Identification of Constant-Posture EMG-Torque Relationship About the Elbow Using Nonlinear Dynamic Models
The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 59; no. 1; pp. 205 - 212 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.01.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2011.2170423 |
Cover
Loading…
Abstract | The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 -3 on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1. |
---|---|
AbstractList | The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10[Formula Omitted] on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1. The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 (-3) on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1. The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 (-3) on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1.The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMGσ processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMGσ outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 ± 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 × 10 (-3) on 52 s of four-channel whitened EMG data. Similar performance (4.67 ± 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1. The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMG sigma ) estimation processors, linear/nonlinear model structures, and system identification techniques. Torque estimation was improved by 1) advanced EMG sigma processors (i.e., whitened, multiple-channel signals); 2) longer duration training sets (52 s versus 26 s); and 3) determination of model parameters via pseudoinverse and ridge regression methods. Dynamic, nonlinear parametric models that included second- or third-degree polynomial functions of EMG sigma outperformed linear models and Hammerstein/Weiner models. A minimum error of 4.65 +/- 3.6% maximum voluntary contraction (MVC) flexion was attained using a third-degree polynomial, 28th-order dynamic model, with model parameters determined using the pseudoinverse method with tolerance 5.6 10 - 3 on 52 s of four-channel whitened EMG data. Similar performance (4.67 +/- 3.7% MVC flexion error) was realized using a second-degree, 18th-order ridge regression model with ridge parameter 50.1. |
Author | Liu, Pu Liu, Lukai Clancy, Edward A. Moyer, Daniel V. Zandt |
Author_xml | – sequence: 1 givenname: Edward A. surname: Clancy fullname: Clancy, Edward A. email: ted@wpi.edu organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute (WPI), Worcester, USA – sequence: 2 givenname: Lukai surname: Liu fullname: Liu, Lukai email: lliu35@wpi.edu organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, USA – sequence: 3 givenname: Pu surname: Liu fullname: Liu, Pu email: puliu@wpi.edu organization: Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, USA – sequence: 4 givenname: Daniel V. Zandt surname: Moyer fullname: Moyer, Daniel V. Zandt email: korthog@gmail.com organization: Genapsys, Inc. , Menlo Park, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25487833$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21968709$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0VFrFDEQB_AgFXutfgARJAjFpz0zSXY3eazXsxZ6KnJ9Dtls1qbsJWeSRfrtzfWuCn3QpxD4_SeZmRN05IO3CL0GMgcg8sP642o5pwRgTqElnLJnaAZ1LSpaMzhCM0JAVJJKfoxOUrorVy548wIdU5CNaImcIXfVW5_d4IzOLngcBrwIPmXtc_UtpDxFi5ery2od4s_J4u92fHDp1m3xeRemjPNtEWMXfuGb5PwP_CX40XmrI76493rjDF6F3o7pJXo-6DHZV4fzFN18Wq4Xn6vrr5dXi_PrynAic9WLntcN15LLrqNNTXveDmCBsp4J0ppGcNCaw0AFq5nWIKFvS_uUM8FJZ9kper-vu42hfDlltXHJ2HHU3oYpKUlJKzkr0_qvBMqprAkp8t0TeRem6EsbO0RkeRkKentAU7exvdpGt9HxXj0Ou4CzA9DJ6HGI2huX_rqai1YwVly7dyaGlKIdlHH5Yew5ajcqIGq3frVbv9qtXx3WX5LwJPlY_F-ZN_uMs9b-8Q1htGWU_QYicbeT |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_TNSRE_2023_3238758 crossref_primary_10_1016_j_jelekin_2019_04_003 crossref_primary_10_3390_dynamics2030012 crossref_primary_10_1109_TNSRE_2014_2331686 crossref_primary_10_3390_s21020498 crossref_primary_10_1016_j_medengphy_2017_10_002 crossref_primary_10_3389_fnins_2017_00280 crossref_primary_10_1109_MCI_2014_2307224 crossref_primary_10_1007_s42235_022_00169_1 crossref_primary_10_1016_j_jelekin_2017_03_004 crossref_primary_10_1016_j_compbiomed_2023_107124 crossref_primary_10_1016_j_jelekin_2013_06_011 crossref_primary_10_3233_THC_220283 crossref_primary_10_3390_app11104678 crossref_primary_10_1109_TNSRE_2023_3281410 crossref_primary_10_3390_s19235227 crossref_primary_10_1186_s40638_014_0002_7 crossref_primary_10_1109_TBME_2022_3161726 crossref_primary_10_1109_TNSRE_2016_2639443 crossref_primary_10_1016_j_bspc_2022_104088 crossref_primary_10_1109_JBHI_2014_2342274 crossref_primary_10_1016_j_jelekin_2019_02_001 crossref_primary_10_1155_2015_585180 crossref_primary_10_1109_ACCESS_2019_2956951 crossref_primary_10_1016_j_bspc_2021_103012 crossref_primary_10_3389_fbioe_2024_1492232 crossref_primary_10_5772_56717 crossref_primary_10_1109_TNSRE_2013_2283403 crossref_primary_10_1371_journal_pone_0224075 crossref_primary_10_1109_ACCESS_2023_3321510 crossref_primary_10_3390_s18041004 crossref_primary_10_1016_j_bspc_2019_02_011 crossref_primary_10_1109_ACCESS_2024_3436710 crossref_primary_10_1186_s12984_016_0169_y crossref_primary_10_1109_TNSRE_2015_2405765 crossref_primary_10_1371_journal_pone_0203835 crossref_primary_10_1016_j_bspc_2022_104012 crossref_primary_10_1007_s10846_019_01144_5 crossref_primary_10_1016_j_bspc_2021_102475 crossref_primary_10_1016_j_bspc_2022_103557 crossref_primary_10_3182_20140824_6_ZA_1003_01266 crossref_primary_10_1109_TNSRE_2022_3163149 crossref_primary_10_1016_j_jelekin_2024_102910 crossref_primary_10_3390_computers13010029 crossref_primary_10_1109_JAS_2024_124329 crossref_primary_10_1088_1741_2560_11_5_051001 crossref_primary_10_1109_LRA_2024_3350999 crossref_primary_10_1109_TNSRE_2013_2243470 crossref_primary_10_3390_app9102085 crossref_primary_10_1109_JAS_2021_1003865 crossref_primary_10_1109_TNSRE_2020_3038322 crossref_primary_10_1088_1741_2552_ab0e2e crossref_primary_10_1016_j_jelekin_2024_102864 crossref_primary_10_1016_j_cogr_2023_11_003 |
Cites_doi | 10.1016/j.jbiomech.2007.10.015 10.1186/1475-925X-9-41 10.1109/10.634654 10.1016/j.jbiomech.2010.03.049 10.1109/TBME.1980.326652 10.1016/S0268-0033(02)00183-3 10.1109/TBME.1980.326653 10.1016/j.jbiomech.2005.08.007 10.1109/10.764948 10.1016/j.jelekin.2004.06.007 10.1109/TRO.2008.926860 10.1016/S1050-6411(01)00033-5 10.1002/0471678384.ch13 10.1152/jappl.1971.30.3.345 10.1109/10.844217 10.1007/BF02311718 10.1109/3468.925661 10.1152/jappl.1983.54.3.714 10.1016/j.neulet.2004.06.055 10.1016/S0021-9290(03)00010-1 10.1016/j.jelekin.2007.03.006 10.2307/1267351 10.1109/TBME.2004.840498 10.1109/TBME.2009.2036444 10.1016/j.jelekin.2008.04.013 10.1007/s00221-003-1624-0 10.1016/1050-6411(94)00014-X 10.1016/j.clinbiomech.2008.08.003 10.1109/51.982275 10.1016/j.jelekin.2009.08.005 10.1016/j.jelekin.2003.10.005 10.1152/jappl.2001.91.5.2224 10.1016/0021-9290(94)90263-1 10.1016/j.jbiomech.2006.03.021 10.1152/jn.00936.2006 10.2307/2683673 10.1016/j.jelekin.2006.08.006 10.1109/10.341833 10.1109/10.284927 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2011 IEEE Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2011 IEEE – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2011.2170423 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 212 |
ExternalDocumentID | 2543761221 21968709 25487833 10_1109_TBME_2011_2170423 6032732 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c409t-d8d4564a949bb2652d47f1e123d3807c6841aa41f28353aa191d7217243840be3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 16:18:29 EDT 2025 Fri Jul 11 02:39:01 EDT 2025 Mon Jun 30 08:42:09 EDT 2025 Mon Jul 21 05:58:07 EDT 2025 Mon Jul 21 09:14:53 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 02:15:44 EDT 2025 Wed Aug 27 02:53:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Parameter estimation Biological system modeling Electrophysiology Modeling Posture Electrodiagnosis EMG amplitude estimation Non linear model Signal processing biomedical signal processing EMG signal processing Electromyography Dynamic model Elbow Biomedical engineering |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 2011 IEEE |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-d8d4564a949bb2652d47f1e123d3807c6841aa41f28353aa191d7217243840be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 SourceType-Conference Papers & Proceedings-2 |
PMID | 21968709 |
PQID | 912098401 |
PQPubID | 85474 |
PageCount | 8 |
ParticipantIDs | proquest_journals_912098401 pascalfrancis_primary_25487833 pubmed_primary_21968709 ieee_primary_6032732 crossref_citationtrail_10_1109_TBME_2011_2170423 proquest_miscellaneous_920794342 proquest_miscellaneous_912429500 crossref_primary_10_1109_TBME_2011_2170423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-Jan. 2012-01-00 2012 2012-Jan 20120101 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 solomonow (ref2) 1986; 65 ref36 ref14 ref33 ref11 kern (ref47) 2001; 91 ref32 ref10 ljung (ref30) 1999 kumar (ref5) 1996 press (ref31) 1994 ref17 ref16 ref19 ref18 koo (ref29) 2005; 15 gottlieb (ref26) 1971; 30 hassan (ref44) 1985; 59 ref24 ref45 ref23 an (ref1) 1983; 54 ref25 ref20 ref42 ref41 ref22 ref21 ref43 (ref38) 0 ref28 ref27 ref8 ref7 ref9 ref4 ref3 miller (ref39) 1977 ref6 ref40 vredenbregt (ref46) 1973; 1 |
References_xml | – ident: ref3 doi: 10.1016/j.jbiomech.2007.10.015 – ident: ref13 doi: 10.1186/1475-925X-9-41 – ident: ref20 doi: 10.1109/10.634654 – ident: ref43 doi: 10.1016/j.jbiomech.2010.03.049 – volume: 65 start-page: 223 year: 1986 ident: ref2 article-title: EMG-force model of the elbow's antagonistic muscle pair: The effect of joint position, gravity and recruitment publication-title: Amer J Phys Med – ident: ref15 doi: 10.1109/TBME.1980.326652 – ident: ref9 doi: 10.1016/S0268-0033(02)00183-3 – start-page: 671 year: 1994 ident: ref31 publication-title: Numerical Recipes in C – ident: ref16 doi: 10.1109/TBME.1980.326653 – ident: ref22 doi: 10.1016/j.jbiomech.2005.08.007 – ident: ref35 doi: 10.1109/10.764948 – volume: 15 start-page: 12 year: 2005 ident: ref29 article-title: Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow publication-title: J Electromygr Kinesiol doi: 10.1016/j.jelekin.2004.06.007 – ident: ref11 doi: 10.1109/TRO.2008.926860 – start-page: 491 year: 1999 ident: ref30 publication-title: System Identification Theory for the User – volume: 59 start-page: 441 year: 1985 ident: ref44 article-title: Isometric torque-angle relationship and movement-related activity of human elbow flexors: Implications for the equilibrium-point hypothesis publication-title: Exp Brain Res – ident: ref19 doi: 10.1016/S1050-6411(01)00033-5 – start-page: 272 year: 1977 ident: ref39 publication-title: Probability and statistics for engineers – ident: ref7 doi: 10.1002/0471678384.ch13 – volume: 30 start-page: 345 year: 1971 ident: ref26 article-title: Dynamic relationship between isometric muscle tension and the electromyogram in man publication-title: J Appl Physiol doi: 10.1152/jappl.1971.30.3.345 – ident: ref36 doi: 10.1109/10.844217 – ident: ref32 doi: 10.1007/BF02311718 – ident: ref12 doi: 10.1109/3468.925661 – volume: 1 start-page: 607 year: 1973 ident: ref46 article-title: Surface electromyography in relation to force, muscle length and endurance publication-title: New Develop Electromyogr Clin Neurophysiol – volume: 54 start-page: 714 year: 1983 ident: ref1 article-title: Determination of forces in extensor pollicis longus and flexor pollicis longus of the thumb publication-title: J Appl Physiol doi: 10.1152/jappl.1983.54.3.714 – ident: ref41 doi: 10.1016/j.neulet.2004.06.055 – ident: ref40 doi: 10.1016/S0021-9290(03)00010-1 – ident: ref45 doi: 10.1016/j.jelekin.2007.03.006 – ident: ref33 doi: 10.2307/1267351 – ident: ref37 doi: 10.1109/TBME.2004.840498 – ident: ref28 doi: 10.1109/TBME.2009.2036444 – ident: ref42 doi: 10.1016/j.jelekin.2008.04.013 – ident: ref10 doi: 10.1007/s00221-003-1624-0 – ident: ref6 doi: 10.1016/1050-6411(94)00014-X – year: 1996 ident: ref5 publication-title: Electromyography in Ergonomics – ident: ref8 doi: 10.1016/j.clinbiomech.2008.08.003 – ident: ref21 doi: 10.1109/51.982275 – ident: ref14 doi: 10.1016/j.jelekin.2009.08.005 – ident: ref25 doi: 10.1016/j.jelekin.2003.10.005 – volume: 91 start-page: 2224 year: 2001 ident: ref47 article-title: Long-term activity in upper- and lower-limb muscles of humans publication-title: J Appl Physiol doi: 10.1152/jappl.2001.91.5.2224 – ident: ref27 doi: 10.1016/0021-9290(94)90263-1 – ident: ref24 doi: 10.1016/j.jbiomech.2006.03.021 – ident: ref23 doi: 10.1152/jn.00936.2006 – year: 0 ident: ref38 – ident: ref34 doi: 10.2307/2683673 – ident: ref4 doi: 10.1016/j.jelekin.2006.08.006 – ident: ref18 doi: 10.1109/10.341833 – ident: ref17 doi: 10.1109/10.284927 |
SSID | ssj0014846 |
Score | 2.3485577 |
Snippet | The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) estimation... The surface electromyogram (EMG) from biceps and triceps muscles of 33 subjects was related to elbow torque, contrasting EMG amplitude (EMG sigma ) estimation... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 205 |
SubjectTerms | Adolescent Adult Aged Algorithms Biological and medical sciences Biological system modeling biomedical signal processing Computer Simulation Computerized, statistical medical data processing and models in biomedicine Elbow Joint - physiology Electrodiagnosis. Electric activity recording Electromyography Electromyography - methods EMG amplitude estimation EMG signal processing Female Fundamental and applied biological sciences. Psychology Humans Investigative techniques, diagnostic techniques (general aspects) Isometric Contraction - physiology Joints Medical management aid. Diagnosis aid Medical sciences Middle Aged Models, Biological Muscle, Skeletal - physiology Muscles Nervous system Nonlinear Dynamics Pattern Recognition, Automated - methods Physical Endurance - physiology Polynomials Posture - physiology Program processors Studies Torque Training Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports Young Adult |
Title | Identification of Constant-Posture EMG-Torque Relationship About the Elbow Using Nonlinear Dynamic Models |
URI | https://ieeexplore.ieee.org/document/6032732 https://www.ncbi.nlm.nih.gov/pubmed/21968709 https://www.proquest.com/docview/912098401 https://www.proquest.com/docview/912429500 https://www.proquest.com/docview/920794342 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeS6HygRMiWydxHj5C2VIhpaet1Fvkp1ixJNVuIgS_nhnbGyiCilsk24qdGWfe3xDyWoLSIbg2iTMVtjCri0SmjCXaWZAYQjou0aHfXJTnl_zTVXG1R95OtTDWWp98Zuf46GP5ptcjuspOSpaDtIUf7h0w3EKt1hQx4HUoymEpXOBM8BjBTJk4Wb5vFgGsE_RvzAPxCMCiBFYVN8SR76-C2ZFyCx_Ihc4W_1Y9vQg6e0ia3eZD5smX-Tiouf7xB67j_57uEXkQdVH6LjDPY7JnuwNy_zeEwgNyt4mx90OyCjW9Ljr5aO_oaVAuhwRb_o4bSxfNx2TZb-AYdMqy-7y6phhcGijomnSxVv036hMV6EWA6ZAb-uF7J7-uNMXObOvtE3J5tlieniexUUOiwTwcElMbRKWRggulsrLIDK9cakEoGsSz12XNUyl56hDcLZcSbERTYWcsnoN9qWz-lOx3fWefE2ps7XgBtJFM8UrlqrbcuDKvuDU6t2JG2I5erY4o5thMY916a4aJFqndIrXbSO0ZeTMtuQ4QHrdNPkTKTBMjUWbk-AZTTOMZWnx1DuuOdlzSxr_AthVYmAwnTGeETqNwfTEmIzvbj34KaAQFY7dMyZhH8YNNPAvs9-vtkYtf_H3XR-QenC0LHqOXZH_YjPYV6FCDOvaX5ycGDhQG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIgE98GihLIXiAydEtk7iPHyEsmWBZk9bqbfIiW2x6japdhOh9tczY3sDRVBxi2RbsTPjzPsbQt5KUDoEr1VgVIYtzPIkkCFjQW00SAwhDZfo0C9m6fSMfz1PzrfI-6EWRmttk8_0GB9tLF-1dY-usqOUxSBt4Yd7L8FiXFetNcQMeO7KclgIVzgS3McwQyaO5h-LiYPrBA0cM0EsBrBIgVnFLYFkO6xgfqRcwycyrrfFv5VPK4ROHpNis32Xe3Ix7rtqXN_8gez4v-d7Qh55bZR-cOzzlGzpZpfs_IZRuEvuFz76vkcWrqrXeDcfbQ09duplF2DT336l6aT4HMzbFRyDDnl23xdXFMNLHQVtk06WVfuD2lQFOnNAHXJFP1038nJRU-zNtlw_I2cnk_nxNPCtGoIaDMQuULlCXBopuKiqKE0ixTMTahCLChHt6zTnoZQ8NAjvFksJVqLKsDcWj8HCrHT8nGw3baNfEKp0bngCtJGs4lkVV7nmyqRxxrWqYy1GhG3oVdYexxzbaSxLa88wUSK1S6R26ak9Iu-GJVcOxOOuyXtImWGiJ8qIHN5iimE8Qpsvj2HdwYZLSv8fWJcCS5PhhOGI0GEULjBGZWSj295OAZ0gYeyOKRGzOH6wiX3Hfr_e7rn45d93_YY8mM6L0_L0y-zbAXkI54yc_-gV2e5WvX4NGlVXHdqL9BOIfxdO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Constant-Posture+EMG%E2%80%95Torque+Relationship+About+the+Elbow+Using+Nonlinear+Dynamic+Models&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=CHANCY%2C+Edward+A&rft.au=LUKAI+LIU&rft.au=PU+LIU&rft.au=ZANDT+MOYER%2C+Daniel+V&rft.date=2012&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9294&rft.volume=59&rft.issue=1&rft.spage=205&rft.epage=212&rft_id=info:doi/10.1109%2FTBME.2011.2170423&rft.externalDBID=n%2Fa&rft.externalDocID=25487833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |