Pyramidal Dilation Attention Convolutional Network With Active and Self-Paced Learning for Hyperspectral Image Classification
In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous labeled samples. The acquisition of HSI labels is usually based on the field investigation, which is expensive and time consuming. Hence, the a...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 16; pp. 1503 - 1518 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous labeled samples. The acquisition of HSI labels is usually based on the field investigation, which is expensive and time consuming. Hence, the available labels are usually limited, which affects the efficiency of deep HSI classification methods. To improve the classification performance while reducing the labeling cost, this article proposes a semisupervised deep learning (DL) method for HSI classification, named pyramidal dilation attention convolutional network with active and self-paced learning (PDAC-ASPL), which integrates active learning (AL), self-paced learning (SPL), and DL into a unified framework. First, a densely connected pyramidal dilation attention convolutional network is trained with a limited number of labeled samples. Then, the most informative samples from the unlabeled set are selected by AL and queried real labels, and the highest confidence samples with corresponding pseudo labels are extracted by SPL. Finally, the samples from AL and SPL are added to the training set to retrain the network. Compared with some DL- and AL-based HSI classification methods, our PDAC-ASPL achieves better performance on four HSI datasets. |
---|---|
AbstractList | In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous labeled samples. The acquisition of HSI labels is usually based on the field investigation, which is expensive and time consuming. Hence, the available labels are usually limited, which affects the efficiency of deep HSI classification methods. To improve the classification performance while reducing the labeling cost, this article proposes a semisupervised deep learning (DL) method for HSI classification, named pyramidal dilation attention convolutional network with active and self-paced learning (PDAC-ASPL), which integrates active learning (AL), self-paced learning (SPL), and DL into a unified framework. First, a densely connected pyramidal dilation attention convolutional network is trained with a limited number of labeled samples. Then, the most informative samples from the unlabeled set are selected by AL and queried real labels, and the highest confidence samples with corresponding pseudo labels are extracted by SPL. Finally, the samples from AL and SPL are added to the training set to retrain the network. Compared with some DL- and AL-based HSI classification methods, our PDAC-ASPL achieves better performance on four HSI datasets. |
Author | Peng, Jiangtao Hou, Wenhui Du, Qian Chen, Na Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Wenhui surname: Hou fullname: Hou, Wenhui email: 320645980@qq.com organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 2 givenname: Na surname: Chen fullname: Chen, Na email: chenna0407@aliyun.com organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 3 givenname: Jiangtao orcidid: 0000-0002-4759-0584 surname: Peng fullname: Peng, Jiangtao email: pengjt1982@126.com organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 4 givenname: Weiwei orcidid: 0000-0003-3399-7858 surname: Sun fullname: Sun, Weiwei email: nbsww@outlook.com organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China – sequence: 5 givenname: Qian orcidid: 0000-0001-8354-7500 surname: Du fullname: Du, Qian email: du@ece.msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA |
BookMark | eNp9kUtvEzEUhS1UJNLCL4CFJdYTrh8zjpdRoDRVBBUpYml5PNfBYTIOHqcoC_57J5kiIRasfGWd7z7OuSQXXeyQkNcMpoyBfne7vp9_WU85cDEVXKiyqp6RCWclK1gpygsyYVrogkmQL8hl328BKq60mJDfd8dkd6GxLX0fWptD7Og8Z-zO1SJ2D7E9nOpB8Anzr5h-0G8hf6dzl8MDUts1dI2tL-6sw4au0KYudBvqY6I3xz2mfo8up4Fe7uwG6aK1fR98cOdRL8lzb9seXz29V-Tr9Yf7xU2x-vxxuZivCidB58JxBO6t91qVati89qx2wksptGfgK99A3TCQNa_EbKZkCVbXUDoUXg2oEFdkOfZtot2afQo7m44m2mDOHzFtjE05uBaNAtAgWeWU5JID2IbXSgFiNQMHdT30ejv22qf484B9Ntt4SIM_veGDUCkt9WmiHlUuxb5P6I0L-XzzYEZoDQNzSs6MyZlTcuYpuYEV_7B_Nv4_9WakAiL-RQAbLJmJR_yXqB4 |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3510779 crossref_primary_10_1109_JSTARS_2023_3348572 crossref_primary_10_1016_j_eswa_2024_124535 crossref_primary_10_1002_itl2_532 crossref_primary_10_1007_s00202_024_02702_3 crossref_primary_10_3233_IDT_240705 crossref_primary_10_1109_LGRS_2023_3324398 |
Cites_doi | 10.1109/TPAMI.2017.2652459 10.1109/LGRS.2018.2878773 10.1109/TGRS.2018.2813366 10.1109/TGRS.2020.2964627 10.3390/rs13173396 10.1109/TGRS.2019.2907932 10.1109/TGRS.2017.2765364 10.1109/TGRS.2021.3130716 10.1109/TGRS.2015.2410991 10.1109/JSTARS.2022.3169128 10.3390/rs12233879 10.1109/TGRS.2008.2005729 10.1109/TGRS.2022.3215677 10.1109/MGRS.2021.3075491 10.1109/CVPR.2009.5206627 10.1109/TGRS.2021.3095292 10.1109/LGRS.2020.3036585 10.1109/LGRS.2019.2909495 10.1109/LGRS.2005.857031 10.1109/LGRS.2020.3045437 10.1145/3497623.3497646 10.3390/rs11111307 10.1109/TNNLS.2018.2841009 10.1109/LGRS.2019.2918719 10.1109/TGRS.2021.3087186 10.1109/LGRS.2011.2172185 10.3390/rs14030596 10.1109/TGRS.2019.2902568 10.1109/IJCNN.2014.6889457 10.1109/TGRS.2017.2650938 10.1016/j.rse.2007.07.028 10.1109/TGRS.2004.842478 10.1109/TGRS.2017.2755542 10.1109/TGRS.2022.3144158 10.1109/JSTARS.2022.3220875 10.1109/CVPR.2018.00745 10.1109/JSTARS.2014.2329330 10.1109/TGRS.2004.831865 10.1016/j.neucom.2021.03.035 10.1109/TGRS.2012.2209657 10.3390/rs11070884 10.1109/TGRS.2018.2865102 10.1109/CVPR.2017.243 10.1109/TGRS.2007.910220 10.1109/TGRS.2011.2129595 10.1109/TNNLS.2018.2874432 10.1109/TGRS.2016.2584107 10.1109/ICCV.2019.00041 10.1109/TGRS.2021.3062372 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2023.3237566 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 1518 |
ExternalDocumentID | oai_doaj_org_article_70090416c7424200ad2b770ee680c0bb 10_1109_JSTARS_2023_3237566 10018878 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2021CFA087 funderid: 10.13039/501100003819 – fundername: National Natural Science Foundation of China grantid: 42171351; 42122009; 41971296 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2020YFA0714200 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c409t-c2e02faff9757062bf1bc3f4439f10f6fd0bd104b263887450a9b05ce3f72e033 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:29:20 EDT 2025 Tue Aug 12 09:41:11 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Tue Jul 01 03:16:24 EDT 2025 Wed Aug 27 02:54:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-c2e02faff9757062bf1bc3f4439f10f6fd0bd104b263887450a9b05ce3f72e033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8354-7500 0000-0002-4759-0584 0000-0003-3399-7858 |
OpenAccessLink | https://doaj.org/article/70090416c7424200ad2b770ee680c0bb |
PQID | 2770779493 |
PQPubID | 75722 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2770779493 crossref_citationtrail_10_1109_JSTARS_2023_3237566 ieee_primary_10018878 doaj_primary_oai_doaj_org_article_70090416c7424200ad2b770ee680c0bb crossref_primary_10_1109_JSTARS_2023_3237566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref43 ref49 ref8 ref7 Gal (ref47) 2017 ref9 ref4 ref3 ref6 ref5 ref40 Jedoui (ref44) 2019 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Kumar (ref30) 2010 |
References_xml | – ident: ref41 doi: 10.1109/TPAMI.2017.2652459 – ident: ref20 doi: 10.1109/LGRS.2018.2878773 – ident: ref22 doi: 10.1109/TGRS.2018.2813366 – ident: ref27 doi: 10.1109/TGRS.2020.2964627 – ident: ref33 doi: 10.3390/rs13173396 – ident: ref3 doi: 10.1109/TGRS.2019.2907932 – ident: ref2 doi: 10.1109/TGRS.2017.2765364 – ident: ref36 doi: 10.1109/TGRS.2021.3130716 – ident: ref11 doi: 10.1109/TGRS.2015.2410991 – ident: ref32 doi: 10.1109/JSTARS.2022.3169128 – ident: ref29 doi: 10.3390/rs12233879 – ident: ref5 doi: 10.1109/TGRS.2008.2005729 – year: 2019 ident: ref44 article-title: Deep Bayesian active learning for multiple correct outputs – ident: ref19 doi: 10.1109/TGRS.2022.3215677 – ident: ref14 doi: 10.1109/MGRS.2021.3075491 – ident: ref46 doi: 10.1109/CVPR.2009.5206627 – ident: ref25 doi: 10.1109/TGRS.2021.3095292 – ident: ref42 doi: 10.1109/LGRS.2020.3036585 – ident: ref21 doi: 10.1109/LGRS.2019.2909495 – ident: ref10 doi: 10.1109/LGRS.2005.857031 – ident: ref28 doi: 10.1109/LGRS.2020.3045437 – ident: ref49 doi: 10.1145/3497623.3497646 – ident: ref51 doi: 10.3390/rs11111307 – ident: ref40 doi: 10.1109/TNNLS.2018.2841009 – ident: ref50 doi: 10.1109/LGRS.2019.2918719 – ident: ref8 doi: 10.1109/TGRS.2021.3087186 – ident: ref4 doi: 10.1109/LGRS.2011.2172185 – ident: ref39 doi: 10.3390/rs14030596 – ident: ref23 doi: 10.1109/TGRS.2019.2902568 – ident: ref45 doi: 10.1109/IJCNN.2014.6889457 – ident: ref26 doi: 10.1109/TGRS.2017.2650938 – start-page: 1189 volume-title: Proc. 23rd Int. Conf. Neural Inf. Process. Syst. year: 2010 ident: ref30 article-title: Self-paced learning for latent variable models – ident: ref1 doi: 10.1016/j.rse.2007.07.028 – ident: ref9 doi: 10.1109/TGRS.2004.842478 – start-page: 1183 volume-title: Proc. Int. Conf. Mach. Learn. year: 2017 ident: ref47 article-title: Deep Bayesian active learning with image data – ident: ref52 doi: 10.1109/TGRS.2017.2755542 – ident: ref37 doi: 10.1109/TGRS.2022.3144158 – ident: ref18 doi: 10.1109/JSTARS.2022.3220875 – ident: ref34 doi: 10.1109/CVPR.2018.00745 – ident: ref15 doi: 10.1109/JSTARS.2014.2329330 – ident: ref48 doi: 10.1109/TGRS.2004.831865 – ident: ref6 doi: 10.1016/j.neucom.2021.03.035 – ident: ref7 doi: 10.1109/TGRS.2012.2209657 – ident: ref35 doi: 10.3390/rs11070884 – ident: ref31 doi: 10.1109/TGRS.2018.2865102 – ident: ref17 doi: 10.1109/CVPR.2017.243 – ident: ref38 doi: 10.1109/TGRS.2007.910220 – ident: ref12 doi: 10.1109/TGRS.2011.2129595 – ident: ref13 doi: 10.1109/TNNLS.2018.2874432 – ident: ref16 doi: 10.1109/TGRS.2016.2584107 – ident: ref43 doi: 10.1109/ICCV.2019.00041 – ident: ref24 doi: 10.1109/TGRS.2021.3062372 |
SSID | ssj0062793 |
Score | 2.3632472 |
Snippet | In recent years, deep neural networks have been widely used for hyperspectral image (HSI) classification and have shown excellent performance using numerous... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1503 |
SubjectTerms | Active learning (AL) Artificial neural networks Classification Convolution Convolutional neural networks Deep learning deep learning (DL) Dilation Feature extraction Field investigations hyperspectral image (HSI) classification Hyperspectral imaging Image classification Labeling Labels Machine learning Methods Neural networks self-paced learning (SPL) Support vector machines Training |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RSkhceBaxUJAPHHHqtZN4c1wKZUFiVVEqerP8LCvabLXNIhWJ_874sQWBQNyiyCM7mfHkG2fmG4DnkwhCJNeUOdlSRMSe6q7WlHMz0do23PsYKL6ft7Pj-t1Jc1KK1VMtjPc-JZ_5Kl6mf_luadfxqGwv8gXhpphswRZGbrlYa-N2Wy4Twy4Cko5GzphCMTRm3R7a-PTDURU7hVeCC9kkTsSfn6HE1l_aq_zhk9OH5uAOzDdLzPklX6r1YCr77Tf2xv9-hrtwu0BOMs02cg9u-P4-3HyTWvpePYDvh1crfb5wOOTVImfGkekw5DRIsr_svxbrxAHznDROPi2Gz2SaXCXRvSNH_izQQ229I4Ww9ZQgGiYzjHJzMecKpd-eo_MiqQ1nTFBKU-3A8cHrj_szWpoyUIuh4EAt94wHHUInG4lv3YSxsSLUCGzCmIU2OGYcxniG486OXPpMd4Y11osgUVSIh7DdL3v_CIixxgVWa8lSFFTruhF6HKQPQnPD3Aj4RkfKFsby2DjjTKXIhXUqK1ZFxaqi2BG8uBa6yIQd_x7-Mir_emhk2043UGmqbF6FC-wYIlcra0Q0jGnHjZTM-3bCLDNmBDtR0b_Ml3U8gt2NLaniGi4VR0mJXrATj_8i9gRuxSXmg55d2B5Wa_8Uoc9gniWT_wGmWf7n priority: 102 providerName: IEEE |
Title | Pyramidal Dilation Attention Convolutional Network With Active and Self-Paced Learning for Hyperspectral Image Classification |
URI | https://ieeexplore.ieee.org/document/10018878 https://www.proquest.com/docview/2770779493 https://doaj.org/article/70090416c7424200ad2b770ee680c0bb |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvBoNU3aZntcn6ugiA_0FvLUhbXKWgUP_ncnj1VB0IvXMiFtZjL5vjL5BqHNrgchnMqMGF5lgIhtJutCZpSqrpS6pNZ6onh6VvWvi5Pb8vZbqy9fExblgePC7XAAAQRQgwYOV4BLpaGKc2Jt1SWaKOWzL5x5YzIVc3BFIeySxlBO6h0I8t7F5bZvFb7NKONlEEX8OoeCXH_qr_IjKYeT5nAWzSSIiHvx1ebQhG3m0dRRaMH7toDez99G8mFgwGR_ECvZcK9tY9ki3ntsXlM0gcFZLPLGN4P2HvdCasOyMfjSDl12LrU1OAms3mFAr7gPrDRevhzB6OMHSDY4tM30BUVhqkV0fXhwtdfPUhOFTAN1azNNLaFOOlfzksPCKJcrzVwBQMTlxFXOEGWAkykKO9Fr3xNZK1JqyxyHoYwtocnmsbHLCCutjCOF5CSwlkIWJZO549YxSRUxHUTHSyp0Uhj3jS6GIjANUovoB-H9IJIfOmjrc9BTFNj43XzX--rT1KtjhwcQMyLFjPgrZjpo0Xv623wkh2_vdtDa2PUibeVnQWEkh6xVs5X_mHsVTfvviX9x1tBkO3qx64BrWrURQngjXEH8AHnd8ro |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxELaqIgQXnkUECvgAN7x1vA9nDxxCS0loG1W0Fb0ZP2nUdoPSDShI_BT-Cr-N8SMBgeBWiVsUebSbzTcz33jH3yD0tOdJCGeSUMMrAozYElkXkjCmelLqklnrC8W9UTU4Kt4cl8cr6NvyLIy1NjSf2cx_DO_yzUTP_FbZhtcLAqfopR7KHTv_DBXaxYvhFvydzxjbfnW4OSBpiADRULq0RDNLmZPO1bzktGLKdZXOXQGJ2HWpq5yhykBNohgg0Wu_U1krWmqbOw6mfr8TIvwVIBoli8fDFoG-Yjxo-gIFqolXqUmiRl1ab4BX9d8eZH42eZaznJdBhfFn4gvzAdJAlz-yQEht2zfR98VDiR0tp9msVZn-8pte5H_71G6hG4lU4370gttoxTZ30NXXYWjx_C76uj-fyvOxgSVb49j7h_ttGxs98eak-ZT8DxaMYls8fjduT3A_JAMsG4MP7Jkj-1Jbg5Mk7QcMfB8PoI6Px1WnYD08h_CMw6BR34IVLrWGji7lt99Dq82ksfcRVloZRwvJaajzClmUuew6bl0umaKmg9gCE0InTXY_GuRMhNqM1iICSXggiQSkDnq-NPoYJUn-vfylB9tyqdcTD18ASEQKTwJusKbAzTUvgLNRKg1TnFNrqx7VVKkOWvPA-uV6EVMdtL7ArkjB70IwsOQQ5-v8wV_MnqBrg8O9XbE7HO08RNf97cZtrXW02k5n9hEQvVY9Du6G0fvLRuoPzSNb9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyramidal+Dilation+Attention+Convolutional+Network+With+Active+and+Self-Paced+Learning+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Hou%2C+Wenhui&rft.au=Chen%2C+Na&rft.au=Peng%2C+Jiangtao&rft.au=Sun%2C+Weiwei&rft.date=2023&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=16&rft.spage=1503&rft.epage=1518&rft_id=info:doi/10.1109%2FJSTARS.2023.3237566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3237566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |