Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol
In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large spec...
Saved in:
Published in | Electrochimica acta Vol. 344; p. 136161 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large specific surface area was synthesized by a simple hydrothermal process and was employed as a matrix to graft the MIPs recognition element (denoted as MIPs-PEC). SEM, TEM, FTIR, XPS, XRD and UV–vis spectroscopy were used to investigate the microstructure characteristics of the as-obtained MIPs-PEC sensor. During the PEC sensing process, MIPs were prepared via a simple thermal polymerization process provided numerous recognition sites, which improved the sensor’s selectivity to CAP. The results showed that photocurrent response signal generated by photo-induced MIPs/BrOBr/ITO electrodes was proportional to the logarithm of CAP concentration over the range from 1.00 ⅹ 10−2 to 1.00 ⅹ 103 ng mL−1 with a low detection limit is 3.02 pg mL−1 (S/N = 3). MIPs-PEC sensor exhibited high selectivity and stability, low cost, and applicability to the determination of CAP in real samples.
[Display omitted]
•A rapid and ultrasensitive signal-off MIPs-PEC sensor developed for CAP detection.•3D flower-sphere BiOBr with large specific surface area was successfully synthesized.•The first smart integration of BiOBr with MIPs fabricating a novel PEC sensing platform.•This method has high selectivity and can be applied to thedetermination of CAP in water. |
---|---|
AbstractList | In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large specific surface area was synthesized by a simple hydrothermal process and was employed as a matrix to graft the MIPs recognition element (denoted as MIPs-PEC). SEM, TEM, FTIR, XPS, XRD and UV–vis spectroscopy were used to investigate the microstructure characteristics of the as-obtained MIPs-PEC sensor. During the PEC sensing process, MIPs were prepared via a simple thermal polymerization process provided numerous recognition sites, which improved the sensor’s selectivity to CAP. The results showed that photocurrent response signal generated by photo-induced MIPs/BrOBr/ITO electrodes was proportional to the logarithm of CAP concentration over the range from 1.00 ⅹ 10−2 to 1.00 ⅹ 103 ng mL−1 with a low detection limit is 3.02 pg mL−1 (S/N = 3). MIPs-PEC sensor exhibited high selectivity and stability, low cost, and applicability to the determination of CAP in real samples.
[Display omitted]
•A rapid and ultrasensitive signal-off MIPs-PEC sensor developed for CAP detection.•3D flower-sphere BiOBr with large specific surface area was successfully synthesized.•The first smart integration of BiOBr with MIPs fabricating a novel PEC sensing platform.•This method has high selectivity and can be applied to thedetermination of CAP in water. In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large specific surface area was synthesized by a simple hydrothermal process and was employed as a matrix to graft the MIPs recognition element (denoted as MIPs-PEC). SEM, TEM, FTIR, XPS, XRD and UV–vis spectroscopy were used to investigate the microstructure characteristics of the as-obtained MIPs-PEC sensor. During the PEC sensing process, MIPs were prepared via a simple thermal polymerization process provided numerous recognition sites, which improved the sensor's selectivity to CAP. The results showed that photocurrent response signal generated by photo-induced MIPs/BrOBr/ITO electrodes was proportional to the logarithm of CAP concentration over the range from 1.00 ⅹ 10−2 to 1.00 ⅹ 103 ng mL−1 with a low detection limit is 3.02 pg mL−1 (S/N = 3). MIPs-PEC sensor exhibited high selectivity and stability, low cost, and applicability to the determination of CAP in real samples. |
ArticleNumber | 136161 |
Author | Wang, Yuping Zhou, Haifei Zhang, Zheng Jiang, Caiyun |
Author_xml | – sequence: 1 givenname: Zheng surname: Zhang fullname: Zhang, Zheng organization: School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China – sequence: 2 givenname: Haifei surname: Zhou fullname: Zhou, Haifei organization: School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China – sequence: 3 givenname: Caiyun surname: Jiang fullname: Jiang, Caiyun organization: Department of Engineering and Technology, Jiangsu Institute of Commerce, Nanjing, 211168, China – sequence: 4 givenname: Yuping surname: Wang fullname: Wang, Yuping email: wangyuping@njnu.edu.cn organization: School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China |
BookMark | eNqNkMFq3DAQhkVJoJtNn6GCnL0ZWVrJPuSQhLYppOTSnoUsj7vayJIjeRu2l756td2SQy8pDAyM_m_QfGfkJMSAhLxnsGLA5OV2hR7tbEqtaqjLlEsm2RuyYI3iFW_W7QlZADBeCdnIt-Qs5y0AKKlgQX59iYXeeZP8nrpxSi7M2NMp-v2IiQ67YGcXg_HuZxkPPj5jqrx7RHrjHm4SHZ1NMU8bTJjpEBOdNnGOf36Uot1geTeeZgzZhe80DtRufExmLERwNvpzcjoYn_Hd374k3z5--Hp7V90_fPp8e31fWQHtXFkluq5WjIMRwjYd1AolUw3v19wwwxSHppdmDUPfqjVrBxAGGsv6zvAOlOVLcnHcO6X4tMM8623cpXJX1rUQINpa1rKkro6pw1E54aCtm81BwJyM85qBPjjXW_3iXB-c66Pzwqt_-CJ0NGn_H-T1kcQi4YfDpLN1GCz2LpW87qN7dcdv5tWmVg |
CitedBy_id | crossref_primary_10_1016_j_aca_2022_339796 crossref_primary_10_1016_j_colsurfa_2022_130267 crossref_primary_10_1016_j_mssp_2023_107547 crossref_primary_10_1039_D1AY01014J crossref_primary_10_2139_ssrn_3995928 crossref_primary_10_3390_molecules26216515 crossref_primary_10_1016_j_foodchem_2023_135434 crossref_primary_10_1016_j_ccr_2021_214156 crossref_primary_10_1016_j_mssp_2024_109161 crossref_primary_10_1016_j_snb_2021_129900 crossref_primary_10_1016_j_trac_2020_116020 crossref_primary_10_1016_j_microc_2025_112841 crossref_primary_10_1007_s42114_021_00377_z crossref_primary_10_1016_j_trac_2021_116289 crossref_primary_10_3390_bios12070441 crossref_primary_10_1016_j_foodchem_2023_136535 crossref_primary_10_1016_j_foodchem_2023_135627 crossref_primary_10_1016_j_jhazmat_2021_127498 crossref_primary_10_1016_j_bios_2022_114634 crossref_primary_10_1002_adfm_202008227 crossref_primary_10_1007_s00604_020_04671_3 crossref_primary_10_1007_s00604_025_07072_6 crossref_primary_10_1016_j_scitotenv_2022_160284 crossref_primary_10_3866_PKU_WHXB202309047 crossref_primary_10_1016_j_inoche_2020_108333 crossref_primary_10_1149_1945_7111_acfa66 crossref_primary_10_1007_s00604_024_06364_7 crossref_primary_10_2116_analsci_21SAR09 crossref_primary_10_1016_j_trac_2023_117389 |
Cites_doi | 10.1016/j.cej.2019.01.163 10.1016/j.electacta.2017.11.026 10.1016/j.colsurfb.2019.110451 10.1021/nl4028507 10.1039/c3nr05529a 10.1016/j.snb.2017.04.130 10.1007/s12161-017-0810-9 10.1016/j.foodchem.2018.04.014 10.1016/j.ccr.2019.05.008 10.1016/j.bios.2016.01.064 10.1021/acs.analchem.5b04092 10.1146/annurev-micro-091313-103456 10.1021/acs.analchem.9b01739 10.1080/00032719.2010.551693 10.1016/j.talanta.2016.05.004 10.1021/acsami.5b08275 10.1016/j.electacta.2017.01.150 10.1016/S0025-6196(12)65047-2 10.1016/j.jchromb.2009.03.040 10.1016/j.bios.2012.09.060 10.1021/acs.analchem.5b00774 10.1021/am5010392 10.1021/ac3012522 10.1007/s12161-016-0422-9 10.1016/j.talanta.2011.12.047 10.1016/j.electacta.2016.05.005 10.1016/j.bios.2019.111790 10.1016/j.bios.2018.11.040 10.1016/j.bios.2019.111756 10.1007/s00604-016-1945-x 10.1016/j.talanta.2018.12.103 10.1016/j.foodchem.2017.03.071 10.1021/acs.analchem.8b04478 10.1016/j.jhazmat.2013.10.027 10.1039/C4RA16948D 10.1016/j.watres.2017.03.058 10.1016/j.snb.2016.08.038 10.1016/j.carbon.2015.10.068 10.1016/j.trac.2018.06.007 10.1039/C4NR02553A 10.1021/acs.jafc.5b01072 10.1002/jssc.200800229 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jun 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2020.136161 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2020_136161 S0013468620305533 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c409t-c74bb27130a44c8b027e61783d53a1a17308d6a50fd97519f04a08c1dba3b07c3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 08:28:25 EDT 2025 Tue Jul 01 03:02:11 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 23 02:46:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photoelectrochemical sensing Chloramphenicol Molecularly imprinted polymers Flower-like BiOBr |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-c74bb27130a44c8b027e61783d53a1a17308d6a50fd97519f04a08c1dba3b07c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2440492626 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2440492626 crossref_citationtrail_10_1016_j_electacta_2020_136161 crossref_primary_10_1016_j_electacta_2020_136161 elsevier_sciencedirect_doi_10_1016_j_electacta_2020_136161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li, Yu, Zhang (bib21) 2014; 6 Karaseva, Ermolaeva (bib6) 2012; 93 Li, Wang, Fang, Zhang, Gong (bib30) 2011; Talanta181 Mao, Ji, Yao, Xue, Wen, Zhang, Wang (bib37) 2019; 127 Zhou, Shi, Wang, Xia (bib15) 2019; 91 Zhang, Cui, Cai, Duan, Liu (bib24) 2015; 63 Teixeira, Delerue-Matos, Alves, Santos (bib40) 2008; 31 Keeney, Yurist-Doutsch, Arrieta, Finlay (bib3) 2014; 68 Xu, Ling, Li, Yan, Xia, Qiu, Wang, Li, Yuan (bib13) 2017; 240 Wei, Cui, Guo, Zhao, Li (bib36) 2013; 263 Song, Zhang, Yu, Ye, Li (bib29) 2016; 208 Cheng, Huang, Dai (bib20) 2014; 6 Zhu, Gao, Tang, Peng, Huang, Wang, Yu, Ouyang, Tan (bib42) 2019; 146 Guo, Wang, Yan, Wang, Wang, Xu, Wang (bib5) 2017; 117 Yang, Gao, Ji, Zhu, Yang, Zhao, Shu, Jin, Xu, Zhao (bib26) 2019; 91 Kamra, Zhou, Montelius, Schnadt, Ye (bib23) 2015; 87 Kikuchi, Sakai, Teshima, Nemoto, Akiyama (bib12) 2017; 230 Qin, Wang, Geng, Shu, Wang (bib43) 2019; 197 Yin, Liu, Jiang, Du, Qian, Mao, Wang (bib22) 2016; 96 Liu, Yan, Zhang (bib14) 2015; 8 Jiao, Yu, Liu, Kuang, Zhang (bib35) 2015; 5 Yang, Hu, Dong (bib8) 2016; 80 Roushani, Rahmati, Hoseini, Fath (bib10) 2019; 183 Yan, Xu, Jiang, Li, Xia, Zhang, Hua, Li (bib34) 2018; 259 Bai, Qin, Huang (bib38) 2016; 183 Bemana, Rashid-Nadimi (bib16) 2017; 229 Sun, Gao, Zhang, Yu, Ge (bib28) 2017; 251 Yu, Tang, Pang, Zeng, Wang, Deng, Liu, Feng, Chen, Ren (bib4) 2019; 364 Fernandez-Torres, Bello Lopez, Consentino (bib7) 2011; 44 Tang, Kong, Wang, Xu, Wang, Wu, Zheng (bib17) 2013; 13 Zamora-Gálvez, Ait-Lahcen, Mercante, Morales-Narváez, Amine, Merkoçi (bib25) 2016; 88 Yan, Zhang, Yao, Xue, Lu, Li, Chen (bib41) 2018; 260 Tu, Wang, Dai (bib18) 2018; 105 Wilson, Cockerill (bib2) 1987; 62 Shen, Xia, Jiang, Li, Li, Li, Ding (bib9) 2009; 877 Li, Yu, Zhao, Deng, Li (bib11) 2020; 147 Pilehvar, Mehta, Dardenne, Robbens, Blust, De Wael (bib1) 2012; 84 Yan, Xu, Xia, Huang, Qiu, Xu, Zhang, Li (bib27) 2016; 156 Niu, Yang, Ma, Gong, Wang, Gong (bib31) 2016; 9 Zhang, Wang, Wang, Wang, Long, Li, Yu (bib33) 2014; 6 Yu, Zhang, Zhu, Gao, Fan, Han, Chen, Zhao (bib19) 2019; 93 Zhao, She, Zhang, Wang, Du, Jin, Jin, Shao, Zheng, Wang (bib32) 2017; 10 Li, Zhou, Ding, Guo, Wu (bib39) 2013; 41 Teixeira (10.1016/j.electacta.2020.136161_bib40) 2008; 31 Qin (10.1016/j.electacta.2020.136161_bib43) 2019; 197 Jiao (10.1016/j.electacta.2020.136161_bib35) 2015; 5 Kikuchi (10.1016/j.electacta.2020.136161_bib12) 2017; 230 Zhang (10.1016/j.electacta.2020.136161_bib24) 2015; 63 Niu (10.1016/j.electacta.2020.136161_bib31) 2016; 9 Pilehvar (10.1016/j.electacta.2020.136161_bib1) 2012; 84 Zhang (10.1016/j.electacta.2020.136161_bib33) 2014; 6 Mao (10.1016/j.electacta.2020.136161_bib37) 2019; 127 Wilson (10.1016/j.electacta.2020.136161_bib2) 1987; 62 Liu (10.1016/j.electacta.2020.136161_bib14) 2015; 8 Yin (10.1016/j.electacta.2020.136161_bib22) 2016; 96 Li (10.1016/j.electacta.2020.136161_bib30) 2011; Talanta181 Yan (10.1016/j.electacta.2020.136161_bib34) 2018; 259 Keeney (10.1016/j.electacta.2020.136161_bib3) 2014; 68 Yan (10.1016/j.electacta.2020.136161_bib27) 2016; 156 Song (10.1016/j.electacta.2020.136161_bib29) 2016; 208 Kamra (10.1016/j.electacta.2020.136161_bib23) 2015; 87 Yu (10.1016/j.electacta.2020.136161_bib4) 2019; 364 Tang (10.1016/j.electacta.2020.136161_bib17) 2013; 13 Zhao (10.1016/j.electacta.2020.136161_bib32) 2017; 10 Zhou (10.1016/j.electacta.2020.136161_bib15) 2019; 91 Bemana (10.1016/j.electacta.2020.136161_bib16) 2017; 229 Sun (10.1016/j.electacta.2020.136161_bib28) 2017; 251 Zamora-Gálvez (10.1016/j.electacta.2020.136161_bib25) 2016; 88 Karaseva (10.1016/j.electacta.2020.136161_bib6) 2012; 93 Cheng (10.1016/j.electacta.2020.136161_bib20) 2014; 6 Bai (10.1016/j.electacta.2020.136161_bib38) 2016; 183 Yang (10.1016/j.electacta.2020.136161_bib8) 2016; 80 Roushani (10.1016/j.electacta.2020.136161_bib10) 2019; 183 Xu (10.1016/j.electacta.2020.136161_bib13) 2017; 240 Zhu (10.1016/j.electacta.2020.136161_bib42) 2019; 146 Tu (10.1016/j.electacta.2020.136161_bib18) 2018; 105 Yu (10.1016/j.electacta.2020.136161_bib19) 2019; 93 Yan (10.1016/j.electacta.2020.136161_bib41) 2018; 260 Li (10.1016/j.electacta.2020.136161_bib11) 2020; 147 Wei (10.1016/j.electacta.2020.136161_bib36) 2013; 263 Fernandez-Torres (10.1016/j.electacta.2020.136161_bib7) 2011; 44 Li (10.1016/j.electacta.2020.136161_bib21) 2014; 6 Shen (10.1016/j.electacta.2020.136161_bib9) 2009; 877 Yang (10.1016/j.electacta.2020.136161_bib26) 2019; 91 Guo (10.1016/j.electacta.2020.136161_bib5) 2017; 117 Li (10.1016/j.electacta.2020.136161_bib39) 2013; 41 |
References_xml | – volume: Talanta181 start-page: 147 year: 2011 end-page: 153 ident: bib30 article-title: Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode – volume: 31 start-page: 2924 year: 2008 end-page: 2931 ident: bib40 article-title: Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis publication-title: J. Separ. Sci. – volume: 183 start-page: 2973 year: 2016 end-page: 2981 ident: bib38 article-title: Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe publication-title: Microchimica Acta – volume: 5 start-page: 16239 year: 2015 end-page: 16249 ident: bib35 article-title: One-pot synthesis of heterostructured Bi publication-title: RSC Adv. – volume: 44 start-page: 2357 year: 2011 end-page: 2372 ident: bib7 article-title: Simultaneous determination of selected veterinary antibiotics and their main metabolites in fish and mussel samples by high-performance liquid chromatography with diode array-fluorescence (HPLC-DAD-FLD) detection publication-title: Anal. Lett. – volume: 13 start-page: 5350 year: 2013 end-page: 5354 ident: bib17 article-title: Photoelectrochemical detection of glutathione by IrO publication-title: Nano Lett. – volume: 259 start-page: 873 year: 2018 end-page: 881 ident: bib34 article-title: Photoelectrochemical monitoring of ciprofloxacin based on metallic Bi self-doping BiOBr nanocomposites publication-title: Electrochim. Acta – volume: 230 start-page: 589 year: 2017 end-page: 593 ident: bib12 article-title: Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry publication-title: Food Chem. – volume: 117 start-page: 95 year: 2017 end-page: 101 ident: bib5 article-title: Effect of bio-electrochemical system on the fate and proliferation of chloramphenicol resistance genes during the treatment of chloramphenicol wastewater publication-title: Water Res. – volume: 63 start-page: 4966 year: 2015 end-page: 4972 ident: bib24 article-title: Development of fluorescence sensing material based on cdse/zns quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and Chinese cabbage publication-title: J. Agric. Food Chem. – volume: 93 start-page: 9 year: 2019 end-page: 20 ident: bib19 article-title: Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing publication-title: Coord. Chem. Rev. – volume: 87 start-page: 5056 year: 2015 end-page: 5061 ident: bib23 article-title: Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection publication-title: Anal. Chem. – volume: 9 start-page: 2342 year: 2016 end-page: 2351 ident: bib31 article-title: Preparation of tetracycline surface molecularly imprinted material for the selective recognition of tetracycline in milk publication-title: Food analytical methods – volume: 80 start-page: 373 year: 2016 end-page: 377 ident: bib8 article-title: A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol publication-title: Biosens. Bioelectron. – volume: 91 start-page: 9356 year: 2019 end-page: 9360 ident: bib26 article-title: Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: synthesis and application for photoelectrochemical sensing of salicylic acid publication-title: Anal. Chem. – volume: 91 start-page: 2759 year: 2019 end-page: 2767 ident: bib15 article-title: Oriented self-assembled monolayer of Zn (II)-Tetraphenylporphyrin on TiO publication-title: Anal. Chem. – volume: 68 start-page: 217 year: 2014 end-page: 235 ident: bib3 article-title: Effects of antibiotics on human microbiota and subsequent disease publication-title: Annu. Rev. Microbiol. – volume: 6 start-page: 2009 year: 2014 end-page: 2026 ident: bib20 article-title: Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications publication-title: Nanoscale – volume: 364 start-page: 146 year: 2019 end-page: 159 ident: bib4 article-title: Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism publication-title: Chem. Eng. J. – volume: 877 start-page: 1523 year: 2009 end-page: 1529 ident: bib9 article-title: Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry publication-title: J. Chromatogr. B – volume: 10 start-page: 2566 year: 2017 end-page: 2575 ident: bib32 article-title: Selective determination of chloramphenicol in milk samples by the solid-phase extraction based on dummy molecularly imprinted polymer publication-title: Food Analytical Methods – volume: 263 start-page: 650 year: 2013 end-page: 658 ident: bib36 article-title: Hybrid BiOBr–TiO publication-title: J. Hazard Mater. – volume: 183 year: 2019 ident: bib10 article-title: Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle publication-title: Colloids Surf. B Biointerfaces – volume: 105 start-page: 470 year: 2018 end-page: 483 ident: bib18 article-title: Selective photoelectrochemical architectures for biosensing: design, mechanism and responsibility publication-title: Trac. Trends Anal. Chem. – volume: 41 start-page: 889 year: 2013 end-page: 893 ident: bib39 article-title: Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II) publication-title: Biosens. Bioelectron. – volume: 8 start-page: 28255 year: 2015 end-page: 28264 ident: bib14 article-title: Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline publication-title: ACS Appl. Mater. Interfaces – volume: 84 start-page: 6753 year: 2012 end-page: 6758 ident: bib1 article-title: Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit publication-title: Anal. Chem. – volume: 93 start-page: 44 year: 2012 end-page: 48 ident: bib6 article-title: A piezoelectric immunosensor for chloramphenicol detection in food publication-title: Talanta – volume: 127 start-page: 57 year: 2019 end-page: 63 ident: bib37 article-title: Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction publication-title: Biosens. Bioelectron. – volume: 147 year: 2020 ident: bib11 article-title: Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol publication-title: Biosens. Bioelectron. – volume: 229 start-page: 396 year: 2017 end-page: 403 ident: bib16 article-title: Effect of sulfur doping on photoelectrochemical performance of hematite publication-title: Electrochim. Acta – volume: 146 start-page: 111756 year: 2019 ident: bib42 article-title: Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection publication-title: Biosens. Bioelectron. – volume: 156 start-page: 257 year: 2016 end-page: 264 ident: bib27 article-title: Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites publication-title: Talanta – volume: 6 start-page: 7766 year: 2014 end-page: 7772 ident: bib33 article-title: Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets publication-title: ACS Appl. Mater. Interfaces – volume: 240 start-page: 308 year: 2017 end-page: 314 ident: bib13 article-title: Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites publication-title: Sensor. Actuator. B Chem. – volume: 88 start-page: 3578 year: 2016 end-page: 3584 ident: bib25 article-title: Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection publication-title: Anal. Chem. – volume: 260 start-page: 208 year: 2018 end-page: 212 ident: bib41 article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food publication-title: Food Chem. – volume: 197 start-page: 28 year: 2019 end-page: 35 ident: bib43 article-title: A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO publication-title: Talanta – volume: 208 start-page: 10 year: 2016 end-page: 16 ident: bib29 article-title: Molecularly imprinted polymer functionalized nanoporous Au-Ag alloy microrod: novel supportless electrochemical platform for ultrasensitive and selective sensing of metronidazole publication-title: Electrochim. Acta – volume: 96 start-page: 1157 year: 2016 end-page: 1165 ident: bib22 article-title: Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrication of BiOBr nanohybrids with enhanced visible-light photoactivity and photostability publication-title: Carbon – volume: 62 start-page: 906 year: 1987 end-page: 915 ident: bib2 article-title: Tetracyclines, chloramphenicol, erythromycin, and clindamycin publication-title: Mayo Clin. Proc. – volume: 6 start-page: 8473 year: 2014 end-page: 8488 ident: bib21 article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis publication-title: Nanoscale – volume: 251 start-page: 1 year: 2017 end-page: 8 ident: bib28 article-title: Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection publication-title: Sensor. Actuator. B Chem. – volume: 364 start-page: 146 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib4 article-title: Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.163 – volume: 259 start-page: 873 year: 2018 ident: 10.1016/j.electacta.2020.136161_bib34 article-title: Photoelectrochemical monitoring of ciprofloxacin based on metallic Bi self-doping BiOBr nanocomposites publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.026 – volume: 183 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib10 article-title: Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2019.110451 – volume: 13 start-page: 5350 year: 2013 ident: 10.1016/j.electacta.2020.136161_bib17 article-title: Photoelectrochemical detection of glutathione by IrO2–Hemin–TiO2 nanowire arrays publication-title: Nano Lett. doi: 10.1021/nl4028507 – volume: 6 start-page: 2009 year: 2014 ident: 10.1016/j.electacta.2020.136161_bib20 article-title: Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications publication-title: Nanoscale doi: 10.1039/c3nr05529a – volume: 251 start-page: 1 year: 2017 ident: 10.1016/j.electacta.2020.136161_bib28 article-title: Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.04.130 – volume: 10 start-page: 2566 year: 2017 ident: 10.1016/j.electacta.2020.136161_bib32 article-title: Selective determination of chloramphenicol in milk samples by the solid-phase extraction based on dummy molecularly imprinted polymer publication-title: Food Analytical Methods doi: 10.1007/s12161-017-0810-9 – volume: 260 start-page: 208 year: 2018 ident: 10.1016/j.electacta.2020.136161_bib41 article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.04.014 – volume: 93 start-page: 9 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib19 article-title: Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.05.008 – volume: 80 start-page: 373 year: 2016 ident: 10.1016/j.electacta.2020.136161_bib8 article-title: A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.01.064 – volume: 88 start-page: 3578 year: 2016 ident: 10.1016/j.electacta.2020.136161_bib25 article-title: Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04092 – volume: 68 start-page: 217 year: 2014 ident: 10.1016/j.electacta.2020.136161_bib3 article-title: Effects of antibiotics on human microbiota and subsequent disease publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-091313-103456 – volume: 91 start-page: 9356 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib26 article-title: Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: synthesis and application for photoelectrochemical sensing of salicylic acid publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01739 – volume: 44 start-page: 2357 year: 2011 ident: 10.1016/j.electacta.2020.136161_bib7 article-title: Simultaneous determination of selected veterinary antibiotics and their main metabolites in fish and mussel samples by high-performance liquid chromatography with diode array-fluorescence (HPLC-DAD-FLD) detection publication-title: Anal. Lett. doi: 10.1080/00032719.2010.551693 – volume: 156 start-page: 257 year: 2016 ident: 10.1016/j.electacta.2020.136161_bib27 article-title: Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites publication-title: Talanta doi: 10.1016/j.talanta.2016.05.004 – volume: Talanta181 start-page: 147 year: 2011 ident: 10.1016/j.electacta.2020.136161_bib30 article-title: Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode – volume: 8 start-page: 28255 year: 2015 ident: 10.1016/j.electacta.2020.136161_bib14 article-title: Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08275 – volume: 229 start-page: 396 year: 2017 ident: 10.1016/j.electacta.2020.136161_bib16 article-title: Effect of sulfur doping on photoelectrochemical performance of hematite publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.150 – volume: 62 start-page: 906 year: 1987 ident: 10.1016/j.electacta.2020.136161_bib2 article-title: Tetracyclines, chloramphenicol, erythromycin, and clindamycin publication-title: Mayo Clin. Proc. doi: 10.1016/S0025-6196(12)65047-2 – volume: 877 start-page: 1523 year: 2009 ident: 10.1016/j.electacta.2020.136161_bib9 article-title: Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2009.03.040 – volume: 41 start-page: 889 year: 2013 ident: 10.1016/j.electacta.2020.136161_bib39 article-title: Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II) publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.09.060 – volume: 87 start-page: 5056 year: 2015 ident: 10.1016/j.electacta.2020.136161_bib23 article-title: Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00774 – volume: 6 start-page: 7766 year: 2014 ident: 10.1016/j.electacta.2020.136161_bib33 article-title: Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5010392 – volume: 84 start-page: 6753 year: 2012 ident: 10.1016/j.electacta.2020.136161_bib1 article-title: Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit publication-title: Anal. Chem. doi: 10.1021/ac3012522 – volume: 9 start-page: 2342 year: 2016 ident: 10.1016/j.electacta.2020.136161_bib31 article-title: Preparation of tetracycline surface molecularly imprinted material for the selective recognition of tetracycline in milk publication-title: Food analytical methods doi: 10.1007/s12161-016-0422-9 – volume: 93 start-page: 44 year: 2012 ident: 10.1016/j.electacta.2020.136161_bib6 article-title: A piezoelectric immunosensor for chloramphenicol detection in food publication-title: Talanta doi: 10.1016/j.talanta.2011.12.047 – volume: 208 start-page: 10 year: 2016 ident: 10.1016/j.electacta.2020.136161_bib29 article-title: Molecularly imprinted polymer functionalized nanoporous Au-Ag alloy microrod: novel supportless electrochemical platform for ultrasensitive and selective sensing of metronidazole publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.005 – volume: 147 year: 2020 ident: 10.1016/j.electacta.2020.136161_bib11 article-title: Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111790 – volume: 127 start-page: 57 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib37 article-title: Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.11.040 – volume: 146 start-page: 111756 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib42 article-title: Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111756 – volume: 183 start-page: 2973 year: 2016 ident: 10.1016/j.electacta.2020.136161_bib38 article-title: Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles publication-title: Microchimica Acta doi: 10.1007/s00604-016-1945-x – volume: 197 start-page: 28 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib43 article-title: A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol publication-title: Talanta doi: 10.1016/j.talanta.2018.12.103 – volume: 230 start-page: 589 year: 2017 ident: 10.1016/j.electacta.2020.136161_bib12 article-title: Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.03.071 – volume: 91 start-page: 2759 year: 2019 ident: 10.1016/j.electacta.2020.136161_bib15 article-title: Oriented self-assembled monolayer of Zn (II)-Tetraphenylporphyrin on TiO2 electrode for photoelectrochemical analysis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04478 – volume: 263 start-page: 650 year: 2013 ident: 10.1016/j.electacta.2020.136161_bib36 article-title: Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.10.027 – volume: 5 start-page: 16239 year: 2015 ident: 10.1016/j.electacta.2020.136161_bib35 article-title: One-pot synthesis of heterostructured Bi2S3/BiOBr microspheres with highly efficient visible light photocatalytic performance publication-title: RSC Adv. doi: 10.1039/C4RA16948D – volume: 117 start-page: 95 year: 2017 ident: 10.1016/j.electacta.2020.136161_bib5 article-title: Effect of bio-electrochemical system on the fate and proliferation of chloramphenicol resistance genes during the treatment of chloramphenicol wastewater publication-title: Water Res. doi: 10.1016/j.watres.2017.03.058 – volume: 240 start-page: 308 year: 2017 ident: 10.1016/j.electacta.2020.136161_bib13 article-title: Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2016.08.038 – volume: 96 start-page: 1157 year: 2016 ident: 10.1016/j.electacta.2020.136161_bib22 article-title: Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrication of BiOBr nanohybrids with enhanced visible-light photoactivity and photostability publication-title: Carbon doi: 10.1016/j.carbon.2015.10.068 – volume: 105 start-page: 470 year: 2018 ident: 10.1016/j.electacta.2020.136161_bib18 article-title: Selective photoelectrochemical architectures for biosensing: design, mechanism and responsibility publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2018.06.007 – volume: 6 start-page: 8473 year: 2014 ident: 10.1016/j.electacta.2020.136161_bib21 article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis publication-title: Nanoscale doi: 10.1039/C4NR02553A – volume: 63 start-page: 4966 year: 2015 ident: 10.1016/j.electacta.2020.136161_bib24 article-title: Development of fluorescence sensing material based on cdse/zns quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and Chinese cabbage publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b01072 – volume: 31 start-page: 2924 year: 2008 ident: 10.1016/j.electacta.2020.136161_bib40 article-title: Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis publication-title: J. Separ. Sci. doi: 10.1002/jssc.200800229 |
SSID | ssj0007670 |
Score | 2.467334 |
Snippet | In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 136161 |
SubjectTerms | Chloramphenicol Chloromycetin Flower-like BiOBr Imprinted polymers Microspheres Molecularly imprinted polymers Photoelectric effect Photoelectric emission Photoelectrochemical sensing Recognition Selectivity Sensors Three dimensional flow X ray photoelectron spectroscopy |
Title | Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol |
URI | https://dx.doi.org/10.1016/j.electacta.2020.136161 https://www.proquest.com/docview/2440492626 |
Volume | 344 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIrykgfWgJO4TsoGFaiAgAUkNsuvQCBtqrYMMMBf5y5xeEmIASlLotiKfJfznfXd9xGy27ZcOBO6oOOsDXiiWdDhWgVcC0gnUiaYq9AWl6J3w89u27dTpNv0wiCs0sf-OqZX0do_2feruT_Mc-zxDWOODQ4VzVWMjJ-cJ-jle6-fMI9EJKxRMcC3v2G8KqkZBRcUihFqQIhQhL_tUD9idbUBnSySBZ850sP645bIlBssk9luI9i2TOa_cAuukLeLRvi2eKZ5H8_vILmkw7J47rsRxf2sPgbMX-BxVqBaWlDkj44e5VdHI9pHpN4YSQfcmEJmS4f35aT0qjnG0wzQMeLfB3e0zKi5h9Jf9REzht61Sm5Ojq-7vcCrLQQGarxJYBKudQQ1K1Ocm1RDveqwfzC27ViFKoRQkFqh2iyznQTyvoxxxVITWq1izRITr5HpQTlw64RanlnBVMw1y7hLohQmjozmzkF1BglQi4hmhaXxVOSoiFHIBnP2ID9MI9E0sjZNi7CPgcOajePvIQeNCeU3x5KwZ_w9eKsxuvT_9lhGSKmINIti4z9zb5I5vKthZ1tkejJ6ctuQ4Ez0TuXBO2Tm8PS8d_kOdxD-GQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigcEBQQhQI-wDHUSbxOFokDLVRb-sGllXoztuPQtNnNarNVtRzgR_EHmUnsQpFQD6hSTo5sRZ7JfFjP7wG8GhRCOhu7aOiKIhKZ4dFQGB0JI7GcyLnkrkNbHMjRkfh0PDhegp_hLgzBKn3s72N6F639yIbfzY1pVdEd3zgVdMGho7lKg4L1rltcYN_Wvtv5gEZ-nSTbHw-3RpGXFogsNjTzyGbCmAQbNK6FsLnB5szRZbm0GKQ61jH6fV5IPeBlMcywyCm50Dy3cWF0anhmU1z3FtwWGC5INuHN99-4kkxmPMgm0OddAZV12jYaH-xMExKdkLGM_5US_0oOXcbbvg_3fKnK3ve78QCW3GQVVraCQtwq3P2DzPAh_NgPSrv1glVjOjDEapZNm3oxdjNGCbQ_d6y-4XBZkzxbVFdnjm1WnzdnbEzQwJZYDlzLsJRm05Nm3niZHut5DVhLgPvJV9aUzJ7U6L9jAqmROz-CoxuxwWNYnjQT9wRYIcpCcp0Kw0vhsiTHhRNrhHPYDmLFtQYy7LCynvucJDhqFUBup-rSNIpMo3rTrAG_nDjt6T-un_I2mFBd8WSFSer6yevB6MoHk1YlxOFIvI7y6f-s_RJWRof7e2pv52D3GdyhNz3mbR2W57Nz9xyrq7l50Xkzgy83_fv8AjmKOI4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecularly+imprinted+polymer+functionalized+flower-like+BiOBr+microspheres+for+photoelectrochemical+sensing+of+chloramphenicol&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Zheng&rft.au=Zhou%2C+Haifei&rft.au=Jiang%2C+Caiyun&rft.au=Wang%2C+Yuping&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=344&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2020.136161&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |