061/(ASCE)ST.1943-541X.0000630
10.14359/51710878
10.1061/(ASCE)ST.1943-541X.0001046
10.1016/j.engstruct.2016.07.039
10.1016/j.engstruct.2019.110115
10.1061/(ASCE)ST.1943-541X.0001865
10.1016/j.engstruct.2016.03.051
10.1016/j.engstruct.2017.07.060
10.1016/j.jobe.2020.101636
10.1061/(ASCE)ST.1943-541X.0000658
10.1016/j.engstruct.2021.112057
10.1016/j.jobe.2019.101109
10.1016/j.engstruct.2017.09.043
10.1016/j.engstruct.2011.08.040
10.1061/(ASCE)ST.1943-541X.0000618
10.14359/51689424
10.1061/(ASCE)ST.1943-541X.0001860
10.1016/j.conbuildmat.2013.04.050
10.1061/(ASCE)ST.1943-541X.0000959
10.1016/j.jcsr.2019.02.003
10.1016/j.engstruct.2015.10.040
10.1061/(ASCE)ST.1943-541X.0002628
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 15, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 15, 2022
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.113470
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_113470
S0141029621015741
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
VH1
WUQ
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c409t-d9647d381f8bdea47dd61e161ebcc9ecf589a84c92c7cf3c801525b00d6ce47d3
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 04:41:06 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Tue Jul 01 01:21:52 EDT 2025
Sun Apr 06 06:54:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Load transfer mechanisms
Loading regimes
Disproportionate collapse
Reinforced concrete
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-d9647d381f8bdea47dd61e161ebcc9ecf589a84c92c7cf3c801525b00d6ce47d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2618165058
PQPubID 2045481
ParticipantIDs proquest_journals_2618165058
crossref_citationtrail_10_1016_j_engstruct_2021_113470
crossref_primary_10_1016_j_engstruct_2021_113470
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_113470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yi, He, Xiao, Kunnath (b0065) 2008; 105
Sheffield C, Audrey K, Hoon VNP. An instrumented full-scale building disproportionate collapse test. Proceedings of 14th international symposium on interaction of the effects of munitions with structures 2011. Seattle, Washington; 2011.
General Services Administration (GSA). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, Washington, DC; 2009.
American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures, ASCE 7-10. Reston, VA: American Society of Civil Engineers; 2010.
Yu, Rinder, Stolz, Tan, Riedel (b0045) 2014; 140
Yu, Tan (b0085) 2013; 55
ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (318R-14). American Concrete Institute, Farmington Hills, MI, 433 pp; 2014.
Brunesi, Parisi (b0180) 2017; 152
Su, Tian, Song (b0070) 2009; 106
Yu, Tan (b0090) 2013; 139
Ferraioli (b0170) 2019; 156
Chadwell CA, Imbsen R. Xtract-Cross Section Analysis software for Structural and Earthquake Engineering.
Department of Defense (DoD). Design of building to resist progressive collapse. Unified facility criteria, UFC 4-023-03, Washington, DC; 2009.
Qian, Li (b0200) 2019; 116
Fu (b0025) 2018
Qian, Li, Ma (b0105) 2015; 141
Koh, Krauthammer (b0145) 2019; 201
Lew, Main, Robert, Sadek, Chiarito (b0095) 2013; 139
Deng, Liang, Fu, Qian (b0195) 2020; 146
Yu, Tan (b0130) 2017; 114
FarhangVesali, Valipour, Samali, Foster (b0075) 2013; 47
Pham, Lim, Tan (b0165) 2017; 150
Fu (b0020) 2016
Qian, Li (b0080) 2013; 139
Lu, Lin, Li, Guan, Ren, Zhou (b0120) 2017; 149
Qian, Liang, Xiong, Fu, Fang (b0060) 2020; 205
Wang, Yang, Nyunn, Azim (b0135) 2020; 32
Kai, Li (b0050) 2012; 42
Weng, Qian, Fu, Fang (b0140) 2020; 29
Lew, Bao, Pujol, Sozen (b0100) 2014; 111
Ren, Li, Lu, Guan, Zhou (b0115) 2016; 118
Pham, Tan, Yu (b0155) 2017; 149
Ding, Van Coile, Botte, Caspeele (b0175) 2021; 237
Qian, Liang, Fu, Li (b0190) 2021; 147
Wang, Fang, Qin, Chen, Li (b0110) 2016; 106
Qian, Weng, Fu, Deng (b0185) 2021; 33
Peng, Orton, Liu, Tian (b0055) 2017; 143
Sasani, Bazan, Sagiroglu (b0035) 2007; 104
Liu (b0160) 2013; 48
Qian, Li (b0125) 2017; 143
Yu, Luo, Li (b0150) 2018; 159
Qian (10.1016/j.engstruct.2021.113470_b0105) 2015; 141
Ding (10.1016/j.engstruct.2021.113470_b0175) 2021; 237
Lew (10.1016/j.engstruct.2021.113470_b0100) 2014; 111
Ren (10.1016/j.engstruct.2021.113470_b0115) 2016; 118
Liu (10.1016/j.engstruct.2021.113470_b0160) 2013; 48
Yu (10.1016/j.engstruct.2021.113470_b0085) 2013; 55
Yu (10.1016/j.engstruct.2021.113470_b0090) 2013; 139
10.1016/j.engstruct.2021.113470_b0040
Qian (10.1016/j.engstruct.2021.113470_b0190) 2021; 147
Lu (10.1016/j.engstruct.2021.113470_b0120) 2017; 149
Wang (10.1016/j.engstruct.2021.113470_b0110) 2016; 106
Peng (10.1016/j.engstruct.2021.113470_b0055) 2017; 143
Qian (10.1016/j.engstruct.2021.113470_b0200) 2019; 116
Yu (10.1016/j.engstruct.2021.113470_b0130) 2017; 114
Weng (10.1016/j.engstruct.2021.113470_b0140) 2020; 29
Brunesi (10.1016/j.engstruct.2021.113470_b0180) 2017; 152
10.1016/j.engstruct.2021.113470_b0005
Yu (10.1016/j.engstruct.2021.113470_b0045) 2014; 140
Pham (10.1016/j.engstruct.2021.113470_b0165) 2017; 150
10.1016/j.engstruct.2021.113470_b0205
Fu (10.1016/j.engstruct.2021.113470_b0020) 2016
Sasani (10.1016/j.engstruct.2021.113470_b0035) 2007; 104
Qian (10.1016/j.engstruct.2021.113470_b0080) 2013; 139
Qian (10.1016/j.engstruct.2021.113470_b0060) 2020; 205
Qian (10.1016/j.engstruct.2021.113470_b0185) 2021; 33
Fu (10.1016/j.engstruct.2021.113470_b0025) 2018
Koh (10.1016/j.engstruct.2021.113470_b0145) 2019; 201
Kai (10.1016/j.engstruct.2021.113470_b0050) 2012; 42
FarhangVesali (10.1016/j.engstruct.2021.113470_b0075) 2013; 47
Su (10.1016/j.engstruct.2021.113470_b0070) 2009; 106
Yu (10.1016/j.engstruct.2021.113470_b0150) 2018; 159
Yi (10.1016/j.engstruct.2021.113470_b0065) 2008; 105
10.1016/j.engstruct.2021.113470_b0015
Lew (10.1016/j.engstruct.2021.113470_b0095) 2013; 139
10.1016/j.engstruct.2021.113470_b0030
10.1016/j.engstruct.2021.113470_b0010
Qian (10.1016/j.engstruct.2021.113470_b0125) 2017; 143
Pham (10.1016/j.engstruct.2021.113470_b0155) 2017; 149
Deng (10.1016/j.engstruct.2021.113470_b0195) 2020; 146
Ferraioli (10.1016/j.engstruct.2021.113470_b0170) 2019; 156
Wang (10.1016/j.engstruct.2021.113470_b0135) 2020; 32
References_xml – year: 2018
  ident: b0025
  article-title: Design and analysis of tall and complex structures
– reference: Chadwell CA, Imbsen R. Xtract-Cross Section Analysis software for Structural and Earthquake Engineering.
– volume: 29
  start-page: 101109
  year: 2020
  ident: b0140
  article-title: Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse
  publication-title: J Build Eng
– reference: American Society of Civil Engineers (ASCE). Minimum design loads for buildings and other structures, ASCE 7-10. Reston, VA: American Society of Civil Engineers; 2010.
– volume: 116
  start-page: 171
  year: 2019
  end-page: 182
  ident: b0200
  article-title: Investigation into resilience of precast concrete floors against progressive collapse
  publication-title: ACI Struct J
– volume: 150
  start-page: 520
  year: 2017
  end-page: 536
  ident: b0165
  article-title: Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions
  publication-title: Eng Struct
– reference: ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (318R-14). American Concrete Institute, Farmington Hills, MI, 433 pp; 2014.
– volume: 32
  start-page: 101461
  year: 2020
  ident: b0135
  article-title: Effect of concrete infill walls on the progressive collapse performance of precast concrete framed substructures
  publication-title: J Build Eng
– volume: 147
  start-page: 04021107
  year: 2021
  ident: b0190
  article-title: Progressive collapse resistance of emulative precast concrete frames with various reinforcing details
  publication-title: J Struct Eng
– volume: 143
  start-page: 04017125
  year: 2017
  ident: b0055
  article-title: Experimental study of dynamic disproportionate collapse in flat-plate buildings subjected to exterior column removal
  publication-title: J Struct Eng
– volume: 48
  start-page: 666
  year: 2013
  end-page: 673
  ident: b0160
  article-title: A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse
  publication-title: Eng Struct
– volume: 152
  start-page: 579
  year: 2017
  end-page: 596
  ident: b0180
  article-title: Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis
  publication-title: Eng Struct
– volume: 139
  start-page: 233
  year: 2013
  end-page: 250
  ident: b0090
  article-title: Structural behavior of reinforced concrete beam-column sub-assemblages under a middle column removal scenario
  publication-title: J Struct Eng
– volume: 106
  start-page: 600
  year: 2009
  end-page: 607
  ident: b0070
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct J
– volume: 156
  start-page: 227
  year: 2019
  end-page: 241
  ident: b0170
  article-title: A modal pushdown procedure for progressive collapse analysis of steel frame structures
  publication-title: J Constr Steel Res
– volume: 104
  start-page: 731
  year: 2007
  end-page: 739
  ident: b0035
  article-title: Experimental and analytical progressive collapse evaluation of actual reinforced concrete structure
  publication-title: ACI Struct J
– volume: 111
  start-page: 881
  year: 2014
  end-page: 892
  ident: b0100
  article-title: Experimental study of reinforced concrete assemblies under column removal scenario
  publication-title: ACI Struct J
– volume: 141
  start-page: 04014107
  year: 2015
  ident: b0105
  article-title: Load-carrying mechanism to resist disproportionate collapse of RC buildings
  publication-title: J Struct Eng
– volume: 149
  start-page: 91
  year: 2017
  end-page: 103
  ident: b0120
  article-title: Experimental investigation of RC beam-slab substructures against disproportionate collapse subject to an edge-column removal scenario
  publication-title: Eng Struct
– volume: 33
  start-page: 101636
  year: 2021
  ident: b0185
  article-title: Numerical evaluation of the reliability of using single-story substructures to study progressive collapse behaviour of multi-story RC frames
  publication-title: J Build Eng
– reference: Sheffield C, Audrey K, Hoon VNP. An instrumented full-scale building disproportionate collapse test. Proceedings of 14th international symposium on interaction of the effects of munitions with structures 2011. Seattle, Washington; 2011.
– volume: 149
  start-page: 2
  year: 2017
  end-page: 20
  ident: b0155
  article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse
  publication-title: Eng Struct
– reference: General Services Administration (GSA). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, Washington, DC; 2009.
– volume: 143
  start-page: 04017118
  year: 2017
  ident: b0125
  article-title: Effects of masonry infill wall on the performance of RC frames to resist disproportionate collapse
  publication-title: J Struct Eng
– volume: 55
  start-page: 90
  year: 2013
  end-page: 106
  ident: b0085
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam-column sub-assemblages
  publication-title: Eng Struct
– year: 2016
  ident: b0020
  article-title: Structural analysis and design to prevent disproportionate collapse
– volume: 106
  start-page: 332
  year: 2016
  end-page: 347
  ident: b0110
  article-title: Performance of practical beam-to-SHS column connections against progressive collapse
  publication-title: Eng Struct
– volume: 140
  start-page: 04014014
  year: 2014
  ident: b0045
  article-title: Dynamic progressive collapse of an RC assemblage induced by contact detonation
  publication-title: J Struct Eng
– volume: 47
  start-page: 7
  year: 2013
  end-page: 19
  ident: b0075
  article-title: Development of arching action in longitudinally-restrained reinforced concrete beams
  publication-title: Constr Build Mater
– volume: 237
  start-page: 112057
  year: 2021
  ident: b0175
  article-title: Quantification of model uncertainties of the energy-based method for dynamic column removal scenarios
  publication-title: Eng Struct
– volume: 146
  start-page: 04020078
  year: 2020
  ident: b0195
  article-title: Effects of high-strength concrete on progressive collapse resistance of reinforced concrete frame
  publication-title: ASCE J Struct Eng
– volume: 201
  start-page: 109776
  year: 2019
  ident: b0145
  article-title: Exploring numerical approaches for pre-test progressive collapse assessment of RC frame structures
  publication-title: Eng Struct
– reference: Department of Defense (DoD). Design of building to resist progressive collapse. Unified facility criteria, UFC 4-023-03, Washington, DC; 2009.
– volume: 159
  start-page: 14
  year: 2018
  end-page: 27
  ident: b0150
  article-title: Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios
  publication-title: Eng Struct
– volume: 105
  start-page: 433
  year: 2008
  end-page: 439
  ident: b0065
  article-title: Experimental study on disproportionate collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct J
– volume: 139
  start-page: 584
  year: 2013
  end-page: 594
  ident: b0080
  article-title: Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario
  publication-title: J Struct Eng
– volume: 114
  start-page: 63
  year: 2017
  end-page: 74
  ident: b0130
  article-title: Structural behavior of reinforced concrete frames subjected to progressive collapse
  publication-title: ACI Struct J
– volume: 118
  start-page: 28
  year: 2016
  end-page: 40
  ident: b0115
  article-title: Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middle-column-removal scenario
  publication-title: Eng Struct
– volume: 205
  start-page: 110115
  year: 2020
  ident: b0060
  article-title: Quasi-static and dynamic behavior of precast concrete frames with high performance dry connections subjected to loss of a penultimate column scenario
  publication-title: Eng Struct
– volume: 139
  start-page: 98
  year: 2013
  end-page: 107
  ident: b0095
  article-title: Performance of steel moment connections under a column removal scenario. I: Experiments
  publication-title: J Struct Eng
– volume: 42
  start-page: 154
  year: 2012
  end-page: 167
  ident: b0050
  article-title: Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column—Experimental results
  publication-title: Eng Struct
– volume: 149
  start-page: 2
  year: 2017
  ident: 10.1016/j.engstruct.2021.113470_b0155
  article-title: Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.07.042
– volume: 159
  start-page: 14
  year: 2018
  ident: 10.1016/j.engstruct.2021.113470_b0150
  article-title: Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.12.038
– volume: 48
  start-page: 666
  year: 2013
  ident: 10.1016/j.engstruct.2021.113470_b0160
  article-title: A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.12.011
– volume: 32
  start-page: 101461
  year: 2020
  ident: 10.1016/j.engstruct.2021.113470_b0135
  article-title: Effect of concrete infill walls on the progressive collapse performance of precast concrete framed substructures
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2020.101461
– volume: 42
  start-page: 154
  year: 2012
  ident: 10.1016/j.engstruct.2021.113470_b0050
  article-title: Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column—Experimental results
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.04.016
– year: 2016
  ident: 10.1016/j.engstruct.2021.113470_b0020
– volume: 111
  start-page: 881
  issue: 4
  year: 2014
  ident: 10.1016/j.engstruct.2021.113470_b0100
  article-title: Experimental study of reinforced concrete assemblies under column removal scenario
  publication-title: ACI Struct J
  doi: 10.14359/51686739
– volume: 201
  start-page: 109776
  year: 2019
  ident: 10.1016/j.engstruct.2021.113470_b0145
  article-title: Exploring numerical approaches for pre-test progressive collapse assessment of RC frame structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109776
– ident: 10.1016/j.engstruct.2021.113470_b0205
– volume: 147
  start-page: 04021107
  issue: 8
  year: 2021
  ident: 10.1016/j.engstruct.2021.113470_b0190
  article-title: Progressive collapse resistance of emulative precast concrete frames with various reinforcing details
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003065
– ident: 10.1016/j.engstruct.2021.113470_b0030
– volume: 139
  start-page: 584
  issue: 4
  year: 2013
  ident: 10.1016/j.engstruct.2021.113470_b0080
  article-title: Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000630
– volume: 116
  start-page: 171
  issue: 2
  year: 2019
  ident: 10.1016/j.engstruct.2021.113470_b0200
  article-title: Investigation into resilience of precast concrete floors against progressive collapse
  publication-title: ACI Struct J
  doi: 10.14359/51710878
– volume: 141
  start-page: 04014107
  issue: 2
  year: 2015
  ident: 10.1016/j.engstruct.2021.113470_b0105
  article-title: Load-carrying mechanism to resist disproportionate collapse of RC buildings
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001046
– year: 2018
  ident: 10.1016/j.engstruct.2021.113470_b0025
– volume: 149
  start-page: 91
  year: 2017
  ident: 10.1016/j.engstruct.2021.113470_b0120
  article-title: Experimental investigation of RC beam-slab substructures against disproportionate collapse subject to an edge-column removal scenario
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.07.039
– volume: 205
  start-page: 110115
  year: 2020
  ident: 10.1016/j.engstruct.2021.113470_b0060
  article-title: Quasi-static and dynamic behavior of precast concrete frames with high performance dry connections subjected to loss of a penultimate column scenario
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.110115
– volume: 143
  start-page: 04017125
  issue: 9
  year: 2017
  ident: 10.1016/j.engstruct.2021.113470_b0055
  article-title: Experimental study of dynamic disproportionate collapse in flat-plate buildings subjected to exterior column removal
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001865
– volume: 118
  start-page: 28
  year: 2016
  ident: 10.1016/j.engstruct.2021.113470_b0115
  article-title: Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middle-column-removal scenario
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.03.051
– ident: 10.1016/j.engstruct.2021.113470_b0015
– ident: 10.1016/j.engstruct.2021.113470_b0040
– volume: 150
  start-page: 520
  year: 2017
  ident: 10.1016/j.engstruct.2021.113470_b0165
  article-title: Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.07.060
– volume: 33
  start-page: 101636
  year: 2021
  ident: 10.1016/j.engstruct.2021.113470_b0185
  article-title: Numerical evaluation of the reliability of using single-story substructures to study progressive collapse behaviour of multi-story RC frames
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2020.101636
– volume: 139
  start-page: 233
  issue: 2
  year: 2013
  ident: 10.1016/j.engstruct.2021.113470_b0090
  article-title: Structural behavior of reinforced concrete beam-column sub-assemblages under a middle column removal scenario
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000658
– volume: 237
  start-page: 112057
  year: 2021
  ident: 10.1016/j.engstruct.2021.113470_b0175
  article-title: Quantification of model uncertainties of the energy-based method for dynamic column removal scenarios
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112057
– volume: 106
  start-page: 600
  issue: 5
  year: 2009
  ident: 10.1016/j.engstruct.2021.113470_b0070
  article-title: Progressive collapse resistance of axially-restrained frame beams
  publication-title: ACI Struct J
– volume: 29
  start-page: 101109
  year: 2020
  ident: 10.1016/j.engstruct.2021.113470_b0140
  article-title: Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2019.101109
– volume: 152
  start-page: 579
  year: 2017
  ident: 10.1016/j.engstruct.2021.113470_b0180
  article-title: Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.09.043
– volume: 105
  start-page: 433
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2021.113470_b0065
  article-title: Experimental study on disproportionate collapse-resistant behavior of reinforced concrete frame structures
  publication-title: ACI Struct J
– volume: 55
  start-page: 90
  year: 2013
  ident: 10.1016/j.engstruct.2021.113470_b0085
  article-title: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam-column sub-assemblages
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.08.040
– volume: 139
  start-page: 98
  issue: 1
  year: 2013
  ident: 10.1016/j.engstruct.2021.113470_b0095
  article-title: Performance of steel moment connections under a column removal scenario. I: Experiments
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000618
– volume: 114
  start-page: 63
  issue: 1
  year: 2017
  ident: 10.1016/j.engstruct.2021.113470_b0130
  article-title: Structural behavior of reinforced concrete frames subjected to progressive collapse
  publication-title: ACI Struct J
  doi: 10.14359/51689424
– ident: 10.1016/j.engstruct.2021.113470_b0005
– volume: 143
  start-page: 04017118
  issue: 9
  year: 2017
  ident: 10.1016/j.engstruct.2021.113470_b0125
  article-title: Effects of masonry infill wall on the performance of RC frames to resist disproportionate collapse
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001860
– ident: 10.1016/j.engstruct.2021.113470_b0010
– volume: 47
  start-page: 7
  year: 2013
  ident: 10.1016/j.engstruct.2021.113470_b0075
  article-title: Development of arching action in longitudinally-restrained reinforced concrete beams
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2013.04.050
– volume: 140
  start-page: 04014014
  issue: 6
  year: 2014
  ident: 10.1016/j.engstruct.2021.113470_b0045
  article-title: Dynamic progressive collapse of an RC assemblage induced by contact detonation
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000959
– volume: 156
  start-page: 227
  year: 2019
  ident: 10.1016/j.engstruct.2021.113470_b0170
  article-title: A modal pushdown procedure for progressive collapse analysis of steel frame structures
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2019.02.003
– volume: 104
  start-page: 731
  issue: 6
  year: 2007
  ident: 10.1016/j.engstruct.2021.113470_b0035
  article-title: Experimental and analytical progressive collapse evaluation of actual reinforced concrete structure
  publication-title: ACI Struct J
– volume: 106
  start-page: 332
  year: 2016
  ident: 10.1016/j.engstruct.2021.113470_b0110
  article-title: Performance of practical beam-to-SHS column connections against progressive collapse
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.10.040
– volume: 146
  start-page: 04020078
  issue: 6
  year: 2020
  ident: 10.1016/j.engstruct.2021.113470_b0195
  article-title: Effects of high-strength concrete on progressive collapse resistance of reinforced concrete frame
  publication-title: ASCE J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002628
SSID ssj0002880
Score 2.527938
Snippet •Failure modes of RC beam-column sub-assemblages under progressive collapse were affected by loading regimes.•Load resisting mechanisms of RC sub-assemblages...
The majority of previous quasi-static tests on disproportionate collapse simulated the column removal through applying concentrated load/displacement on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113470
SubjectTerms Beam-columns
Collapse
Compressive strength
Concentrated loads
Disproportionate collapse
Failure modes
Load transfer
Load transfer mechanisms
Loading regimes
Mathematical models
Reinforced concrete
Service loads
Static tests
Strain analysis
Strain gauges
Structural behavior
Title Effects of loading regimes on the structural behavior of RC beam-column sub-assemblages against disproportionate collapse
URI https://dx.doi.org/10.1016/j.engstruct.2021.113470
https://www.proquest.com/docview/2618165058
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEWhIA-spnk5dtiqiqqA6MBDYrMcx0FFbRqRMrDw27lzEl5CYmBLrLvI8p3vEd3dR8iJ5qAIMjUsdxBmcR4yqY3HwBeEng4Tmwvsd76exOP76PKBP6yQYdsLg2WVje2vbbqz1s1KvznNfjmd9m9diWKQxJC0-Fy45vUoEqjlp2-fZR6BdOhpSMyQ-luNly0e6zGtkCgGPuKbRIha_LuH-mGrnQMabZKNJnKkg3pzW2TFFttk_cs8wR3yWs8irugip7OFq46niLwwt7BUUIj1aL0RnLVB2w59pL4ZwqueM4PGqqDVS8ogqrbzdAb2pqL6UU8hjqTZtCoRVuHZ_UFcWurUqKzsLrkfnd8Nx6zBVmAGMroly7ADNQN3ncs0sxqes9i3EP7Z1JjEmpzLRMvIJIERJg8NODIecLijWWwscu6RTrEo7D4WR4XCptITRuRRonkCIZfgPog949aXokvi9jyVaQaPI_7FTLUVZk_qQxAKBaFqQXSJ98FY1rM3_mY5awWmvqmRAg_xN3OvFbFqbnKlIMOUPoSxXB7859uHZC3AxgnPZz7vkQ4Q2CMIZ5bpsdPXY7I6uLgaT94BUAH37Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHNSD8RlR1B68NuyD7na9ESIBeRwUEm5Nt9s1GFiIiwf_vTP7IGJMOHjbbTqbpjOd-bqZmY-QB8XBEESoWZxRmHmxy4TSFoNY4FrKDUzsY73zaOz1pq3nGZ9VSKeshcG0ysL35z4989bFSLPYzeZ6Pm--ZimKTuDBpcXmPhav17A7Fa-SWrs_6I23DtkRGYEazmcosJPmZZK3vFMr3BUdGylOWkhc_HeQ-uWusxjUPSHHBXik7Xx9p6RikjNy9KOl4Dn5ytsRp3QV08UqS5CnSL6wNDCUUIB7NF8IttugZZE-zn7pwKtaMo3-KqHpZ8gAWJtluACXk1L1puYAJWk0T9fIrPCR_UTcGJpZ0jo1F2TafZp0eqygV2AaLnUbFmERagQROxZhZBQ8R55tAAGaUOvA6JiLQImWDhzt69jVEMu4w-GYRp42KHlJqskqMVeYH-X6JhSWr_24FSgeAOryuQ2aj7ixhV8nXrmfUhe9x5ECYyHLJLN3uVWEREXIXBF1Ym0F13n7jf0ij6XC5I4lSQgS-4UbpYplcZhTCZdMYQOS5eL6P9--Jwe9yWgoh_3x4IYcOlhHYdnM5g1ShcnmFtDNJrwrrPcbxOL6ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+loading+regimes+on+the+structural+behavior+of+RC+beam-column+sub-assemblages+against+disproportionate+collapse&rft.jtitle=Engineering+structures&rft.au=Qian%2C+Kai&rft.au=Geng%2C+Song-Yuan&rft.au=Liang%2C+Shi-Lin&rft.au=Fu%2C+Feng&rft.date=2022-01-15&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=251&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engstruct.2021.113470&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon