In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries
[Display omitted] •B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and transportation of electrons.•The carbon network displays excellent performance as anode for NIBs and LIBs. Porous carbon nanostructures with het...
Saved in:
Published in | Applied surface science Vol. 464; pp. 422 - 428 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and transportation of electrons.•The carbon network displays excellent performance as anode for NIBs and LIBs.
Porous carbon nanostructures with hetero-atom doping are regarded as a promising anode candidate for rechargeable alkalis ion batteries. Herein, a novel boron-doped 3D hierarchical porous carbon network (B-CN) was prepared via a unique in situ double-template (NaCl and HBO3) method. The as-obtained B-CN with high specific surface area (480 m2 g−1), high-defect B-doping (2.74 at. %) and high volume of hierarchical pores (1.28 cm3/g) exhibits a reversible capacity as high as 200 mAh g−1 at 0.1 A g−1 after 100 cycles and superior rate capability of 189 mAh g−1 at 5 A g−1 for Na-ion batteries. It also exhibits excellent cycling performance (496 mAh g−1 after 100 cycles at 0.1 A g−1) and rate capacity (285 mAh g−1 at 5 A g−1) in Li-ion batteries. The outstanding electrochemical performance of B-CN can be attributed to the large surface area with more active sites produce by B-doping, short ions diffusion length and continuous electrons transport pathway provided by 3D hierarchical porous carbon architecture. Moreover, the surface-dominated redox reaction rendered by our tailored B-doped carbon nanostructures is a promising strategy for developing electrode materials with high rate capability. The convenient synthesis process offers a new tactic in fabricating high performance energy storage device. |
---|---|
AbstractList | [Display omitted]
•B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and transportation of electrons.•The carbon network displays excellent performance as anode for NIBs and LIBs.
Porous carbon nanostructures with hetero-atom doping are regarded as a promising anode candidate for rechargeable alkalis ion batteries. Herein, a novel boron-doped 3D hierarchical porous carbon network (B-CN) was prepared via a unique in situ double-template (NaCl and HBO3) method. The as-obtained B-CN with high specific surface area (480 m2 g−1), high-defect B-doping (2.74 at. %) and high volume of hierarchical pores (1.28 cm3/g) exhibits a reversible capacity as high as 200 mAh g−1 at 0.1 A g−1 after 100 cycles and superior rate capability of 189 mAh g−1 at 5 A g−1 for Na-ion batteries. It also exhibits excellent cycling performance (496 mAh g−1 after 100 cycles at 0.1 A g−1) and rate capacity (285 mAh g−1 at 5 A g−1) in Li-ion batteries. The outstanding electrochemical performance of B-CN can be attributed to the large surface area with more active sites produce by B-doping, short ions diffusion length and continuous electrons transport pathway provided by 3D hierarchical porous carbon architecture. Moreover, the surface-dominated redox reaction rendered by our tailored B-doped carbon nanostructures is a promising strategy for developing electrode materials with high rate capability. The convenient synthesis process offers a new tactic in fabricating high performance energy storage device. |
Author | Li, Yuan Dong, Kangze Wang, Dan Wang, Zhiyuan Liu, Yanguo Qi, Xiwei Shao, Jiahui Luo, Shaohua |
Author_xml | – sequence: 1 givenname: Dan surname: Wang fullname: Wang, Dan organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Zhiyuan surname: Wang fullname: Wang, Zhiyuan email: zhiyuanwang@neuq.edu.cn organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Yuan surname: Li fullname: Li, Yuan organization: School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China – sequence: 4 givenname: Kangze surname: Dong fullname: Dong, Kangze organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 5 givenname: Jiahui surname: Shao fullname: Shao, Jiahui organization: Hebei Construction Material Vocational and Technical College, Qinhuangdao 066004, China – sequence: 6 givenname: Shaohua surname: Luo fullname: Luo, Shaohua organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 7 givenname: Yanguo surname: Liu fullname: Liu, Yanguo organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 8 givenname: Xiwei surname: Qi fullname: Qi, Xiwei organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
BookMark | eNqFkMtKLDEQhoMoOF7ewEVeIG3S3ZmenMUB8XiDQTe6DpWkGjP2dJok48E38LHNOK5cKBQU1H-B-o7I_hhGJORM8EpwMT9fVTClTbJVzcWi4qrijdwjM7HoGiblot0ns2JTrG2a-pAcpbTiXNRFnZH3u5EmnzfUhY0ZkGVcTwNkpD2Y6C1kH0YaempCDCNzYUJHm3_02WOEaJ-LY6BT0TaJWoimmEfM_0N8oZAojMEhXZe66GFItA-RLj0rd0fvgW2rDeStiumEHPTFg6df-5g8XV89Xt6y5cPN3eXFktmWq8wsGmek6ltuXSNa2ZnOCNE5aOZtLdxCWalgLm35va5Np7jqpAFVBgBlq5pj0u56bQwpRez1FP0a4psWXG9p6pXe0dRbmporXWiW2J9vMevzJ50cwQ-_hf_uwlgeey3odLIeR4vOR7RZu-B_LvgAl0-X5g |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_1c05732 crossref_primary_10_1021_acsami_0c22958 crossref_primary_10_1002_smll_201907365 crossref_primary_10_1016_j_apsusc_2019_06_200 crossref_primary_10_1016_j_cclet_2021_06_063 crossref_primary_10_1039_D0TA10446A crossref_primary_10_1016_j_jcis_2020_10_100 crossref_primary_10_1016_j_ssi_2020_115455 crossref_primary_10_1002_celc_202101199 crossref_primary_10_1021_acsami_1c18464 crossref_primary_10_1002_adfm_202007247 crossref_primary_10_1016_j_apsusc_2024_161071 crossref_primary_10_1016_j_jpowsour_2021_230330 crossref_primary_10_1021_acssuschemeng_9b01944 crossref_primary_10_3390_nano8100854 crossref_primary_10_1002_ente_201900829 crossref_primary_10_1016_j_susmat_2021_e00375 crossref_primary_10_1002_ente_202401211 crossref_primary_10_1016_j_cis_2024_103279 crossref_primary_10_1073_pnas_2122252119 crossref_primary_10_1016_j_jallcom_2021_159771 crossref_primary_10_1016_j_ijhydene_2024_07_032 crossref_primary_10_1016_j_nantod_2019_100796 crossref_primary_10_1039_C9NJ04931B crossref_primary_10_1088_1361_6528_ab647b crossref_primary_10_1039_D0CY02266G crossref_primary_10_1021_acsaem_0c00534 crossref_primary_10_1007_s11581_023_05340_0 crossref_primary_10_1016_j_micromeso_2019_109901 crossref_primary_10_1002_adsu_202400312 crossref_primary_10_1016_j_diamond_2023_109969 crossref_primary_10_1016_j_apsusc_2020_146220 crossref_primary_10_20964_2022_10_32 crossref_primary_10_1016_j_cclet_2019_06_044 crossref_primary_10_1039_C9TA03797G crossref_primary_10_1016_j_carbon_2023_118350 crossref_primary_10_1002_er_5008 crossref_primary_10_1007_s42823_023_00559_3 crossref_primary_10_1007_s12649_020_01109_y crossref_primary_10_15826_chimtech_2023_10_3_13 crossref_primary_10_1002_adfm_202504272 crossref_primary_10_1016_j_electacta_2019_03_216 crossref_primary_10_1039_D2TA04194D crossref_primary_10_1155_2024_1847943 crossref_primary_10_1021_acs_energyfuels_4c03258 crossref_primary_10_2139_ssrn_3975972 crossref_primary_10_1002_cben_202200039 crossref_primary_10_1002_aenm_202000927 crossref_primary_10_1021_acsami_0c12413 crossref_primary_10_1021_acsami_0c10512 crossref_primary_10_1016_j_est_2024_113148 crossref_primary_10_3389_fchem_2022_953782 crossref_primary_10_1002_ente_201801164 crossref_primary_10_3740_MRSK_2020_30_9_458 crossref_primary_10_1016_j_apsusc_2020_147302 crossref_primary_10_1016_j_ijhydene_2020_09_102 crossref_primary_10_2139_ssrn_4058916 crossref_primary_10_1016_j_est_2023_108673 crossref_primary_10_1016_j_jelechem_2019_113554 crossref_primary_10_1002_cey2_257 crossref_primary_10_1016_j_gee_2024_09_007 crossref_primary_10_1016_j_jcis_2024_03_053 crossref_primary_10_1039_D0SE00517G crossref_primary_10_1002_advs_202105603 crossref_primary_10_1002_cssc_202201046 crossref_primary_10_1016_j_carbon_2022_01_025 crossref_primary_10_1002_batt_202400352 crossref_primary_10_1016_j_ensm_2020_07_027 crossref_primary_10_1007_s11581_020_03630_5 crossref_primary_10_1016_j_coelec_2021_100840 crossref_primary_10_1016_j_jsamd_2019_07_007 crossref_primary_10_5796_electrochemistry_21_00039 crossref_primary_10_1002_cnl2_171 crossref_primary_10_1016_j_apsusc_2020_145946 crossref_primary_10_1016_j_cjche_2020_11_042 crossref_primary_10_1016_j_jcis_2019_11_091 crossref_primary_10_1016_j_apsusc_2022_152759 crossref_primary_10_1038_s41598_021_85187_5 crossref_primary_10_1039_D3RA02802J crossref_primary_10_1007_s11581_020_03693_4 crossref_primary_10_1016_j_jcis_2020_10_131 crossref_primary_10_1039_C8TA09750J crossref_primary_10_1016_j_cej_2021_131951 crossref_primary_10_1002_marc_202200740 crossref_primary_10_1021_acsaem_4c03063 crossref_primary_10_1039_D2CY00890D crossref_primary_10_1016_j_est_2020_102068 |
Cites_doi | 10.1002/aenm.201600659 10.1002/adfm.201402984 10.1002/smll.201701561 10.1002/advs.201600468 10.1016/j.ijhydene.2016.06.016 10.1039/C6CS00776G 10.1016/j.electacta.2017.05.090 10.1021/nn406105n 10.1039/C6NJ02458K 10.1039/C5RA24613J 10.1039/c3ee44164d 10.1016/j.elecom.2013.09.004 10.1016/j.electacta.2016.07.065 10.1016/j.carbon.2016.03.022 10.1002/aenm.201100654 10.1039/c4nr00025k 10.1038/ncomms12122 10.1021/la403366e 10.1002/aenm.201702403 10.1039/C7CC00301C 10.1016/j.ensm.2016.12.005 10.1039/C6CC02147F 10.1021/cr500192f 10.1039/c3ee41638k 10.1016/j.carbon.2015.11.009 10.1016/j.solidstatesciences.2015.02.003 10.1039/C6RA04778E 10.1039/C6TA10494K 10.1016/j.electacta.2015.12.002 10.1002/smll.201703472 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2018.09.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
EndPage | 428 |
ExternalDocumentID | 10_1016_j_apsusc_2018_09_035 S0169433218324516 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SSH WUQ |
ID | FETCH-LOGICAL-c409t-cebdb59f40cd31457b7b117da36421d89c59a65c18722b790975ba9ba9aae5493 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Thu Apr 24 22:56:39 EDT 2025 Tue Jul 01 02:09:17 EDT 2025 Fri Feb 23 02:47:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium ion batteries Hierarchical Sodium ion batteries Boron doping 3D porous carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-cebdb59f40cd31457b7b117da36421d89c59a65c18722b790975ba9ba9aae5493 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2018_09_035 crossref_citationtrail_10_1016_j_apsusc_2018_09_035 elsevier_sciencedirect_doi_10_1016_j_apsusc_2018_09_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied surface science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhu, Li, Li, He, Liu, He, Shi, Zhao (b0105) 2016; 212 Bhattacharjya, Park, Kim, Choi, Inamdar, Yu (b0155) 2014; 30 Long, Chen, Xu, Xiong, Jiang, Zou, Hu, Xin, Zhang, Huang (b0125) 2013; 6 Hwang, Myung, Sun (b0015) 2017; 46 Li, Jian, Wang, Rodríguez-Pérez, Bommier, Ji (b0030) 2017; 53 Yoon, Dong, Chung, Chang, Kim, Kim (b0050) 2016; 98 Wang, Luo, Chen, Wang, Liu, Qi, Shi, Zhao (b0115) 2016; 6 Augustyn, Simon, Dunn (b0145) 2014; 7 Li, Hu, Titirici, Chen, Huang (b0035) 2016; 6 Cui, Yao, Kim (b0020) 2016; 7 Wang, Yu, Shi, Mao, Chen, Liu (b0070) 2016; 188 Wang, Fan, Li, Wu, Li, Sun, Xie, Zhang, Tong (b0075) 2017; 244 Kim, Hong, Park, Kim, Hwang, Kang (b0040) 2015; 25 Banerjee, Upadhyay, Puthusseri, Aravindan, Madhavi, Ogale (b0085) 2014; 6 Nayak, Yang, Brehm, Adelhelm (b0025) 2018; 56 Wang, Yang, Yang, Lin, Chen, Yu (b0055) 2017; 4 Ying, Zheng, Zhong, Cheng, Fan, Yan (b0045) 2018; 14 Xia, Gao, Sun, Yu (b0060) 2017; 13 Feng, He, Ding, Zhang, He, Dong, Wen, Du, Liu (b0130) 2016; 6 Zhang, Xia, Guo, Li, Sun, Yu (b0120) 2016; 41 Fan, Liu, Yan, Ning, Wang, Wei, Zhi, Wei (b0095) 2012; 2 Yun, Du, Hwang, Jung, Sun (b0090) 2016; 5 Yi, Zai, Dai, Gordin, Wang (b0135) 2013; 36 Wang, Ma, Yang, Han, Tao, Song, Liu, Guo, Liu (b0140) 2015; 41 Ma, Ma, Wu, Geng, Shao, Song, Wan, Qiu (b0080) 2016; 52 Yabuuchi, Kubota, Dahbi, Komaba (b0010) 2014; 114 Chao, Zhu, Yang, Xia, Liu, Jin, Fan, Savilov, Lin, Hong (b0150) 2016; 7 Nersisyan, Joo, Yoo, Kim, Lee, Eom, Kim, Lee, Lee (b0065) 2016; 103 Wang, Wang, Luo, Bao, Liu, Qi, He, Shi, Zhao (b0110) 2016; 41 Xu, Amine, Abouimrane, Che, Dahbi, Ma, Saadoune, Alami, Mattis, Pan (b0005) 2018 Qin, He, Zhao, Wang, Shi, Liu, Li (b0100) 2014; 8 Yun (10.1016/j.apsusc.2018.09.035_b0090) 2016; 5 Qin (10.1016/j.apsusc.2018.09.035_b0100) 2014; 8 Wang (10.1016/j.apsusc.2018.09.035_b0140) 2015; 41 Yoon (10.1016/j.apsusc.2018.09.035_b0050) 2016; 98 Wang (10.1016/j.apsusc.2018.09.035_b0075) 2017; 244 Nersisyan (10.1016/j.apsusc.2018.09.035_b0065) 2016; 103 Ying (10.1016/j.apsusc.2018.09.035_b0045) 2018; 14 Banerjee (10.1016/j.apsusc.2018.09.035_b0085) 2014; 6 Wang (10.1016/j.apsusc.2018.09.035_b0070) 2016; 188 Augustyn (10.1016/j.apsusc.2018.09.035_b0145) 2014; 7 Wang (10.1016/j.apsusc.2018.09.035_b0055) 2017; 4 Chao (10.1016/j.apsusc.2018.09.035_b0150) 2016; 7 Cui (10.1016/j.apsusc.2018.09.035_b0020) 2016; 7 Kim (10.1016/j.apsusc.2018.09.035_b0040) 2015; 25 Yabuuchi (10.1016/j.apsusc.2018.09.035_b0010) 2014; 114 Nayak (10.1016/j.apsusc.2018.09.035_b0025) 2018; 56 Zhang (10.1016/j.apsusc.2018.09.035_b0120) 2016; 41 Fan (10.1016/j.apsusc.2018.09.035_b0095) 2012; 2 Long (10.1016/j.apsusc.2018.09.035_b0125) 2013; 6 Yi (10.1016/j.apsusc.2018.09.035_b0135) 2013; 36 Wang (10.1016/j.apsusc.2018.09.035_b0115) 2016; 6 Ma (10.1016/j.apsusc.2018.09.035_b0080) 2016; 52 Zhu (10.1016/j.apsusc.2018.09.035_b0105) 2016; 212 Bhattacharjya (10.1016/j.apsusc.2018.09.035_b0155) 2014; 30 Li (10.1016/j.apsusc.2018.09.035_b0035) 2016; 6 Xu (10.1016/j.apsusc.2018.09.035_b0005) 2018 Wang (10.1016/j.apsusc.2018.09.035_b0110) 2016; 41 Hwang (10.1016/j.apsusc.2018.09.035_b0015) 2017; 46 Li (10.1016/j.apsusc.2018.09.035_b0030) 2017; 53 Xia (10.1016/j.apsusc.2018.09.035_b0060) 2017; 13 Feng (10.1016/j.apsusc.2018.09.035_b0130) 2016; 6 |
References_xml | – volume: 2 start-page: 419 year: 2012 end-page: 424 ident: b0095 article-title: Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors publication-title: Adv. Energy Mater. – volume: 6 start-page: 5949 year: 2016 end-page: 5956 ident: b0130 article-title: Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors publication-title: RSC Adv. – volume: 6 start-page: 2497 year: 2013 end-page: 2504 ident: b0125 article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors publication-title: Energ. Environ. Sci. – volume: 8 start-page: 1728 year: 2014 end-page: 1738 ident: b0100 article-title: Graphene networks anchored with Sn@Graphene as lithium ion battery anode publication-title: ACS Nano – volume: 6 start-page: 54718 year: 2016 end-page: 54726 ident: b0115 article-title: Three-dimensional porous carbon nanosheet networks anchored with Cu publication-title: RSC Adv. – start-page: 1702403 year: 2018 ident: b0005 article-title: Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion Batteries publication-title: Adv. Energy. Mater. – volume: 46 start-page: 3529 year: 2017 end-page: 3614 ident: b0015 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. – volume: 188 start-page: 103 year: 2016 end-page: 110 ident: b0070 article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries publication-title: Electrochim. Acta – volume: 25 start-page: 534 year: 2015 end-page: 541 ident: b0040 article-title: Sodium storage behavior in natural graphite using ether-based electrolyte systems publication-title: Adv. Funct. Mater. – volume: 52 start-page: 6673 year: 2016 end-page: 6676 ident: b0080 article-title: Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors publication-title: Chem. Commun. – volume: 41 start-page: 14252 year: 2016 end-page: 14260 ident: b0120 article-title: Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries publication-title: Int. J. Hydrogen Energy – volume: 14 start-page: 1703472 year: 2018 ident: b0045 article-title: Amorphous red phosphorus embedded in sandwiched porous carbon Enabling superior sodium storage performances publication-title: Small – volume: 41 start-page: 393 year: 2016 end-page: 402 ident: b0110 article-title: Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries publication-title: New J. Chem. – volume: 212 start-page: 621 year: 2016 end-page: 629 ident: b0105 article-title: Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications publication-title: Electrochim. Acta – volume: 7 start-page: 1597 year: 2014 end-page: 1614 ident: b0145 article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage publication-title: Energ. Environ. Sci. – volume: 30 start-page: 318 year: 2014 end-page: 324 ident: b0155 article-title: Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries publication-title: Langmuir – volume: 98 start-page: 213 year: 2016 end-page: 220 ident: b0050 article-title: Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity publication-title: Carbon – volume: 103 start-page: 255 year: 2016 end-page: 262 ident: b0065 article-title: Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery publication-title: Carbon – volume: 13 start-page: 1701561 year: 2017 ident: b0060 article-title: Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes publication-title: Small – volume: 7 start-page: 12122 year: 2016 ident: b0150 article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance publication-title: Nat. Commun – volume: 4 start-page: 1600468 year: 2017 ident: b0055 article-title: Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping publication-title: Adv. Sci. – volume: 114 start-page: 11636 year: 2014 end-page: 11682 ident: b0010 article-title: Research development on sodium-ion batteries publication-title: Chem. Rev. – volume: 244 start-page: 86 year: 2017 end-page: 95 ident: b0075 article-title: Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance publication-title: Electrochim. Acta – volume: 53 start-page: 2610 year: 2017 end-page: 2613 ident: b0030 article-title: Hard carbon anodes of sodium-ion batteries: undervalued rate capability publication-title: Chem. Commun. – volume: 56 start-page: 2 year: 2018 end-page: 21 ident: b0025 article-title: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 29 year: 2013 end-page: 32 ident: b0135 article-title: Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries publication-title: Electrochem. Commun. – volume: 41 start-page: 36 year: 2015 end-page: 42 ident: b0140 article-title: Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries publication-title: Solid State Sci. – volume: 7 start-page: 64 year: 2016 end-page: 114 ident: b0020 article-title: Recent progress in rational design of anode materials for high-performance Na-ion batteries publication-title: Energy Storage Mat. – volume: 5 start-page: 2802 year: 2016 end-page: 2810 ident: b0090 article-title: Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries publication-title: J. Mater. Chem. A – volume: 6 start-page: 1600659 year: 2016 ident: b0035 article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries publication-title: Adv. Energy. Mater. – volume: 6 start-page: 4387 year: 2014 end-page: 4394 ident: b0085 article-title: MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors Li-HECs publication-title: Nanoscale – volume: 6 start-page: 1600659 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0035 article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201600659 – volume: 25 start-page: 534 year: 2015 ident: 10.1016/j.apsusc.2018.09.035_b0040 article-title: Sodium storage behavior in natural graphite using ether-based electrolyte systems publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402984 – volume: 13 start-page: 1701561 year: 2017 ident: 10.1016/j.apsusc.2018.09.035_b0060 article-title: Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes publication-title: Small doi: 10.1002/smll.201701561 – volume: 4 start-page: 1600468 year: 2017 ident: 10.1016/j.apsusc.2018.09.035_b0055 article-title: Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping publication-title: Adv. Sci. doi: 10.1002/advs.201600468 – volume: 41 start-page: 14252 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0120 article-title: Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.06.016 – volume: 46 start-page: 3529 year: 2017 ident: 10.1016/j.apsusc.2018.09.035_b0015 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 244 start-page: 86 year: 2017 ident: 10.1016/j.apsusc.2018.09.035_b0075 article-title: Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.090 – volume: 8 start-page: 1728 year: 2014 ident: 10.1016/j.apsusc.2018.09.035_b0100 article-title: Graphene networks anchored with Sn@Graphene as lithium ion battery anode publication-title: ACS Nano doi: 10.1021/nn406105n – volume: 41 start-page: 393 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0110 article-title: Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries publication-title: New J. Chem. doi: 10.1039/C6NJ02458K – volume: 6 start-page: 5949 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0130 article-title: Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors publication-title: RSC Adv. doi: 10.1039/C5RA24613J – volume: 56 start-page: 2 year: 2018 ident: 10.1016/j.apsusc.2018.09.035_b0025 article-title: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1597 year: 2014 ident: 10.1016/j.apsusc.2018.09.035_b0145 article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage publication-title: Energ. Environ. Sci. doi: 10.1039/c3ee44164d – volume: 36 start-page: 29 year: 2013 ident: 10.1016/j.apsusc.2018.09.035_b0135 article-title: Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.09.004 – volume: 212 start-page: 621 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0105 article-title: Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.07.065 – volume: 103 start-page: 255 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0065 article-title: Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery publication-title: Carbon doi: 10.1016/j.carbon.2016.03.022 – volume: 2 start-page: 419 year: 2012 ident: 10.1016/j.apsusc.2018.09.035_b0095 article-title: Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100654 – volume: 6 start-page: 4387 year: 2014 ident: 10.1016/j.apsusc.2018.09.035_b0085 article-title: MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors Li-HECs publication-title: Nanoscale doi: 10.1039/c4nr00025k – volume: 7 start-page: 12122 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0150 article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance publication-title: Nat. Commun doi: 10.1038/ncomms12122 – volume: 30 start-page: 318 year: 2014 ident: 10.1016/j.apsusc.2018.09.035_b0155 article-title: Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries publication-title: Langmuir doi: 10.1021/la403366e – start-page: 1702403 year: 2018 ident: 10.1016/j.apsusc.2018.09.035_b0005 article-title: Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion Batteries publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201702403 – volume: 53 start-page: 2610 year: 2017 ident: 10.1016/j.apsusc.2018.09.035_b0030 article-title: Hard carbon anodes of sodium-ion batteries: undervalued rate capability publication-title: Chem. Commun. doi: 10.1039/C7CC00301C – volume: 7 start-page: 64 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0020 article-title: Recent progress in rational design of anode materials for high-performance Na-ion batteries publication-title: Energy Storage Mat. doi: 10.1016/j.ensm.2016.12.005 – volume: 52 start-page: 6673 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0080 article-title: Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors publication-title: Chem. Commun. doi: 10.1039/C6CC02147F – volume: 114 start-page: 11636 year: 2014 ident: 10.1016/j.apsusc.2018.09.035_b0010 article-title: Research development on sodium-ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500192f – volume: 6 start-page: 2497 year: 2013 ident: 10.1016/j.apsusc.2018.09.035_b0125 article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors publication-title: Energ. Environ. Sci. doi: 10.1039/c3ee41638k – volume: 98 start-page: 213 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0050 article-title: Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity publication-title: Carbon doi: 10.1016/j.carbon.2015.11.009 – volume: 41 start-page: 36 year: 2015 ident: 10.1016/j.apsusc.2018.09.035_b0140 article-title: Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2015.02.003 – volume: 6 start-page: 54718 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0115 article-title: Three-dimensional porous carbon nanosheet networks anchored with Cu6Sn5@carbon as a high-performance anode material for lithium ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA04778E – volume: 5 start-page: 2802 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0090 article-title: Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10494K – volume: 188 start-page: 103 year: 2016 ident: 10.1016/j.apsusc.2018.09.035_b0070 article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.002 – volume: 14 start-page: 1703472 year: 2018 ident: 10.1016/j.apsusc.2018.09.035_b0045 article-title: Amorphous red phosphorus embedded in sandwiched porous carbon Enabling superior sodium storage performances publication-title: Small doi: 10.1002/smll.201703472 |
SSID | ssj0012873 |
Score | 2.5455682 |
Snippet | [Display omitted]
•B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 422 |
SubjectTerms | 3D porous carbon Boron doping Hierarchical Lithium ion batteries Sodium ion batteries |
Title | In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries |
URI | https://dx.doi.org/10.1016/j.apsusc.2018.09.035 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvHNHLzGbTfNpjmKD9bXXlTwVvIqrCztso-rZ3-2M33ICqIg9NKQCSUzTL5pZr5h7Cy2iRNBCB5CJHjiRcx1SB2PdAhGWJMqR9XIj8P-4CW5e5WvHXbZ1sJQWmXj-2ufXnnrZqTb7GZ3Mhp1n4hHhNi3yCip3SxVsCeKrPz8_SvNA91vfcuMk6k6qNeWz1U5XgYj0RkRGcZpzXYqfz6elo6cm0220WBFuKg_Z4t1QrHN1pcYBHfYx20Bs9F8Ab5c2HHgxDQ1RvgIubHT5ncclDlYIirgvpwED-IKqAF2dYWAGgJE4Bj-gzNTi5OLOi8czAxMUfoACGlrKwXEt_Aw4jjuYWg4LW0rek6MtnfZy8318-WAN80VuMOQbs5dsN5KnSeRQwUlUlll41h5I6j01afaSW360sWp6vWs0pFW0hqNjzEBg0qxx1aKsgj7DIgBPpdBJ3mKeMCmKa4oUSLP-zrvOX_ARLunmWuYx6kBxjhrU8zesloTGWkii3SGmjhg_EtqUjNv_DFfterKvllQhofDr5KH_5Y8Ymv4RglnPJbHbGU-XYQTBClze1pZ4Slbvbi9Hww_AdXg6XY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKOQAHxFOU3YU5cDVN6riJj6tlq-5u2wut1JvlV6SiKqna9MqZn81MHlWREEgr5eR4osgzGX8Tz3zD2JfYJk4EIXgIkeCJFzFXIXM8UiEYYU2WOqpGni_G01Vyv5brHrvpamEorbL1_Y1Pr711OzJsV3O422yG34lHhNi3yCip3ewT9jTBz5faGHz9ecrzQP_bHDPjbCoPGnX1c3WSl8FQ9EBMhnHW0J3Kv-9PZ3vO5BV72YJFuG7e5zXrheINe3FGIfiW_bor4LCpjuDLo90GTlRTW8SPkBu7b__HQZmDJaYC7std8CC-AXXArs8QUEWAEBzjf3Bmb3Fy0SSGgzmAKUofADFtY6aAABdmG47jHhaG06Ntzc-J4fY7tprcLm-mvO2uwB3GdBV3wXorVZ5EDjWUyNSmNo5TbwTVvvpMOanMWLo4S0cjm6pIpdIahZcxAaNK8Z71i7IIHxgQBXwug0ryDAGBzTJ8okSJPB-rfOT8gIluTbVrqcepA8ZWdzlmP3SjCU2a0JHSqIkB4yepXUO98Z_5aacu_YcJadwd_in58dGSn9mz6XI-07O7xcMFe453KPuMx_KS9av9MVwhYqnsp9oifwM3ousE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+double-template+fabrication+of+boron-doped+3D+hierarchical+porous+carbon+network+as+anode+materials+for+Li-+and+Na-ion+batteries&rft.jtitle=Applied+surface+science&rft.au=Wang%2C+Dan&rft.au=Wang%2C+Zhiyuan&rft.au=Li%2C+Yuan&rft.au=Dong%2C+Kangze&rft.date=2019-01-15&rft.issn=0169-4332&rft.volume=464&rft.spage=422&rft.epage=428&rft_id=info:doi/10.1016%2Fj.apsusc.2018.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2018_09_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |