In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer
[Display omitted] •One pot hydrothermal method was adopted to prepare C-TiO2/g-C3N4 nanocomposite with high visible light photocatalytic activity.•The mechanism was enhancement of visible light absorption and fast separation of electron-hole pairs.•Interfacial charge transfer through CTi bond and NT...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 202; pp. 489 - 499 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•One pot hydrothermal method was adopted to prepare C-TiO2/g-C3N4 nanocomposite with high visible light photocatalytic activity.•The mechanism was enhancement of visible light absorption and fast separation of electron-hole pairs.•Interfacial charge transfer through CTi bond and NTi bond played a crucial role in separation of electron-hole pairs.•Active species h+, O2−, OH were all generated in the photocatalytic process and O2− played a significantly important role.
In this paper, a simple one-pot hydrothermal strategy was adopted to prepare C-TiO2/g-C3N4 nanocomposite. Simultaneously, the photocatalytic performance of the C-TiO2/g-C3N4 nanocomposite like tunable ratio was evaluated by the degradation of methyl orange (MO) under visible light irradiation. The prepared nanocomposite with the mass ratio of 27:8 (C-TiO2/g-C3N4(0.08)) possessed the highest photocatalytic activity, about 5.1, 3.8 and 2.3 times higher than that of C-TiO2, g-C3N4, and the Mixing sample, respectively. The excellent photocatalytic performance was attributed to the improvement of light harvesting and charge separation caused by construction of heterojunction. In addition, interfacial charge transfer through CTi bond and NTi bond also played a crucial role in inhibiting the recombination of electron-hole pairs and increasing the concentrations of holes and electrons, separately, which was confirmed by XPS analysis, photocurrent response experiment, electrochemical impedance spectroscopy measurements, PL spectra and Time-resolved PL spectra. Besides, the importance of active species during the reaction process was explored, and the generation of h+, O2−, OH in the photocatalytic process was also demonstrated. Among this, O2− played an important role. This finding about chemically bonded C-TiO2/g-C3N4 nanocomposite provided a good guidance for the fabrication of new heterogeneous photocatalysts and facilitated their applications in environmental protection, water splitting and so on. |
---|---|
AbstractList | [Display omitted]
•One pot hydrothermal method was adopted to prepare C-TiO2/g-C3N4 nanocomposite with high visible light photocatalytic activity.•The mechanism was enhancement of visible light absorption and fast separation of electron-hole pairs.•Interfacial charge transfer through CTi bond and NTi bond played a crucial role in separation of electron-hole pairs.•Active species h+, O2−, OH were all generated in the photocatalytic process and O2− played a significantly important role.
In this paper, a simple one-pot hydrothermal strategy was adopted to prepare C-TiO2/g-C3N4 nanocomposite. Simultaneously, the photocatalytic performance of the C-TiO2/g-C3N4 nanocomposite like tunable ratio was evaluated by the degradation of methyl orange (MO) under visible light irradiation. The prepared nanocomposite with the mass ratio of 27:8 (C-TiO2/g-C3N4(0.08)) possessed the highest photocatalytic activity, about 5.1, 3.8 and 2.3 times higher than that of C-TiO2, g-C3N4, and the Mixing sample, respectively. The excellent photocatalytic performance was attributed to the improvement of light harvesting and charge separation caused by construction of heterojunction. In addition, interfacial charge transfer through CTi bond and NTi bond also played a crucial role in inhibiting the recombination of electron-hole pairs and increasing the concentrations of holes and electrons, separately, which was confirmed by XPS analysis, photocurrent response experiment, electrochemical impedance spectroscopy measurements, PL spectra and Time-resolved PL spectra. Besides, the importance of active species during the reaction process was explored, and the generation of h+, O2−, OH in the photocatalytic process was also demonstrated. Among this, O2− played an important role. This finding about chemically bonded C-TiO2/g-C3N4 nanocomposite provided a good guidance for the fabrication of new heterogeneous photocatalysts and facilitated their applications in environmental protection, water splitting and so on. |
Author | Zeng, Dawen Zeng, Lei Lu, Zhao Song, Wulin Xie, Changsheng Qin, Ziyu |
Author_xml | – sequence: 1 givenname: Zhao surname: Lu fullname: Lu, Zhao organization: State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China – sequence: 2 givenname: Lei surname: Zeng fullname: Zeng, Lei organization: South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055, PR China – sequence: 3 givenname: Wulin orcidid: 0000-0002-6057-5135 surname: Song fullname: Song, Wulin email: wulins@126.com organization: State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China – sequence: 4 givenname: Ziyu surname: Qin fullname: Qin, Ziyu organization: State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China – sequence: 5 givenname: Dawen surname: Zeng fullname: Zeng, Dawen organization: State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China – sequence: 6 givenname: Changsheng surname: Xie fullname: Xie, Changsheng organization: State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China |
BookMark | eNqFkM9qGzEQh0VJIE6aN8hBL7Ab_Vnb2h4KxbRpIDSX9Cy0syPvmLVkJMXg1-mTVsY99dCehoH5Zub33bKrEAMy9iBFK4VcPe5adwBXhlbVrhV9K5bqA1tIs9aNNkZfsYXo1arReq1v2G3OOyGE0sos2K_nwDOVd55PoUyYKfPo-aZ5o1f1uG02-kfHJyyY4u49QKEYeHAhQtwfYuWQu8wn2k7ziR8p0zAjn2tbuKvDR-SHKZZYf3PzKRceE20puIIj9ynuOXqPlzkK9YZ3QG7mMLm0RV6SC9lj-siuvZsz3v-pd-znt69vm-_Ny-vT8-bLSwOd6EsDKwA9OrPsjTdSOb0SWnjQA6IRrlOdU0sl12sPCoZxMIPsJKgeOvByVEvUd-zTZS-kmHNCb4GKO0eun9BspbBn23ZnL7bt2bYVva22K9z9BR8S7V06_Q_7fMGwBjsSJpuBMACOlKoZO0b694Lf3nCioQ |
CitedBy_id | crossref_primary_10_1016_j_watres_2019_115356 crossref_primary_10_1007_s10853_018_2990_0 crossref_primary_10_1007_s11356_022_18684_3 crossref_primary_10_1016_j_bios_2018_09_084 crossref_primary_10_1016_j_cej_2024_148811 crossref_primary_10_1016_j_cej_2018_06_046 crossref_primary_10_1016_j_mssp_2021_106134 crossref_primary_10_1088_1361_6528_aabf56 crossref_primary_10_1016_j_cej_2021_134375 crossref_primary_10_1007_s11356_021_16295_y crossref_primary_10_1021_acssuschemeng_7b04584 crossref_primary_10_1039_C8DT01322E crossref_primary_10_1016_j_apcatb_2019_01_073 crossref_primary_10_1016_j_apsusc_2017_10_135 crossref_primary_10_1021_acs_iecr_4c00653 crossref_primary_10_1021_acsami_9b06937 crossref_primary_10_1007_s10562_018_2376_6 crossref_primary_10_1142_S1793292021500107 crossref_primary_10_1016_j_ijhydene_2021_11_133 crossref_primary_10_3390_w16101372 crossref_primary_10_1016_j_apsusc_2020_147429 crossref_primary_10_1016_j_mtsust_2022_100239 crossref_primary_10_1016_S1872_2067_19_63516_3 crossref_primary_10_1016_j_jcis_2021_02_103 crossref_primary_10_1039_C9TC05504E crossref_primary_10_1021_acs_iecr_2c00918 crossref_primary_10_4491_eer_2023_560 crossref_primary_10_1016_j_saa_2019_02_008 crossref_primary_10_1007_s12613_023_2678_6 crossref_primary_10_1557_jmr_2018_32 crossref_primary_10_1016_j_surfin_2021_101450 crossref_primary_10_1021_acssuschemeng_3c04835 crossref_primary_10_3390_catal9010106 crossref_primary_10_1016_j_apcatb_2017_12_034 crossref_primary_10_1016_j_jphotochem_2019_111930 crossref_primary_10_1002_slct_201801806 crossref_primary_10_1016_j_jhazmat_2022_128998 crossref_primary_10_1016_j_molstruc_2018_07_014 crossref_primary_10_1016_j_apsusc_2019_144931 crossref_primary_10_1002_cctc_202001939 crossref_primary_10_1016_j_vacuum_2017_08_027 crossref_primary_10_2174_1573413718666220127123935 crossref_primary_10_3390_nano10010001 crossref_primary_10_1039_C9NJ02351H crossref_primary_10_1016_j_jallcom_2020_156446 crossref_primary_10_1016_j_jhazmat_2021_127387 crossref_primary_10_1039_C8CS00108A crossref_primary_10_3390_nano15050365 crossref_primary_10_1080_10667857_2019_1704471 crossref_primary_10_1016_j_apcatb_2018_03_061 crossref_primary_10_1021_acsami_2c22970 crossref_primary_10_1088_1361_6641_abac95 crossref_primary_10_1002_cctc_201901958 crossref_primary_10_1021_acsami_1c10892 crossref_primary_10_1016_j_apcatb_2020_119833 crossref_primary_10_1016_j_mtcomm_2022_103835 crossref_primary_10_1039_C8TA08091G crossref_primary_10_1016_j_diamond_2025_112071 crossref_primary_10_3390_molecules28104237 crossref_primary_10_1016_j_apcatb_2021_120790 crossref_primary_10_1002_chem_201805740 crossref_primary_10_1016_j_mcat_2020_111223 crossref_primary_10_1016_j_jhazmat_2018_01_013 crossref_primary_10_1016_j_apsusc_2022_156118 crossref_primary_10_1016_j_cej_2021_132766 crossref_primary_10_1016_j_apsusc_2022_153401 crossref_primary_10_1016_j_surfin_2024_104361 crossref_primary_10_1002_asia_201800359 crossref_primary_10_3390_molecules27206986 crossref_primary_10_1016_j_mssp_2018_09_014 crossref_primary_10_1007_s10854_018_9672_1 crossref_primary_10_1016_j_jenvman_2019_110029 crossref_primary_10_1016_j_apsusc_2018_09_059 crossref_primary_10_1039_C9NJ05435A crossref_primary_10_1016_j_nanoen_2018_02_021 crossref_primary_10_1051_e3sconf_201911801013 crossref_primary_10_1016_j_cej_2019_123132 crossref_primary_10_3390_nano10040805 crossref_primary_10_1016_j_jcis_2023_12_152 crossref_primary_10_1016_j_jiec_2018_03_017 crossref_primary_10_1039_C9NR09287K crossref_primary_10_1016_j_apcatb_2017_05_037 crossref_primary_10_1016_j_apcatb_2017_03_026 crossref_primary_10_1016_j_apcatb_2017_12_066 crossref_primary_10_1016_S1872_2067_18_63166_3 crossref_primary_10_1016_j_apcata_2019_04_004 crossref_primary_10_1039_C7CY01134B crossref_primary_10_1016_j_cej_2022_137052 crossref_primary_10_1016_j_apcatb_2020_119299 crossref_primary_10_1016_j_apsusc_2021_149829 crossref_primary_10_1007_s10562_019_02870_z crossref_primary_10_1039_D0NJ05640E crossref_primary_10_1007_s11164_023_05051_1 crossref_primary_10_1039_C9RA09661B crossref_primary_10_1007_s10853_019_03953_3 crossref_primary_10_1016_j_jphotochem_2019_112029 crossref_primary_10_1016_j_jece_2020_103896 crossref_primary_10_1016_j_cej_2025_160198 crossref_primary_10_1039_C7QI00751E crossref_primary_10_1016_j_cej_2020_127259 crossref_primary_10_1007_s12613_022_2481_9 crossref_primary_10_1016_j_horiz_2023_100047 crossref_primary_10_1016_j_carbon_2019_02_008 crossref_primary_10_1016_j_cej_2020_126968 crossref_primary_10_1039_D1CS00506E crossref_primary_10_1021_acsomega_0c06054 crossref_primary_10_1016_j_cej_2017_07_109 crossref_primary_10_3390_app10031019 crossref_primary_10_1007_s10854_018_0532_9 crossref_primary_10_1016_j_apcatb_2020_119759 crossref_primary_10_1002_cssc_202202212 crossref_primary_10_1021_acs_iecr_8b05509 crossref_primary_10_1016_j_jphotochem_2018_05_009 crossref_primary_10_1021_acsomega_9b02411 crossref_primary_10_1155_2019_6467107 crossref_primary_10_1016_j_cej_2017_08_002 crossref_primary_10_1016_j_ijhydene_2020_10_052 crossref_primary_10_1016_j_jallcom_2023_171457 crossref_primary_10_1039_C9NR10959E crossref_primary_10_1039_C7CY01709J crossref_primary_10_1016_j_scib_2020_08_022 crossref_primary_10_1016_j_snb_2017_07_052 crossref_primary_10_1016_j_jcis_2021_03_083 crossref_primary_10_1016_j_scitotenv_2019_04_418 crossref_primary_10_1039_D1RA02128A crossref_primary_10_1016_j_cej_2017_12_093 crossref_primary_10_1039_C8CY00965A crossref_primary_10_1016_j_apcatb_2018_01_064 crossref_primary_10_1016_j_colsurfa_2019_04_018 crossref_primary_10_1039_C9RA10638C crossref_primary_10_1016_j_colsurfa_2021_126289 crossref_primary_10_1016_j_apsusc_2017_11_229 crossref_primary_10_1016_j_apt_2016_12_004 crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_1016_j_apsusc_2020_147953 crossref_primary_10_1016_j_apsusc_2020_148920 crossref_primary_10_1016_j_matlet_2018_11_025 crossref_primary_10_1002_cctc_201901569 crossref_primary_10_1016_j_cclet_2024_110438 crossref_primary_10_1039_D4NA00309H crossref_primary_10_3390_nano13030518 crossref_primary_10_1016_j_cej_2018_08_061 crossref_primary_10_1039_C9NR01960J crossref_primary_10_1016_j_ces_2020_115844 crossref_primary_10_1016_j_matdes_2021_109542 crossref_primary_10_1088_2053_1591_ab30ac crossref_primary_10_1016_j_jtice_2020_11_028 crossref_primary_10_1021_acsami_0c03150 crossref_primary_10_1007_s10854_021_06608_9 crossref_primary_10_1016_j_cej_2023_142028 crossref_primary_10_1016_j_diamond_2023_110078 crossref_primary_10_1016_j_mtcomm_2018_10_003 crossref_primary_10_1007_s10570_022_04529_2 crossref_primary_10_1007_s10854_020_03411_w crossref_primary_10_1016_j_apcatb_2021_120371 crossref_primary_10_1142_S1793292018500315 crossref_primary_10_1016_j_apsusc_2019_07_131 crossref_primary_10_1016_j_snb_2017_11_073 crossref_primary_10_1016_j_seppur_2018_01_023 crossref_primary_10_1016_S1872_2067_18_63096_7 crossref_primary_10_3390_catal14050333 crossref_primary_10_1016_j_jclepro_2022_134967 crossref_primary_10_1002_solr_201900434 crossref_primary_10_3390_polym12010055 crossref_primary_10_1007_s10854_021_05981_9 crossref_primary_10_1016_j_apsusc_2019_01_080 crossref_primary_10_1016_j_diamond_2020_108132 crossref_primary_10_3390_ma11091774 crossref_primary_10_1016_j_ijhydene_2018_02_067 crossref_primary_10_1016_j_jallcom_2021_159592 crossref_primary_10_1021_acs_energyfuels_4c00828 crossref_primary_10_3390_nano11020423 crossref_primary_10_1002_slct_202301783 crossref_primary_10_1021_acssuschemeng_8b03406 crossref_primary_10_1016_j_apcatb_2024_123806 crossref_primary_10_1002_solr_202000326 crossref_primary_10_1021_acssuschemeng_9b04153 crossref_primary_10_1007_s10904_024_03485_7 crossref_primary_10_1088_2053_1591_ab6893 crossref_primary_10_1016_j_aquaculture_2024_740797 crossref_primary_10_1016_j_jallcom_2023_170830 crossref_primary_10_1016_j_ceramint_2018_10_136 crossref_primary_10_3390_coatings10010079 crossref_primary_10_1088_1755_1315_1391_1_012005 crossref_primary_10_1016_S1872_2067_18_63183_3 crossref_primary_10_1002_jctb_6439 crossref_primary_10_1016_j_cej_2020_125662 crossref_primary_10_1016_j_apcatb_2018_01_074 crossref_primary_10_1515_ijcre_2019_0159 crossref_primary_10_1007_s10971_019_05101_4 crossref_primary_10_1039_C7DT04452F crossref_primary_10_1016_j_apsusc_2017_08_181 crossref_primary_10_1016_j_jece_2022_107352 crossref_primary_10_1016_j_solener_2020_05_071 crossref_primary_10_1016_j_jiec_2022_05_018 crossref_primary_10_3390_nano13040762 crossref_primary_10_3390_nano8110937 crossref_primary_10_1021_acsami_7b06107 crossref_primary_10_1039_D0RA08894C crossref_primary_10_2139_ssrn_3969117 crossref_primary_10_1016_j_arabjc_2020_04_018 crossref_primary_10_1002_mame_201900350 crossref_primary_10_1002_jccs_202000068 crossref_primary_10_1016_j_seppur_2025_131880 crossref_primary_10_1039_D0CE01154A crossref_primary_10_1016_j_enmm_2021_100589 crossref_primary_10_1093_chemle_upae171 crossref_primary_10_1021_acsaem_0c01310 crossref_primary_10_1142_S1793292021501009 crossref_primary_10_1016_j_ceramint_2020_07_141 crossref_primary_10_1007_s10854_019_02036_y crossref_primary_10_1016_j_jhazmat_2018_10_088 crossref_primary_10_1142_S1793604719500863 crossref_primary_10_1039_D4NJ04126G crossref_primary_10_1016_j_cej_2018_09_172 crossref_primary_10_1016_j_jcis_2021_04_049 crossref_primary_10_1016_j_fuproc_2022_107200 crossref_primary_10_1016_j_saa_2019_117986 crossref_primary_10_1007_s10854_021_05244_7 crossref_primary_10_1007_s10854_018_8883_9 crossref_primary_10_1016_j_jallcom_2017_09_175 crossref_primary_10_1177_11786221221117266 crossref_primary_10_1002_chem_201802366 crossref_primary_10_1016_j_jece_2021_106380 crossref_primary_10_1016_j_ijhydene_2018_07_051 crossref_primary_10_1002_tcr_202100067 crossref_primary_10_1007_s10570_021_04318_3 crossref_primary_10_1016_j_ceramint_2022_08_224 crossref_primary_10_1016_j_apcatb_2019_117759 crossref_primary_10_1016_j_apsusc_2020_147506 crossref_primary_10_1016_j_mssp_2023_108100 crossref_primary_10_1039_D2CY01387H crossref_primary_10_3390_nano8100842 crossref_primary_10_1016_j_diamond_2020_108212 crossref_primary_10_1016_j_apsadv_2022_100238 crossref_primary_10_1016_j_jece_2025_116220 crossref_primary_10_1039_D1NJ03691B crossref_primary_10_1016_j_jhazmat_2018_10_090 crossref_primary_10_1016_j_materresbull_2017_04_042 crossref_primary_10_1016_j_cattod_2018_11_054 crossref_primary_10_1002_nano_202100070 crossref_primary_10_1039_C7RA04931E crossref_primary_10_1016_j_mcat_2018_07_026 crossref_primary_10_1016_j_seppur_2017_11_035 crossref_primary_10_1016_j_mcat_2018_07_027 crossref_primary_10_1016_j_cej_2019_05_028 crossref_primary_10_1039_C9RA07424D crossref_primary_10_1016_j_cej_2020_124389 crossref_primary_10_1016_j_apcatb_2022_121109 crossref_primary_10_1016_j_jenvman_2022_115674 crossref_primary_10_1016_j_apsusc_2018_12_177 crossref_primary_10_1016_j_apsusc_2018_02_080 crossref_primary_10_1016_j_corsci_2020_108441 crossref_primary_10_1039_D0NJ05500J crossref_primary_10_1007_s10853_020_04802_4 crossref_primary_10_1016_j_cej_2019_123634 crossref_primary_10_1016_j_jtice_2018_04_034 crossref_primary_10_1089_ees_2019_0288 crossref_primary_10_1007_s40097_018_0278_1 crossref_primary_10_1016_j_jallcom_2017_07_003 crossref_primary_10_1016_j_jphotochem_2024_115716 crossref_primary_10_1016_j_jhazmat_2020_124048 crossref_primary_10_1016_j_cej_2020_125347 crossref_primary_10_2320_matertrans_MT_M2023092 crossref_primary_10_1016_j_jece_2022_108083 crossref_primary_10_1039_C9CY01340G crossref_primary_10_1016_j_ceramint_2022_02_078 crossref_primary_10_1016_j_apsusc_2020_147891 crossref_primary_10_1002_slct_201802650 crossref_primary_10_1016_j_jcis_2020_02_025 crossref_primary_10_1016_j_nanoen_2020_104888 crossref_primary_10_1016_j_renene_2021_07_091 crossref_primary_10_1016_j_nanoen_2020_104648 crossref_primary_10_1016_j_apcatb_2021_120633 crossref_primary_10_1016_j_materresbull_2018_01_017 crossref_primary_10_1016_j_diamond_2021_108292 crossref_primary_10_1016_j_jhazmat_2017_11_009 crossref_primary_10_1016_j_jallcom_2020_154076 |
Cites_doi | 10.1039/c3nr33672g 10.1002/adma.201400111 10.1021/la904023j 10.1021/ja711023z 10.1016/j.apcatb.2013.05.077 10.1016/j.electacta.2010.08.035 10.1021/ja056494n 10.1021/am100605a 10.1016/j.jhazmat.2013.10.027 10.1088/0957-4484/20/23/235701 10.1021/jp111916q 10.1016/j.apcatb.2009.07.006 10.1021/ja308249k 10.1002/adfm.201200922 10.1021/cs200621c 10.1021/la900923z 10.1016/S0254-0584(98)00187-4 10.1021/ja2035927 10.1016/j.carbon.2009.07.046 10.1016/j.apcatb.2011.10.016 10.1016/j.apcatb.2014.09.043 10.1016/j.ijhydene.2014.02.020 10.1021/jp2009989 10.1016/j.jhazmat.2014.01.021 10.1016/j.apcatb.2012.01.021 10.1021/cs400080w 10.1021/am503674e 10.1016/j.apcatb.2015.12.046 10.1016/j.jhazmat.2011.01.062 10.1021/acscatal.5b02185 10.1038/238037a0 10.1021/am100394x 10.1016/j.apcatb.2015.10.048 10.1002/adma.201502057 10.1039/c3ee42708k 10.1016/j.apcatb.2013.09.013 10.1016/j.apcatb.2006.06.015 10.1021/am4013819 10.1021/am300795w 10.1126/science.1200448 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2016.09.052 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 499 |
ExternalDocumentID | 10_1016_j_apcatb_2016_09_052 S0926337316307408 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c409t-c6cc3da8598f812a36030fc3bee80a424a252177fc2cbdb8b141c29c4cf1d25e3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Thu Apr 24 23:01:00 EDT 2025 Tue Jul 01 03:10:36 EDT 2025 Sat Mar 02 16:00:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CTi bond Effective interfacial charge transfer NTi bond Visible light photocatalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-c6cc3da8598f812a36030fc3bee80a424a252177fc2cbdb8b141c29c4cf1d25e3 |
ORCID | 0000-0002-6057-5135 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apcatb_2016_09_052 crossref_primary_10_1016_j_apcatb_2016_09_052 elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_09_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sridharan, Jang, Park (bib0085) 2013; 142–143 She, Liu, Ji, Mo, Li, Huang, Du, Xu, Li (bib0205) 2016; 187 Zhang, Wang, Wang, Zhang, Xie, Tian, Wang, Xie (bib0125) 2014; 26 Akira (bib0025) 1972; 238 Huang, Tian, Zeng, Wang, Song, Li, Xiao, Xie (bib0165) 2013; 3 Xiaobo Chen, Yu, Mao (bib0045) 2011; 331 Kim, Yoo, Moon (bib0140) 2013; 5 Ye, Li, Li, Li, Fan, Zhang, Chen, Tung, Wu (bib0200) 2015; 5 Zhang, Xie, Wang, Zhang, Pan, Xie (bib0120) 2013; 135 Lin, Yang, Wang, Yin, Lü, Huang, Lin, Xie, Jiang (bib0185) 2014; 7 Chen, Huang, He, Situ, Huang (bib0075) 2014; 6 Avasarala, Haldar (bib0175) 2010; 55 Liang, Li, Yu, Huang, Kang, Yang (bib0100) 2015; 27 Huo, Zhang, Miao, Jin (bib0010) 2012; 111–112 Robel, Subramanian, Kuno, Kamat (bib0035) 2006; 128 Zeng, Lu, Li, Yang, Song, Zeng, Xie (bib0180) 2016; 183 Yan, Li, Zou (bib0105) 2009; 25 Sheng, Ying, Jianmei, Yajun, Guiyuan, Zhen, Daxi, Aijun, Jian, Yuechang (bib0080) 2014; 158–159 Pan, Zou, Zhang, Wang (bib0020) 2011; 133 Zhou, Liu, Wang, Liu, Du, Cui (bib0065) 2010; 2 Perera, Mariano, Vu, Nour, Seitz, Chabal, Balkus (bib0005) 2012; 2 Wang, Zhang, Zhao, Tian, Shi, Zhou (bib0060) 2012; 4 Niu, Zhang, Liu, Cheng (bib0130) 2012; 22 Dong, Guo, Wang, Li, Wu (bib0155) 2011; 115 Huang, Sun, Lv, Zhang, Li, Li (bib0110) 2015; 164 Wang, Huang, Xie, Qu (bib0115) 2014; 39 Lei, Wulin, Minghui, Dawen, Changsheng (bib0145) 2014; 147 Ge, Han (bib0170) 2012; 117–118 Yang, Cao, Erickson, Hohn, Maghirang, Klabunde (bib0095) 2009; 91 Ren, Ai, Jia, Zhang, Fan, Zou (bib0090) 2007; 69 Zhang, Koka (bib0160) 1998; 57 Wu, Dong, Zhao, Wang, Liu, Guan (bib0190) 2009; 20 Dong, Wang, Sen, Wu, Lee (bib0195) 2011; 187 Tian, Chang, Lu, Fu, Xi, Dong (bib0015) 2013; 5 Chen, Burda (bib0030) 2008; 130 Wei, Cui, Guo, Zhao, Lia (bib0050) 2013; 263 Zhang, Liu, Fu, Xu (bib0040) 2011; 115 Xie, Ali, Yoo, Cho (bib0055) 2010; 2 Gu, Wang, Zou, Han (bib0070) 2014; 268 Yan, Li, Zou (bib0150) 2010; 26 Akhavan, Abdolahad, Abdi, Mohajerzadeh (bib0135) 2009; 47 Perera (10.1016/j.apcatb.2016.09.052_bib0005) 2012; 2 Xie (10.1016/j.apcatb.2016.09.052_bib0055) 2010; 2 Chen (10.1016/j.apcatb.2016.09.052_bib0075) 2014; 6 Sheng (10.1016/j.apcatb.2016.09.052_bib0080) 2014; 158–159 Gu (10.1016/j.apcatb.2016.09.052_bib0070) 2014; 268 Akhavan (10.1016/j.apcatb.2016.09.052_bib0135) 2009; 47 Chen (10.1016/j.apcatb.2016.09.052_bib0030) 2008; 130 Zhou (10.1016/j.apcatb.2016.09.052_bib0065) 2010; 2 Zhang (10.1016/j.apcatb.2016.09.052_bib0120) 2013; 135 Huang (10.1016/j.apcatb.2016.09.052_bib0165) 2013; 3 Ye (10.1016/j.apcatb.2016.09.052_bib0200) 2015; 5 Kim (10.1016/j.apcatb.2016.09.052_bib0140) 2013; 5 Zhang (10.1016/j.apcatb.2016.09.052_bib0125) 2014; 26 Lin (10.1016/j.apcatb.2016.09.052_bib0185) 2014; 7 Robel (10.1016/j.apcatb.2016.09.052_bib0035) 2006; 128 Dong (10.1016/j.apcatb.2016.09.052_bib0155) 2011; 115 Wu (10.1016/j.apcatb.2016.09.052_bib0190) 2009; 20 Lei (10.1016/j.apcatb.2016.09.052_bib0145) 2014; 147 Wei (10.1016/j.apcatb.2016.09.052_bib0050) 2013; 263 Tian (10.1016/j.apcatb.2016.09.052_bib0015) 2013; 5 Xiaobo Chen (10.1016/j.apcatb.2016.09.052_bib0045) 2011; 331 Ren (10.1016/j.apcatb.2016.09.052_bib0090) 2007; 69 Dong (10.1016/j.apcatb.2016.09.052_bib0195) 2011; 187 Wang (10.1016/j.apcatb.2016.09.052_bib0060) 2012; 4 Wang (10.1016/j.apcatb.2016.09.052_bib0115) 2014; 39 Avasarala (10.1016/j.apcatb.2016.09.052_bib0175) 2010; 55 Yang (10.1016/j.apcatb.2016.09.052_bib0095) 2009; 91 Sridharan (10.1016/j.apcatb.2016.09.052_bib0085) 2013; 142–143 Yan (10.1016/j.apcatb.2016.09.052_bib0105) 2009; 25 Zhang (10.1016/j.apcatb.2016.09.052_bib0040) 2011; 115 Ge (10.1016/j.apcatb.2016.09.052_bib0170) 2012; 117–118 Akira (10.1016/j.apcatb.2016.09.052_bib0025) 1972; 238 Pan (10.1016/j.apcatb.2016.09.052_bib0020) 2011; 133 Yan (10.1016/j.apcatb.2016.09.052_bib0150) 2010; 26 Liang (10.1016/j.apcatb.2016.09.052_bib0100) 2015; 27 Zhang (10.1016/j.apcatb.2016.09.052_bib0160) 1998; 57 Huang (10.1016/j.apcatb.2016.09.052_bib0110) 2015; 164 Niu (10.1016/j.apcatb.2016.09.052_bib0130) 2012; 22 She (10.1016/j.apcatb.2016.09.052_bib0205) 2016; 187 Huo (10.1016/j.apcatb.2016.09.052_bib0010) 2012; 111–112 Zeng (10.1016/j.apcatb.2016.09.052_bib0180) 2016; 183 |
References_xml | – volume: 115 start-page: 9136 year: 2011 end-page: 9145 ident: bib0040 publication-title: J. Phys. Chem. C – volume: 2 start-page: 949 year: 2012 end-page: 956 ident: bib0005 publication-title: ACS Catal. – volume: 47 start-page: 3280 year: 2009 end-page: 3287 ident: bib0135 publication-title: Carbon – volume: 135 start-page: 18 year: 2013 end-page: 21 ident: bib0120 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2910 year: 2010 end-page: 2914 ident: bib0055 publication-title: ACS Appl. Mater. Interfaces – volume: 142–143 start-page: 718 year: 2013 end-page: 728 ident: bib0085 publication-title: Appl. Catal. B—Environ. – volume: 187 start-page: 509 year: 2011 end-page: 516 ident: bib0195 publication-title: J. Hazard. Mater. – volume: 187 start-page: 144 year: 2016 end-page: 153 ident: bib0205 publication-title: Appl. Catal. B—Environ. – volume: 5 start-page: 6973 year: 2015 end-page: 6979 ident: bib0200 publication-title: ACS Catal. – volume: 268 start-page: 216 year: 2014 end-page: 223 ident: bib0070 publication-title: J. Hazard. Mater. – volume: 6 start-page: 14405 year: 2014 end-page: 14414 ident: bib0075 publication-title: ACS Appl. Mater. Interfaces – volume: 183 start-page: 308 year: 2016 end-page: 316 ident: bib0180 publication-title: Appl. Catal. B— Environ. – volume: 263 start-page: 650 year: 2013 end-page: 658 ident: bib0050 publication-title: J. Hazard. Mater. – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: bib0130 publication-title: Adv. Funct. Mater. – volume: 111–112 start-page: 334 year: 2012 end-page: 341 ident: bib0010 publication-title: Appl. Catal B.—Environ. – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: bib0025 publication-title: Nature – volume: 130 start-page: 5018 year: 2008 end-page: 5019 ident: bib0030 publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 138 year: 2007 end-page: 144 ident: bib0090 publication-title: Appl. Catal. B—Environ. – volume: 25 start-page: 10397 year: 2009 end-page: 10401 ident: bib0105 publication-title: Langmuir – volume: 26 start-page: 3894 year: 2010 end-page: 3901 ident: bib0150 publication-title: Langmuir – volume: 20 start-page: 235701 year: 2009 ident: bib0190 publication-title: Nanotechnology – volume: 4 start-page: 3965 year: 2012 end-page: 3972 ident: bib0060 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 4634 year: 2015 end-page: 4639 ident: bib0100 publication-title: Adv. Mater. – volume: 128 start-page: 2385 year: 2006 end-page: 2393 ident: bib0035 publication-title: J. Am. Chem. Soc. – volume: 164 start-page: 420 year: 2015 end-page: 427 ident: bib0110 publication-title: Appl. Catal. B—Environ. – volume: 7 start-page: 967 year: 2014 end-page: 972 ident: bib0185 publication-title: Energy Environ. Sci. – volume: 133 start-page: 10000 year: 2011 end-page: 10002 ident: bib0020 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 23 year: 1998 end-page: 32 ident: bib0160 publication-title: Mater. Chem. Phys. – volume: 39 start-page: 6354 year: 2014 end-page: 6363 ident: bib0115 publication-title: Int. J. Hydrogen Energy – volume: 117–118 start-page: 268 year: 2012 end-page: 274 ident: bib0170 publication-title: Appl. Catal. B—Environ. – volume: 91 start-page: 657 year: 2009 end-page: 662 ident: bib0095 publication-title: Appl. Catal. B—Environ. – volume: 2 start-page: 2385 year: 2010 end-page: 2392 ident: bib0065 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1477 year: 2013 end-page: 1485 ident: bib0165 publication-title: ACS Catal. – volume: 331 start-page: 746 year: 2011 end-page: 750 ident: bib0045 publication-title: Science – volume: 5 start-page: 7079 year: 2013 end-page: 7085 ident: bib0015 publication-title: ACS Appl. Mater. Interfaces – volume: 158–159 start-page: 20 year: 2014 end-page: 29 ident: bib0080 publication-title: Appl. Catal. B—Environ. – volume: 55 start-page: 9024 year: 2010 end-page: 9034 ident: bib0175 publication-title: Electrochim. Acta – volume: 115 start-page: 13285 year: 2011 end-page: 13292 ident: bib0155 publication-title: J. Phys. Chem. C – volume: 147 start-page: 490 year: 2014 end-page: 498 ident: bib0145 publication-title: Appl. Catal. B—Environ. – volume: 5 start-page: 4200 year: 2013 end-page: 4204 ident: bib0140 publication-title: Nanoscale – volume: 26 start-page: 4438 year: 2014 end-page: 4443 ident: bib0125 publication-title: Adv. Mater. – volume: 5 start-page: 4200 year: 2013 ident: 10.1016/j.apcatb.2016.09.052_bib0140 publication-title: Nanoscale doi: 10.1039/c3nr33672g – volume: 26 start-page: 4438 year: 2014 ident: 10.1016/j.apcatb.2016.09.052_bib0125 publication-title: Adv. Mater. doi: 10.1002/adma.201400111 – volume: 26 start-page: 3894 year: 2010 ident: 10.1016/j.apcatb.2016.09.052_bib0150 publication-title: Langmuir doi: 10.1021/la904023j – volume: 130 start-page: 5018 year: 2008 ident: 10.1016/j.apcatb.2016.09.052_bib0030 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711023z – volume: 142–143 start-page: 718 year: 2013 ident: 10.1016/j.apcatb.2016.09.052_bib0085 publication-title: Appl. Catal. B—Environ. doi: 10.1016/j.apcatb.2013.05.077 – volume: 55 start-page: 9024 year: 2010 ident: 10.1016/j.apcatb.2016.09.052_bib0175 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.08.035 – volume: 128 start-page: 2385 year: 2006 ident: 10.1016/j.apcatb.2016.09.052_bib0035 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056494n – volume: 2 start-page: 2910 year: 2010 ident: 10.1016/j.apcatb.2016.09.052_bib0055 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100605a – volume: 263 start-page: 650 year: 2013 ident: 10.1016/j.apcatb.2016.09.052_bib0050 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.10.027 – volume: 20 start-page: 235701 year: 2009 ident: 10.1016/j.apcatb.2016.09.052_bib0190 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/23/235701 – volume: 115 start-page: 13285 year: 2011 ident: 10.1016/j.apcatb.2016.09.052_bib0155 publication-title: J. Phys. Chem. C doi: 10.1021/jp111916q – volume: 91 start-page: 657 year: 2009 ident: 10.1016/j.apcatb.2016.09.052_bib0095 publication-title: Appl. Catal. B—Environ. doi: 10.1016/j.apcatb.2009.07.006 – volume: 135 start-page: 18 year: 2013 ident: 10.1016/j.apcatb.2016.09.052_bib0120 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308249k – volume: 22 start-page: 4763 year: 2012 ident: 10.1016/j.apcatb.2016.09.052_bib0130 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 – volume: 2 start-page: 949 year: 2012 ident: 10.1016/j.apcatb.2016.09.052_bib0005 publication-title: ACS Catal. doi: 10.1021/cs200621c – volume: 25 start-page: 10397 year: 2009 ident: 10.1016/j.apcatb.2016.09.052_bib0105 publication-title: Langmuir doi: 10.1021/la900923z – volume: 57 start-page: 23 year: 1998 ident: 10.1016/j.apcatb.2016.09.052_bib0160 publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(98)00187-4 – volume: 133 start-page: 10000 year: 2011 ident: 10.1016/j.apcatb.2016.09.052_bib0020 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2035927 – volume: 47 start-page: 3280 year: 2009 ident: 10.1016/j.apcatb.2016.09.052_bib0135 publication-title: Carbon doi: 10.1016/j.carbon.2009.07.046 – volume: 111–112 start-page: 334 year: 2012 ident: 10.1016/j.apcatb.2016.09.052_bib0010 publication-title: Appl. Catal B.—Environ. doi: 10.1016/j.apcatb.2011.10.016 – volume: 164 start-page: 420 year: 2015 ident: 10.1016/j.apcatb.2016.09.052_bib0110 publication-title: Appl. Catal. B—Environ. doi: 10.1016/j.apcatb.2014.09.043 – volume: 39 start-page: 6354 year: 2014 ident: 10.1016/j.apcatb.2016.09.052_bib0115 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.020 – volume: 115 start-page: 9136 year: 2011 ident: 10.1016/j.apcatb.2016.09.052_bib0040 publication-title: J. Phys. Chem. C doi: 10.1021/jp2009989 – volume: 268 start-page: 216 year: 2014 ident: 10.1016/j.apcatb.2016.09.052_bib0070 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.01.021 – volume: 158–159 start-page: 20 year: 2014 ident: 10.1016/j.apcatb.2016.09.052_bib0080 publication-title: Appl. Catal. B—Environ. – volume: 117–118 start-page: 268 year: 2012 ident: 10.1016/j.apcatb.2016.09.052_bib0170 publication-title: Appl. Catal. B—Environ. doi: 10.1016/j.apcatb.2012.01.021 – volume: 3 start-page: 1477 year: 2013 ident: 10.1016/j.apcatb.2016.09.052_bib0165 publication-title: ACS Catal. doi: 10.1021/cs400080w – volume: 6 start-page: 14405 year: 2014 ident: 10.1016/j.apcatb.2016.09.052_bib0075 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503674e – volume: 187 start-page: 144 year: 2016 ident: 10.1016/j.apcatb.2016.09.052_bib0205 publication-title: Appl. Catal. B—Environ. doi: 10.1016/j.apcatb.2015.12.046 – volume: 187 start-page: 509 year: 2011 ident: 10.1016/j.apcatb.2016.09.052_bib0195 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.01.062 – volume: 5 start-page: 6973 year: 2015 ident: 10.1016/j.apcatb.2016.09.052_bib0200 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02185 – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.apcatb.2016.09.052_bib0025 publication-title: Nature doi: 10.1038/238037a0 – volume: 2 start-page: 2385 year: 2010 ident: 10.1016/j.apcatb.2016.09.052_bib0065 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100394x – volume: 183 start-page: 308 year: 2016 ident: 10.1016/j.apcatb.2016.09.052_bib0180 publication-title: Appl. Catal. B— Environ. doi: 10.1016/j.apcatb.2015.10.048 – volume: 27 start-page: 4634 year: 2015 ident: 10.1016/j.apcatb.2016.09.052_bib0100 publication-title: Adv. Mater. doi: 10.1002/adma.201502057 – volume: 7 start-page: 967 year: 2014 ident: 10.1016/j.apcatb.2016.09.052_bib0185 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42708k – volume: 147 start-page: 490 year: 2014 ident: 10.1016/j.apcatb.2016.09.052_bib0145 publication-title: Appl. Catal. B—Environ. doi: 10.1016/j.apcatb.2013.09.013 – volume: 69 start-page: 138 year: 2007 ident: 10.1016/j.apcatb.2016.09.052_bib0090 publication-title: Appl. Catal. B—Environ. doi: 10.1016/j.apcatb.2006.06.015 – volume: 5 start-page: 7079 year: 2013 ident: 10.1016/j.apcatb.2016.09.052_bib0015 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4013819 – volume: 4 start-page: 3965 year: 2012 ident: 10.1016/j.apcatb.2016.09.052_bib0060 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300795w – volume: 331 start-page: 746 year: 2011 ident: 10.1016/j.apcatb.2016.09.052_bib0045 publication-title: Science doi: 10.1126/science.1200448 |
SSID | ssj0002328 |
Score | 2.6215632 |
Snippet | [Display omitted]
•One pot hydrothermal method was adopted to prepare C-TiO2/g-C3N4 nanocomposite with high visible light photocatalytic activity.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 489 |
SubjectTerms | C[sbnd]Ti bond Effective interfacial charge transfer N[sbnd]Ti bond Visible light photocatalyst |
Title | In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer |
URI | https://dx.doi.org/10.1016/j.apcatb.2016.09.052 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgAOCBYqWqCaA1ezie18Hauo1RbEcqCVeotsr01TrZLVJj3shR_TX9oZJ6FFQiBxi6IZKcqMZ95Yb2YY--hlkTifFei8TnPlleV5migeSYPZ2OGzp0Lx6zJdXKrPV8nVHiunXhiiVY6xf4jpIVqPb-bj35xv6nr-PSpEKiVtXkI_VaHhV6mMvPzTzweaByKGEI1RmJP01D4XOF56Y3VviOCVhmmnifhzenqUcs5eshcjVoST4XNesT3XzNjTclrRNmPPH00TnLGD04emNVQbT233mt2dN9DV_S10uwbxXld30Hoo-UX9Tcx_8FIuFVwTLaa9wSxHloJGNy2xzYnS5UB3QGON1zugVnSzdrCmmh50CJawuW77NtwD7boexlVbiGSBeldgYIyQHI2m2HpNl_QQJjQ56ANudts37PLs9KJc8HE3A7dYEfbcptbKlc6TIveIEbRMMVp4K41zeaSVUFogMMgyb4U1K5ObWMVWFFZZH69E4uQB22_axr1lkCgjnS1kHBuENwrrFxMnTrs0coWVUh8yOZmksuPgctqfsa4mhtpNNRiyIkNWUVGhIQ8Z_6W1GQZ3_EM-m6xd_eaAFeaWv2oe_bfmO_ZMEEoIlLb3bL_f3roPiHF6cxyc-Jg9OTn_sljeAx1O_8Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcigcEAQqSvmZAxxN7N21Yx84oNAqoW04kEq9md3NLnUV2VHsqsqFh-EVeEFm1jYtEgIJqTfL8lhrz3jmm_U3M4y9diKLrRtlaLxWBdJJE6RJLINQaIzGFo8dJYons2RyKj-exWdb7EdfC0O0ys73tz7de-vuzLB7m8NVUQw_hxlPhKDJS2inMkw7ZuWR3Vxh3la_m35AJb_h_PBgPp4E3WiBwGBC0wQmMUYsVBpnqcMQp0SCxu6M0NamoZJcKo5xbTRyhhu90KmOZGR4ZqRx0YLHVuB977C7Et0FjU14--2aV4IQxbt_XF1Ay-vr9TypTK2MajQxyhLfXjXmf46HN2Lc4UP2oAOn8L59_kdsy5YDtjPuZ8IN2P0b7QsHbPfgukoOxTo3UT9m36cl1EVzCfWmRIBZFzVUDsbBvPjEh1-DsZhJOCceTnWBYZVMA0pVVkRvJw6ZBVUD9VFeboBq3_XSwpI2EUB57wyr86qp_MbTpm6gm-2F0BmoWAZaigpdR70w1k7RXwHwLaEsNB6o2_UTdnorGttl22VV2qcMYqmFNZmIIo14SmLCpKPYKpuENjNCqD0mepXkpuuUTgM7lnlPibvIW0XmpMg8zHJU5B4Lfkmt2k4h_7h-1Gs7_83icwxmf5V89t-Sr9jOZH5ynB9PZ0f77B4niOL5dM_ZdrO-tC8QYDX6pTdoYF9u-wv6CVAGPCs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+synthesis+of+C-TiO2%2Fg-C3N4+heterojunction+nanocomposite+as+highly+visible+light+active+photocatalyst+originated+from+effective+interfacial+charge+transfer&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Lu%2C+Zhao&rft.au=Zeng%2C+Lei&rft.au=Song%2C+Wulin&rft.au=Qin%2C+Ziyu&rft.date=2017-03-01&rft.issn=0926-3373&rft.volume=202&rft.spage=489&rft.epage=499&rft_id=info:doi/10.1016%2Fj.apcatb.2016.09.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2016_09_052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |