Pyramidal Dilation Attention Convolutional Network With Active and Self-Paced Learning for Hyperspectral Image Classification

In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous labeled samples. The acquisition of HSI labels is usually based on the field investigation, which is expensive and time consuming. Hence, the a...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 16; pp. 1503 - 1518
Main Authors Hou, Wenhui, Chen, Na, Peng, Jiangtao, Sun, Weiwei, Du, Qian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous labeled samples. The acquisition of HSI labels is usually based on the field investigation, which is expensive and time consuming. Hence, the available labels are usually limited, which affects the efficiency of deep HSI classification methods. To improve the classification performance while reducing the labeling cost, this article proposes a semisupervised deep learning (DL) method for HSI classification, named pyramidal dilation attention convolutional network with active and self-paced learning (PDAC-ASPL), which integrates active learning (AL), self-paced learning (SPL), and DL into a unified framework. First, a densely connected pyramidal dilation attention convolutional network is trained with a limited number of labeled samples. Then, the most informative samples from the unlabeled set are selected by AL and queried real labels, and the highest confidence samples with corresponding pseudo labels are extracted by SPL. Finally, the samples from AL and SPL are added to the training set to retrain the network. Compared with some DL- and AL-based HSI classification methods, our PDAC-ASPL achieves better performance on four HSI datasets.
AbstractList In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous labeled samples. The acquisition of HSI labels is usually based on the field investigation, which is expensive and time consuming. Hence, the available labels are usually limited, which affects the efficiency of deep HSI classification methods. To improve the classification performance while reducing the labeling cost, this article proposes a semisupervised deep learning (DL) method for HSI classification, named pyramidal dilation attention convolutional network with active and self-paced learning (PDAC-ASPL), which integrates active learning (AL), self-paced learning (SPL), and DL into a unified framework. First, a densely connected pyramidal dilation attention convolutional network is trained with a limited number of labeled samples. Then, the most informative samples from the unlabeled set are selected by AL and queried real labels, and the highest confidence samples with corresponding pseudo labels are extracted by SPL. Finally, the samples from AL and SPL are added to the training set to retrain the network. Compared with some DL- and AL-based HSI classification methods, our PDAC-ASPL achieves better performance on four HSI datasets.
Author Peng, Jiangtao
Hou, Wenhui
Du, Qian
Chen, Na
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Wenhui
  surname: Hou
  fullname: Hou, Wenhui
  email: 320645980@qq.com
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 2
  givenname: Na
  surname: Chen
  fullname: Chen, Na
  email: chenna0407@aliyun.com
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 3
  givenname: Jiangtao
  orcidid: 0000-0002-4759-0584
  surname: Peng
  fullname: Peng, Jiangtao
  email: pengjt1982@126.com
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 4
  givenname: Weiwei
  orcidid: 0000-0003-3399-7858
  surname: Sun
  fullname: Sun, Weiwei
  email: nbsww@outlook.com
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China
– sequence: 5
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA
BookMark eNp9kUtvEzEUhS1UJNLCL4CFJdYTrh8zjpdRoDRVBBUpYml5PNfBYTIOHqcoC_57J5kiIRasfGWd7z7OuSQXXeyQkNcMpoyBfne7vp9_WU85cDEVXKiyqp6RCWclK1gpygsyYVrogkmQL8hl328BKq60mJDfd8dkd6GxLX0fWptD7Og8Z-zO1SJ2D7E9nOpB8Anzr5h-0G8hf6dzl8MDUts1dI2tL-6sw4au0KYudBvqY6I3xz2mfo8up4Fe7uwG6aK1fR98cOdRL8lzb9seXz29V-Tr9Yf7xU2x-vxxuZivCidB58JxBO6t91qVati89qx2wksptGfgK99A3TCQNa_EbKZkCVbXUDoUXg2oEFdkOfZtot2afQo7m44m2mDOHzFtjE05uBaNAtAgWeWU5JID2IbXSgFiNQMHdT30ejv22qf484B9Ntt4SIM_veGDUCkt9WmiHlUuxb5P6I0L-XzzYEZoDQNzSs6MyZlTcuYpuYEV_7B_Nv4_9WakAiL-RQAbLJmJR_yXqB4
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3510779
crossref_primary_10_1109_JSTARS_2023_3348572
crossref_primary_10_1016_j_eswa_2024_124535
crossref_primary_10_1002_itl2_532
crossref_primary_10_1007_s00202_024_02702_3
crossref_primary_10_3233_IDT_240705
crossref_primary_10_1109_LGRS_2023_3324398
Cites_doi 10.1109/TPAMI.2017.2652459
10.1109/LGRS.2018.2878773
10.1109/TGRS.2018.2813366
10.1109/TGRS.2020.2964627
10.3390/rs13173396
10.1109/TGRS.2019.2907932
10.1109/TGRS.2017.2765364
10.1109/TGRS.2021.3130716
10.1109/TGRS.2015.2410991
10.1109/JSTARS.2022.3169128
10.3390/rs12233879
10.1109/TGRS.2008.2005729
10.1109/TGRS.2022.3215677
10.1109/MGRS.2021.3075491
10.1109/CVPR.2009.5206627
10.1109/TGRS.2021.3095292
10.1109/LGRS.2020.3036585
10.1109/LGRS.2019.2909495
10.1109/LGRS.2005.857031
10.1109/LGRS.2020.3045437
10.1145/3497623.3497646
10.3390/rs11111307
10.1109/TNNLS.2018.2841009
10.1109/LGRS.2019.2918719
10.1109/TGRS.2021.3087186
10.1109/LGRS.2011.2172185
10.3390/rs14030596
10.1109/TGRS.2019.2902568
10.1109/IJCNN.2014.6889457
10.1109/TGRS.2017.2650938
10.1016/j.rse.2007.07.028
10.1109/TGRS.2004.842478
10.1109/TGRS.2017.2755542
10.1109/TGRS.2022.3144158
10.1109/JSTARS.2022.3220875
10.1109/CVPR.2018.00745
10.1109/JSTARS.2014.2329330
10.1109/TGRS.2004.831865
10.1016/j.neucom.2021.03.035
10.1109/TGRS.2012.2209657
10.3390/rs11070884
10.1109/TGRS.2018.2865102
10.1109/CVPR.2017.243
10.1109/TGRS.2007.910220
10.1109/TGRS.2011.2129595
10.1109/TNNLS.2018.2874432
10.1109/TGRS.2016.2584107
10.1109/ICCV.2019.00041
10.1109/TGRS.2021.3062372
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3237566
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1518
ExternalDocumentID oai_doaj_org_article_70090416c7424200ad2b770ee680c0bb
10_1109_JSTARS_2023_3237566
10018878
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  grantid: 2021CFA087
  funderid: 10.13039/501100003819
– fundername: National Natural Science Foundation of China
  grantid: 42171351; 42122009; 41971296
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2020YFA0714200
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-c2e02faff9757062bf1bc3f4439f10f6fd0bd104b263887450a9b05ce3f72e033
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:29:20 EDT 2025
Tue Aug 12 09:41:11 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Tue Jul 01 03:16:24 EDT 2025
Wed Aug 27 02:54:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-c2e02faff9757062bf1bc3f4439f10f6fd0bd104b263887450a9b05ce3f72e033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8354-7500
0000-0002-4759-0584
0000-0003-3399-7858
OpenAccessLink https://doaj.org/article/70090416c7424200ad2b770ee680c0bb
PQID 2770779493
PQPubID 75722
PageCount 16
ParticipantIDs proquest_journals_2770779493
crossref_citationtrail_10_1109_JSTARS_2023_3237566
ieee_primary_10018878
doaj_primary_oai_doaj_org_article_70090416c7424200ad2b770ee680c0bb
crossref_primary_10_1109_JSTARS_2023_3237566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref43
ref49
ref8
ref7
Gal (ref47) 2017
ref9
ref4
ref3
ref6
ref5
ref40
Jedoui (ref44) 2019
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Kumar (ref30) 2010
References_xml – ident: ref41
  doi: 10.1109/TPAMI.2017.2652459
– ident: ref20
  doi: 10.1109/LGRS.2018.2878773
– ident: ref22
  doi: 10.1109/TGRS.2018.2813366
– ident: ref27
  doi: 10.1109/TGRS.2020.2964627
– ident: ref33
  doi: 10.3390/rs13173396
– ident: ref3
  doi: 10.1109/TGRS.2019.2907932
– ident: ref2
  doi: 10.1109/TGRS.2017.2765364
– ident: ref36
  doi: 10.1109/TGRS.2021.3130716
– ident: ref11
  doi: 10.1109/TGRS.2015.2410991
– ident: ref32
  doi: 10.1109/JSTARS.2022.3169128
– ident: ref29
  doi: 10.3390/rs12233879
– ident: ref5
  doi: 10.1109/TGRS.2008.2005729
– year: 2019
  ident: ref44
  article-title: Deep Bayesian active learning for multiple correct outputs
– ident: ref19
  doi: 10.1109/TGRS.2022.3215677
– ident: ref14
  doi: 10.1109/MGRS.2021.3075491
– ident: ref46
  doi: 10.1109/CVPR.2009.5206627
– ident: ref25
  doi: 10.1109/TGRS.2021.3095292
– ident: ref42
  doi: 10.1109/LGRS.2020.3036585
– ident: ref21
  doi: 10.1109/LGRS.2019.2909495
– ident: ref10
  doi: 10.1109/LGRS.2005.857031
– ident: ref28
  doi: 10.1109/LGRS.2020.3045437
– ident: ref49
  doi: 10.1145/3497623.3497646
– ident: ref51
  doi: 10.3390/rs11111307
– ident: ref40
  doi: 10.1109/TNNLS.2018.2841009
– ident: ref50
  doi: 10.1109/LGRS.2019.2918719
– ident: ref8
  doi: 10.1109/TGRS.2021.3087186
– ident: ref4
  doi: 10.1109/LGRS.2011.2172185
– ident: ref39
  doi: 10.3390/rs14030596
– ident: ref23
  doi: 10.1109/TGRS.2019.2902568
– ident: ref45
  doi: 10.1109/IJCNN.2014.6889457
– ident: ref26
  doi: 10.1109/TGRS.2017.2650938
– start-page: 1189
  volume-title: Proc. 23rd Int. Conf. Neural Inf. Process. Syst.
  year: 2010
  ident: ref30
  article-title: Self-paced learning for latent variable models
– ident: ref1
  doi: 10.1016/j.rse.2007.07.028
– ident: ref9
  doi: 10.1109/TGRS.2004.842478
– start-page: 1183
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2017
  ident: ref47
  article-title: Deep Bayesian active learning with image data
– ident: ref52
  doi: 10.1109/TGRS.2017.2755542
– ident: ref37
  doi: 10.1109/TGRS.2022.3144158
– ident: ref18
  doi: 10.1109/JSTARS.2022.3220875
– ident: ref34
  doi: 10.1109/CVPR.2018.00745
– ident: ref15
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref48
  doi: 10.1109/TGRS.2004.831865
– ident: ref6
  doi: 10.1016/j.neucom.2021.03.035
– ident: ref7
  doi: 10.1109/TGRS.2012.2209657
– ident: ref35
  doi: 10.3390/rs11070884
– ident: ref31
  doi: 10.1109/TGRS.2018.2865102
– ident: ref17
  doi: 10.1109/CVPR.2017.243
– ident: ref38
  doi: 10.1109/TGRS.2007.910220
– ident: ref12
  doi: 10.1109/TGRS.2011.2129595
– ident: ref13
  doi: 10.1109/TNNLS.2018.2874432
– ident: ref16
  doi: 10.1109/TGRS.2016.2584107
– ident: ref43
  doi: 10.1109/ICCV.2019.00041
– ident: ref24
  doi: 10.1109/TGRS.2021.3062372
SSID ssj0062793
Score 2.3632472
Snippet In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1503
SubjectTerms Active learning (AL)
Artificial neural networks
Classification
Convolution
Convolutional neural networks
Deep learning
deep learning (DL)
Dilation
Feature extraction
Field investigations
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Labeling
Labels
Machine learning
Methods
Neural networks
self-paced learning (SPL)
Support vector machines
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RSkhceBaxUJAPHHHqtZN4c1wKZUFiVVEqerP8LCvabLXNIhWJ_874sQWBQNyiyCM7mfHkG2fmG4DnkwhCJNeUOdlSRMSe6q7WlHMz0do23PsYKL6ft7Pj-t1Jc1KK1VMtjPc-JZ_5Kl6mf_luadfxqGwv8gXhpphswRZGbrlYa-N2Wy4Twy4Cko5GzphCMTRm3R7a-PTDURU7hVeCC9kkTsSfn6HE1l_aq_zhk9OH5uAOzDdLzPklX6r1YCr77Tf2xv9-hrtwu0BOMs02cg9u-P4-3HyTWvpePYDvh1crfb5wOOTVImfGkekw5DRIsr_svxbrxAHznDROPi2Gz2SaXCXRvSNH_izQQ229I4Ww9ZQgGiYzjHJzMecKpd-eo_MiqQ1nTFBKU-3A8cHrj_szWpoyUIuh4EAt94wHHUInG4lv3YSxsSLUCGzCmIU2OGYcxniG486OXPpMd4Y11osgUVSIh7DdL3v_CIixxgVWa8lSFFTruhF6HKQPQnPD3Aj4RkfKFsby2DjjTKXIhXUqK1ZFxaqi2BG8uBa6yIQd_x7-Mir_emhk2043UGmqbF6FC-wYIlcra0Q0jGnHjZTM-3bCLDNmBDtR0b_Ml3U8gt2NLaniGi4VR0mJXrATj_8i9gRuxSXmg55d2B5Wa_8Uoc9gniWT_wGmWf7n
  priority: 102
  providerName: IEEE
Title Pyramidal Dilation Attention Convolutional Network With Active and Self-Paced Learning for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/10018878
https://www.proquest.com/docview/2770779493
https://doaj.org/article/70090416c7424200ad2b770ee680c0bb
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvBoNU3aZntcn6ugiA_0FvLUhbXKWgUP_ncnj1VB0IvXMiFtZjL5vjL5BqHNrgchnMqMGF5lgIhtJutCZpSqrpS6pNZ6onh6VvWvi5Pb8vZbqy9fExblgePC7XAAAQRQgwYOV4BLpaGKc2Jt1SWaKOWzL5x5YzIVc3BFIeySxlBO6h0I8t7F5bZvFb7NKONlEEX8OoeCXH_qr_IjKYeT5nAWzSSIiHvx1ebQhG3m0dRRaMH7toDez99G8mFgwGR_ECvZcK9tY9ki3ntsXlM0gcFZLPLGN4P2HvdCasOyMfjSDl12LrU1OAms3mFAr7gPrDRevhzB6OMHSDY4tM30BUVhqkV0fXhwtdfPUhOFTAN1azNNLaFOOlfzksPCKJcrzVwBQMTlxFXOEGWAkykKO9Fr3xNZK1JqyxyHoYwtocnmsbHLCCutjCOF5CSwlkIWJZO549YxSRUxHUTHSyp0Uhj3jS6GIjANUovoB-H9IJIfOmjrc9BTFNj43XzX--rT1KtjhwcQMyLFjPgrZjpo0Xv623wkh2_vdtDa2PUibeVnQWEkh6xVs5X_mHsVTfvviX9x1tBkO3qx64BrWrURQngjXEH8AHnd8ro
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxELaqIgQXnkUECvgAN7x1vA9nDxxCS0loG1W0Fb0ZP2nUdoPSDShI_BT-Cr-N8SMBgeBWiVsUebSbzTcz33jH3yD0tOdJCGeSUMMrAozYElkXkjCmelLqklnrC8W9UTU4Kt4cl8cr6NvyLIy1NjSf2cx_DO_yzUTP_FbZhtcLAqfopR7KHTv_DBXaxYvhFvydzxjbfnW4OSBpiADRULq0RDNLmZPO1bzktGLKdZXOXQGJ2HWpq5yhykBNohgg0Wu_U1krWmqbOw6mfr8TIvwVIBoli8fDFoG-Yjxo-gIFqolXqUmiRl1ab4BX9d8eZH42eZaznJdBhfFn4gvzAdJAlz-yQEht2zfR98VDiR0tp9msVZn-8pte5H_71G6hG4lU4370gttoxTZ30NXXYWjx_C76uj-fyvOxgSVb49j7h_ttGxs98eak-ZT8DxaMYls8fjduT3A_JAMsG4MP7Jkj-1Jbg5Mk7QcMfB8PoI6Px1WnYD08h_CMw6BR34IVLrWGji7lt99Dq82ksfcRVloZRwvJaajzClmUuew6bl0umaKmg9gCE0InTXY_GuRMhNqM1iICSXggiQSkDnq-NPoYJUn-vfylB9tyqdcTD18ASEQKTwJusKbAzTUvgLNRKg1TnFNrqx7VVKkOWvPA-uV6EVMdtL7ArkjB70IwsOQQ5-v8wV_MnqBrg8O9XbE7HO08RNf97cZtrXW02k5n9hEQvVY9Du6G0fvLRuoPzSNb9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyramidal+Dilation+Attention+Convolutional+Network+With+Active+and+Self-Paced+Learning+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Hou%2C+Wenhui&rft.au=Chen%2C+Na&rft.au=Peng%2C+Jiangtao&rft.au=Sun%2C+Weiwei&rft.date=2023&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=16&rft.spage=1503&rft.epage=1518&rft_id=info:doi/10.1109%2FJSTARS.2023.3237566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3237566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon