Comparison of Electrodermal Activity Signal Decomposition Techniques for Emotion Recognition

Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess emotions objectively and continuously. Electrodermal activity (EDA) is particularly interesting to assess emotions due to its relationship with...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 19952 - 19966
Main Authors Veeranki, Yedukondala Rao, Ganapathy, Nagarajan, Swaminathan, Ramakrishnan, Posada-Quintero, Hugo F.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess emotions objectively and continuously. Electrodermal activity (EDA) is particularly interesting to assess emotions due to its relationship with the sympathetic nervous system. EDA signals are composed of tonic and phasic components that react differently to emotions, and various methods are available to obtain these components. However, the most accurate and effective method used for emotion analysis based on the phasic component of EDA has not been reported so far. This study presents the comparison of various EDA decomposition methods used for emotion detection based on levels of affective dimensions (arousal and valence) levels (low vs. high). In this study, EDA was decomposed using six methods, namely convex optimization-based EDA(cvxEDA), Time-Varying Sympathetic Activity (TVSymp), continuous decomposition analysis (CDA), dynamic causal modeling (DCM), BayesianEDA, and sparse deconvolution approach (Sparse). To test the most usable decomposition method for objective assessment of emotions, EDA signals from the database for emotion analysis using physiological signals (DEAP) were obtained. Statistical, morphological, Hjorth, and non-linear Entropy features were extracted from the phasic component obtained from each decomposition method and fed to the Random Forest and support vector machine classifiers for detection of arousal and valence affective dimension. TVSymp yielded the highest F1 score of 72.79% and 73.49% for classifying Arousal and Valence, respectively.
AbstractList Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess emotions objectively and continuously. Electrodermal activity (EDA) is particularly interesting to assess emotions due to its relationship with the sympathetic nervous system. EDA signals are composed of tonic and phasic components that react differently to emotions, and various methods are available to obtain these components. However, the most accurate and effective method used for emotion analysis based on the phasic component of EDA has not been reported so far. This study presents the comparison of various EDA decomposition methods used for emotion detection based on levels of affective dimensions (arousal and valence) levels (low vs. high). In this study, EDA was decomposed using six methods, namely convex optimization-based EDA(cvxEDA), Time-Varying Sympathetic Activity (TVSymp), continuous decomposition analysis (CDA), dynamic causal modeling (DCM), BayesianEDA, and sparse deconvolution approach (Sparse). To test the most usable decomposition method for objective assessment of emotions, EDA signals from the database for emotion analysis using physiological signals (DEAP) were obtained. Statistical, morphological, Hjorth, and non-linear Entropy features were extracted from the phasic component obtained from each decomposition method and fed to the Random Forest and support vector machine classifiers for detection of arousal and valence affective dimension. TVSymp yielded the highest F1 score of 72.79% and 73.49% for classifying Arousal and Valence, respectively.
Author Ganapathy, Nagarajan
Posada-Quintero, Hugo F.
Veeranki, Yedukondala Rao
Swaminathan, Ramakrishnan
Author_xml – sequence: 1
  givenname: Yedukondala Rao
  orcidid: 0000-0002-7904-7543
  surname: Veeranki
  fullname: Veeranki, Yedukondala Rao
  organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
– sequence: 2
  givenname: Nagarajan
  orcidid: 0000-0002-3743-5388
  surname: Ganapathy
  fullname: Ganapathy, Nagarajan
  organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Hyderabad, India
– sequence: 3
  givenname: Ramakrishnan
  orcidid: 0000-0002-4471-9629
  surname: Swaminathan
  fullname: Swaminathan, Ramakrishnan
  organization: Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
– sequence: 4
  givenname: Hugo F.
  orcidid: 0000-0003-4514-4772
  surname: Posada-Quintero
  fullname: Posada-Quintero, Hugo F.
  email: hugo.posada-quintero@uconn.edu
  organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
BookMark eNp9UcGKFDEUDLKC67pfoIcGzzO-5KXTnePQjrqwIDjrTQhv08mYoaczJr3C_r3p6RUWD-bykqKq8op6zS7GODrG3nJYcw76w6brtrvdWoCQa0TFWxQv2KXgSq-wRnXx7P6KXed8gHLaAtXNJfvRxeOJUshxrKKvtoOzU4q9S0caqo2dwu8wPVa7sB_L-6OzhR1zmEKh3zn7cwy_HlyufEzV9hjP8LdC2o9nyhv20tOQ3fXTvGLfP23vui-r26-fb7rN7cpK0NPKIhEQecE99tS2QksPxFHXSgOgtEI3QOhVg9C7ey2F98099S33iqxt8YrdLL59pIM5pXCk9GgiBXMGYtobSlOwgzOkEHsH2pIl6TQn0kigyIO3ToAsXu8Xr1OKc7bJHOJDKumzEVpIwFrX8496YdkUc07OGxsmmjNPicJgOJi5G7N0Y-ZuzFM3RYv_aP9u_H_Vu0UVnHPPFJJraBT-AZ01njk
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_brainsci14080800
crossref_primary_10_3390_brainsci14040344
crossref_primary_10_1016_j_irbm_2024_100849
crossref_primary_10_1016_j_heliyon_2024_e41558
crossref_primary_10_3389_fnins_2024_1519970
crossref_primary_10_1016_j_ijcce_2024_11_008
Cites_doi 10.3390/s18072074
10.1038/srep04998
10.1037/h0077714
10.1016/s0167-8760(96)00713-1
10.1142/s0219477522500134
10.1111/exsy.12425
10.1109/tbme.2021.3065218
10.1016/j.biopsycho.2014.08.006
10.1007/978-1-4614-1126-0
10.1109/t-affc.2011.15
10.1016/j.jneumeth.2010.04.028
10.1111/j.1469-8986.2009.00972.x
10.1016/j.ijpsycho.2016.10.013
10.1371/journal.pcbi.1010275
10.1016/j.ijpsycho.2010.01.005
10.1016/j.knosys.2021.107598
10.1016/j.compbiomed.2022.106144
10.1007/s12144-014-9219-4
10.1152/ajpregu.00180.2016
10.3390/s20020479
10.1109/access.2021.3110773
10.1007/978-1-4615-2864-7_2
10.1016/j.eswa.2020.113571
10.1109/tbme.2014.2376960
10.1007/s10919-019-00298-y
10.1109/jbhi.2017.2780252
10.3389/fninf.2021.535542
10.1111/j.1469-8986.2010.01052.x
10.1109/tbme.2015.2474131
10.1016/j.asoc.2019.105609
10.1515/cdbme-2021-2220
10.1016/j.neuropsychologia.2014.01.002
10.21437/interspeech.2010-739
10.1080/02699939208411068
10.1016/j.jneumeth.2005.02.001
10.1016/j.eij.2019.10.002
10.1016/j.future.2021.05.032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3361832
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 19966
ExternalDocumentID oai_doaj_org_article_a633de09caca4e91aa93a06af0fce204
10_1109_ACCESS_2024_3361832
10419076
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-c3aa0aaf21f3da88294f0a1395690034c2970a3f6730deb942ff7bad81f6acc83
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:19:50 EDT 2025
Mon Jun 30 05:32:38 EDT 2025
Tue Jul 01 04:14:20 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Wed Aug 27 02:12:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-c3aa0aaf21f3da88294f0a1395690034c2970a3f6730deb942ff7bad81f6acc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4471-9629
0000-0003-4514-4772
0000-0002-7904-7543
0000-0002-3743-5388
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10419076
PQID 2924035958
PQPubID 4845423
PageCount 15
ParticipantIDs proquest_journals_2924035958
crossref_citationtrail_10_1109_ACCESS_2024_3361832
crossref_primary_10_1109_ACCESS_2024_3361832
ieee_primary_10419076
doaj_primary_oai_doaj_org_article_a633de09caca4e91aa93a06af0fce204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref11
ref10
ref32
(ref31) 2021
ref1
(ref2) 2021
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
(ref29) 2022
ref26
ref25
ref20
Gallego (ref33) 2021
ref42
ref41
ref22
ref21
ref28
ref27
ref8
ref7
(ref30) 2022
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref4
  doi: 10.3390/s18072074
– ident: ref42
  doi: 10.1038/srep04998
– ident: ref8
  doi: 10.1037/h0077714
– ident: ref16
  doi: 10.1016/s0167-8760(96)00713-1
– ident: ref26
  doi: 10.1142/s0219477522500134
– ident: ref38
  doi: 10.1111/exsy.12425
– ident: ref34
  doi: 10.1109/tbme.2021.3065218
– ident: ref39
  doi: 10.1016/j.biopsycho.2014.08.006
– ident: ref14
  doi: 10.1007/978-1-4614-1126-0
– ident: ref28
  doi: 10.1109/t-affc.2011.15
– ident: ref18
  doi: 10.1016/j.jneumeth.2010.04.028
– volume-title: SparsEDA
  year: 2021
  ident: ref33
– ident: ref22
  doi: 10.1111/j.1469-8986.2009.00972.x
– volume-title: WHO | Depression and Other Common Mental Disorders
  year: 2021
  ident: ref2
– ident: ref37
  doi: 10.1016/j.ijpsycho.2016.10.013
– ident: ref21
  doi: 10.1371/journal.pcbi.1010275
– ident: ref15
  doi: 10.1016/j.ijpsycho.2010.01.005
– ident: ref11
  doi: 10.1016/j.knosys.2021.107598
– ident: ref7
  doi: 10.1016/j.compbiomed.2022.106144
– ident: ref10
  doi: 10.1007/s12144-014-9219-4
– ident: ref27
  doi: 10.1152/ajpregu.00180.2016
– volume-title: Ledalab
  year: 2022
  ident: ref29
– ident: ref6
  doi: 10.3390/s20020479
– ident: ref13
  doi: 10.1109/access.2021.3110773
– ident: ref23
  doi: 10.1007/978-1-4615-2864-7_2
– ident: ref25
  doi: 10.1016/j.eswa.2020.113571
– ident: ref40
  doi: 10.1109/tbme.2014.2376960
– ident: ref3
  doi: 10.1007/s10919-019-00298-y
– volume-title: LCITI/cvxEDA
  year: 2021
  ident: ref31
– ident: ref20
  doi: 10.1109/jbhi.2017.2780252
– ident: ref32
  doi: 10.3389/fninf.2021.535542
– ident: ref24
  doi: 10.1111/j.1469-8986.2010.01052.x
– ident: ref19
  doi: 10.1109/tbme.2015.2474131
– volume-title: PsPM | A MATLAB Suite for Psycho-Physiological Modelling
  year: 2022
  ident: ref30
– ident: ref35
  doi: 10.1016/j.asoc.2019.105609
– ident: ref5
  doi: 10.1515/cdbme-2021-2220
– ident: ref12
  doi: 10.1016/j.neuropsychologia.2014.01.002
– ident: ref41
  doi: 10.21437/interspeech.2010-739
– ident: ref9
  doi: 10.1080/02699939208411068
– ident: ref17
  doi: 10.1016/j.jneumeth.2005.02.001
– ident: ref36
  doi: 10.1016/j.eij.2019.10.002
– ident: ref1
  doi: 10.1016/j.future.2021.05.032
SSID ssj0000816957
Score 2.3710625
Snippet Emotions play an essential role in human life as they are linked to well-being and markers of various diseases. Physiological signals can be used to assess...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19952
SubjectTerms Arousal
classification
Computational modeling
Convexity
Decomposition
Deconvolution
electrodermal activity
Emotion
Emotion recognition
Emotions
Feature extraction
Magnetohydrodynamics
phasic component
Physiology
Support vector machines
Sympathetic nervous system
tonic component
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_io2J9kYNHV7NJNo-j1koR9OADPAhhkk1EkFa0_n-TTVoqgl68LnlsJpPkm2H4PoSOLBeWhhidKM9DxZWVFSQmzNYrACm9Bp8S-tc3YvTArx6bxwWpr1QTlumBs-FOQTDWeqIdOOBe1wCaAREQSHCeZibQ-OYtBFPdHaxqoRtZaIZqok_PBoO4ohgQUn7CmEie_O0p6hj7i8TKj3u5e2wu19FaQYn4LP_dBlry4020usAduIWeBnMFQTwJeJjlbNp00caOLotC4LuX5zTQhU-l46U-C9_PeFs_cISseJiVfPDtrJZoMu6hh8vh_WBUFamEysUAbVo5BkAAAq0DayGiZs0DgYjuGpFSldxRLQmwIOKBbr3VnIYgLbSqDgKcU2wbLY8nY7-DsOSuUd5RiMCCO0kstzHmUA2VjtTWiT6iM6sZV3jEk5zFq-niCaJNNrVJpjbF1H10PO_0lmk0fm9-nrZj3jRxYHcfomeY4hnmL8_oo17azIX5eEQ_Mi5gf7a7phzYD0N1IiZsdKN2_2PuPbSS1pNzNftoefr-6Q8iepnaw85RvwAeGewM
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparison of Electrodermal Activity Signal Decomposition Techniques for Emotion Recognition
URI https://ieeexplore.ieee.org/document/10419076
https://www.proquest.com/docview/2924035958
https://doaj.org/article/a633de09caca4e91aa93a06af0fce204
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXantoD5aOIhVL5wJFsHdux42NZtqoqtQdopR6QrPHERgi0i-jupb8ef2VVWoG4RZGdOHpje2Yyfo-Qd04qx0OMTnovQyN7pxtITJiD7wG09gZ8SuhfXKqza3l-093Uw-r5LIz3Phef-Wm6zP_yhyWuU6osznAZ9y-ttsl2jNzKYa1NQiUpSJhOV2ahlpnjk9ksfkSMAbmcCqGS8f6x-2SS_qqq8mgpzvvL6T65HEdWykq-T9crN8W7B6SN_z30p-RJ9TTpSTGNZ2TLL56TvXv8gy_Il9lGhZAuA50XSZwhLdaxIxZhCfr529f0oI8-lZ_XGi96NXK_3tLo9tJ5UQOin8Z6pOXigFyfzq9mZ02VW2gwBnmrBgUAAwi8DWKA6HkbGRhED7FTKd0pkRvNQAQVF4XBOyN5CNrB0LdBAWIvXpKdxXLhXxGqJXa9Rw7ROZGomZMuxi19xzWy1qGaED7CYLFykSdJjB82xyTM2IKdTdjZit2EvN90-lmoOP7d_EPCd9M08WjnGxEXW6elBSXE4JlBQJDetABGAFMQWEDPmZyQg4TlvfcVGCfkcDQXWyf9reUmkRt2putf_6XbG7KbhlhSOIdkZ_Vr7d9Gp2bljnIy4Cib9G-DYPWf
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOQAHykdRtxTwgSNZHNux42O7bLVAuwfYSj0gWWPHRohqF9HdC7--duysCgjELYrsxNEb2zOT8XsAr6yQloUYnbRehEq0VlWYmDA73yIq5TX6lNA_m8vZuXh_0VyUw-r9WRjvfV985sfpsv-X363cJqXK4gwXcf9S8jbciRt_U-fjWtuUStKQ0I0q3EI11W-OJpP4GTEKZGLMuUzm-8v-09P0F12VPxbjfoc52YX5MLZcWPJtvFnbsfv5G23jfw_-ITwoviY5ysbxCG755WO4f4OB8Al8nmx1CMkqkGkWxenSch07uiwtQT59_ZIe9NanAvRS5UUWA_vrFYmOL5lmPSDycahIWi334PxkupjMqiK4ULkY5q0rxxEpYmB14B1G31uLQDH6iI1MCU_hmFYUeZBxWei81YKFoCx2bR0kOtfyp7CzXC39PhAlXNN6xzC6J8IpaoWNkUvbMOVobZ0cARtgMK6wkSdRjEvTRyVUm4ydSdiZgt0IXm87fc9kHP9ufpzw3TZNTNr9jYiLKRPToOS881Q7dCi8rhE1Ryox0OA8o2IEewnLG-_LMI7gcDAXU6b9lWE60Rs2umkP_tLtJdydLc5Ozem7-YdncC8NNyd0DmFn_WPjn0cXZ21f9IZ9DaqF9_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Electrodermal+Activity+Signal+Decomposition+Techniques+for+Emotion+Recognition&rft.jtitle=IEEE+access&rft.au=Veeranki%2C+Yedukondala+Rao&rft.au=Ganapathy%2C+Nagarajan&rft.au=Swaminathan%2C+Ramakrishnan&rft.au=Posada-Quintero%2C+Hugo+F.&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=19952&rft.epage=19966&rft_id=info:doi/10.1109%2FACCESS.2024.3361832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3361832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon