A combined elastic–plastic framework unifying the various cyclic softening/hardening behaviors for heat resistant steels: Experiment and modeling
•Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to describe the transition of back stress evolution for a wide range of cases.•The isotropic hardening yield surface was modified by two terms o...
Saved in:
Published in | International journal of fatigue Vol. 158; p. 106736 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to describe the transition of back stress evolution for a wide range of cases.•The isotropic hardening yield surface was modified by two terms of Chaboche model considering the contribution of the secondary hardening.•The predicted results by the proposed model matched well with the experimental data.
In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated temperatures via low cycle fatigue tests. The evolutions of effective stress and back stress were determined by stress partition method and were related to cumulative plastic strain. The mobile dislocation density, dislocation structure, and sub-grain structure were discussed to reveal the effect of microstructure on stress–strain responses during fatigue process. Furthermore, a unified elastic–plastic framework was established by introducing a peak plastic strain-dependent relaxation factor, a cumulative plastic strain-modified kinematic hardening model, and a modified isotropic hardening model. The validity of the unified model was discussed based on the maximum stress evolution, stress rate factor, and hysteresis loop. Good consistencies were observed between the experimental and predicted results and showed its strong capability to integrate continuous softening, hardening–softening, and hardening–softening-secondary hardening behaviors into a constitutive model. |
---|---|
AbstractList | In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated temperatures via low cycle fatigue tests. The evolutions of effective stress and back stress were determined by stress partition method and were related to cumulative plastic strain. The mobile dislocation density, dislocation structure, and sub-grain structure were discussed to reveal the effect of microstructure on stress–strain responses during fatigue process. Furthermore, a unified elastic–plastic framework was established by introducing a peak plastic strain-dependent relaxation factor, a cumulative plastic strain-modified kinematic hardening model, and a modified isotropic hardening model. The validity of the unified model was discussed based on the maximum stress evolution, stress rate factor, and hysteresis loop. Good consistencies were observed between the experimental and predicted results and showed its strong capability to integrate continuous softening, hardening–softening, and hardening–softening-secondary hardening behaviors into a constitutive model. •Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to describe the transition of back stress evolution for a wide range of cases.•The isotropic hardening yield surface was modified by two terms of Chaboche model considering the contribution of the secondary hardening.•The predicted results by the proposed model matched well with the experimental data. In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated temperatures via low cycle fatigue tests. The evolutions of effective stress and back stress were determined by stress partition method and were related to cumulative plastic strain. The mobile dislocation density, dislocation structure, and sub-grain structure were discussed to reveal the effect of microstructure on stress–strain responses during fatigue process. Furthermore, a unified elastic–plastic framework was established by introducing a peak plastic strain-dependent relaxation factor, a cumulative plastic strain-modified kinematic hardening model, and a modified isotropic hardening model. The validity of the unified model was discussed based on the maximum stress evolution, stress rate factor, and hysteresis loop. Good consistencies were observed between the experimental and predicted results and showed its strong capability to integrate continuous softening, hardening–softening, and hardening–softening-secondary hardening behaviors into a constitutive model. |
ArticleNumber | 106736 |
Author | Wang, Kaimeng Xu, Lianyong Zhao, Lei Song, Kai Hao, Kangda Han, Yongdian |
Author_xml | – sequence: 1 givenname: Kai surname: Song fullname: Song, Kai – sequence: 2 givenname: Kaimeng surname: Wang fullname: Wang, Kaimeng – sequence: 3 givenname: Lei surname: Zhao fullname: Zhao, Lei email: zhaolei85@tju.edu.cn – sequence: 4 givenname: Lianyong surname: Xu fullname: Xu, Lianyong email: xulianyong@tju.edu.cn – sequence: 5 givenname: Yongdian surname: Han fullname: Han, Yongdian – sequence: 6 givenname: Kangda surname: Hao fullname: Hao, Kangda |
BookMark | eNqNkc9uFDEMxiPUSmxbnoFInGebZP4jcVhVhSJV4tJ7lHGcbobZZEkyC3vrO_QNeRLSDuLApT3Zsr-fLfs7IyfOOyTkPWdrznhzOa7taFSy9zOuBRMiV5u2bN6QFe_aviirWpyQFeOVKDgX5VtyFuPIGOtZW6_I44aC3w3WoaY4qZgs_H543C8ZNUHt8KcP3-nsrDlad0_TFulBBevnSOEIU1ZFbxK63LzcqqCfMzrgVh2sD5EaH-gWVaIBo41JuURjQpziR3r9a4_B7jCXlNN05zVOGb4gp0ZNEd_9jefk7vP13dVNcfvty9erzW0BFetTAQNgj4Zj2RrNNEdW1iAQu7piQiGAaLBibBBcNYyDMA0i1EpXQzcgVOU5-bCM3Qf_Y8aY5Ojn4PJGKZqyb1lTd11WfVpUEHyMAY0Em_K7vUtB2UlyJp9skKP8Z4N8skEuNmS-_Y_f55NVOL6C3Cxk_hUeLAYZwaID1DYgJKm9fXHGHwrSsAE |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2024_03_114 crossref_primary_10_1007_s43452_023_00698_4 crossref_primary_10_1016_j_jalmes_2025_100153 crossref_primary_10_3390_ma16030994 crossref_primary_10_1080_23248378_2023_2264866 crossref_primary_10_1007_s00707_022_03469_z crossref_primary_10_1016_j_engfracmech_2023_109481 crossref_primary_10_1016_j_commatsci_2024_112999 crossref_primary_10_1016_j_ijfatigue_2024_108708 crossref_primary_10_1016_j_ijplas_2023_103660 crossref_primary_10_1016_j_jnucmat_2023_154809 crossref_primary_10_1016_j_conbuildmat_2024_138317 crossref_primary_10_1016_j_ijfatigue_2023_107889 crossref_primary_10_1016_j_ijfatigue_2024_108776 crossref_primary_10_1016_j_ijplas_2024_104021 crossref_primary_10_1016_j_ijfatigue_2024_108601 crossref_primary_10_1016_j_engfailanal_2024_108916 crossref_primary_10_1016_j_euromechsol_2024_105529 crossref_primary_10_1016_j_ijplas_2022_103295 crossref_primary_10_1016_j_ijfatigue_2022_107160 crossref_primary_10_1016_j_ijmecsci_2023_108379 crossref_primary_10_1016_j_ijplas_2024_104038 |
Cites_doi | 10.1016/j.msea.2018.07.084 10.1016/j.ijplas.2004.02.001 10.1016/0749-6419(91)90050-9 10.1016/j.ijfatigue.2013.02.005 10.1016/j.ijfatigue.2017.03.018 10.1016/j.msea.2014.07.075 10.1016/j.engfracmech.2015.05.007 10.1016/j.ijplas.2013.01.017 10.1016/j.ijplas.2018.11.001 10.1080/21663831.2016.1153004 10.1016/S0167-6636(02)00153-9 10.1016/j.ijmecsci.2020.105685 10.1016/j.commatsci.2014.05.034 10.1016/j.msea.2018.06.071 10.1016/S0167-8442(03)00038-7 10.1016/j.msea.2021.141225 10.1016/j.ijfatigue.2018.07.018 10.1103/PhysRev.78.275 10.1080/14786430500509054 10.1016/j.ijplas.2008.03.009 10.1016/j.ijplas.2006.10.003 10.1016/0029-5493(95)01139-0 10.1016/j.ijplas.2012.10.003 10.1016/j.ijplas.2018.03.013 10.1108/IJSI-04-2020-0036 10.1016/S0749-6419(03)00076-7 10.1016/j.ijfatigue.2021.106227 10.1016/j.nucengdes.2012.08.024 10.1016/j.ijplas.2019.11.013 10.1016/j.msea.2012.06.067 10.1108/IJSI-05-2020-0048 10.1016/j.ijplas.2020.102820 10.1016/j.actamat.2020.05.054 10.1115/1.3226484 10.1016/j.ijplas.2019.04.016 10.1016/j.ijplas.2015.12.005 10.1016/j.ijpvp.2013.08.001 10.1016/0749-6419(89)90015-6 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV May 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV May 2022 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2022.106736 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
ExternalDocumentID | 10_1016_j_ijfatigue_2022_106736 S0142112322000172 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c409t-cbce9ef1e37fd0d1e035c2ee85402aecc26e400b21a601c2f6eec5ad4b8bec43 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Fri Jul 25 08:04:04 EDT 2025 Tue Jul 01 01:54:41 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Fri Feb 23 02:40:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microstructure mechanism High temperature low cycle fatigue Hardening-softening behavior Cyclic elastic–plastic model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-cbce9ef1e37fd0d1e035c2ee85402aecc26e400b21a601c2f6eec5ad4b8bec43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2639706588 |
PQPubID | 2045465 |
ParticipantIDs | proquest_journals_2639706588 crossref_citationtrail_10_1016_j_ijfatigue_2022_106736 crossref_primary_10_1016_j_ijfatigue_2022_106736 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2022_106736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Feaugas, Gaudin (b0005) 2004; 20 Wang, Jing, Xu, Han, Zhao, Song (b0035) 2021; 814 Chaboche (b0165) 1991; 7 Polák, Petráš, Heczko, Kuběna, Kruml, Chai (b0190) 2014; 615 Jena, Singh, Mahanta, Paswan, Sahu (b0015) 2018; 116 Pham, Holdsworth (b0050) 2013; 51 Zhou, Sun, Kanouté, Retraint (b0060) 2018; 107 Pham, Holdsworth (b0065) 2012; 556 Xie, Jiang, Chen, Zhang, Tu (b0055) 2019; 114 Gao, Kang, Yang (b0195) 2003; 40 Narayanan (b0100) 2021; 12 Egner, Sulich, Mroziński, Egner (b0175) 2020; 135 Chaboche (b0160) 1989; 5 Yaguchi, Takahashi (b0025) 2005; 21 Pham, Holdsworth, Janssens, Mazza (b0040) 2013; 47 Chaboche, Nouailhas (b0150) 1989; 111 Chaboche (b0155) 2008; 24 Yang, Pan, Yuan, Zhu, Wu (b0140) 2016; 4 Chaboche J, Van KD, Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel 1979. Read, Shockley (b0130) 1950; 78 Mayama, Sasaki, Ishikawa (b0010) 2007; 23 Zhu, Kang, Kan, Bruhns, Liu (b0110) 2016; 79 Hormozi, Biglari, Nikbin (b0080) 2015; 141 Jing, Luo, Xu, Zhao, Han (b0030) 2018; 731 Kebir, Correia, Benguediab, Jesus (b0105) 2021; 12 Xing, Yu, Shi, Chen (b0090) 2019; 120 Roy, Goyal, Sandhya, Ray (b0075) 2012; 253 Wang, Cheng, Zhu, Zhao, Miura, Zhang (b0020) 2021; 149 Saad, Hyde, Sun, Hyde, Tanner (b0170) 2013; 111-112 Wei, Feng, Han, Zhang, Zhang (b0180) 2018; 734 Kassner, Geantil, Levine (b0135) 2013; 45 Mughrabi (b0145) 2006; 86 Christensen (b0205) 1982 Kang, Gao, Yang (b0200) 2002; 34 Barrett, O'Donoghue, Leen (b0120) 2017; 100 Xiao, Xu, Cayron, Xue, Sha, Logé (b0115) 2020; 195 Li, Jing, Xu, Han, Zhao, Yang (b0185) 2020; 127 Liao, Zhu, Keshtegar, Qian, Wang (b0095) 2020; 181 Xu, Bao, Zhao, Han, Jing, Yu (b0045) 2020; 546 Barrett, O’Donoghue, Leen (b0125) 2014; 92 Haupt, Munz, Scheibe, Schinke, Schmitt, Sklenicka (b0070) 1996; 162 Jena (10.1016/j.ijfatigue.2022.106736_b0015) 2018; 116 Mughrabi (10.1016/j.ijfatigue.2022.106736_b0145) 2006; 86 10.1016/j.ijfatigue.2022.106736_b0085 Pham (10.1016/j.ijfatigue.2022.106736_b0040) 2013; 47 Yang (10.1016/j.ijfatigue.2022.106736_b0140) 2016; 4 Polák (10.1016/j.ijfatigue.2022.106736_b0190) 2014; 615 Roy (10.1016/j.ijfatigue.2022.106736_b0075) 2012; 253 Mayama (10.1016/j.ijfatigue.2022.106736_b0010) 2007; 23 Hormozi (10.1016/j.ijfatigue.2022.106736_b0080) 2015; 141 Wang (10.1016/j.ijfatigue.2022.106736_b0020) 2021; 149 Kang (10.1016/j.ijfatigue.2022.106736_b0200) 2002; 34 Wang (10.1016/j.ijfatigue.2022.106736_b0035) 2021; 814 Read (10.1016/j.ijfatigue.2022.106736_b0130) 1950; 78 Chaboche (10.1016/j.ijfatigue.2022.106736_b0155) 2008; 24 Kassner (10.1016/j.ijfatigue.2022.106736_b0135) 2013; 45 Liao (10.1016/j.ijfatigue.2022.106736_b0095) 2020; 181 Xiao (10.1016/j.ijfatigue.2022.106736_b0115) 2020; 195 Pham (10.1016/j.ijfatigue.2022.106736_b0050) 2013; 51 Chaboche (10.1016/j.ijfatigue.2022.106736_b0160) 1989; 5 Zhou (10.1016/j.ijfatigue.2022.106736_b0060) 2018; 107 Xu (10.1016/j.ijfatigue.2022.106736_b0045) 2020; 546 Pham (10.1016/j.ijfatigue.2022.106736_b0065) 2012; 556 Egner (10.1016/j.ijfatigue.2022.106736_b0175) 2020; 135 Yaguchi (10.1016/j.ijfatigue.2022.106736_b0025) 2005; 21 Jing (10.1016/j.ijfatigue.2022.106736_b0030) 2018; 731 Chaboche (10.1016/j.ijfatigue.2022.106736_b0150) 1989; 111 Xing (10.1016/j.ijfatigue.2022.106736_b0090) 2019; 120 Kebir (10.1016/j.ijfatigue.2022.106736_b0105) 2021; 12 Gao (10.1016/j.ijfatigue.2022.106736_b0195) 2003; 40 Feaugas (10.1016/j.ijfatigue.2022.106736_b0005) 2004; 20 Haupt (10.1016/j.ijfatigue.2022.106736_b0070) 1996; 162 Li (10.1016/j.ijfatigue.2022.106736_b0185) 2020; 127 Saad (10.1016/j.ijfatigue.2022.106736_b0170) 2013; 111-112 Barrett (10.1016/j.ijfatigue.2022.106736_b0125) 2014; 92 Chaboche (10.1016/j.ijfatigue.2022.106736_b0165) 1991; 7 Wei (10.1016/j.ijfatigue.2022.106736_b0180) 2018; 734 Narayanan (10.1016/j.ijfatigue.2022.106736_b0100) 2021; 12 Barrett (10.1016/j.ijfatigue.2022.106736_b0120) 2017; 100 Christensen (10.1016/j.ijfatigue.2022.106736_b0205) 1982 Xie (10.1016/j.ijfatigue.2022.106736_b0055) 2019; 114 Zhu (10.1016/j.ijfatigue.2022.106736_b0110) 2016; 79 |
References_xml | – volume: 92 start-page: 286 year: 2014 end-page: 297 ident: b0125 article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels publication-title: Comput Mater Sci – volume: 40 start-page: 105 year: 2003 end-page: 111 ident: b0195 article-title: Uniaxial ratcheting of SS304 stainless steel at high temperatures: visco-plastic constitutive model publication-title: Theor Appl Fract Mech – volume: 23 start-page: 915 year: 2007 end-page: 930 ident: b0010 article-title: A constitutive model of cyclic viscoplasticity considering changes in subsequent viscoplastic deformation due to the evolution of dislocation structures publication-title: Int J Plast – volume: 556 start-page: 122 year: 2012 end-page: 133 ident: b0065 article-title: Dynamic strain ageing of AISI 316L during cyclic loading at 300 °C: mechanism, evolution, and its effects publication-title: Mater Sci Eng, A – volume: 162 start-page: 13 year: 1996 end-page: 20 ident: b0070 article-title: High temperature creep and cyclic deformation behaviour of AISI 316 L (N) austenitic steel and its modelling with unified constitutive equations publication-title: Nucl Eng Des – volume: 4 start-page: 145 year: 2016 end-page: 151 ident: b0140 article-title: Back stress strengthening and strain hardening in gradient structure publication-title: Mater. Res. Lett. – volume: 116 start-page: 623 year: 2018 end-page: 633 ident: b0015 article-title: Low cycle fatigue behaviour of nickel base superalloy IN 740H at 760° C: Influence of fireside corrosion atmosphere publication-title: Int J Fatigue – volume: 12 start-page: 408 year: 2021 end-page: 418 ident: b0105 article-title: Numerical study of fatigue damage under random loading using Rainflow cycle counting publication-title: Int J Struct Integrity – volume: 135 year: 2020 ident: b0175 article-title: Modelling thermo-mechanical cyclic behavior of P91 steel publication-title: Int J Plast – year: 1982 ident: b0205 article-title: Theory of Viscoelasticity – reference: Chaboche J, Van KD, Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel 1979. – volume: 78 start-page: 275 year: 1950 end-page: 289 ident: b0130 article-title: Dislocation models of crystal grain boundaries publication-title: Phys Rev – volume: 734 start-page: 20 year: 2018 end-page: 26 ident: b0180 article-title: Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures publication-title: Mater Sci Eng, A – volume: 107 start-page: 54 year: 2018 end-page: 78 ident: b0060 article-title: Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime publication-title: Int J Plast – volume: 181 year: 2020 ident: b0095 article-title: Probabilistic framework for fatigue life assessment of notched components under size effects publication-title: Int J Mech Sci – volume: 615 start-page: 175 year: 2014 end-page: 182 ident: b0190 article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature publication-title: Mater Sci Eng, A – volume: 253 start-page: 219 year: 2012 end-page: 225 ident: b0075 article-title: Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response publication-title: Nucl Eng Des – volume: 111 start-page: 384 year: 1989 end-page: 392 ident: b0150 article-title: Constitutive modeling of ratchetting effects—part I: experimental facts and properties of the classical models publication-title: J Eng Mater Technol – volume: 149 year: 2021 ident: b0020 article-title: Semi-quantitative creep-fatigue damage analysis based on diffraction-based misorientation mapping and the correlation to macroscopic damage evolutions publication-title: Int J Fatigue – volume: 34 start-page: 521 year: 2002 end-page: 531 ident: b0200 article-title: A visco–plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature publication-title: Mech Mater – volume: 141 start-page: 19 year: 2015 end-page: 43 ident: b0080 article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time publication-title: Eng Fract Mech – volume: 546 year: 2020 ident: b0045 article-title: Characterizing microstructural evolution and low cycle fatigue behavior of 316H austenitic steel at high-temperatures publication-title: J Nucl Mater – volume: 5 start-page: 247 year: 1989 end-page: 302 ident: b0160 article-title: Constitutive equations for cyclic plasticity and cyclic viscoplasticity publication-title: Int J Plast – volume: 21 start-page: 43 year: 2005 end-page: 65 ident: b0025 article-title: Ratchetting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr–1Mo steel publication-title: Int J Plast – volume: 731 start-page: 394 year: 2018 end-page: 402 ident: b0030 article-title: Low cycle fatigue behavior and microstructure evolution of a novel 9Cr–3W–3Co tempered martensitic steel at 650° C publication-title: Mater Sci Eng, A – volume: 79 start-page: 111 year: 2016 end-page: 152 ident: b0110 article-title: Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals: theory and application publication-title: Int J Plast – volume: 100 start-page: 388 year: 2017 end-page: 406 ident: b0120 article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation publication-title: Int J Fatigue – volume: 7 start-page: 661 year: 1991 end-page: 678 ident: b0165 article-title: On some modifications of kinematic hardening to improve the description of ratchetting effects publication-title: Int J Plast – volume: 45 start-page: 44 year: 2013 end-page: 60 ident: b0135 article-title: Long range internal stresses in single-phase crystalline materials publication-title: Int J Plast – volume: 120 start-page: 127 year: 2019 end-page: 146 ident: b0090 article-title: Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path publication-title: Int J Plast – volume: 12 start-page: 454 year: 2021 end-page: 469 ident: b0100 article-title: Probabilistic fatigue model for cast alloys of aero engine applications publication-title: Int J Struct Integrity – volume: 111-112 start-page: 246 year: 2013 end-page: 252 ident: b0170 article-title: Characterization of viscoplasticity behaviour of P91 and P92 power plant steels publication-title: Int J Press Vessels Pip – volume: 127 start-page: 102634 year: 2020 ident: b0185 article-title: Effect of strain rate induced M23C6 distribution on cyclic deformation behavior: Cyclic hardening model publication-title: Int J Plast – volume: 51 start-page: 36 year: 2013 end-page: 48 ident: b0050 article-title: Role of microstructural condition on fatigue damage development of AISI 316L at 20 and 300°C publication-title: Int J Fatigue – volume: 24 start-page: 1642 year: 2008 end-page: 1693 ident: b0155 article-title: A review of some plasticity and viscoplasticity constitutive theories publication-title: Int J Plast – volume: 195 start-page: 199 year: 2020 end-page: 208 ident: b0115 article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel publication-title: Acta Mater – volume: 814 year: 2021 ident: b0035 article-title: Cyclic response and dislocation evolution of a nickel-based superalloy under low cycle fatigue deformation publication-title: Mater Sci Eng, A – volume: 86 start-page: 4037 year: 2006 end-page: 4054 ident: b0145 article-title: Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically necessary dislocations publication-title: Phil Mag – volume: 47 start-page: 143 year: 2013 end-page: 164 ident: b0040 article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling publication-title: Int J Plast – volume: 114 start-page: 196 year: 2019 end-page: 214 ident: b0055 article-title: Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling publication-title: Int J Plast – volume: 20 start-page: 643 year: 2004 end-page: 662 ident: b0005 article-title: Ratchetting process in the stainless steel AISI 316L at 300 K: an experimental investigation publication-title: Int J Plast – volume: 734 start-page: 20 year: 2018 ident: 10.1016/j.ijfatigue.2022.106736_b0180 article-title: Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2018.07.084 – volume: 21 start-page: 43 issue: 1 year: 2005 ident: 10.1016/j.ijfatigue.2022.106736_b0025 article-title: Ratchetting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr–1Mo steel publication-title: Int J Plast doi: 10.1016/j.ijplas.2004.02.001 – volume: 7 start-page: 661 issue: 7 year: 1991 ident: 10.1016/j.ijfatigue.2022.106736_b0165 article-title: On some modifications of kinematic hardening to improve the description of ratchetting effects publication-title: Int J Plast doi: 10.1016/0749-6419(91)90050-9 – volume: 51 start-page: 36 year: 2013 ident: 10.1016/j.ijfatigue.2022.106736_b0050 article-title: Role of microstructural condition on fatigue damage development of AISI 316L at 20 and 300°C publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.02.005 – volume: 100 start-page: 388 year: 2017 ident: 10.1016/j.ijfatigue.2022.106736_b0120 article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.03.018 – volume: 615 start-page: 175 year: 2014 ident: 10.1016/j.ijfatigue.2022.106736_b0190 article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2014.07.075 – volume: 141 start-page: 19 year: 2015 ident: 10.1016/j.ijfatigue.2022.106736_b0080 article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.05.007 – volume: 47 start-page: 143 year: 2013 ident: 10.1016/j.ijfatigue.2022.106736_b0040 article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling publication-title: Int J Plast doi: 10.1016/j.ijplas.2013.01.017 – volume: 114 start-page: 196 year: 2019 ident: 10.1016/j.ijfatigue.2022.106736_b0055 article-title: Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling publication-title: Int J Plast doi: 10.1016/j.ijplas.2018.11.001 – volume: 4 start-page: 145 issue: 3 year: 2016 ident: 10.1016/j.ijfatigue.2022.106736_b0140 article-title: Back stress strengthening and strain hardening in gradient structure publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1153004 – volume: 34 start-page: 521 issue: 9 year: 2002 ident: 10.1016/j.ijfatigue.2022.106736_b0200 article-title: A visco–plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature publication-title: Mech Mater doi: 10.1016/S0167-6636(02)00153-9 – volume: 181 year: 2020 ident: 10.1016/j.ijfatigue.2022.106736_b0095 article-title: Probabilistic framework for fatigue life assessment of notched components under size effects publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.105685 – volume: 546 year: 2020 ident: 10.1016/j.ijfatigue.2022.106736_b0045 article-title: Characterizing microstructural evolution and low cycle fatigue behavior of 316H austenitic steel at high-temperatures publication-title: J Nucl Mater – ident: 10.1016/j.ijfatigue.2022.106736_b0085 – volume: 92 start-page: 286 year: 2014 ident: 10.1016/j.ijfatigue.2022.106736_b0125 article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.05.034 – volume: 731 start-page: 394 year: 2018 ident: 10.1016/j.ijfatigue.2022.106736_b0030 article-title: Low cycle fatigue behavior and microstructure evolution of a novel 9Cr–3W–3Co tempered martensitic steel at 650° C publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2018.06.071 – volume: 40 start-page: 105 issue: 1 year: 2003 ident: 10.1016/j.ijfatigue.2022.106736_b0195 article-title: Uniaxial ratcheting of SS304 stainless steel at high temperatures: visco-plastic constitutive model publication-title: Theor Appl Fract Mech doi: 10.1016/S0167-8442(03)00038-7 – volume: 814 year: 2021 ident: 10.1016/j.ijfatigue.2022.106736_b0035 article-title: Cyclic response and dislocation evolution of a nickel-based superalloy under low cycle fatigue deformation publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2021.141225 – year: 1982 ident: 10.1016/j.ijfatigue.2022.106736_b0205 – volume: 116 start-page: 623 year: 2018 ident: 10.1016/j.ijfatigue.2022.106736_b0015 article-title: Low cycle fatigue behaviour of nickel base superalloy IN 740H at 760° C: Influence of fireside corrosion atmosphere publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.07.018 – volume: 78 start-page: 275 issue: 3 year: 1950 ident: 10.1016/j.ijfatigue.2022.106736_b0130 article-title: Dislocation models of crystal grain boundaries publication-title: Phys Rev doi: 10.1103/PhysRev.78.275 – volume: 86 start-page: 4037 issue: 25-26 year: 2006 ident: 10.1016/j.ijfatigue.2022.106736_b0145 article-title: Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically necessary dislocations publication-title: Phil Mag doi: 10.1080/14786430500509054 – volume: 24 start-page: 1642 issue: 10 year: 2008 ident: 10.1016/j.ijfatigue.2022.106736_b0155 article-title: A review of some plasticity and viscoplasticity constitutive theories publication-title: Int J Plast doi: 10.1016/j.ijplas.2008.03.009 – volume: 23 start-page: 915 issue: 5 year: 2007 ident: 10.1016/j.ijfatigue.2022.106736_b0010 article-title: A constitutive model of cyclic viscoplasticity considering changes in subsequent viscoplastic deformation due to the evolution of dislocation structures publication-title: Int J Plast doi: 10.1016/j.ijplas.2006.10.003 – volume: 162 start-page: 13 issue: 1 year: 1996 ident: 10.1016/j.ijfatigue.2022.106736_b0070 article-title: High temperature creep and cyclic deformation behaviour of AISI 316 L (N) austenitic steel and its modelling with unified constitutive equations publication-title: Nucl Eng Des doi: 10.1016/0029-5493(95)01139-0 – volume: 45 start-page: 44 year: 2013 ident: 10.1016/j.ijfatigue.2022.106736_b0135 article-title: Long range internal stresses in single-phase crystalline materials publication-title: Int J Plast doi: 10.1016/j.ijplas.2012.10.003 – volume: 107 start-page: 54 year: 2018 ident: 10.1016/j.ijfatigue.2022.106736_b0060 article-title: Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime publication-title: Int J Plast doi: 10.1016/j.ijplas.2018.03.013 – volume: 12 start-page: 408 issue: 3 year: 2021 ident: 10.1016/j.ijfatigue.2022.106736_b0105 article-title: Numerical study of fatigue damage under random loading using Rainflow cycle counting publication-title: Int J Struct Integrity doi: 10.1108/IJSI-04-2020-0036 – volume: 20 start-page: 643 issue: 4–5 year: 2004 ident: 10.1016/j.ijfatigue.2022.106736_b0005 article-title: Ratchetting process in the stainless steel AISI 316L at 300 K: an experimental investigation publication-title: Int J Plast doi: 10.1016/S0749-6419(03)00076-7 – volume: 149 year: 2021 ident: 10.1016/j.ijfatigue.2022.106736_b0020 article-title: Semi-quantitative creep-fatigue damage analysis based on diffraction-based misorientation mapping and the correlation to macroscopic damage evolutions publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2021.106227 – volume: 253 start-page: 219 year: 2012 ident: 10.1016/j.ijfatigue.2022.106736_b0075 article-title: Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2012.08.024 – volume: 127 start-page: 102634 year: 2020 ident: 10.1016/j.ijfatigue.2022.106736_b0185 article-title: Effect of strain rate induced M23C6 distribution on cyclic deformation behavior: Cyclic hardening model publication-title: Int J Plast doi: 10.1016/j.ijplas.2019.11.013 – volume: 556 start-page: 122 year: 2012 ident: 10.1016/j.ijfatigue.2022.106736_b0065 article-title: Dynamic strain ageing of AISI 316L during cyclic loading at 300 °C: mechanism, evolution, and its effects publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2012.06.067 – volume: 12 start-page: 454 issue: 3 year: 2021 ident: 10.1016/j.ijfatigue.2022.106736_b0100 article-title: Probabilistic fatigue model for cast alloys of aero engine applications publication-title: Int J Struct Integrity doi: 10.1108/IJSI-05-2020-0048 – volume: 135 year: 2020 ident: 10.1016/j.ijfatigue.2022.106736_b0175 article-title: Modelling thermo-mechanical cyclic behavior of P91 steel publication-title: Int J Plast doi: 10.1016/j.ijplas.2020.102820 – volume: 195 start-page: 199 year: 2020 ident: 10.1016/j.ijfatigue.2022.106736_b0115 article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel publication-title: Acta Mater doi: 10.1016/j.actamat.2020.05.054 – volume: 111 start-page: 384 issue: 4 year: 1989 ident: 10.1016/j.ijfatigue.2022.106736_b0150 article-title: Constitutive modeling of ratchetting effects—part I: experimental facts and properties of the classical models publication-title: J Eng Mater Technol doi: 10.1115/1.3226484 – volume: 120 start-page: 127 year: 2019 ident: 10.1016/j.ijfatigue.2022.106736_b0090 article-title: Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path publication-title: Int J Plast doi: 10.1016/j.ijplas.2019.04.016 – volume: 79 start-page: 111 year: 2016 ident: 10.1016/j.ijfatigue.2022.106736_b0110 article-title: Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals: theory and application publication-title: Int J Plast doi: 10.1016/j.ijplas.2015.12.005 – volume: 111-112 start-page: 246 year: 2013 ident: 10.1016/j.ijfatigue.2022.106736_b0170 article-title: Characterization of viscoplasticity behaviour of P91 and P92 power plant steels publication-title: Int J Press Vessels Pip doi: 10.1016/j.ijpvp.2013.08.001 – volume: 5 start-page: 247 issue: 3 year: 1989 ident: 10.1016/j.ijfatigue.2022.106736_b0160 article-title: Constitutive equations for cyclic plasticity and cyclic viscoplasticity publication-title: Int J Plast doi: 10.1016/0749-6419(89)90015-6 |
SSID | ssj0009075 |
Score | 2.455665 |
Snippet | •Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to... In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106736 |
SubjectTerms | Austenitic stainless steels Constitutive models Cyclic elastic–plastic model Dislocation density Dislocation mobility Fatigue tests Grain structure Hardening-softening behavior Heat resistant steels High temperature High temperature low cycle fatigue Hysteresis loops Low cycle fatigue Martensitic stainless steels Materials fatigue Mathematical models Microstructure mechanism Plastic deformation Secondary hardening Softening Strain Thermal cycling |
Title | A combined elastic–plastic framework unifying the various cyclic softening/hardening behaviors for heat resistant steels: Experiment and modeling |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2022.106736 https://www.proquest.com/docview/2639706588 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI6mcYED4lcMBvKBa9maZl272zQxDZB2Amm3qE1caQiViW1IXBDvsDfkSbDTdvwIiQO3tHLSJHacz6ljC3EuOYU7yq6HRhlPhTbzosw3noktJkESSJs6B9lxOLpT15POpCYG1V0YdqssdX-h0522Lt-0ytlszabTFrslkfVCiEC6qC-sh5XqspRfvH66ecRFsF0m9pj6m4_X9D6j8fMRiaS97ILDqblYzb_uUD90tduAhjtiu0SO0C86tytqmO-JrS_xBPfFqg80DrJ10QISLCbK97fVrChBVvlhwTKfuutNQOgPnslaJvMfzIt5IKo56WXkw5IW38dyJaju8s-BIC6w-gay0hl55gsgMaHe9-BynSsAktyCS7FDlQ_E7fDydjDyyqwLniFbb-GZ1GCMmY9BN7Nt62M76BiJGBG2kwlxXIZICz-VfkLGnJFZiGg6iVVpRPKggkNRzx9zPBIQJaH1DQFGjFOFkU3DIJERtac6saJPNERYTbQ2ZURyTozxoCvXs3u95pBmDumCQw3RXlecFUE5_q7Sqzipv8mXpq3j78rNive6XOJzLfmXKAO46Pg_bZ-ITX4qfCibor54WuIp4ZxFeuYE-Uxs9K9uRuMPUvYEiQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4ikeBW5gDW2cB2m3ChUVWjoVqZuV2BepFUormiKx8R_4h_wS7vIoFCF1YIsSn-P47PN3zvk7Ia4kp3BHeWOhdrXl-ia2gtjWlm4aDJ3QkSbKAmQHfvfJfRh5o4q4Lc_CcFhlYftzm55Z6-JOvejN-mw8rnNYEnkvhAhkxvpCdniD2am8qtho3_e6g2_u3Zxvl8tbLLAS5jWexNQFvEsiaTm7Zka1jK75z0Xql7nO1qC7XbFTgEdo5-3bExVM9sX2D0rBA_HRBvoUcnfRABIyppKf7x-z_AriMhQLFsk4O-EEBADhlRzm6WIO-k0_U6k5mWbk_ZI6H8nKrqA8zj8HQrnAFhzIUWfwmaRAI4Va34LOMl0AhImBLMsOCR-K4V1neNu1isQLliZ3L7V0pLGJsY3OTWwaxsaG42mJGBC8kyEpXfpIcz-Sdkj-nJaxj6i90LhRQEPCdY5ENZkmeCwgCH1ja8KM2IxcDEzkO6EMqD7Xa7r0ihPhlx2tdEFKzrkxnlUZfTZRSw0p1pDKNXQiGkvBWc7LsV6kVWpSrQwxRavHeuFaqXtVzPK5kvxXlDFccPqfui_FZnf42Ff9-0HvTGzxkzyksiaq6csCzwn2pNFFMay_ACirBzo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+elastic%E2%80%93plastic+framework+unifying+the+various+cyclic+softening%2Fhardening+behaviors+for+heat+resistant+steels%3A+Experiment+and+modeling&rft.jtitle=International+journal+of+fatigue&rft.au=Song%2C+Kai&rft.au=Wang%2C+Kaimeng&rft.au=Zhao%2C+Lei&rft.au=Xu%2C+Lianyong&rft.date=2022-05-01&rft.issn=0142-1123&rft.volume=158&rft.spage=106736&rft_id=info:doi/10.1016%2Fj.ijfatigue.2022.106736&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijfatigue_2022_106736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |