A combined elastic–plastic framework unifying the various cyclic softening/hardening behaviors for heat resistant steels: Experiment and modeling

•Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to describe the transition of back stress evolution for a wide range of cases.•The isotropic hardening yield surface was modified by two terms o...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 158; p. 106736
Main Authors Song, Kai, Wang, Kaimeng, Zhao, Lei, Xu, Lianyong, Han, Yongdian, Hao, Kangda
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to describe the transition of back stress evolution for a wide range of cases.•The isotropic hardening yield surface was modified by two terms of Chaboche model considering the contribution of the secondary hardening.•The predicted results by the proposed model matched well with the experimental data. In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated temperatures via low cycle fatigue tests. The evolutions of effective stress and back stress were determined by stress partition method and were related to cumulative plastic strain. The mobile dislocation density, dislocation structure, and sub-grain structure were discussed to reveal the effect of microstructure on stress–strain responses during fatigue process. Furthermore, a unified elastic–plastic framework was established by introducing a peak plastic strain-dependent relaxation factor, a cumulative plastic strain-modified kinematic hardening model, and a modified isotropic hardening model. The validity of the unified model was discussed based on the maximum stress evolution, stress rate factor, and hysteresis loop. Good consistencies were observed between the experimental and predicted results and showed its strong capability to integrate continuous softening, hardening–softening, and hardening–softening-secondary hardening behaviors into a constitutive model.
AbstractList In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated temperatures via low cycle fatigue tests. The evolutions of effective stress and back stress were determined by stress partition method and were related to cumulative plastic strain. The mobile dislocation density, dislocation structure, and sub-grain structure were discussed to reveal the effect of microstructure on stress–strain responses during fatigue process. Furthermore, a unified elastic–plastic framework was established by introducing a peak plastic strain-dependent relaxation factor, a cumulative plastic strain-modified kinematic hardening model, and a modified isotropic hardening model. The validity of the unified model was discussed based on the maximum stress evolution, stress rate factor, and hysteresis loop. Good consistencies were observed between the experimental and predicted results and showed its strong capability to integrate continuous softening, hardening–softening, and hardening–softening-secondary hardening behaviors into a constitutive model.
•Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to describe the transition of back stress evolution for a wide range of cases.•The isotropic hardening yield surface was modified by two terms of Chaboche model considering the contribution of the secondary hardening.•The predicted results by the proposed model matched well with the experimental data. In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated temperatures via low cycle fatigue tests. The evolutions of effective stress and back stress were determined by stress partition method and were related to cumulative plastic strain. The mobile dislocation density, dislocation structure, and sub-grain structure were discussed to reveal the effect of microstructure on stress–strain responses during fatigue process. Furthermore, a unified elastic–plastic framework was established by introducing a peak plastic strain-dependent relaxation factor, a cumulative plastic strain-modified kinematic hardening model, and a modified isotropic hardening model. The validity of the unified model was discussed based on the maximum stress evolution, stress rate factor, and hysteresis loop. Good consistencies were observed between the experimental and predicted results and showed its strong capability to integrate continuous softening, hardening–softening, and hardening–softening-secondary hardening behaviors into a constitutive model.
ArticleNumber 106736
Author Wang, Kaimeng
Xu, Lianyong
Zhao, Lei
Song, Kai
Hao, Kangda
Han, Yongdian
Author_xml – sequence: 1
  givenname: Kai
  surname: Song
  fullname: Song, Kai
– sequence: 2
  givenname: Kaimeng
  surname: Wang
  fullname: Wang, Kaimeng
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  email: zhaolei85@tju.edu.cn
– sequence: 4
  givenname: Lianyong
  surname: Xu
  fullname: Xu, Lianyong
  email: xulianyong@tju.edu.cn
– sequence: 5
  givenname: Yongdian
  surname: Han
  fullname: Han, Yongdian
– sequence: 6
  givenname: Kangda
  surname: Hao
  fullname: Hao, Kangda
BookMark eNqNkc9uFDEMxiPUSmxbnoFInGebZP4jcVhVhSJV4tJ7lHGcbobZZEkyC3vrO_QNeRLSDuLApT3Zsr-fLfs7IyfOOyTkPWdrznhzOa7taFSy9zOuBRMiV5u2bN6QFe_aviirWpyQFeOVKDgX5VtyFuPIGOtZW6_I44aC3w3WoaY4qZgs_H543C8ZNUHt8KcP3-nsrDlad0_TFulBBevnSOEIU1ZFbxK63LzcqqCfMzrgVh2sD5EaH-gWVaIBo41JuURjQpziR3r9a4_B7jCXlNN05zVOGb4gp0ZNEd_9jefk7vP13dVNcfvty9erzW0BFetTAQNgj4Zj2RrNNEdW1iAQu7piQiGAaLBibBBcNYyDMA0i1EpXQzcgVOU5-bCM3Qf_Y8aY5Ojn4PJGKZqyb1lTd11WfVpUEHyMAY0Em_K7vUtB2UlyJp9skKP8Z4N8skEuNmS-_Y_f55NVOL6C3Cxk_hUeLAYZwaID1DYgJKm9fXHGHwrSsAE
CitedBy_id crossref_primary_10_1016_j_jmrt_2024_03_114
crossref_primary_10_1007_s43452_023_00698_4
crossref_primary_10_1016_j_jalmes_2025_100153
crossref_primary_10_3390_ma16030994
crossref_primary_10_1080_23248378_2023_2264866
crossref_primary_10_1007_s00707_022_03469_z
crossref_primary_10_1016_j_engfracmech_2023_109481
crossref_primary_10_1016_j_commatsci_2024_112999
crossref_primary_10_1016_j_ijfatigue_2024_108708
crossref_primary_10_1016_j_ijplas_2023_103660
crossref_primary_10_1016_j_jnucmat_2023_154809
crossref_primary_10_1016_j_conbuildmat_2024_138317
crossref_primary_10_1016_j_ijfatigue_2023_107889
crossref_primary_10_1016_j_ijfatigue_2024_108776
crossref_primary_10_1016_j_ijplas_2024_104021
crossref_primary_10_1016_j_ijfatigue_2024_108601
crossref_primary_10_1016_j_engfailanal_2024_108916
crossref_primary_10_1016_j_euromechsol_2024_105529
crossref_primary_10_1016_j_ijplas_2022_103295
crossref_primary_10_1016_j_ijfatigue_2022_107160
crossref_primary_10_1016_j_ijmecsci_2023_108379
crossref_primary_10_1016_j_ijplas_2024_104038
Cites_doi 10.1016/j.msea.2018.07.084
10.1016/j.ijplas.2004.02.001
10.1016/0749-6419(91)90050-9
10.1016/j.ijfatigue.2013.02.005
10.1016/j.ijfatigue.2017.03.018
10.1016/j.msea.2014.07.075
10.1016/j.engfracmech.2015.05.007
10.1016/j.ijplas.2013.01.017
10.1016/j.ijplas.2018.11.001
10.1080/21663831.2016.1153004
10.1016/S0167-6636(02)00153-9
10.1016/j.ijmecsci.2020.105685
10.1016/j.commatsci.2014.05.034
10.1016/j.msea.2018.06.071
10.1016/S0167-8442(03)00038-7
10.1016/j.msea.2021.141225
10.1016/j.ijfatigue.2018.07.018
10.1103/PhysRev.78.275
10.1080/14786430500509054
10.1016/j.ijplas.2008.03.009
10.1016/j.ijplas.2006.10.003
10.1016/0029-5493(95)01139-0
10.1016/j.ijplas.2012.10.003
10.1016/j.ijplas.2018.03.013
10.1108/IJSI-04-2020-0036
10.1016/S0749-6419(03)00076-7
10.1016/j.ijfatigue.2021.106227
10.1016/j.nucengdes.2012.08.024
10.1016/j.ijplas.2019.11.013
10.1016/j.msea.2012.06.067
10.1108/IJSI-05-2020-0048
10.1016/j.ijplas.2020.102820
10.1016/j.actamat.2020.05.054
10.1115/1.3226484
10.1016/j.ijplas.2019.04.016
10.1016/j.ijplas.2015.12.005
10.1016/j.ijpvp.2013.08.001
10.1016/0749-6419(89)90015-6
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2022.106736
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
ExternalDocumentID 10_1016_j_ijfatigue_2022_106736
S0142112322000172
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c409t-cbce9ef1e37fd0d1e035c2ee85402aecc26e400b21a601c2f6eec5ad4b8bec43
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Fri Jul 25 08:04:04 EDT 2025
Tue Jul 01 01:54:41 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microstructure mechanism
High temperature low cycle fatigue
Hardening-softening behavior
Cyclic elastic–plastic model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-cbce9ef1e37fd0d1e035c2ee85402aecc26e400b21a601c2f6eec5ad4b8bec43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2639706588
PQPubID 2045465
ParticipantIDs proquest_journals_2639706588
crossref_citationtrail_10_1016_j_ijfatigue_2022_106736
crossref_primary_10_1016_j_ijfatigue_2022_106736
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2022_106736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Feaugas, Gaudin (b0005) 2004; 20
Wang, Jing, Xu, Han, Zhao, Song (b0035) 2021; 814
Chaboche (b0165) 1991; 7
Polák, Petráš, Heczko, Kuběna, Kruml, Chai (b0190) 2014; 615
Jena, Singh, Mahanta, Paswan, Sahu (b0015) 2018; 116
Pham, Holdsworth (b0050) 2013; 51
Zhou, Sun, Kanouté, Retraint (b0060) 2018; 107
Pham, Holdsworth (b0065) 2012; 556
Xie, Jiang, Chen, Zhang, Tu (b0055) 2019; 114
Gao, Kang, Yang (b0195) 2003; 40
Narayanan (b0100) 2021; 12
Egner, Sulich, Mroziński, Egner (b0175) 2020; 135
Chaboche (b0160) 1989; 5
Yaguchi, Takahashi (b0025) 2005; 21
Pham, Holdsworth, Janssens, Mazza (b0040) 2013; 47
Chaboche, Nouailhas (b0150) 1989; 111
Chaboche (b0155) 2008; 24
Yang, Pan, Yuan, Zhu, Wu (b0140) 2016; 4
Chaboche J, Van KD, Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel 1979.
Read, Shockley (b0130) 1950; 78
Mayama, Sasaki, Ishikawa (b0010) 2007; 23
Zhu, Kang, Kan, Bruhns, Liu (b0110) 2016; 79
Hormozi, Biglari, Nikbin (b0080) 2015; 141
Jing, Luo, Xu, Zhao, Han (b0030) 2018; 731
Kebir, Correia, Benguediab, Jesus (b0105) 2021; 12
Xing, Yu, Shi, Chen (b0090) 2019; 120
Roy, Goyal, Sandhya, Ray (b0075) 2012; 253
Wang, Cheng, Zhu, Zhao, Miura, Zhang (b0020) 2021; 149
Saad, Hyde, Sun, Hyde, Tanner (b0170) 2013; 111-112
Wei, Feng, Han, Zhang, Zhang (b0180) 2018; 734
Kassner, Geantil, Levine (b0135) 2013; 45
Mughrabi (b0145) 2006; 86
Christensen (b0205) 1982
Kang, Gao, Yang (b0200) 2002; 34
Barrett, O'Donoghue, Leen (b0120) 2017; 100
Xiao, Xu, Cayron, Xue, Sha, Logé (b0115) 2020; 195
Li, Jing, Xu, Han, Zhao, Yang (b0185) 2020; 127
Liao, Zhu, Keshtegar, Qian, Wang (b0095) 2020; 181
Xu, Bao, Zhao, Han, Jing, Yu (b0045) 2020; 546
Barrett, O’Donoghue, Leen (b0125) 2014; 92
Haupt, Munz, Scheibe, Schinke, Schmitt, Sklenicka (b0070) 1996; 162
Jena (10.1016/j.ijfatigue.2022.106736_b0015) 2018; 116
Mughrabi (10.1016/j.ijfatigue.2022.106736_b0145) 2006; 86
10.1016/j.ijfatigue.2022.106736_b0085
Pham (10.1016/j.ijfatigue.2022.106736_b0040) 2013; 47
Yang (10.1016/j.ijfatigue.2022.106736_b0140) 2016; 4
Polák (10.1016/j.ijfatigue.2022.106736_b0190) 2014; 615
Roy (10.1016/j.ijfatigue.2022.106736_b0075) 2012; 253
Mayama (10.1016/j.ijfatigue.2022.106736_b0010) 2007; 23
Hormozi (10.1016/j.ijfatigue.2022.106736_b0080) 2015; 141
Wang (10.1016/j.ijfatigue.2022.106736_b0020) 2021; 149
Kang (10.1016/j.ijfatigue.2022.106736_b0200) 2002; 34
Wang (10.1016/j.ijfatigue.2022.106736_b0035) 2021; 814
Read (10.1016/j.ijfatigue.2022.106736_b0130) 1950; 78
Chaboche (10.1016/j.ijfatigue.2022.106736_b0155) 2008; 24
Kassner (10.1016/j.ijfatigue.2022.106736_b0135) 2013; 45
Liao (10.1016/j.ijfatigue.2022.106736_b0095) 2020; 181
Xiao (10.1016/j.ijfatigue.2022.106736_b0115) 2020; 195
Pham (10.1016/j.ijfatigue.2022.106736_b0050) 2013; 51
Chaboche (10.1016/j.ijfatigue.2022.106736_b0160) 1989; 5
Zhou (10.1016/j.ijfatigue.2022.106736_b0060) 2018; 107
Xu (10.1016/j.ijfatigue.2022.106736_b0045) 2020; 546
Pham (10.1016/j.ijfatigue.2022.106736_b0065) 2012; 556
Egner (10.1016/j.ijfatigue.2022.106736_b0175) 2020; 135
Yaguchi (10.1016/j.ijfatigue.2022.106736_b0025) 2005; 21
Jing (10.1016/j.ijfatigue.2022.106736_b0030) 2018; 731
Chaboche (10.1016/j.ijfatigue.2022.106736_b0150) 1989; 111
Xing (10.1016/j.ijfatigue.2022.106736_b0090) 2019; 120
Kebir (10.1016/j.ijfatigue.2022.106736_b0105) 2021; 12
Gao (10.1016/j.ijfatigue.2022.106736_b0195) 2003; 40
Feaugas (10.1016/j.ijfatigue.2022.106736_b0005) 2004; 20
Haupt (10.1016/j.ijfatigue.2022.106736_b0070) 1996; 162
Li (10.1016/j.ijfatigue.2022.106736_b0185) 2020; 127
Saad (10.1016/j.ijfatigue.2022.106736_b0170) 2013; 111-112
Barrett (10.1016/j.ijfatigue.2022.106736_b0125) 2014; 92
Chaboche (10.1016/j.ijfatigue.2022.106736_b0165) 1991; 7
Wei (10.1016/j.ijfatigue.2022.106736_b0180) 2018; 734
Narayanan (10.1016/j.ijfatigue.2022.106736_b0100) 2021; 12
Barrett (10.1016/j.ijfatigue.2022.106736_b0120) 2017; 100
Christensen (10.1016/j.ijfatigue.2022.106736_b0205) 1982
Xie (10.1016/j.ijfatigue.2022.106736_b0055) 2019; 114
Zhu (10.1016/j.ijfatigue.2022.106736_b0110) 2016; 79
References_xml – volume: 92
  start-page: 286
  year: 2014
  end-page: 297
  ident: b0125
  article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels
  publication-title: Comput Mater Sci
– volume: 40
  start-page: 105
  year: 2003
  end-page: 111
  ident: b0195
  article-title: Uniaxial ratcheting of SS304 stainless steel at high temperatures: visco-plastic constitutive model
  publication-title: Theor Appl Fract Mech
– volume: 23
  start-page: 915
  year: 2007
  end-page: 930
  ident: b0010
  article-title: A constitutive model of cyclic viscoplasticity considering changes in subsequent viscoplastic deformation due to the evolution of dislocation structures
  publication-title: Int J Plast
– volume: 556
  start-page: 122
  year: 2012
  end-page: 133
  ident: b0065
  article-title: Dynamic strain ageing of AISI 316L during cyclic loading at 300 °C: mechanism, evolution, and its effects
  publication-title: Mater Sci Eng, A
– volume: 162
  start-page: 13
  year: 1996
  end-page: 20
  ident: b0070
  article-title: High temperature creep and cyclic deformation behaviour of AISI 316 L (N) austenitic steel and its modelling with unified constitutive equations
  publication-title: Nucl Eng Des
– volume: 4
  start-page: 145
  year: 2016
  end-page: 151
  ident: b0140
  article-title: Back stress strengthening and strain hardening in gradient structure
  publication-title: Mater. Res. Lett.
– volume: 116
  start-page: 623
  year: 2018
  end-page: 633
  ident: b0015
  article-title: Low cycle fatigue behaviour of nickel base superalloy IN 740H at 760° C: Influence of fireside corrosion atmosphere
  publication-title: Int J Fatigue
– volume: 12
  start-page: 408
  year: 2021
  end-page: 418
  ident: b0105
  article-title: Numerical study of fatigue damage under random loading using Rainflow cycle counting
  publication-title: Int J Struct Integrity
– volume: 135
  year: 2020
  ident: b0175
  article-title: Modelling thermo-mechanical cyclic behavior of P91 steel
  publication-title: Int J Plast
– year: 1982
  ident: b0205
  article-title: Theory of Viscoelasticity
– reference: Chaboche J, Van KD, Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel 1979.
– volume: 78
  start-page: 275
  year: 1950
  end-page: 289
  ident: b0130
  article-title: Dislocation models of crystal grain boundaries
  publication-title: Phys Rev
– volume: 734
  start-page: 20
  year: 2018
  end-page: 26
  ident: b0180
  article-title: Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures
  publication-title: Mater Sci Eng, A
– volume: 107
  start-page: 54
  year: 2018
  end-page: 78
  ident: b0060
  article-title: Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime
  publication-title: Int J Plast
– volume: 181
  year: 2020
  ident: b0095
  article-title: Probabilistic framework for fatigue life assessment of notched components under size effects
  publication-title: Int J Mech Sci
– volume: 615
  start-page: 175
  year: 2014
  end-page: 182
  ident: b0190
  article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature
  publication-title: Mater Sci Eng, A
– volume: 253
  start-page: 219
  year: 2012
  end-page: 225
  ident: b0075
  article-title: Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response
  publication-title: Nucl Eng Des
– volume: 111
  start-page: 384
  year: 1989
  end-page: 392
  ident: b0150
  article-title: Constitutive modeling of ratchetting effects—part I: experimental facts and properties of the classical models
  publication-title: J Eng Mater Technol
– volume: 149
  year: 2021
  ident: b0020
  article-title: Semi-quantitative creep-fatigue damage analysis based on diffraction-based misorientation mapping and the correlation to macroscopic damage evolutions
  publication-title: Int J Fatigue
– volume: 34
  start-page: 521
  year: 2002
  end-page: 531
  ident: b0200
  article-title: A visco–plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature
  publication-title: Mech Mater
– volume: 141
  start-page: 19
  year: 2015
  end-page: 43
  ident: b0080
  article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time
  publication-title: Eng Fract Mech
– volume: 546
  year: 2020
  ident: b0045
  article-title: Characterizing microstructural evolution and low cycle fatigue behavior of 316H austenitic steel at high-temperatures
  publication-title: J Nucl Mater
– volume: 5
  start-page: 247
  year: 1989
  end-page: 302
  ident: b0160
  article-title: Constitutive equations for cyclic plasticity and cyclic viscoplasticity
  publication-title: Int J Plast
– volume: 21
  start-page: 43
  year: 2005
  end-page: 65
  ident: b0025
  article-title: Ratchetting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr–1Mo steel
  publication-title: Int J Plast
– volume: 731
  start-page: 394
  year: 2018
  end-page: 402
  ident: b0030
  article-title: Low cycle fatigue behavior and microstructure evolution of a novel 9Cr–3W–3Co tempered martensitic steel at 650° C
  publication-title: Mater Sci Eng, A
– volume: 79
  start-page: 111
  year: 2016
  end-page: 152
  ident: b0110
  article-title: Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals: theory and application
  publication-title: Int J Plast
– volume: 100
  start-page: 388
  year: 2017
  end-page: 406
  ident: b0120
  article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation
  publication-title: Int J Fatigue
– volume: 7
  start-page: 661
  year: 1991
  end-page: 678
  ident: b0165
  article-title: On some modifications of kinematic hardening to improve the description of ratchetting effects
  publication-title: Int J Plast
– volume: 45
  start-page: 44
  year: 2013
  end-page: 60
  ident: b0135
  article-title: Long range internal stresses in single-phase crystalline materials
  publication-title: Int J Plast
– volume: 120
  start-page: 127
  year: 2019
  end-page: 146
  ident: b0090
  article-title: Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path
  publication-title: Int J Plast
– volume: 12
  start-page: 454
  year: 2021
  end-page: 469
  ident: b0100
  article-title: Probabilistic fatigue model for cast alloys of aero engine applications
  publication-title: Int J Struct Integrity
– volume: 111-112
  start-page: 246
  year: 2013
  end-page: 252
  ident: b0170
  article-title: Characterization of viscoplasticity behaviour of P91 and P92 power plant steels
  publication-title: Int J Press Vessels Pip
– volume: 127
  start-page: 102634
  year: 2020
  ident: b0185
  article-title: Effect of strain rate induced M23C6 distribution on cyclic deformation behavior: Cyclic hardening model
  publication-title: Int J Plast
– volume: 51
  start-page: 36
  year: 2013
  end-page: 48
  ident: b0050
  article-title: Role of microstructural condition on fatigue damage development of AISI 316L at 20 and 300°C
  publication-title: Int J Fatigue
– volume: 24
  start-page: 1642
  year: 2008
  end-page: 1693
  ident: b0155
  article-title: A review of some plasticity and viscoplasticity constitutive theories
  publication-title: Int J Plast
– volume: 195
  start-page: 199
  year: 2020
  end-page: 208
  ident: b0115
  article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel
  publication-title: Acta Mater
– volume: 814
  year: 2021
  ident: b0035
  article-title: Cyclic response and dislocation evolution of a nickel-based superalloy under low cycle fatigue deformation
  publication-title: Mater Sci Eng, A
– volume: 86
  start-page: 4037
  year: 2006
  end-page: 4054
  ident: b0145
  article-title: Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically necessary dislocations
  publication-title: Phil Mag
– volume: 47
  start-page: 143
  year: 2013
  end-page: 164
  ident: b0040
  article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling
  publication-title: Int J Plast
– volume: 114
  start-page: 196
  year: 2019
  end-page: 214
  ident: b0055
  article-title: Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling
  publication-title: Int J Plast
– volume: 20
  start-page: 643
  year: 2004
  end-page: 662
  ident: b0005
  article-title: Ratchetting process in the stainless steel AISI 316L at 300 K: an experimental investigation
  publication-title: Int J Plast
– volume: 734
  start-page: 20
  year: 2018
  ident: 10.1016/j.ijfatigue.2022.106736_b0180
  article-title: Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2018.07.084
– volume: 21
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.ijfatigue.2022.106736_b0025
  article-title: Ratchetting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr–1Mo steel
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2004.02.001
– volume: 7
  start-page: 661
  issue: 7
  year: 1991
  ident: 10.1016/j.ijfatigue.2022.106736_b0165
  article-title: On some modifications of kinematic hardening to improve the description of ratchetting effects
  publication-title: Int J Plast
  doi: 10.1016/0749-6419(91)90050-9
– volume: 51
  start-page: 36
  year: 2013
  ident: 10.1016/j.ijfatigue.2022.106736_b0050
  article-title: Role of microstructural condition on fatigue damage development of AISI 316L at 20 and 300°C
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2013.02.005
– volume: 100
  start-page: 388
  year: 2017
  ident: 10.1016/j.ijfatigue.2022.106736_b0120
  article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.03.018
– volume: 615
  start-page: 175
  year: 2014
  ident: 10.1016/j.ijfatigue.2022.106736_b0190
  article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2014.07.075
– volume: 141
  start-page: 19
  year: 2015
  ident: 10.1016/j.ijfatigue.2022.106736_b0080
  article-title: Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.05.007
– volume: 47
  start-page: 143
  year: 2013
  ident: 10.1016/j.ijfatigue.2022.106736_b0040
  article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2013.01.017
– volume: 114
  start-page: 196
  year: 2019
  ident: 10.1016/j.ijfatigue.2022.106736_b0055
  article-title: Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2018.11.001
– volume: 4
  start-page: 145
  issue: 3
  year: 2016
  ident: 10.1016/j.ijfatigue.2022.106736_b0140
  article-title: Back stress strengthening and strain hardening in gradient structure
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1153004
– volume: 34
  start-page: 521
  issue: 9
  year: 2002
  ident: 10.1016/j.ijfatigue.2022.106736_b0200
  article-title: A visco–plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature
  publication-title: Mech Mater
  doi: 10.1016/S0167-6636(02)00153-9
– volume: 181
  year: 2020
  ident: 10.1016/j.ijfatigue.2022.106736_b0095
  article-title: Probabilistic framework for fatigue life assessment of notched components under size effects
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2020.105685
– volume: 546
  year: 2020
  ident: 10.1016/j.ijfatigue.2022.106736_b0045
  article-title: Characterizing microstructural evolution and low cycle fatigue behavior of 316H austenitic steel at high-temperatures
  publication-title: J Nucl Mater
– ident: 10.1016/j.ijfatigue.2022.106736_b0085
– volume: 92
  start-page: 286
  year: 2014
  ident: 10.1016/j.ijfatigue.2022.106736_b0125
  article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2014.05.034
– volume: 731
  start-page: 394
  year: 2018
  ident: 10.1016/j.ijfatigue.2022.106736_b0030
  article-title: Low cycle fatigue behavior and microstructure evolution of a novel 9Cr–3W–3Co tempered martensitic steel at 650° C
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2018.06.071
– volume: 40
  start-page: 105
  issue: 1
  year: 2003
  ident: 10.1016/j.ijfatigue.2022.106736_b0195
  article-title: Uniaxial ratcheting of SS304 stainless steel at high temperatures: visco-plastic constitutive model
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/S0167-8442(03)00038-7
– volume: 814
  year: 2021
  ident: 10.1016/j.ijfatigue.2022.106736_b0035
  article-title: Cyclic response and dislocation evolution of a nickel-based superalloy under low cycle fatigue deformation
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2021.141225
– year: 1982
  ident: 10.1016/j.ijfatigue.2022.106736_b0205
– volume: 116
  start-page: 623
  year: 2018
  ident: 10.1016/j.ijfatigue.2022.106736_b0015
  article-title: Low cycle fatigue behaviour of nickel base superalloy IN 740H at 760° C: Influence of fireside corrosion atmosphere
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.07.018
– volume: 78
  start-page: 275
  issue: 3
  year: 1950
  ident: 10.1016/j.ijfatigue.2022.106736_b0130
  article-title: Dislocation models of crystal grain boundaries
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.78.275
– volume: 86
  start-page: 4037
  issue: 25-26
  year: 2006
  ident: 10.1016/j.ijfatigue.2022.106736_b0145
  article-title: Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically necessary dislocations
  publication-title: Phil Mag
  doi: 10.1080/14786430500509054
– volume: 24
  start-page: 1642
  issue: 10
  year: 2008
  ident: 10.1016/j.ijfatigue.2022.106736_b0155
  article-title: A review of some plasticity and viscoplasticity constitutive theories
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2008.03.009
– volume: 23
  start-page: 915
  issue: 5
  year: 2007
  ident: 10.1016/j.ijfatigue.2022.106736_b0010
  article-title: A constitutive model of cyclic viscoplasticity considering changes in subsequent viscoplastic deformation due to the evolution of dislocation structures
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2006.10.003
– volume: 162
  start-page: 13
  issue: 1
  year: 1996
  ident: 10.1016/j.ijfatigue.2022.106736_b0070
  article-title: High temperature creep and cyclic deformation behaviour of AISI 316 L (N) austenitic steel and its modelling with unified constitutive equations
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(95)01139-0
– volume: 45
  start-page: 44
  year: 2013
  ident: 10.1016/j.ijfatigue.2022.106736_b0135
  article-title: Long range internal stresses in single-phase crystalline materials
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2012.10.003
– volume: 107
  start-page: 54
  year: 2018
  ident: 10.1016/j.ijfatigue.2022.106736_b0060
  article-title: Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2018.03.013
– volume: 12
  start-page: 408
  issue: 3
  year: 2021
  ident: 10.1016/j.ijfatigue.2022.106736_b0105
  article-title: Numerical study of fatigue damage under random loading using Rainflow cycle counting
  publication-title: Int J Struct Integrity
  doi: 10.1108/IJSI-04-2020-0036
– volume: 20
  start-page: 643
  issue: 4–5
  year: 2004
  ident: 10.1016/j.ijfatigue.2022.106736_b0005
  article-title: Ratchetting process in the stainless steel AISI 316L at 300 K: an experimental investigation
  publication-title: Int J Plast
  doi: 10.1016/S0749-6419(03)00076-7
– volume: 149
  year: 2021
  ident: 10.1016/j.ijfatigue.2022.106736_b0020
  article-title: Semi-quantitative creep-fatigue damage analysis based on diffraction-based misorientation mapping and the correlation to macroscopic damage evolutions
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2021.106227
– volume: 253
  start-page: 219
  year: 2012
  ident: 10.1016/j.ijfatigue.2022.106736_b0075
  article-title: Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2012.08.024
– volume: 127
  start-page: 102634
  year: 2020
  ident: 10.1016/j.ijfatigue.2022.106736_b0185
  article-title: Effect of strain rate induced M23C6 distribution on cyclic deformation behavior: Cyclic hardening model
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2019.11.013
– volume: 556
  start-page: 122
  year: 2012
  ident: 10.1016/j.ijfatigue.2022.106736_b0065
  article-title: Dynamic strain ageing of AISI 316L during cyclic loading at 300 °C: mechanism, evolution, and its effects
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2012.06.067
– volume: 12
  start-page: 454
  issue: 3
  year: 2021
  ident: 10.1016/j.ijfatigue.2022.106736_b0100
  article-title: Probabilistic fatigue model for cast alloys of aero engine applications
  publication-title: Int J Struct Integrity
  doi: 10.1108/IJSI-05-2020-0048
– volume: 135
  year: 2020
  ident: 10.1016/j.ijfatigue.2022.106736_b0175
  article-title: Modelling thermo-mechanical cyclic behavior of P91 steel
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2020.102820
– volume: 195
  start-page: 199
  year: 2020
  ident: 10.1016/j.ijfatigue.2022.106736_b0115
  article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.05.054
– volume: 111
  start-page: 384
  issue: 4
  year: 1989
  ident: 10.1016/j.ijfatigue.2022.106736_b0150
  article-title: Constitutive modeling of ratchetting effects—part I: experimental facts and properties of the classical models
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.3226484
– volume: 120
  start-page: 127
  year: 2019
  ident: 10.1016/j.ijfatigue.2022.106736_b0090
  article-title: Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2019.04.016
– volume: 79
  start-page: 111
  year: 2016
  ident: 10.1016/j.ijfatigue.2022.106736_b0110
  article-title: Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals: theory and application
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2015.12.005
– volume: 111-112
  start-page: 246
  year: 2013
  ident: 10.1016/j.ijfatigue.2022.106736_b0170
  article-title: Characterization of viscoplasticity behaviour of P91 and P92 power plant steels
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2013.08.001
– volume: 5
  start-page: 247
  issue: 3
  year: 1989
  ident: 10.1016/j.ijfatigue.2022.106736_b0160
  article-title: Constitutive equations for cyclic plasticity and cyclic viscoplasticity
  publication-title: Int J Plast
  doi: 10.1016/0749-6419(89)90015-6
SSID ssj0009075
Score 2.455665
Snippet •Cyclic softening, cyclic hardening–softening and cyclic hardening–softening–secondary hardening behaviors were investigated.•A novel factor was introduced to...
In this study, the stress–strain responses of G115 martensitic steel, Inconel alloy 750H, and 316H austenitic steel were thoroughly investigated at elevated...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106736
SubjectTerms Austenitic stainless steels
Constitutive models
Cyclic elastic–plastic model
Dislocation density
Dislocation mobility
Fatigue tests
Grain structure
Hardening-softening behavior
Heat resistant steels
High temperature
High temperature low cycle fatigue
Hysteresis loops
Low cycle fatigue
Martensitic stainless steels
Materials fatigue
Mathematical models
Microstructure mechanism
Plastic deformation
Secondary hardening
Softening
Strain
Thermal cycling
Title A combined elastic–plastic framework unifying the various cyclic softening/hardening behaviors for heat resistant steels: Experiment and modeling
URI https://dx.doi.org/10.1016/j.ijfatigue.2022.106736
https://www.proquest.com/docview/2639706588
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI6mcYED4lcMBvKBa9maZl272zQxDZB2Amm3qE1caQiViW1IXBDvsDfkSbDTdvwIiQO3tHLSJHacz6ljC3EuOYU7yq6HRhlPhTbzosw3noktJkESSJs6B9lxOLpT15POpCYG1V0YdqssdX-h0522Lt-0ytlszabTFrslkfVCiEC6qC-sh5XqspRfvH66ecRFsF0m9pj6m4_X9D6j8fMRiaS97ILDqblYzb_uUD90tduAhjtiu0SO0C86tytqmO-JrS_xBPfFqg80DrJ10QISLCbK97fVrChBVvlhwTKfuutNQOgPnslaJvMfzIt5IKo56WXkw5IW38dyJaju8s-BIC6w-gay0hl55gsgMaHe9-BynSsAktyCS7FDlQ_E7fDydjDyyqwLniFbb-GZ1GCMmY9BN7Nt62M76BiJGBG2kwlxXIZICz-VfkLGnJFZiGg6iVVpRPKggkNRzx9zPBIQJaH1DQFGjFOFkU3DIJERtac6saJPNERYTbQ2ZURyTozxoCvXs3u95pBmDumCQw3RXlecFUE5_q7Sqzipv8mXpq3j78rNive6XOJzLfmXKAO46Pg_bZ-ITX4qfCibor54WuIp4ZxFeuYE-Uxs9K9uRuMPUvYEiQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4ikeBW5gDW2cB2m3ChUVWjoVqZuV2BepFUormiKx8R_4h_wS7vIoFCF1YIsSn-P47PN3zvk7Ia4kp3BHeWOhdrXl-ia2gtjWlm4aDJ3QkSbKAmQHfvfJfRh5o4q4Lc_CcFhlYftzm55Z6-JOvejN-mw8rnNYEnkvhAhkxvpCdniD2am8qtho3_e6g2_u3Zxvl8tbLLAS5jWexNQFvEsiaTm7Zka1jK75z0Xql7nO1qC7XbFTgEdo5-3bExVM9sX2D0rBA_HRBvoUcnfRABIyppKf7x-z_AriMhQLFsk4O-EEBADhlRzm6WIO-k0_U6k5mWbk_ZI6H8nKrqA8zj8HQrnAFhzIUWfwmaRAI4Va34LOMl0AhImBLMsOCR-K4V1neNu1isQLliZ3L7V0pLGJsY3OTWwaxsaG42mJGBC8kyEpXfpIcz-Sdkj-nJaxj6i90LhRQEPCdY5ENZkmeCwgCH1ja8KM2IxcDEzkO6EMqD7Xa7r0ihPhlx2tdEFKzrkxnlUZfTZRSw0p1pDKNXQiGkvBWc7LsV6kVWpSrQwxRavHeuFaqXtVzPK5kvxXlDFccPqfui_FZnf42Ff9-0HvTGzxkzyksiaq6csCzwn2pNFFMay_ACirBzo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+elastic%E2%80%93plastic+framework+unifying+the+various+cyclic+softening%2Fhardening+behaviors+for+heat+resistant+steels%3A+Experiment+and+modeling&rft.jtitle=International+journal+of+fatigue&rft.au=Song%2C+Kai&rft.au=Wang%2C+Kaimeng&rft.au=Zhao%2C+Lei&rft.au=Xu%2C+Lianyong&rft.date=2022-05-01&rft.issn=0142-1123&rft.volume=158&rft.spage=106736&rft_id=info:doi/10.1016%2Fj.ijfatigue.2022.106736&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijfatigue_2022_106736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon