Comparison of Electrodermal Activity Signal Decomposition Techniques for Emotion Recognition
Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess emotions objectively and continuously. Electrodermal activity (EDA) is particularly interesting to assess emotions due to its relationship with...
Saved in:
Published in | IEEE access Vol. 12; pp. 19952 - 19966 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess emotions objectively and continuously. Electrodermal activity (EDA) is particularly interesting to assess emotions due to its relationship with the sympathetic nervous system. EDA signals are composed of tonic and phasic components that react differently to emotions, and various methods are available to obtain these components. However, the most accurate and effective method used for emotion analysis based on the phasic component of EDA has not been reported so far. This study presents the comparison of various EDA decomposition methods used for emotion detection based on levels of affective dimensions (arousal and valence) levels (low vs. high). In this study, EDA was decomposed using six methods, namely convex optimization-based EDA(cvxEDA), Time-Varying Sympathetic Activity (TVSymp), continuous decomposition analysis (CDA), dynamic causal modeling (DCM), BayesianEDA, and sparse deconvolution approach (Sparse). To test the most usable decomposition method for objective assessment of emotions, EDA signals from the database for emotion analysis using physiological signals (DEAP) were obtained. Statistical, morphological, Hjorth, and non-linear Entropy features were extracted from the phasic component obtained from each decomposition method and fed to the Random Forest and support vector machine classifiers for detection of arousal and valence affective dimension. TVSymp yielded the highest F1 score of 72.79% and 73.49% for classifying Arousal and Valence, respectively. |
---|---|
AbstractList | Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess emotions objectively and continuously. Electrodermal activity (EDA) is particularly interesting to assess emotions due to its relationship with the sympathetic nervous system. EDA signals are composed of tonic and phasic components that react differently to emotions, and various methods are available to obtain these components. However, the most accurate and effective method used for emotion analysis based on the phasic component of EDA has not been reported so far. This study presents the comparison of various EDA decomposition methods used for emotion detection based on levels of affective dimensions (arousal and valence) levels (low vs. high). In this study, EDA was decomposed using six methods, namely convex optimization-based EDA(cvxEDA), Time-Varying Sympathetic Activity (TVSymp), continuous decomposition analysis (CDA), dynamic causal modeling (DCM), BayesianEDA, and sparse deconvolution approach (Sparse). To test the most usable decomposition method for objective assessment of emotions, EDA signals from the database for emotion analysis using physiological signals (DEAP) were obtained. Statistical, morphological, Hjorth, and non-linear Entropy features were extracted from the phasic component obtained from each decomposition method and fed to the Random Forest and support vector machine classifiers for detection of arousal and valence affective dimension. TVSymp yielded the highest F1 score of 72.79% and 73.49% for classifying Arousal and Valence, respectively. |
Author | Ganapathy, Nagarajan Posada-Quintero, Hugo F. Veeranki, Yedukondala Rao Swaminathan, Ramakrishnan |
Author_xml | – sequence: 1 givenname: Yedukondala Rao orcidid: 0000-0002-7904-7543 surname: Veeranki fullname: Veeranki, Yedukondala Rao organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA – sequence: 2 givenname: Nagarajan orcidid: 0000-0002-3743-5388 surname: Ganapathy fullname: Ganapathy, Nagarajan organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Hyderabad, India – sequence: 3 givenname: Ramakrishnan orcidid: 0000-0002-4471-9629 surname: Swaminathan fullname: Swaminathan, Ramakrishnan organization: Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India – sequence: 4 givenname: Hugo F. orcidid: 0000-0003-4514-4772 surname: Posada-Quintero fullname: Posada-Quintero, Hugo F. email: hugo.posada-quintero@uconn.edu organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA |
BookMark | eNp9UcGKFDEUDLKC67pfoIcGzzO-5KXTnePQjrqwIDjrTQhv08mYoaczJr3C_r3p6RUWD-bykqKq8op6zS7GODrG3nJYcw76w6brtrvdWoCQa0TFWxQv2KXgSq-wRnXx7P6KXed8gHLaAtXNJfvRxeOJUshxrKKvtoOzU4q9S0caqo2dwu8wPVa7sB_L-6OzhR1zmEKh3zn7cwy_HlyufEzV9hjP8LdC2o9nyhv20tOQ3fXTvGLfP23vui-r26-fb7rN7cpK0NPKIhEQecE99tS2QksPxFHXSgOgtEI3QOhVg9C7ey2F98099S33iqxt8YrdLL59pIM5pXCk9GgiBXMGYtobSlOwgzOkEHsH2pIl6TQn0kigyIO3ToAsXu8Xr1OKc7bJHOJDKumzEVpIwFrX8496YdkUc07OGxsmmjNPicJgOJi5G7N0Y-ZuzFM3RYv_aP9u_H_Vu0UVnHPPFJJraBT-AZ01njk |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_brainsci14080800 crossref_primary_10_3390_brainsci14040344 crossref_primary_10_1016_j_irbm_2024_100849 crossref_primary_10_1016_j_heliyon_2024_e41558 crossref_primary_10_3389_fnins_2024_1519970 crossref_primary_10_1016_j_ijcce_2024_11_008 |
Cites_doi | 10.3390/s18072074 10.1038/srep04998 10.1037/h0077714 10.1016/s0167-8760(96)00713-1 10.1142/s0219477522500134 10.1111/exsy.12425 10.1109/tbme.2021.3065218 10.1016/j.biopsycho.2014.08.006 10.1007/978-1-4614-1126-0 10.1109/t-affc.2011.15 10.1016/j.jneumeth.2010.04.028 10.1111/j.1469-8986.2009.00972.x 10.1016/j.ijpsycho.2016.10.013 10.1371/journal.pcbi.1010275 10.1016/j.ijpsycho.2010.01.005 10.1016/j.knosys.2021.107598 10.1016/j.compbiomed.2022.106144 10.1007/s12144-014-9219-4 10.1152/ajpregu.00180.2016 10.3390/s20020479 10.1109/access.2021.3110773 10.1007/978-1-4615-2864-7_2 10.1016/j.eswa.2020.113571 10.1109/tbme.2014.2376960 10.1007/s10919-019-00298-y 10.1109/jbhi.2017.2780252 10.3389/fninf.2021.535542 10.1111/j.1469-8986.2010.01052.x 10.1109/tbme.2015.2474131 10.1016/j.asoc.2019.105609 10.1515/cdbme-2021-2220 10.1016/j.neuropsychologia.2014.01.002 10.21437/interspeech.2010-739 10.1080/02699939208411068 10.1016/j.jneumeth.2005.02.001 10.1016/j.eij.2019.10.002 10.1016/j.future.2021.05.032 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3361832 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 19966 |
ExternalDocumentID | oai_doaj_org_article_a633de09caca4e91aa93a06af0fce204 10_1109_ACCESS_2024_3361832 10419076 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-c3aa0aaf21f3da88294f0a1395690034c2970a3f6730deb942ff7bad81f6acc83 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:19:50 EDT 2025 Mon Jun 30 05:32:38 EDT 2025 Tue Jul 01 04:14:20 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Wed Aug 27 02:12:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-c3aa0aaf21f3da88294f0a1395690034c2970a3f6730deb942ff7bad81f6acc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4471-9629 0000-0003-4514-4772 0000-0002-7904-7543 0000-0002-3743-5388 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10419076 |
PQID | 2924035958 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2924035958 crossref_citationtrail_10_1109_ACCESS_2024_3361832 crossref_primary_10_1109_ACCESS_2024_3361832 ieee_primary_10419076 doaj_primary_oai_doaj_org_article_a633de09caca4e91aa93a06af0fce204 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref11 ref10 ref32 (ref31) 2021 ref1 (ref2) 2021 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 (ref29) 2022 ref26 ref25 ref20 Gallego (ref33) 2021 ref42 ref41 ref22 ref21 ref28 ref27 ref8 ref7 (ref30) 2022 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref4 doi: 10.3390/s18072074 – ident: ref42 doi: 10.1038/srep04998 – ident: ref8 doi: 10.1037/h0077714 – ident: ref16 doi: 10.1016/s0167-8760(96)00713-1 – ident: ref26 doi: 10.1142/s0219477522500134 – ident: ref38 doi: 10.1111/exsy.12425 – ident: ref34 doi: 10.1109/tbme.2021.3065218 – ident: ref39 doi: 10.1016/j.biopsycho.2014.08.006 – ident: ref14 doi: 10.1007/978-1-4614-1126-0 – ident: ref28 doi: 10.1109/t-affc.2011.15 – ident: ref18 doi: 10.1016/j.jneumeth.2010.04.028 – volume-title: SparsEDA year: 2021 ident: ref33 – ident: ref22 doi: 10.1111/j.1469-8986.2009.00972.x – volume-title: WHO | Depression and Other Common Mental Disorders year: 2021 ident: ref2 – ident: ref37 doi: 10.1016/j.ijpsycho.2016.10.013 – ident: ref21 doi: 10.1371/journal.pcbi.1010275 – ident: ref15 doi: 10.1016/j.ijpsycho.2010.01.005 – ident: ref11 doi: 10.1016/j.knosys.2021.107598 – ident: ref7 doi: 10.1016/j.compbiomed.2022.106144 – ident: ref10 doi: 10.1007/s12144-014-9219-4 – ident: ref27 doi: 10.1152/ajpregu.00180.2016 – volume-title: Ledalab year: 2022 ident: ref29 – ident: ref6 doi: 10.3390/s20020479 – ident: ref13 doi: 10.1109/access.2021.3110773 – ident: ref23 doi: 10.1007/978-1-4615-2864-7_2 – ident: ref25 doi: 10.1016/j.eswa.2020.113571 – ident: ref40 doi: 10.1109/tbme.2014.2376960 – ident: ref3 doi: 10.1007/s10919-019-00298-y – volume-title: LCITI/cvxEDA year: 2021 ident: ref31 – ident: ref20 doi: 10.1109/jbhi.2017.2780252 – ident: ref32 doi: 10.3389/fninf.2021.535542 – ident: ref24 doi: 10.1111/j.1469-8986.2010.01052.x – ident: ref19 doi: 10.1109/tbme.2015.2474131 – volume-title: PsPM | A MATLAB Suite for Psycho-Physiological Modelling year: 2022 ident: ref30 – ident: ref35 doi: 10.1016/j.asoc.2019.105609 – ident: ref5 doi: 10.1515/cdbme-2021-2220 – ident: ref12 doi: 10.1016/j.neuropsychologia.2014.01.002 – ident: ref41 doi: 10.21437/interspeech.2010-739 – ident: ref9 doi: 10.1080/02699939208411068 – ident: ref17 doi: 10.1016/j.jneumeth.2005.02.001 – ident: ref36 doi: 10.1016/j.eij.2019.10.002 – ident: ref1 doi: 10.1016/j.future.2021.05.032 |
SSID | ssj0000816957 |
Score | 2.3710625 |
Snippet | Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19952 |
SubjectTerms | Arousal classification Computational modeling Convexity Decomposition Deconvolution electrodermal activity Emotion Emotion recognition Emotions Feature extraction Magnetohydrodynamics phasic component Physiology Support vector machines Sympathetic nervous system tonic component |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_io2J9kYNHV7NJNo-j1koR9OADPAhhkk1EkFa0_n-TTVoqgl68LnlsJpPkm2H4PoSOLBeWhhidKM9DxZWVFSQmzNYrACm9Bp8S-tc3YvTArx6bxwWpr1QTlumBs-FOQTDWeqIdOOBe1wCaAREQSHCeZibQ-OYtBFPdHaxqoRtZaIZqok_PBoO4ohgQUn7CmEie_O0p6hj7i8TKj3u5e2wu19FaQYn4LP_dBlry4020usAduIWeBnMFQTwJeJjlbNp00caOLotC4LuX5zTQhU-l46U-C9_PeFs_cISseJiVfPDtrJZoMu6hh8vh_WBUFamEysUAbVo5BkAAAq0DayGiZs0DgYjuGpFSldxRLQmwIOKBbr3VnIYgLbSqDgKcU2wbLY8nY7-DsOSuUd5RiMCCO0kstzHmUA2VjtTWiT6iM6sZV3jEk5zFq-niCaJNNrVJpjbF1H10PO_0lmk0fm9-nrZj3jRxYHcfomeY4hnmL8_oo17azIX5eEQ_Mi5gf7a7phzYD0N1IiZsdKN2_2PuPbSS1pNzNftoefr-6Q8iepnaw85RvwAeGewM priority: 102 providerName: Directory of Open Access Journals |
Title | Comparison of Electrodermal Activity Signal Decomposition Techniques for Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10419076 https://www.proquest.com/docview/2924035958 https://doaj.org/article/a633de09caca4e91aa93a06af0fce204 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXantoD5aOIhVL5wJFsHdux42NZtqoqtQdopR6QrPHERgi0i-jupb8ef2VVWoG4RZGdOHpje2Yyfo-Qd04qx0OMTnovQyN7pxtITJiD7wG09gZ8SuhfXKqza3l-093Uw-r5LIz3Phef-Wm6zP_yhyWuU6osznAZ9y-ttsl2jNzKYa1NQiUpSJhOV2ahlpnjk9ksfkSMAbmcCqGS8f6x-2SS_qqq8mgpzvvL6T65HEdWykq-T9crN8W7B6SN_z30p-RJ9TTpSTGNZ2TLL56TvXv8gy_Il9lGhZAuA50XSZwhLdaxIxZhCfr529f0oI8-lZ_XGi96NXK_3tLo9tJ5UQOin8Z6pOXigFyfzq9mZ02VW2gwBnmrBgUAAwi8DWKA6HkbGRhED7FTKd0pkRvNQAQVF4XBOyN5CNrB0LdBAWIvXpKdxXLhXxGqJXa9Rw7ROZGomZMuxi19xzWy1qGaED7CYLFykSdJjB82xyTM2IKdTdjZit2EvN90-lmoOP7d_EPCd9M08WjnGxEXW6elBSXE4JlBQJDetABGAFMQWEDPmZyQg4TlvfcVGCfkcDQXWyf9reUmkRt2putf_6XbG7KbhlhSOIdkZ_Vr7d9Gp2bljnIy4Cib9G-DYPWf |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOQAHykdRtxTwgSNZHNux42O7bLVAuwfYSj0gWWPHRohqF9HdC7--duysCgjELYrsxNEb2zOT8XsAr6yQloUYnbRehEq0VlWYmDA73yIq5TX6lNA_m8vZuXh_0VyUw-r9WRjvfV985sfpsv-X363cJqXK4gwXcf9S8jbciRt_U-fjWtuUStKQ0I0q3EI11W-OJpP4GTEKZGLMuUzm-8v-09P0F12VPxbjfoc52YX5MLZcWPJtvFnbsfv5G23jfw_-ITwoviY5ysbxCG755WO4f4OB8Al8nmx1CMkqkGkWxenSch07uiwtQT59_ZIe9NanAvRS5UUWA_vrFYmOL5lmPSDycahIWi334PxkupjMqiK4ULkY5q0rxxEpYmB14B1G31uLQDH6iI1MCU_hmFYUeZBxWei81YKFoCx2bR0kOtfyp7CzXC39PhAlXNN6xzC6J8IpaoWNkUvbMOVobZ0cARtgMK6wkSdRjEvTRyVUm4ydSdiZgt0IXm87fc9kHP9ufpzw3TZNTNr9jYiLKRPToOS881Q7dCi8rhE1Ryox0OA8o2IEewnLG-_LMI7gcDAXU6b9lWE60Rs2umkP_tLtJdydLc5Ozem7-YdncC8NNyd0DmFn_WPjn0cXZ21f9IZ9DaqF9_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Electrodermal+Activity+Signal+Decomposition+Techniques+for+Emotion+Recognition&rft.jtitle=IEEE+access&rft.au=Veeranki%2C+Yedukondala+Rao&rft.au=Ganapathy%2C+Nagarajan&rft.au=Swaminathan%2C+Ramakrishnan&rft.au=Posada-Quintero%2C+Hugo+F.&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=19952&rft.epage=19966&rft_id=info:doi/10.1109%2FACCESS.2024.3361832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3361832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |