In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries

[Display omitted] •B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and transportation of electrons.•The carbon network displays excellent performance as anode for NIBs and LIBs. Porous carbon nanostructures with het...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 464; pp. 422 - 428
Main Authors Wang, Dan, Wang, Zhiyuan, Li, Yuan, Dong, Kangze, Shao, Jiahui, Luo, Shaohua, Liu, Yanguo, Qi, Xiwei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and transportation of electrons.•The carbon network displays excellent performance as anode for NIBs and LIBs. Porous carbon nanostructures with hetero-atom doping are regarded as a promising anode candidate for rechargeable alkalis ion batteries. Herein, a novel boron-doped 3D hierarchical porous carbon network (B-CN) was prepared via a unique in situ double-template (NaCl and HBO3) method. The as-obtained B-CN with high specific surface area (480 m2 g−1), high-defect B-doping (2.74 at. %) and high volume of hierarchical pores (1.28 cm3/g) exhibits a reversible capacity as high as 200 mAh g−1 at 0.1 A g−1 after 100 cycles and superior rate capability of 189 mAh g−1 at 5 A g−1 for Na-ion batteries. It also exhibits excellent cycling performance (496 mAh g−1 after 100 cycles at 0.1 A g−1) and rate capacity (285 mAh g−1 at 5 A g−1) in Li-ion batteries. The outstanding electrochemical performance of B-CN can be attributed to the large surface area with more active sites produce by B-doping, short ions diffusion length and continuous electrons transport pathway provided by 3D hierarchical porous carbon architecture. Moreover, the surface-dominated redox reaction rendered by our tailored B-doped carbon nanostructures is a promising strategy for developing electrode materials with high rate capability. The convenient synthesis process offers a new tactic in fabricating high performance energy storage device.
AbstractList [Display omitted] •B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and transportation of electrons.•The carbon network displays excellent performance as anode for NIBs and LIBs. Porous carbon nanostructures with hetero-atom doping are regarded as a promising anode candidate for rechargeable alkalis ion batteries. Herein, a novel boron-doped 3D hierarchical porous carbon network (B-CN) was prepared via a unique in situ double-template (NaCl and HBO3) method. The as-obtained B-CN with high specific surface area (480 m2 g−1), high-defect B-doping (2.74 at. %) and high volume of hierarchical pores (1.28 cm3/g) exhibits a reversible capacity as high as 200 mAh g−1 at 0.1 A g−1 after 100 cycles and superior rate capability of 189 mAh g−1 at 5 A g−1 for Na-ion batteries. It also exhibits excellent cycling performance (496 mAh g−1 after 100 cycles at 0.1 A g−1) and rate capacity (285 mAh g−1 at 5 A g−1) in Li-ion batteries. The outstanding electrochemical performance of B-CN can be attributed to the large surface area with more active sites produce by B-doping, short ions diffusion length and continuous electrons transport pathway provided by 3D hierarchical porous carbon architecture. Moreover, the surface-dominated redox reaction rendered by our tailored B-doped carbon nanostructures is a promising strategy for developing electrode materials with high rate capability. The convenient synthesis process offers a new tactic in fabricating high performance energy storage device.
Author Li, Yuan
Dong, Kangze
Wang, Dan
Wang, Zhiyuan
Liu, Yanguo
Qi, Xiwei
Shao, Jiahui
Luo, Shaohua
Author_xml – sequence: 1
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Zhiyuan
  surname: Wang
  fullname: Wang, Zhiyuan
  email: zhiyuanwang@neuq.edu.cn
  organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
– sequence: 4
  givenname: Kangze
  surname: Dong
  fullname: Dong, Kangze
  organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 5
  givenname: Jiahui
  surname: Shao
  fullname: Shao, Jiahui
  organization: Hebei Construction Material Vocational and Technical College, Qinhuangdao 066004, China
– sequence: 6
  givenname: Shaohua
  surname: Luo
  fullname: Luo, Shaohua
  organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 7
  givenname: Yanguo
  surname: Liu
  fullname: Liu, Yanguo
  organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 8
  givenname: Xiwei
  surname: Qi
  fullname: Qi, Xiwei
  organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
BookMark eNqFkMtKLDEQhoMoOF7ewEVeIG3S3ZmenMUB8XiDQTe6DpWkGjP2dJok48E38LHNOK5cKBQU1H-B-o7I_hhGJORM8EpwMT9fVTClTbJVzcWi4qrijdwjM7HoGiblot0ns2JTrG2a-pAcpbTiXNRFnZH3u5EmnzfUhY0ZkGVcTwNkpD2Y6C1kH0YaempCDCNzYUJHm3_02WOEaJ-LY6BT0TaJWoimmEfM_0N8oZAojMEhXZe66GFItA-RLj0rd0fvgW2rDeStiumEHPTFg6df-5g8XV89Xt6y5cPN3eXFktmWq8wsGmek6ltuXSNa2ZnOCNE5aOZtLdxCWalgLm35va5Np7jqpAFVBgBlq5pj0u56bQwpRez1FP0a4psWXG9p6pXe0dRbmporXWiW2J9vMevzJ50cwQ-_hf_uwlgeey3odLIeR4vOR7RZu-B_LvgAl0-X5g
CitedBy_id crossref_primary_10_1021_acs_jpcc_1c05732
crossref_primary_10_1021_acsami_0c22958
crossref_primary_10_1002_smll_201907365
crossref_primary_10_1016_j_apsusc_2019_06_200
crossref_primary_10_1016_j_cclet_2021_06_063
crossref_primary_10_1039_D0TA10446A
crossref_primary_10_1016_j_jcis_2020_10_100
crossref_primary_10_1016_j_ssi_2020_115455
crossref_primary_10_1002_celc_202101199
crossref_primary_10_1021_acsami_1c18464
crossref_primary_10_1002_adfm_202007247
crossref_primary_10_1016_j_apsusc_2024_161071
crossref_primary_10_1016_j_jpowsour_2021_230330
crossref_primary_10_1021_acssuschemeng_9b01944
crossref_primary_10_3390_nano8100854
crossref_primary_10_1002_ente_201900829
crossref_primary_10_1016_j_susmat_2021_e00375
crossref_primary_10_1002_ente_202401211
crossref_primary_10_1016_j_cis_2024_103279
crossref_primary_10_1073_pnas_2122252119
crossref_primary_10_1016_j_jallcom_2021_159771
crossref_primary_10_1016_j_ijhydene_2024_07_032
crossref_primary_10_1016_j_nantod_2019_100796
crossref_primary_10_1039_C9NJ04931B
crossref_primary_10_1088_1361_6528_ab647b
crossref_primary_10_1039_D0CY02266G
crossref_primary_10_1021_acsaem_0c00534
crossref_primary_10_1007_s11581_023_05340_0
crossref_primary_10_1016_j_micromeso_2019_109901
crossref_primary_10_1002_adsu_202400312
crossref_primary_10_1016_j_diamond_2023_109969
crossref_primary_10_1016_j_apsusc_2020_146220
crossref_primary_10_20964_2022_10_32
crossref_primary_10_1016_j_cclet_2019_06_044
crossref_primary_10_1039_C9TA03797G
crossref_primary_10_1016_j_carbon_2023_118350
crossref_primary_10_1002_er_5008
crossref_primary_10_1007_s42823_023_00559_3
crossref_primary_10_1007_s12649_020_01109_y
crossref_primary_10_15826_chimtech_2023_10_3_13
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1016_j_electacta_2019_03_216
crossref_primary_10_1039_D2TA04194D
crossref_primary_10_1155_2024_1847943
crossref_primary_10_1021_acs_energyfuels_4c03258
crossref_primary_10_2139_ssrn_3975972
crossref_primary_10_1002_cben_202200039
crossref_primary_10_1002_aenm_202000927
crossref_primary_10_1021_acsami_0c12413
crossref_primary_10_1021_acsami_0c10512
crossref_primary_10_1016_j_est_2024_113148
crossref_primary_10_3389_fchem_2022_953782
crossref_primary_10_1002_ente_201801164
crossref_primary_10_3740_MRSK_2020_30_9_458
crossref_primary_10_1016_j_apsusc_2020_147302
crossref_primary_10_1016_j_ijhydene_2020_09_102
crossref_primary_10_2139_ssrn_4058916
crossref_primary_10_1016_j_est_2023_108673
crossref_primary_10_1016_j_jelechem_2019_113554
crossref_primary_10_1002_cey2_257
crossref_primary_10_1016_j_gee_2024_09_007
crossref_primary_10_1016_j_jcis_2024_03_053
crossref_primary_10_1039_D0SE00517G
crossref_primary_10_1002_advs_202105603
crossref_primary_10_1002_cssc_202201046
crossref_primary_10_1016_j_carbon_2022_01_025
crossref_primary_10_1002_batt_202400352
crossref_primary_10_1016_j_ensm_2020_07_027
crossref_primary_10_1007_s11581_020_03630_5
crossref_primary_10_1016_j_coelec_2021_100840
crossref_primary_10_1016_j_jsamd_2019_07_007
crossref_primary_10_5796_electrochemistry_21_00039
crossref_primary_10_1002_cnl2_171
crossref_primary_10_1016_j_apsusc_2020_145946
crossref_primary_10_1016_j_cjche_2020_11_042
crossref_primary_10_1016_j_jcis_2019_11_091
crossref_primary_10_1016_j_apsusc_2022_152759
crossref_primary_10_1038_s41598_021_85187_5
crossref_primary_10_1039_D3RA02802J
crossref_primary_10_1007_s11581_020_03693_4
crossref_primary_10_1016_j_jcis_2020_10_131
crossref_primary_10_1039_C8TA09750J
crossref_primary_10_1016_j_cej_2021_131951
crossref_primary_10_1002_marc_202200740
crossref_primary_10_1021_acsaem_4c03063
crossref_primary_10_1039_D2CY00890D
crossref_primary_10_1016_j_est_2020_102068
Cites_doi 10.1002/aenm.201600659
10.1002/adfm.201402984
10.1002/smll.201701561
10.1002/advs.201600468
10.1016/j.ijhydene.2016.06.016
10.1039/C6CS00776G
10.1016/j.electacta.2017.05.090
10.1021/nn406105n
10.1039/C6NJ02458K
10.1039/C5RA24613J
10.1039/c3ee44164d
10.1016/j.elecom.2013.09.004
10.1016/j.electacta.2016.07.065
10.1016/j.carbon.2016.03.022
10.1002/aenm.201100654
10.1039/c4nr00025k
10.1038/ncomms12122
10.1021/la403366e
10.1002/aenm.201702403
10.1039/C7CC00301C
10.1016/j.ensm.2016.12.005
10.1039/C6CC02147F
10.1021/cr500192f
10.1039/c3ee41638k
10.1016/j.carbon.2015.11.009
10.1016/j.solidstatesciences.2015.02.003
10.1039/C6RA04778E
10.1039/C6TA10494K
10.1016/j.electacta.2015.12.002
10.1002/smll.201703472
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2018.09.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
EndPage 428
ExternalDocumentID 10_1016_j_apsusc_2018_09_035
S0169433218324516
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SSH
WUQ
ID FETCH-LOGICAL-c409t-cebdb59f40cd31457b7b117da36421d89c59a65c18722b790975ba9ba9aae5493
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Thu Apr 24 22:56:39 EDT 2025
Tue Jul 01 02:09:17 EDT 2025
Fri Feb 23 02:47:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium ion batteries
Hierarchical
Sodium ion batteries
Boron doping
3D porous carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-cebdb59f40cd31457b7b117da36421d89c59a65c18722b790975ba9ba9aae5493
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_apsusc_2018_09_035
crossref_citationtrail_10_1016_j_apsusc_2018_09_035
elsevier_sciencedirect_doi_10_1016_j_apsusc_2018_09_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhu, Li, Li, He, Liu, He, Shi, Zhao (b0105) 2016; 212
Bhattacharjya, Park, Kim, Choi, Inamdar, Yu (b0155) 2014; 30
Long, Chen, Xu, Xiong, Jiang, Zou, Hu, Xin, Zhang, Huang (b0125) 2013; 6
Hwang, Myung, Sun (b0015) 2017; 46
Li, Jian, Wang, Rodríguez-Pérez, Bommier, Ji (b0030) 2017; 53
Yoon, Dong, Chung, Chang, Kim, Kim (b0050) 2016; 98
Wang, Luo, Chen, Wang, Liu, Qi, Shi, Zhao (b0115) 2016; 6
Augustyn, Simon, Dunn (b0145) 2014; 7
Li, Hu, Titirici, Chen, Huang (b0035) 2016; 6
Cui, Yao, Kim (b0020) 2016; 7
Wang, Yu, Shi, Mao, Chen, Liu (b0070) 2016; 188
Wang, Fan, Li, Wu, Li, Sun, Xie, Zhang, Tong (b0075) 2017; 244
Kim, Hong, Park, Kim, Hwang, Kang (b0040) 2015; 25
Banerjee, Upadhyay, Puthusseri, Aravindan, Madhavi, Ogale (b0085) 2014; 6
Nayak, Yang, Brehm, Adelhelm (b0025) 2018; 56
Wang, Yang, Yang, Lin, Chen, Yu (b0055) 2017; 4
Ying, Zheng, Zhong, Cheng, Fan, Yan (b0045) 2018; 14
Xia, Gao, Sun, Yu (b0060) 2017; 13
Feng, He, Ding, Zhang, He, Dong, Wen, Du, Liu (b0130) 2016; 6
Zhang, Xia, Guo, Li, Sun, Yu (b0120) 2016; 41
Fan, Liu, Yan, Ning, Wang, Wei, Zhi, Wei (b0095) 2012; 2
Yun, Du, Hwang, Jung, Sun (b0090) 2016; 5
Yi, Zai, Dai, Gordin, Wang (b0135) 2013; 36
Wang, Ma, Yang, Han, Tao, Song, Liu, Guo, Liu (b0140) 2015; 41
Ma, Ma, Wu, Geng, Shao, Song, Wan, Qiu (b0080) 2016; 52
Yabuuchi, Kubota, Dahbi, Komaba (b0010) 2014; 114
Chao, Zhu, Yang, Xia, Liu, Jin, Fan, Savilov, Lin, Hong (b0150) 2016; 7
Nersisyan, Joo, Yoo, Kim, Lee, Eom, Kim, Lee, Lee (b0065) 2016; 103
Wang, Wang, Luo, Bao, Liu, Qi, He, Shi, Zhao (b0110) 2016; 41
Xu, Amine, Abouimrane, Che, Dahbi, Ma, Saadoune, Alami, Mattis, Pan (b0005) 2018
Qin, He, Zhao, Wang, Shi, Liu, Li (b0100) 2014; 8
Yun (10.1016/j.apsusc.2018.09.035_b0090) 2016; 5
Qin (10.1016/j.apsusc.2018.09.035_b0100) 2014; 8
Wang (10.1016/j.apsusc.2018.09.035_b0140) 2015; 41
Yoon (10.1016/j.apsusc.2018.09.035_b0050) 2016; 98
Wang (10.1016/j.apsusc.2018.09.035_b0075) 2017; 244
Nersisyan (10.1016/j.apsusc.2018.09.035_b0065) 2016; 103
Ying (10.1016/j.apsusc.2018.09.035_b0045) 2018; 14
Banerjee (10.1016/j.apsusc.2018.09.035_b0085) 2014; 6
Wang (10.1016/j.apsusc.2018.09.035_b0070) 2016; 188
Augustyn (10.1016/j.apsusc.2018.09.035_b0145) 2014; 7
Wang (10.1016/j.apsusc.2018.09.035_b0055) 2017; 4
Chao (10.1016/j.apsusc.2018.09.035_b0150) 2016; 7
Cui (10.1016/j.apsusc.2018.09.035_b0020) 2016; 7
Kim (10.1016/j.apsusc.2018.09.035_b0040) 2015; 25
Yabuuchi (10.1016/j.apsusc.2018.09.035_b0010) 2014; 114
Nayak (10.1016/j.apsusc.2018.09.035_b0025) 2018; 56
Zhang (10.1016/j.apsusc.2018.09.035_b0120) 2016; 41
Fan (10.1016/j.apsusc.2018.09.035_b0095) 2012; 2
Long (10.1016/j.apsusc.2018.09.035_b0125) 2013; 6
Yi (10.1016/j.apsusc.2018.09.035_b0135) 2013; 36
Wang (10.1016/j.apsusc.2018.09.035_b0115) 2016; 6
Ma (10.1016/j.apsusc.2018.09.035_b0080) 2016; 52
Zhu (10.1016/j.apsusc.2018.09.035_b0105) 2016; 212
Bhattacharjya (10.1016/j.apsusc.2018.09.035_b0155) 2014; 30
Li (10.1016/j.apsusc.2018.09.035_b0035) 2016; 6
Xu (10.1016/j.apsusc.2018.09.035_b0005) 2018
Wang (10.1016/j.apsusc.2018.09.035_b0110) 2016; 41
Hwang (10.1016/j.apsusc.2018.09.035_b0015) 2017; 46
Li (10.1016/j.apsusc.2018.09.035_b0030) 2017; 53
Xia (10.1016/j.apsusc.2018.09.035_b0060) 2017; 13
Feng (10.1016/j.apsusc.2018.09.035_b0130) 2016; 6
References_xml – volume: 2
  start-page: 419
  year: 2012
  end-page: 424
  ident: b0095
  article-title: Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 5949
  year: 2016
  end-page: 5956
  ident: b0130
  article-title: Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors
  publication-title: RSC Adv.
– volume: 6
  start-page: 2497
  year: 2013
  end-page: 2504
  ident: b0125
  article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors
  publication-title: Energ. Environ. Sci.
– volume: 8
  start-page: 1728
  year: 2014
  end-page: 1738
  ident: b0100
  article-title: Graphene networks anchored with Sn@Graphene as lithium ion battery anode
  publication-title: ACS Nano
– volume: 6
  start-page: 54718
  year: 2016
  end-page: 54726
  ident: b0115
  article-title: Three-dimensional porous carbon nanosheet networks anchored with Cu
  publication-title: RSC Adv.
– start-page: 1702403
  year: 2018
  ident: b0005
  article-title: Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion Batteries
  publication-title: Adv. Energy. Mater.
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  ident: b0015
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
– volume: 188
  start-page: 103
  year: 2016
  end-page: 110
  ident: b0070
  article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 534
  year: 2015
  end-page: 541
  ident: b0040
  article-title: Sodium storage behavior in natural graphite using ether-based electrolyte systems
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 6673
  year: 2016
  end-page: 6676
  ident: b0080
  article-title: Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors
  publication-title: Chem. Commun.
– volume: 41
  start-page: 14252
  year: 2016
  end-page: 14260
  ident: b0120
  article-title: Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries
  publication-title: Int. J. Hydrogen Energy
– volume: 14
  start-page: 1703472
  year: 2018
  ident: b0045
  article-title: Amorphous red phosphorus embedded in sandwiched porous carbon Enabling superior sodium storage performances
  publication-title: Small
– volume: 41
  start-page: 393
  year: 2016
  end-page: 402
  ident: b0110
  article-title: Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries
  publication-title: New J. Chem.
– volume: 212
  start-page: 621
  year: 2016
  end-page: 629
  ident: b0105
  article-title: Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 1597
  year: 2014
  end-page: 1614
  ident: b0145
  article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage
  publication-title: Energ. Environ. Sci.
– volume: 30
  start-page: 318
  year: 2014
  end-page: 324
  ident: b0155
  article-title: Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries
  publication-title: Langmuir
– volume: 98
  start-page: 213
  year: 2016
  end-page: 220
  ident: b0050
  article-title: Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity
  publication-title: Carbon
– volume: 103
  start-page: 255
  year: 2016
  end-page: 262
  ident: b0065
  article-title: Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery
  publication-title: Carbon
– volume: 13
  start-page: 1701561
  year: 2017
  ident: b0060
  article-title: Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes
  publication-title: Small
– volume: 7
  start-page: 12122
  year: 2016
  ident: b0150
  article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
  publication-title: Nat. Commun
– volume: 4
  start-page: 1600468
  year: 2017
  ident: b0055
  article-title: Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping
  publication-title: Adv. Sci.
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  ident: b0010
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
– volume: 244
  start-page: 86
  year: 2017
  end-page: 95
  ident: b0075
  article-title: Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 2610
  year: 2017
  end-page: 2613
  ident: b0030
  article-title: Hard carbon anodes of sodium-ion batteries: undervalued rate capability
  publication-title: Chem. Commun.
– volume: 56
  start-page: 2
  year: 2018
  end-page: 21
  ident: b0025
  article-title: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 29
  year: 2013
  end-page: 32
  ident: b0135
  article-title: Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries
  publication-title: Electrochem. Commun.
– volume: 41
  start-page: 36
  year: 2015
  end-page: 42
  ident: b0140
  article-title: Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries
  publication-title: Solid State Sci.
– volume: 7
  start-page: 64
  year: 2016
  end-page: 114
  ident: b0020
  article-title: Recent progress in rational design of anode materials for high-performance Na-ion batteries
  publication-title: Energy Storage Mat.
– volume: 5
  start-page: 2802
  year: 2016
  end-page: 2810
  ident: b0090
  article-title: Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1600659
  year: 2016
  ident: b0035
  article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries
  publication-title: Adv. Energy. Mater.
– volume: 6
  start-page: 4387
  year: 2014
  end-page: 4394
  ident: b0085
  article-title: MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors Li-HECs
  publication-title: Nanoscale
– volume: 6
  start-page: 1600659
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0035
  article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201600659
– volume: 25
  start-page: 534
  year: 2015
  ident: 10.1016/j.apsusc.2018.09.035_b0040
  article-title: Sodium storage behavior in natural graphite using ether-based electrolyte systems
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402984
– volume: 13
  start-page: 1701561
  year: 2017
  ident: 10.1016/j.apsusc.2018.09.035_b0060
  article-title: Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes
  publication-title: Small
  doi: 10.1002/smll.201701561
– volume: 4
  start-page: 1600468
  year: 2017
  ident: 10.1016/j.apsusc.2018.09.035_b0055
  article-title: Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600468
– volume: 41
  start-page: 14252
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0120
  article-title: Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.06.016
– volume: 46
  start-page: 3529
  year: 2017
  ident: 10.1016/j.apsusc.2018.09.035_b0015
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 244
  start-page: 86
  year: 2017
  ident: 10.1016/j.apsusc.2018.09.035_b0075
  article-title: Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.090
– volume: 8
  start-page: 1728
  year: 2014
  ident: 10.1016/j.apsusc.2018.09.035_b0100
  article-title: Graphene networks anchored with Sn@Graphene as lithium ion battery anode
  publication-title: ACS Nano
  doi: 10.1021/nn406105n
– volume: 41
  start-page: 393
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0110
  article-title: Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ02458K
– volume: 6
  start-page: 5949
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0130
  article-title: Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24613J
– volume: 56
  start-page: 2
  year: 2018
  ident: 10.1016/j.apsusc.2018.09.035_b0025
  article-title: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1597
  year: 2014
  ident: 10.1016/j.apsusc.2018.09.035_b0145
  article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c3ee44164d
– volume: 36
  start-page: 29
  year: 2013
  ident: 10.1016/j.apsusc.2018.09.035_b0135
  article-title: Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.09.004
– volume: 212
  start-page: 621
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0105
  article-title: Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.07.065
– volume: 103
  start-page: 255
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0065
  article-title: Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium-sulfur battery
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.03.022
– volume: 2
  start-page: 419
  year: 2012
  ident: 10.1016/j.apsusc.2018.09.035_b0095
  article-title: Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100654
– volume: 6
  start-page: 4387
  year: 2014
  ident: 10.1016/j.apsusc.2018.09.035_b0085
  article-title: MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors Li-HECs
  publication-title: Nanoscale
  doi: 10.1039/c4nr00025k
– volume: 7
  start-page: 12122
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0150
  article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
  publication-title: Nat. Commun
  doi: 10.1038/ncomms12122
– volume: 30
  start-page: 318
  year: 2014
  ident: 10.1016/j.apsusc.2018.09.035_b0155
  article-title: Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries
  publication-title: Langmuir
  doi: 10.1021/la403366e
– start-page: 1702403
  year: 2018
  ident: 10.1016/j.apsusc.2018.09.035_b0005
  article-title: Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion Batteries
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201702403
– volume: 53
  start-page: 2610
  year: 2017
  ident: 10.1016/j.apsusc.2018.09.035_b0030
  article-title: Hard carbon anodes of sodium-ion batteries: undervalued rate capability
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00301C
– volume: 7
  start-page: 64
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0020
  article-title: Recent progress in rational design of anode materials for high-performance Na-ion batteries
  publication-title: Energy Storage Mat.
  doi: 10.1016/j.ensm.2016.12.005
– volume: 52
  start-page: 6673
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0080
  article-title: Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02147F
– volume: 114
  start-page: 11636
  year: 2014
  ident: 10.1016/j.apsusc.2018.09.035_b0010
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 6
  start-page: 2497
  year: 2013
  ident: 10.1016/j.apsusc.2018.09.035_b0125
  article-title: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c3ee41638k
– volume: 98
  start-page: 213
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0050
  article-title: Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.11.009
– volume: 41
  start-page: 36
  year: 2015
  ident: 10.1016/j.apsusc.2018.09.035_b0140
  article-title: Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2015.02.003
– volume: 6
  start-page: 54718
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0115
  article-title: Three-dimensional porous carbon nanosheet networks anchored with Cu6Sn5@carbon as a high-performance anode material for lithium ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04778E
– volume: 5
  start-page: 2802
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0090
  article-title: Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10494K
– volume: 188
  start-page: 103
  year: 2016
  ident: 10.1016/j.apsusc.2018.09.035_b0070
  article-title: Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.002
– volume: 14
  start-page: 1703472
  year: 2018
  ident: 10.1016/j.apsusc.2018.09.035_b0045
  article-title: Amorphous red phosphorus embedded in sandwiched porous carbon Enabling superior sodium storage performances
  publication-title: Small
  doi: 10.1002/smll.201703472
SSID ssj0012873
Score 2.5455682
Snippet [Display omitted] •B-doped porous carbon is successfully fabricated by in-situ double-template method.•The porous carbon benefits the diffusion of ions and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 422
SubjectTerms 3D porous carbon
Boron doping
Hierarchical
Lithium ion batteries
Sodium ion batteries
Title In situ double-template fabrication of boron-doped 3D hierarchical porous carbon network as anode materials for Li- and Na-ion batteries
URI https://dx.doi.org/10.1016/j.apsusc.2018.09.035
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvHNHLzGbTfNpjmKD9bXXlTwVvIqrCztso-rZ3-2M33ICqIg9NKQCSUzTL5pZr5h7Cy2iRNBCB5CJHjiRcx1SB2PdAhGWJMqR9XIj8P-4CW5e5WvHXbZ1sJQWmXj-2ufXnnrZqTb7GZ3Mhp1n4hHhNi3yCip3SxVsCeKrPz8_SvNA91vfcuMk6k6qNeWz1U5XgYj0RkRGcZpzXYqfz6elo6cm0220WBFuKg_Z4t1QrHN1pcYBHfYx20Bs9F8Ab5c2HHgxDQ1RvgIubHT5ncclDlYIirgvpwED-IKqAF2dYWAGgJE4Bj-gzNTi5OLOi8czAxMUfoACGlrKwXEt_Aw4jjuYWg4LW0rek6MtnfZy8318-WAN80VuMOQbs5dsN5KnSeRQwUlUlll41h5I6j01afaSW360sWp6vWs0pFW0hqNjzEBg0qxx1aKsgj7DIgBPpdBJ3mKeMCmKa4oUSLP-zrvOX_ARLunmWuYx6kBxjhrU8zesloTGWkii3SGmjhg_EtqUjNv_DFfterKvllQhofDr5KH_5Y8Ymv4RglnPJbHbGU-XYQTBClze1pZ4Slbvbi9Hww_AdXg6XY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKOQAHxFOU3YU5cDVN6riJj6tlq-5u2wut1JvlV6SiKqna9MqZn81MHlWREEgr5eR4osgzGX8Tz3zD2JfYJk4EIXgIkeCJFzFXIXM8UiEYYU2WOqpGni_G01Vyv5brHrvpamEorbL1_Y1Pr711OzJsV3O422yG34lHhNi3yCip3ewT9jTBz5faGHz9ecrzQP_bHDPjbCoPGnX1c3WSl8FQ9EBMhnHW0J3Kv-9PZ3vO5BV72YJFuG7e5zXrheINe3FGIfiW_bor4LCpjuDLo90GTlRTW8SPkBu7b__HQZmDJaYC7std8CC-AXXArs8QUEWAEBzjf3Bmb3Fy0SSGgzmAKUofADFtY6aAABdmG47jHhaG06Ntzc-J4fY7tprcLm-mvO2uwB3GdBV3wXorVZ5EDjWUyNSmNo5TbwTVvvpMOanMWLo4S0cjm6pIpdIahZcxAaNK8Z71i7IIHxgQBXwug0ryDAGBzTJ8okSJPB-rfOT8gIluTbVrqcepA8ZWdzlmP3SjCU2a0JHSqIkB4yepXUO98Z_5aacu_YcJadwd_in58dGSn9mz6XI-07O7xcMFe453KPuMx_KS9av9MVwhYqnsp9oifwM3ousE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+double-template+fabrication+of+boron-doped+3D+hierarchical+porous+carbon+network+as+anode+materials+for+Li-+and+Na-ion+batteries&rft.jtitle=Applied+surface+science&rft.au=Wang%2C+Dan&rft.au=Wang%2C+Zhiyuan&rft.au=Li%2C+Yuan&rft.au=Dong%2C+Kangze&rft.date=2019-01-15&rft.issn=0169-4332&rft.volume=464&rft.spage=422&rft.epage=428&rft_id=info:doi/10.1016%2Fj.apsusc.2018.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2018_09_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon