Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol

In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large spec...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 344; p. 136161
Main Authors Zhang, Zheng, Zhou, Haifei, Jiang, Caiyun, Wang, Yuping
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large specific surface area was synthesized by a simple hydrothermal process and was employed as a matrix to graft the MIPs recognition element (denoted as MIPs-PEC). SEM, TEM, FTIR, XPS, XRD and UV–vis spectroscopy were used to investigate the microstructure characteristics of the as-obtained MIPs-PEC sensor. During the PEC sensing process, MIPs were prepared via a simple thermal polymerization process provided numerous recognition sites, which improved the sensor’s selectivity to CAP. The results showed that photocurrent response signal generated by photo-induced MIPs/BrOBr/ITO electrodes was proportional to the logarithm of CAP concentration over the range from 1.00 ⅹ 10−2 to 1.00 ⅹ 103 ng mL−1 with a low detection limit is 3.02 pg mL−1 (S/N = 3). MIPs-PEC sensor exhibited high selectivity and stability, low cost, and applicability to the determination of CAP in real samples. [Display omitted] •A rapid and ultrasensitive signal-off MIPs-PEC sensor developed for CAP detection.•3D flower-sphere BiOBr with large specific surface area was successfully synthesized.•The first smart integration of BiOBr with MIPs fabricating a novel PEC sensing platform.•This method has high selectivity and can be applied to thedetermination of CAP in water.
AbstractList In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large specific surface area was synthesized by a simple hydrothermal process and was employed as a matrix to graft the MIPs recognition element (denoted as MIPs-PEC). SEM, TEM, FTIR, XPS, XRD and UV–vis spectroscopy were used to investigate the microstructure characteristics of the as-obtained MIPs-PEC sensor. During the PEC sensing process, MIPs were prepared via a simple thermal polymerization process provided numerous recognition sites, which improved the sensor’s selectivity to CAP. The results showed that photocurrent response signal generated by photo-induced MIPs/BrOBr/ITO electrodes was proportional to the logarithm of CAP concentration over the range from 1.00 ⅹ 10−2 to 1.00 ⅹ 103 ng mL−1 with a low detection limit is 3.02 pg mL−1 (S/N = 3). MIPs-PEC sensor exhibited high selectivity and stability, low cost, and applicability to the determination of CAP in real samples. [Display omitted] •A rapid and ultrasensitive signal-off MIPs-PEC sensor developed for CAP detection.•3D flower-sphere BiOBr with large specific surface area was successfully synthesized.•The first smart integration of BiOBr with MIPs fabricating a novel PEC sensing platform.•This method has high selectivity and can be applied to thedetermination of CAP in water.
In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based on the molecularly imprinted polymers (MIPs) functionalized photoelectrochemically active materials. The 3D flower-like BiOBr with large specific surface area was synthesized by a simple hydrothermal process and was employed as a matrix to graft the MIPs recognition element (denoted as MIPs-PEC). SEM, TEM, FTIR, XPS, XRD and UV–vis spectroscopy were used to investigate the microstructure characteristics of the as-obtained MIPs-PEC sensor. During the PEC sensing process, MIPs were prepared via a simple thermal polymerization process provided numerous recognition sites, which improved the sensor's selectivity to CAP. The results showed that photocurrent response signal generated by photo-induced MIPs/BrOBr/ITO electrodes was proportional to the logarithm of CAP concentration over the range from 1.00 ⅹ 10−2 to 1.00 ⅹ 103 ng mL−1 with a low detection limit is 3.02 pg mL−1 (S/N = 3). MIPs-PEC sensor exhibited high selectivity and stability, low cost, and applicability to the determination of CAP in real samples.
ArticleNumber 136161
Author Wang, Yuping
Zhou, Haifei
Zhang, Zheng
Jiang, Caiyun
Author_xml – sequence: 1
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  organization: School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
– sequence: 2
  givenname: Haifei
  surname: Zhou
  fullname: Zhou, Haifei
  organization: School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
– sequence: 3
  givenname: Caiyun
  surname: Jiang
  fullname: Jiang, Caiyun
  organization: Department of Engineering and Technology, Jiangsu Institute of Commerce, Nanjing, 211168, China
– sequence: 4
  givenname: Yuping
  surname: Wang
  fullname: Wang, Yuping
  email: wangyuping@njnu.edu.cn
  organization: School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210046, China
BookMark eNqNkMFq3DAQhkVJoJtNn6GCnL0ZWVrJPuSQhLYppOTSnoUsj7vayJIjeRu2l756td2SQy8pDAyM_m_QfGfkJMSAhLxnsGLA5OV2hR7tbEqtaqjLlEsm2RuyYI3iFW_W7QlZADBeCdnIt-Qs5y0AKKlgQX59iYXeeZP8nrpxSi7M2NMp-v2IiQ67YGcXg_HuZxkPPj5jqrx7RHrjHm4SHZ1NMU8bTJjpEBOdNnGOf36Uot1geTeeZgzZhe80DtRufExmLERwNvpzcjoYn_Hd374k3z5--Hp7V90_fPp8e31fWQHtXFkluq5WjIMRwjYd1AolUw3v19wwwxSHppdmDUPfqjVrBxAGGsv6zvAOlOVLcnHcO6X4tMM8623cpXJX1rUQINpa1rKkro6pw1E54aCtm81BwJyM85qBPjjXW_3iXB-c66Pzwqt_-CJ0NGn_H-T1kcQi4YfDpLN1GCz2LpW87qN7dcdv5tWmVg
CitedBy_id crossref_primary_10_1016_j_aca_2022_339796
crossref_primary_10_1016_j_colsurfa_2022_130267
crossref_primary_10_1016_j_mssp_2023_107547
crossref_primary_10_1039_D1AY01014J
crossref_primary_10_2139_ssrn_3995928
crossref_primary_10_3390_molecules26216515
crossref_primary_10_1016_j_foodchem_2023_135434
crossref_primary_10_1016_j_ccr_2021_214156
crossref_primary_10_1016_j_mssp_2024_109161
crossref_primary_10_1016_j_snb_2021_129900
crossref_primary_10_1016_j_trac_2020_116020
crossref_primary_10_1016_j_microc_2025_112841
crossref_primary_10_1007_s42114_021_00377_z
crossref_primary_10_1016_j_trac_2021_116289
crossref_primary_10_3390_bios12070441
crossref_primary_10_1016_j_foodchem_2023_136535
crossref_primary_10_1016_j_foodchem_2023_135627
crossref_primary_10_1016_j_jhazmat_2021_127498
crossref_primary_10_1016_j_bios_2022_114634
crossref_primary_10_1002_adfm_202008227
crossref_primary_10_1007_s00604_020_04671_3
crossref_primary_10_1007_s00604_025_07072_6
crossref_primary_10_1016_j_scitotenv_2022_160284
crossref_primary_10_3866_PKU_WHXB202309047
crossref_primary_10_1016_j_inoche_2020_108333
crossref_primary_10_1149_1945_7111_acfa66
crossref_primary_10_1007_s00604_024_06364_7
crossref_primary_10_2116_analsci_21SAR09
crossref_primary_10_1016_j_trac_2023_117389
Cites_doi 10.1016/j.cej.2019.01.163
10.1016/j.electacta.2017.11.026
10.1016/j.colsurfb.2019.110451
10.1021/nl4028507
10.1039/c3nr05529a
10.1016/j.snb.2017.04.130
10.1007/s12161-017-0810-9
10.1016/j.foodchem.2018.04.014
10.1016/j.ccr.2019.05.008
10.1016/j.bios.2016.01.064
10.1021/acs.analchem.5b04092
10.1146/annurev-micro-091313-103456
10.1021/acs.analchem.9b01739
10.1080/00032719.2010.551693
10.1016/j.talanta.2016.05.004
10.1021/acsami.5b08275
10.1016/j.electacta.2017.01.150
10.1016/S0025-6196(12)65047-2
10.1016/j.jchromb.2009.03.040
10.1016/j.bios.2012.09.060
10.1021/acs.analchem.5b00774
10.1021/am5010392
10.1021/ac3012522
10.1007/s12161-016-0422-9
10.1016/j.talanta.2011.12.047
10.1016/j.electacta.2016.05.005
10.1016/j.bios.2019.111790
10.1016/j.bios.2018.11.040
10.1016/j.bios.2019.111756
10.1007/s00604-016-1945-x
10.1016/j.talanta.2018.12.103
10.1016/j.foodchem.2017.03.071
10.1021/acs.analchem.8b04478
10.1016/j.jhazmat.2013.10.027
10.1039/C4RA16948D
10.1016/j.watres.2017.03.058
10.1016/j.snb.2016.08.038
10.1016/j.carbon.2015.10.068
10.1016/j.trac.2018.06.007
10.1039/C4NR02553A
10.1021/acs.jafc.5b01072
10.1002/jssc.200800229
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2020.136161
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2020_136161
S0013468620305533
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c409t-c74bb27130a44c8b027e61783d53a1a17308d6a50fd97519f04a08c1dba3b07c3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 08:28:25 EDT 2025
Tue Jul 01 03:02:11 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 23 02:46:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photoelectrochemical sensing
Chloramphenicol
Molecularly imprinted polymers
Flower-like BiOBr
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-c74bb27130a44c8b027e61783d53a1a17308d6a50fd97519f04a08c1dba3b07c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440492626
PQPubID 2045485
ParticipantIDs proquest_journals_2440492626
crossref_citationtrail_10_1016_j_electacta_2020_136161
crossref_primary_10_1016_j_electacta_2020_136161
elsevier_sciencedirect_doi_10_1016_j_electacta_2020_136161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Yu, Zhang (bib21) 2014; 6
Karaseva, Ermolaeva (bib6) 2012; 93
Li, Wang, Fang, Zhang, Gong (bib30) 2011; Talanta181
Mao, Ji, Yao, Xue, Wen, Zhang, Wang (bib37) 2019; 127
Zhou, Shi, Wang, Xia (bib15) 2019; 91
Zhang, Cui, Cai, Duan, Liu (bib24) 2015; 63
Teixeira, Delerue-Matos, Alves, Santos (bib40) 2008; 31
Keeney, Yurist-Doutsch, Arrieta, Finlay (bib3) 2014; 68
Xu, Ling, Li, Yan, Xia, Qiu, Wang, Li, Yuan (bib13) 2017; 240
Wei, Cui, Guo, Zhao, Li (bib36) 2013; 263
Song, Zhang, Yu, Ye, Li (bib29) 2016; 208
Cheng, Huang, Dai (bib20) 2014; 6
Zhu, Gao, Tang, Peng, Huang, Wang, Yu, Ouyang, Tan (bib42) 2019; 146
Guo, Wang, Yan, Wang, Wang, Xu, Wang (bib5) 2017; 117
Yang, Gao, Ji, Zhu, Yang, Zhao, Shu, Jin, Xu, Zhao (bib26) 2019; 91
Kamra, Zhou, Montelius, Schnadt, Ye (bib23) 2015; 87
Kikuchi, Sakai, Teshima, Nemoto, Akiyama (bib12) 2017; 230
Qin, Wang, Geng, Shu, Wang (bib43) 2019; 197
Yin, Liu, Jiang, Du, Qian, Mao, Wang (bib22) 2016; 96
Liu, Yan, Zhang (bib14) 2015; 8
Jiao, Yu, Liu, Kuang, Zhang (bib35) 2015; 5
Yang, Hu, Dong (bib8) 2016; 80
Roushani, Rahmati, Hoseini, Fath (bib10) 2019; 183
Yan, Xu, Jiang, Li, Xia, Zhang, Hua, Li (bib34) 2018; 259
Bai, Qin, Huang (bib38) 2016; 183
Bemana, Rashid-Nadimi (bib16) 2017; 229
Sun, Gao, Zhang, Yu, Ge (bib28) 2017; 251
Yu, Tang, Pang, Zeng, Wang, Deng, Liu, Feng, Chen, Ren (bib4) 2019; 364
Fernandez-Torres, Bello Lopez, Consentino (bib7) 2011; 44
Tang, Kong, Wang, Xu, Wang, Wu, Zheng (bib17) 2013; 13
Zamora-Gálvez, Ait-Lahcen, Mercante, Morales-Narváez, Amine, Merkoçi (bib25) 2016; 88
Yan, Zhang, Yao, Xue, Lu, Li, Chen (bib41) 2018; 260
Tu, Wang, Dai (bib18) 2018; 105
Wilson, Cockerill (bib2) 1987; 62
Shen, Xia, Jiang, Li, Li, Li, Ding (bib9) 2009; 877
Li, Yu, Zhao, Deng, Li (bib11) 2020; 147
Pilehvar, Mehta, Dardenne, Robbens, Blust, De Wael (bib1) 2012; 84
Yan, Xu, Xia, Huang, Qiu, Xu, Zhang, Li (bib27) 2016; 156
Niu, Yang, Ma, Gong, Wang, Gong (bib31) 2016; 9
Zhang, Wang, Wang, Wang, Long, Li, Yu (bib33) 2014; 6
Yu, Zhang, Zhu, Gao, Fan, Han, Chen, Zhao (bib19) 2019; 93
Zhao, She, Zhang, Wang, Du, Jin, Jin, Shao, Zheng, Wang (bib32) 2017; 10
Li, Zhou, Ding, Guo, Wu (bib39) 2013; 41
Teixeira (10.1016/j.electacta.2020.136161_bib40) 2008; 31
Qin (10.1016/j.electacta.2020.136161_bib43) 2019; 197
Jiao (10.1016/j.electacta.2020.136161_bib35) 2015; 5
Kikuchi (10.1016/j.electacta.2020.136161_bib12) 2017; 230
Zhang (10.1016/j.electacta.2020.136161_bib24) 2015; 63
Niu (10.1016/j.electacta.2020.136161_bib31) 2016; 9
Pilehvar (10.1016/j.electacta.2020.136161_bib1) 2012; 84
Zhang (10.1016/j.electacta.2020.136161_bib33) 2014; 6
Mao (10.1016/j.electacta.2020.136161_bib37) 2019; 127
Wilson (10.1016/j.electacta.2020.136161_bib2) 1987; 62
Liu (10.1016/j.electacta.2020.136161_bib14) 2015; 8
Yin (10.1016/j.electacta.2020.136161_bib22) 2016; 96
Li (10.1016/j.electacta.2020.136161_bib30) 2011; Talanta181
Yan (10.1016/j.electacta.2020.136161_bib34) 2018; 259
Keeney (10.1016/j.electacta.2020.136161_bib3) 2014; 68
Yan (10.1016/j.electacta.2020.136161_bib27) 2016; 156
Song (10.1016/j.electacta.2020.136161_bib29) 2016; 208
Kamra (10.1016/j.electacta.2020.136161_bib23) 2015; 87
Yu (10.1016/j.electacta.2020.136161_bib4) 2019; 364
Tang (10.1016/j.electacta.2020.136161_bib17) 2013; 13
Zhao (10.1016/j.electacta.2020.136161_bib32) 2017; 10
Zhou (10.1016/j.electacta.2020.136161_bib15) 2019; 91
Bemana (10.1016/j.electacta.2020.136161_bib16) 2017; 229
Sun (10.1016/j.electacta.2020.136161_bib28) 2017; 251
Zamora-Gálvez (10.1016/j.electacta.2020.136161_bib25) 2016; 88
Karaseva (10.1016/j.electacta.2020.136161_bib6) 2012; 93
Cheng (10.1016/j.electacta.2020.136161_bib20) 2014; 6
Bai (10.1016/j.electacta.2020.136161_bib38) 2016; 183
Yang (10.1016/j.electacta.2020.136161_bib8) 2016; 80
Roushani (10.1016/j.electacta.2020.136161_bib10) 2019; 183
Xu (10.1016/j.electacta.2020.136161_bib13) 2017; 240
Zhu (10.1016/j.electacta.2020.136161_bib42) 2019; 146
Tu (10.1016/j.electacta.2020.136161_bib18) 2018; 105
Yu (10.1016/j.electacta.2020.136161_bib19) 2019; 93
Yan (10.1016/j.electacta.2020.136161_bib41) 2018; 260
Li (10.1016/j.electacta.2020.136161_bib11) 2020; 147
Wei (10.1016/j.electacta.2020.136161_bib36) 2013; 263
Fernandez-Torres (10.1016/j.electacta.2020.136161_bib7) 2011; 44
Li (10.1016/j.electacta.2020.136161_bib21) 2014; 6
Shen (10.1016/j.electacta.2020.136161_bib9) 2009; 877
Yang (10.1016/j.electacta.2020.136161_bib26) 2019; 91
Guo (10.1016/j.electacta.2020.136161_bib5) 2017; 117
Li (10.1016/j.electacta.2020.136161_bib39) 2013; 41
References_xml – volume: Talanta181
  start-page: 147
  year: 2011
  end-page: 153
  ident: bib30
  article-title: Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode
– volume: 31
  start-page: 2924
  year: 2008
  end-page: 2931
  ident: bib40
  article-title: Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis
  publication-title: J. Separ. Sci.
– volume: 183
  start-page: 2973
  year: 2016
  end-page: 2981
  ident: bib38
  article-title: Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe
  publication-title: Microchimica Acta
– volume: 5
  start-page: 16239
  year: 2015
  end-page: 16249
  ident: bib35
  article-title: One-pot synthesis of heterostructured Bi
  publication-title: RSC Adv.
– volume: 44
  start-page: 2357
  year: 2011
  end-page: 2372
  ident: bib7
  article-title: Simultaneous determination of selected veterinary antibiotics and their main metabolites in fish and mussel samples by high-performance liquid chromatography with diode array-fluorescence (HPLC-DAD-FLD) detection
  publication-title: Anal. Lett.
– volume: 13
  start-page: 5350
  year: 2013
  end-page: 5354
  ident: bib17
  article-title: Photoelectrochemical detection of glutathione by IrO
  publication-title: Nano Lett.
– volume: 259
  start-page: 873
  year: 2018
  end-page: 881
  ident: bib34
  article-title: Photoelectrochemical monitoring of ciprofloxacin based on metallic Bi self-doping BiOBr nanocomposites
  publication-title: Electrochim. Acta
– volume: 230
  start-page: 589
  year: 2017
  end-page: 593
  ident: bib12
  article-title: Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry
  publication-title: Food Chem.
– volume: 117
  start-page: 95
  year: 2017
  end-page: 101
  ident: bib5
  article-title: Effect of bio-electrochemical system on the fate and proliferation of chloramphenicol resistance genes during the treatment of chloramphenicol wastewater
  publication-title: Water Res.
– volume: 63
  start-page: 4966
  year: 2015
  end-page: 4972
  ident: bib24
  article-title: Development of fluorescence sensing material based on cdse/zns quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and Chinese cabbage
  publication-title: J. Agric. Food Chem.
– volume: 93
  start-page: 9
  year: 2019
  end-page: 20
  ident: bib19
  article-title: Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing
  publication-title: Coord. Chem. Rev.
– volume: 87
  start-page: 5056
  year: 2015
  end-page: 5061
  ident: bib23
  article-title: Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection
  publication-title: Anal. Chem.
– volume: 9
  start-page: 2342
  year: 2016
  end-page: 2351
  ident: bib31
  article-title: Preparation of tetracycline surface molecularly imprinted material for the selective recognition of tetracycline in milk
  publication-title: Food analytical methods
– volume: 80
  start-page: 373
  year: 2016
  end-page: 377
  ident: bib8
  article-title: A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol
  publication-title: Biosens. Bioelectron.
– volume: 91
  start-page: 9356
  year: 2019
  end-page: 9360
  ident: bib26
  article-title: Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: synthesis and application for photoelectrochemical sensing of salicylic acid
  publication-title: Anal. Chem.
– volume: 91
  start-page: 2759
  year: 2019
  end-page: 2767
  ident: bib15
  article-title: Oriented self-assembled monolayer of Zn (II)-Tetraphenylporphyrin on TiO
  publication-title: Anal. Chem.
– volume: 68
  start-page: 217
  year: 2014
  end-page: 235
  ident: bib3
  article-title: Effects of antibiotics on human microbiota and subsequent disease
  publication-title: Annu. Rev. Microbiol.
– volume: 6
  start-page: 2009
  year: 2014
  end-page: 2026
  ident: bib20
  article-title: Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications
  publication-title: Nanoscale
– volume: 364
  start-page: 146
  year: 2019
  end-page: 159
  ident: bib4
  article-title: Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism
  publication-title: Chem. Eng. J.
– volume: 877
  start-page: 1523
  year: 2009
  end-page: 1529
  ident: bib9
  article-title: Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry
  publication-title: J. Chromatogr. B
– volume: 10
  start-page: 2566
  year: 2017
  end-page: 2575
  ident: bib32
  article-title: Selective determination of chloramphenicol in milk samples by the solid-phase extraction based on dummy molecularly imprinted polymer
  publication-title: Food Analytical Methods
– volume: 263
  start-page: 650
  year: 2013
  end-page: 658
  ident: bib36
  article-title: Hybrid BiOBr–TiO
  publication-title: J. Hazard Mater.
– volume: 183
  year: 2019
  ident: bib10
  article-title: Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle
  publication-title: Colloids Surf. B Biointerfaces
– volume: 105
  start-page: 470
  year: 2018
  end-page: 483
  ident: bib18
  article-title: Selective photoelectrochemical architectures for biosensing: design, mechanism and responsibility
  publication-title: Trac. Trends Anal. Chem.
– volume: 41
  start-page: 889
  year: 2013
  end-page: 893
  ident: bib39
  article-title: Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II)
  publication-title: Biosens. Bioelectron.
– volume: 8
  start-page: 28255
  year: 2015
  end-page: 28264
  ident: bib14
  article-title: Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline
  publication-title: ACS Appl. Mater. Interfaces
– volume: 84
  start-page: 6753
  year: 2012
  end-page: 6758
  ident: bib1
  article-title: Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit
  publication-title: Anal. Chem.
– volume: 93
  start-page: 44
  year: 2012
  end-page: 48
  ident: bib6
  article-title: A piezoelectric immunosensor for chloramphenicol detection in food
  publication-title: Talanta
– volume: 127
  start-page: 57
  year: 2019
  end-page: 63
  ident: bib37
  article-title: Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction
  publication-title: Biosens. Bioelectron.
– volume: 147
  year: 2020
  ident: bib11
  article-title: Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol
  publication-title: Biosens. Bioelectron.
– volume: 229
  start-page: 396
  year: 2017
  end-page: 403
  ident: bib16
  article-title: Effect of sulfur doping on photoelectrochemical performance of hematite
  publication-title: Electrochim. Acta
– volume: 146
  start-page: 111756
  year: 2019
  ident: bib42
  article-title: Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection
  publication-title: Biosens. Bioelectron.
– volume: 156
  start-page: 257
  year: 2016
  end-page: 264
  ident: bib27
  article-title: Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites
  publication-title: Talanta
– volume: 6
  start-page: 7766
  year: 2014
  end-page: 7772
  ident: bib33
  article-title: Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 240
  start-page: 308
  year: 2017
  end-page: 314
  ident: bib13
  article-title: Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites
  publication-title: Sensor. Actuator. B Chem.
– volume: 88
  start-page: 3578
  year: 2016
  end-page: 3584
  ident: bib25
  article-title: Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection
  publication-title: Anal. Chem.
– volume: 260
  start-page: 208
  year: 2018
  end-page: 212
  ident: bib41
  article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food
  publication-title: Food Chem.
– volume: 197
  start-page: 28
  year: 2019
  end-page: 35
  ident: bib43
  article-title: A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO
  publication-title: Talanta
– volume: 208
  start-page: 10
  year: 2016
  end-page: 16
  ident: bib29
  article-title: Molecularly imprinted polymer functionalized nanoporous Au-Ag alloy microrod: novel supportless electrochemical platform for ultrasensitive and selective sensing of metronidazole
  publication-title: Electrochim. Acta
– volume: 96
  start-page: 1157
  year: 2016
  end-page: 1165
  ident: bib22
  article-title: Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrication of BiOBr nanohybrids with enhanced visible-light photoactivity and photostability
  publication-title: Carbon
– volume: 62
  start-page: 906
  year: 1987
  end-page: 915
  ident: bib2
  article-title: Tetracyclines, chloramphenicol, erythromycin, and clindamycin
  publication-title: Mayo Clin. Proc.
– volume: 6
  start-page: 8473
  year: 2014
  end-page: 8488
  ident: bib21
  article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis
  publication-title: Nanoscale
– volume: 251
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib28
  article-title: Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection
  publication-title: Sensor. Actuator. B Chem.
– volume: 364
  start-page: 146
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib4
  article-title: Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.163
– volume: 259
  start-page: 873
  year: 2018
  ident: 10.1016/j.electacta.2020.136161_bib34
  article-title: Photoelectrochemical monitoring of ciprofloxacin based on metallic Bi self-doping BiOBr nanocomposites
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.026
– volume: 183
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib10
  article-title: Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.110451
– volume: 13
  start-page: 5350
  year: 2013
  ident: 10.1016/j.electacta.2020.136161_bib17
  article-title: Photoelectrochemical detection of glutathione by IrO2–Hemin–TiO2 nanowire arrays
  publication-title: Nano Lett.
  doi: 10.1021/nl4028507
– volume: 6
  start-page: 2009
  year: 2014
  ident: 10.1016/j.electacta.2020.136161_bib20
  article-title: Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications
  publication-title: Nanoscale
  doi: 10.1039/c3nr05529a
– volume: 251
  start-page: 1
  year: 2017
  ident: 10.1016/j.electacta.2020.136161_bib28
  article-title: Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2017.04.130
– volume: 10
  start-page: 2566
  year: 2017
  ident: 10.1016/j.electacta.2020.136161_bib32
  article-title: Selective determination of chloramphenicol in milk samples by the solid-phase extraction based on dummy molecularly imprinted polymer
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-017-0810-9
– volume: 260
  start-page: 208
  year: 2018
  ident: 10.1016/j.electacta.2020.136161_bib41
  article-title: Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.04.014
– volume: 93
  start-page: 9
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib19
  article-title: Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.05.008
– volume: 80
  start-page: 373
  year: 2016
  ident: 10.1016/j.electacta.2020.136161_bib8
  article-title: A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.01.064
– volume: 88
  start-page: 3578
  year: 2016
  ident: 10.1016/j.electacta.2020.136161_bib25
  article-title: Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04092
– volume: 68
  start-page: 217
  year: 2014
  ident: 10.1016/j.electacta.2020.136161_bib3
  article-title: Effects of antibiotics on human microbiota and subsequent disease
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-091313-103456
– volume: 91
  start-page: 9356
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib26
  article-title: Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: synthesis and application for photoelectrochemical sensing of salicylic acid
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b01739
– volume: 44
  start-page: 2357
  year: 2011
  ident: 10.1016/j.electacta.2020.136161_bib7
  article-title: Simultaneous determination of selected veterinary antibiotics and their main metabolites in fish and mussel samples by high-performance liquid chromatography with diode array-fluorescence (HPLC-DAD-FLD) detection
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2010.551693
– volume: 156
  start-page: 257
  year: 2016
  ident: 10.1016/j.electacta.2020.136161_bib27
  article-title: Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.05.004
– volume: Talanta181
  start-page: 147
  year: 2011
  ident: 10.1016/j.electacta.2020.136161_bib30
  article-title: Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode
– volume: 8
  start-page: 28255
  year: 2015
  ident: 10.1016/j.electacta.2020.136161_bib14
  article-title: Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08275
– volume: 229
  start-page: 396
  year: 2017
  ident: 10.1016/j.electacta.2020.136161_bib16
  article-title: Effect of sulfur doping on photoelectrochemical performance of hematite
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.150
– volume: 62
  start-page: 906
  year: 1987
  ident: 10.1016/j.electacta.2020.136161_bib2
  article-title: Tetracyclines, chloramphenicol, erythromycin, and clindamycin
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/S0025-6196(12)65047-2
– volume: 877
  start-page: 1523
  year: 2009
  ident: 10.1016/j.electacta.2020.136161_bib9
  article-title: Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2009.03.040
– volume: 41
  start-page: 889
  year: 2013
  ident: 10.1016/j.electacta.2020.136161_bib39
  article-title: Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II)
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.09.060
– volume: 87
  start-page: 5056
  year: 2015
  ident: 10.1016/j.electacta.2020.136161_bib23
  article-title: Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b00774
– volume: 6
  start-page: 7766
  year: 2014
  ident: 10.1016/j.electacta.2020.136161_bib33
  article-title: Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5010392
– volume: 84
  start-page: 6753
  year: 2012
  ident: 10.1016/j.electacta.2020.136161_bib1
  article-title: Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit
  publication-title: Anal. Chem.
  doi: 10.1021/ac3012522
– volume: 9
  start-page: 2342
  year: 2016
  ident: 10.1016/j.electacta.2020.136161_bib31
  article-title: Preparation of tetracycline surface molecularly imprinted material for the selective recognition of tetracycline in milk
  publication-title: Food analytical methods
  doi: 10.1007/s12161-016-0422-9
– volume: 93
  start-page: 44
  year: 2012
  ident: 10.1016/j.electacta.2020.136161_bib6
  article-title: A piezoelectric immunosensor for chloramphenicol detection in food
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.12.047
– volume: 208
  start-page: 10
  year: 2016
  ident: 10.1016/j.electacta.2020.136161_bib29
  article-title: Molecularly imprinted polymer functionalized nanoporous Au-Ag alloy microrod: novel supportless electrochemical platform for ultrasensitive and selective sensing of metronidazole
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.005
– volume: 147
  year: 2020
  ident: 10.1016/j.electacta.2020.136161_bib11
  article-title: Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111790
– volume: 127
  start-page: 57
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib37
  article-title: Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.11.040
– volume: 146
  start-page: 111756
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib42
  article-title: Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111756
– volume: 183
  start-page: 2973
  year: 2016
  ident: 10.1016/j.electacta.2020.136161_bib38
  article-title: Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles
  publication-title: Microchimica Acta
  doi: 10.1007/s00604-016-1945-x
– volume: 197
  start-page: 28
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib43
  article-title: A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.12.103
– volume: 230
  start-page: 589
  year: 2017
  ident: 10.1016/j.electacta.2020.136161_bib12
  article-title: Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.03.071
– volume: 91
  start-page: 2759
  year: 2019
  ident: 10.1016/j.electacta.2020.136161_bib15
  article-title: Oriented self-assembled monolayer of Zn (II)-Tetraphenylporphyrin on TiO2 electrode for photoelectrochemical analysis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04478
– volume: 263
  start-page: 650
  year: 2013
  ident: 10.1016/j.electacta.2020.136161_bib36
  article-title: Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.10.027
– volume: 5
  start-page: 16239
  year: 2015
  ident: 10.1016/j.electacta.2020.136161_bib35
  article-title: One-pot synthesis of heterostructured Bi2S3/BiOBr microspheres with highly efficient visible light photocatalytic performance
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16948D
– volume: 117
  start-page: 95
  year: 2017
  ident: 10.1016/j.electacta.2020.136161_bib5
  article-title: Effect of bio-electrochemical system on the fate and proliferation of chloramphenicol resistance genes during the treatment of chloramphenicol wastewater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.058
– volume: 240
  start-page: 308
  year: 2017
  ident: 10.1016/j.electacta.2020.136161_bib13
  article-title: Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2016.08.038
– volume: 96
  start-page: 1157
  year: 2016
  ident: 10.1016/j.electacta.2020.136161_bib22
  article-title: Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrication of BiOBr nanohybrids with enhanced visible-light photoactivity and photostability
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.068
– volume: 105
  start-page: 470
  year: 2018
  ident: 10.1016/j.electacta.2020.136161_bib18
  article-title: Selective photoelectrochemical architectures for biosensing: design, mechanism and responsibility
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.06.007
– volume: 6
  start-page: 8473
  year: 2014
  ident: 10.1016/j.electacta.2020.136161_bib21
  article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis
  publication-title: Nanoscale
  doi: 10.1039/C4NR02553A
– volume: 63
  start-page: 4966
  year: 2015
  ident: 10.1016/j.electacta.2020.136161_bib24
  article-title: Development of fluorescence sensing material based on cdse/zns quantum dots and molecularly imprinted polymer for the detection of carbaryl in rice and Chinese cabbage
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b01072
– volume: 31
  start-page: 2924
  year: 2008
  ident: 10.1016/j.electacta.2020.136161_bib40
  article-title: Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis
  publication-title: J. Separ. Sci.
  doi: 10.1002/jssc.200800229
SSID ssj0007670
Score 2.467334
Snippet In this study, an ultrasensitive photoelectrochemical (PEC) sensor showing a high selectivity to for chloramphenicol (CAP) was successfully constructed, based...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 136161
SubjectTerms Chloramphenicol
Chloromycetin
Flower-like BiOBr
Imprinted polymers
Microspheres
Molecularly imprinted polymers
Photoelectric effect
Photoelectric emission
Photoelectrochemical sensing
Recognition
Selectivity
Sensors
Three dimensional flow
X ray photoelectron spectroscopy
Title Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol
URI https://dx.doi.org/10.1016/j.electacta.2020.136161
https://www.proquest.com/docview/2440492626
Volume 344
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIrykgfWgJO4TsoGFaiAgAUkNsuvQCBtqrYMMMBf5y5xeEmIASlLotiKfJfznfXd9xGy27ZcOBO6oOOsDXiiWdDhWgVcC0gnUiaYq9AWl6J3w89u27dTpNv0wiCs0sf-OqZX0do_2feruT_Mc-zxDWOODQ4VzVWMjJ-cJ-jle6-fMI9EJKxRMcC3v2G8KqkZBRcUihFqQIhQhL_tUD9idbUBnSySBZ850sP645bIlBssk9luI9i2TOa_cAuukLeLRvi2eKZ5H8_vILmkw7J47rsRxf2sPgbMX-BxVqBaWlDkj44e5VdHI9pHpN4YSQfcmEJmS4f35aT0qjnG0wzQMeLfB3e0zKi5h9Jf9REzht61Sm5Ojq-7vcCrLQQGarxJYBKudQQ1K1Ocm1RDveqwfzC27ViFKoRQkFqh2iyznQTyvoxxxVITWq1izRITr5HpQTlw64RanlnBVMw1y7hLohQmjozmzkF1BglQi4hmhaXxVOSoiFHIBnP2ID9MI9E0sjZNi7CPgcOajePvIQeNCeU3x5KwZ_w9eKsxuvT_9lhGSKmINIti4z9zb5I5vKthZ1tkejJ6ctuQ4Ez0TuXBO2Tm8PS8d_kOdxD-GQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigcEBQQhQI-wDHUSbxOFokDLVRb-sGllXoztuPQtNnNarNVtRzgR_EHmUnsQpFQD6hSTo5sRZ7JfFjP7wG8GhRCOhu7aOiKIhKZ4dFQGB0JI7GcyLnkrkNbHMjRkfh0PDhegp_hLgzBKn3s72N6F639yIbfzY1pVdEd3zgVdMGho7lKg4L1rltcYN_Wvtv5gEZ-nSTbHw-3RpGXFogsNjTzyGbCmAQbNK6FsLnB5szRZbm0GKQ61jH6fV5IPeBlMcywyCm50Dy3cWF0anhmU1z3FtwWGC5INuHN99-4kkxmPMgm0OddAZV12jYaH-xMExKdkLGM_5US_0oOXcbbvg_3fKnK3ve78QCW3GQVVraCQtwq3P2DzPAh_NgPSrv1glVjOjDEapZNm3oxdjNGCbQ_d6y-4XBZkzxbVFdnjm1WnzdnbEzQwJZYDlzLsJRm05Nm3niZHut5DVhLgPvJV9aUzJ7U6L9jAqmROz-CoxuxwWNYnjQT9wRYIcpCcp0Kw0vhsiTHhRNrhHPYDmLFtQYy7LCynvucJDhqFUBup-rSNIpMo3rTrAG_nDjt6T-un_I2mFBd8WSFSer6yevB6MoHk1YlxOFIvI7y6f-s_RJWRof7e2pv52D3GdyhNz3mbR2W57Nz9xyrq7l50Xkzgy83_fv8AjmKOI4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecularly+imprinted+polymer+functionalized+flower-like+BiOBr+microspheres+for+photoelectrochemical+sensing+of+chloramphenicol&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Zheng&rft.au=Zhou%2C+Haifei&rft.au=Jiang%2C+Caiyun&rft.au=Wang%2C+Yuping&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=344&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2020.136161&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon