Identification of Constant-Posture EMG-Torque Relationship About the Elbow Using Nonlinear Dynamic Models

The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 59; no. 1; pp. 205 - 212
Main Authors Clancy, Edward A., Liu, Lukai, Liu, Pu, Moyer, Daniel V. Zandt
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2011.2170423

Cover

Loading…
Abstract The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 -3 on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.
AbstractList The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10[Formula Omitted] on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.
The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 (-3) on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.
The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 (-3) on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 (-3) on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.
The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMG sigma ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMG sigma processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMG sigma outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 +/- 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 10 - 3 on 52 s of four-channel whitened EMG data. Similar performance (4.67 +/- 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.
Author Liu, Pu
Liu, Lukai
Clancy, Edward A.
Moyer, Daniel V. Zandt
Author_xml – sequence: 1
  givenname: Edward A.
  surname: Clancy
  fullname: Clancy, Edward A.
  email: ted@wpi.edu
  organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute (WPI), Worcester, USA
– sequence: 2
  givenname: Lukai
  surname: Liu
  fullname: Liu, Lukai
  email: lliu35@wpi.edu
  organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, USA
– sequence: 3
  givenname: Pu
  surname: Liu
  fullname: Liu, Pu
  email: puliu@wpi.edu
  organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, USA
– sequence: 4
  givenname: Daniel V. Zandt
  surname: Moyer
  fullname: Moyer, Daniel V. Zandt
  email: korthog@gmail.com
  organization: Genapsys, Inc. , Menlo Park, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25487833$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21968709$$D View this record in MEDLINE/PubMed
BookMark eNqF0VFrFDEQB_AgFXutfgARJAjFpz0zSXY3eazXsxZ6KnJ9Dtls1qbsJWeSRfrtzfWuCn3QpxD4_SeZmRN05IO3CL0GMgcg8sP642o5pwRgTqElnLJnaAZ1LSpaMzhCM0JAVJJKfoxOUrorVy548wIdU5CNaImcIXfVW5_d4IzOLngcBrwIPmXtc_UtpDxFi5ery2od4s_J4u92fHDp1m3xeRemjPNtEWMXfuGb5PwP_CX40XmrI76493rjDF6F3o7pJXo-6DHZV4fzFN18Wq4Xn6vrr5dXi_PrynAic9WLntcN15LLrqNNTXveDmCBsp4J0ppGcNCaw0AFq5nWIKFvS_uUM8FJZ9kper-vu42hfDlltXHJ2HHU3oYpKUlJKzkr0_qvBMqprAkp8t0TeRem6EsbO0RkeRkKentAU7exvdpGt9HxXj0Ou4CzA9DJ6HGI2huX_rqai1YwVly7dyaGlKIdlHH5Yew5ajcqIGq3frVbv9qtXx3WX5LwJPlY_F-ZN_uMs9b-8Q1htGWU_QYicbeT
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TNSRE_2023_3238758
crossref_primary_10_1016_j_jelekin_2019_04_003
crossref_primary_10_3390_dynamics2030012
crossref_primary_10_1109_TNSRE_2014_2331686
crossref_primary_10_3390_s21020498
crossref_primary_10_1016_j_medengphy_2017_10_002
crossref_primary_10_3389_fnins_2017_00280
crossref_primary_10_1109_MCI_2014_2307224
crossref_primary_10_1007_s42235_022_00169_1
crossref_primary_10_1016_j_jelekin_2017_03_004
crossref_primary_10_1016_j_compbiomed_2023_107124
crossref_primary_10_1016_j_jelekin_2013_06_011
crossref_primary_10_3233_THC_220283
crossref_primary_10_3390_app11104678
crossref_primary_10_1109_TNSRE_2023_3281410
crossref_primary_10_3390_s19235227
crossref_primary_10_1186_s40638_014_0002_7
crossref_primary_10_1109_TBME_2022_3161726
crossref_primary_10_1109_TNSRE_2016_2639443
crossref_primary_10_1016_j_bspc_2022_104088
crossref_primary_10_1109_JBHI_2014_2342274
crossref_primary_10_1016_j_jelekin_2019_02_001
crossref_primary_10_1155_2015_585180
crossref_primary_10_1109_ACCESS_2019_2956951
crossref_primary_10_1016_j_bspc_2021_103012
crossref_primary_10_3389_fbioe_2024_1492232
crossref_primary_10_5772_56717
crossref_primary_10_1109_TNSRE_2013_2283403
crossref_primary_10_1371_journal_pone_0224075
crossref_primary_10_1109_ACCESS_2023_3321510
crossref_primary_10_3390_s18041004
crossref_primary_10_1016_j_bspc_2019_02_011
crossref_primary_10_1109_ACCESS_2024_3436710
crossref_primary_10_1186_s12984_016_0169_y
crossref_primary_10_1109_TNSRE_2015_2405765
crossref_primary_10_1371_journal_pone_0203835
crossref_primary_10_1016_j_bspc_2022_104012
crossref_primary_10_1007_s10846_019_01144_5
crossref_primary_10_1016_j_bspc_2021_102475
crossref_primary_10_1016_j_bspc_2022_103557
crossref_primary_10_3182_20140824_6_ZA_1003_01266
crossref_primary_10_1109_TNSRE_2022_3163149
crossref_primary_10_1016_j_jelekin_2024_102910
crossref_primary_10_3390_computers13010029
crossref_primary_10_1109_JAS_2024_124329
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_1109_LRA_2024_3350999
crossref_primary_10_1109_TNSRE_2013_2243470
crossref_primary_10_3390_app9102085
crossref_primary_10_1109_JAS_2021_1003865
crossref_primary_10_1109_TNSRE_2020_3038322
crossref_primary_10_1088_1741_2552_ab0e2e
crossref_primary_10_1016_j_jelekin_2024_102864
crossref_primary_10_1016_j_cogr_2023_11_003
Cites_doi 10.1016/j.jbiomech.2007.10.015
10.1186/1475-925X-9-41
10.1109/10.634654
10.1016/j.jbiomech.2010.03.049
10.1109/TBME.1980.326652
10.1016/S0268-0033(02)00183-3
10.1109/TBME.1980.326653
10.1016/j.jbiomech.2005.08.007
10.1109/10.764948
10.1016/j.jelekin.2004.06.007
10.1109/TRO.2008.926860
10.1016/S1050-6411(01)00033-5
10.1002/0471678384.ch13
10.1152/jappl.1971.30.3.345
10.1109/10.844217
10.1007/BF02311718
10.1109/3468.925661
10.1152/jappl.1983.54.3.714
10.1016/j.neulet.2004.06.055
10.1016/S0021-9290(03)00010-1
10.1016/j.jelekin.2007.03.006
10.2307/1267351
10.1109/TBME.2004.840498
10.1109/TBME.2009.2036444
10.1016/j.jelekin.2008.04.013
10.1007/s00221-003-1624-0
10.1016/1050-6411(94)00014-X
10.1016/j.clinbiomech.2008.08.003
10.1109/51.982275
10.1016/j.jelekin.2009.08.005
10.1016/j.jelekin.2003.10.005
10.1152/jappl.2001.91.5.2224
10.1016/0021-9290(94)90263-1
10.1016/j.jbiomech.2006.03.021
10.1152/jn.00936.2006
10.2307/2683673
10.1016/j.jelekin.2006.08.006
10.1109/10.341833
10.1109/10.284927
ContentType Journal Article
Copyright 2015 INIST-CNRS
2011 IEEE
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: 2011 IEEE
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2011.2170423
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 212
ExternalDocumentID 2543761221
21968709
25487833
10_1109_TBME_2011_2170423
6032732
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c409t-d8d4564a949bb2652d47f1e123d3807c6841aa41f28353aa191d7217243840be3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 16:18:29 EDT 2025
Fri Jul 11 02:39:01 EDT 2025
Mon Jun 30 08:42:09 EDT 2025
Mon Jul 21 05:58:07 EDT 2025
Mon Jul 21 09:14:53 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 02:15:44 EDT 2025
Wed Aug 27 02:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Parameter estimation
Biological system modeling
Electrophysiology
Modeling
Posture
Electrodiagnosis
EMG amplitude estimation
Non linear model
Signal processing
biomedical signal processing
EMG signal processing
Electromyography
Dynamic model
Elbow
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
2011 IEEE
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-d8d4564a949bb2652d47f1e123d3807c6841aa41f28353aa191d7217243840be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
PMID 21968709
PQID 912098401
PQPubID 85474
PageCount 8
ParticipantIDs proquest_journals_912098401
pascalfrancis_primary_25487833
pubmed_primary_21968709
ieee_primary_6032732
crossref_citationtrail_10_1109_TBME_2011_2170423
proquest_miscellaneous_920794342
proquest_miscellaneous_912429500
crossref_primary_10_1109_TBME_2011_2170423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-Jan.
2012-01-00
2012
2012-Jan
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
solomonow (ref2) 1986; 65
ref36
ref14
ref33
ref11
kern (ref47) 2001; 91
ref32
ref10
ljung (ref30) 1999
kumar (ref5) 1996
press (ref31) 1994
ref17
ref16
ref19
ref18
koo (ref29) 2005; 15
gottlieb (ref26) 1971; 30
hassan (ref44) 1985; 59
ref24
ref45
ref23
an (ref1) 1983; 54
ref25
ref20
ref42
ref41
ref22
ref21
ref43
(ref38) 0
ref28
ref27
ref8
ref7
ref9
ref4
ref3
miller (ref39) 1977
ref6
ref40
vredenbregt (ref46) 1973; 1
References_xml – ident: ref3
  doi: 10.1016/j.jbiomech.2007.10.015
– ident: ref13
  doi: 10.1186/1475-925X-9-41
– ident: ref20
  doi: 10.1109/10.634654
– ident: ref43
  doi: 10.1016/j.jbiomech.2010.03.049
– volume: 65
  start-page: 223
  year: 1986
  ident: ref2
  article-title: EMG-force model of the elbow's antagonistic muscle pair: The effect of joint position, gravity and recruitment
  publication-title: Amer J Phys Med
– ident: ref15
  doi: 10.1109/TBME.1980.326652
– ident: ref9
  doi: 10.1016/S0268-0033(02)00183-3
– start-page: 671
  year: 1994
  ident: ref31
  publication-title: Numerical Recipes in C
– ident: ref16
  doi: 10.1109/TBME.1980.326653
– ident: ref22
  doi: 10.1016/j.jbiomech.2005.08.007
– ident: ref35
  doi: 10.1109/10.764948
– volume: 15
  start-page: 12
  year: 2005
  ident: ref29
  article-title: Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow
  publication-title: J Electromygr Kinesiol
  doi: 10.1016/j.jelekin.2004.06.007
– ident: ref11
  doi: 10.1109/TRO.2008.926860
– start-page: 491
  year: 1999
  ident: ref30
  publication-title: System Identification Theory for the User
– volume: 59
  start-page: 441
  year: 1985
  ident: ref44
  article-title: Isometric torque-angle relationship and movement-related activity of human elbow flexors: Implications for the equilibrium-point hypothesis
  publication-title: Exp Brain Res
– ident: ref19
  doi: 10.1016/S1050-6411(01)00033-5
– start-page: 272
  year: 1977
  ident: ref39
  publication-title: Probability and statistics for engineers
– ident: ref7
  doi: 10.1002/0471678384.ch13
– volume: 30
  start-page: 345
  year: 1971
  ident: ref26
  article-title: Dynamic relationship between isometric muscle tension and the electromyogram in man
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1971.30.3.345
– ident: ref36
  doi: 10.1109/10.844217
– ident: ref32
  doi: 10.1007/BF02311718
– ident: ref12
  doi: 10.1109/3468.925661
– volume: 1
  start-page: 607
  year: 1973
  ident: ref46
  article-title: Surface electromyography in relation to force, muscle length and endurance
  publication-title: New Develop Electromyogr Clin Neurophysiol
– volume: 54
  start-page: 714
  year: 1983
  ident: ref1
  article-title: Determination of forces in extensor pollicis longus and flexor pollicis longus of the thumb
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1983.54.3.714
– ident: ref41
  doi: 10.1016/j.neulet.2004.06.055
– ident: ref40
  doi: 10.1016/S0021-9290(03)00010-1
– ident: ref45
  doi: 10.1016/j.jelekin.2007.03.006
– ident: ref33
  doi: 10.2307/1267351
– ident: ref37
  doi: 10.1109/TBME.2004.840498
– ident: ref28
  doi: 10.1109/TBME.2009.2036444
– ident: ref42
  doi: 10.1016/j.jelekin.2008.04.013
– ident: ref10
  doi: 10.1007/s00221-003-1624-0
– ident: ref6
  doi: 10.1016/1050-6411(94)00014-X
– year: 1996
  ident: ref5
  publication-title: Electromyography in Ergonomics
– ident: ref8
  doi: 10.1016/j.clinbiomech.2008.08.003
– ident: ref21
  doi: 10.1109/51.982275
– ident: ref14
  doi: 10.1016/j.jelekin.2009.08.005
– ident: ref25
  doi: 10.1016/j.jelekin.2003.10.005
– volume: 91
  start-page: 2224
  year: 2001
  ident: ref47
  article-title: Long-term activity in upper- and lower-limb muscles of humans
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.2001.91.5.2224
– ident: ref27
  doi: 10.1016/0021-9290(94)90263-1
– ident: ref24
  doi: 10.1016/j.jbiomech.2006.03.021
– ident: ref23
  doi: 10.1152/jn.00936.2006
– year: 0
  ident: ref38
– ident: ref34
  doi: 10.2307/2683673
– ident: ref4
  doi: 10.1016/j.jelekin.2006.08.006
– ident: ref18
  doi: 10.1109/10.341833
– ident: ref17
  doi: 10.1109/10.284927
SSID ssj0014846
Score 2.3485577
Snippet The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation...
The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMG sigma ) estimation...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 205
SubjectTerms Adolescent
Adult
Aged
Algorithms
Biological and medical sciences
Biological system modeling
biomedical signal processing
Computer Simulation
Computerized, statistical medical data processing and models in biomedicine
Elbow Joint - physiology
Electrodiagnosis. Electric activity recording
Electromyography
Electromyography - methods
EMG amplitude estimation
EMG signal processing
Female
Fundamental and applied biological sciences. Psychology
Humans
Investigative techniques, diagnostic techniques (general aspects)
Isometric Contraction - physiology
Joints
Medical management aid. Diagnosis aid
Medical sciences
Middle Aged
Models, Biological
Muscle, Skeletal - physiology
Muscles
Nervous system
Nonlinear Dynamics
Pattern Recognition, Automated - methods
Physical Endurance - physiology
Polynomials
Posture - physiology
Program processors
Studies
Torque
Training
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Young Adult
Title Identification of Constant-Posture EMG-Torque Relationship About the Elbow Using Nonlinear Dynamic Models
URI https://ieeexplore.ieee.org/document/6032732
https://www.ncbi.nlm.nih.gov/pubmed/21968709
https://www.proquest.com/docview/912098401
https://www.proquest.com/docview/912429500
https://www.proquest.com/docview/920794342
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeS6HygRMiWydxHj5C2VIhpaet1Fvkp1ixJNVuIgS_nhnbGyiCilsk24qdGWfe3xDyWoLSIbg2iTMVtjCri0SmjCXaWZAYQjou0aHfXJTnl_zTVXG1R95OtTDWWp98Zuf46GP5ptcjuspOSpaDtIUf7h0w3EKt1hQx4HUoymEpXOBM8BjBTJk4Wb5vFgGsE_RvzAPxCMCiBFYVN8SR76-C2ZFyCx_Ihc4W_1Y9vQg6e0ia3eZD5smX-Tiouf7xB67j_57uEXkQdVH6LjDPY7JnuwNy_zeEwgNyt4mx90OyCjW9Ljr5aO_oaVAuhwRb_o4bSxfNx2TZb-AYdMqy-7y6phhcGijomnSxVv036hMV6EWA6ZAb-uF7J7-uNMXObOvtE3J5tlieniexUUOiwTwcElMbRKWRggulsrLIDK9cakEoGsSz12XNUyl56hDcLZcSbERTYWcsnoN9qWz-lOx3fWefE2ps7XgBtJFM8UrlqrbcuDKvuDU6t2JG2I5erY4o5thMY916a4aJFqndIrXbSO0ZeTMtuQ4QHrdNPkTKTBMjUWbk-AZTTOMZWnx1DuuOdlzSxr_AthVYmAwnTGeETqNwfTEmIzvbj34KaAQFY7dMyZhH8YNNPAvs9-vtkYtf_H3XR-QenC0LHqOXZH_YjPYV6FCDOvaX5ycGDhQG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIgE98GihLIXiAydEtk7iPHyEsmWBZk9bqbfIiW2x6japdhOh9tczY3sDRVBxi2RbsTPjzPsbQt5KUDoEr1VgVIYtzPIkkCFjQW00SAwhDZfo0C9m6fSMfz1PzrfI-6EWRmttk8_0GB9tLF-1dY-usqOUxSBt4Yd7L8FiXFetNcQMeO7KclgIVzgS3McwQyaO5h-LiYPrBA0cM0EsBrBIgVnFLYFkO6xgfqRcwycyrrfFv5VPK4ROHpNis32Xe3Ix7rtqXN_8gez4v-d7Qh55bZR-cOzzlGzpZpfs_IZRuEvuFz76vkcWrqrXeDcfbQ09duplF2DT336l6aT4HMzbFRyDDnl23xdXFMNLHQVtk06WVfuD2lQFOnNAHXJFP1038nJRU-zNtlw_I2cnk_nxNPCtGoIaDMQuULlCXBopuKiqKE0ixTMTahCLChHt6zTnoZQ8NAjvFksJVqLKsDcWj8HCrHT8nGw3baNfEKp0bngCtJGs4lkVV7nmyqRxxrWqYy1GhG3oVdYexxzbaSxLa88wUSK1S6R26ak9Iu-GJVcOxOOuyXtImWGiJ8qIHN5iimE8Qpsvj2HdwYZLSv8fWJcCS5PhhOGI0GEULjBGZWSj295OAZ0gYeyOKRGzOH6wiX3Hfr_e7rn45d93_YY8mM6L0_L0y-zbAXkI54yc_-gV2e5WvX4NGlVXHdqL9BOIfxdO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Constant-Posture+EMG%E2%80%95Torque+Relationship+About+the+Elbow+Using+Nonlinear+Dynamic+Models&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=CHANCY%2C+Edward+A&rft.au=LUKAI+LIU&rft.au=PU+LIU&rft.au=ZANDT+MOYER%2C+Daniel+V&rft.date=2012&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9294&rft.volume=59&rft.issue=1&rft.spage=205&rft.epage=212&rft_id=info:doi/10.1109%2FTBME.2011.2170423&rft.externalDBID=n%2Fa&rft.externalDocID=25487833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon