3D Visualization of Pulmonary Vessel Based on Low-cost Segmentation and Fast Reconstruction
Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary va...
Saved in:
Published in | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary vascular visualization due to the lack of vascular labeling datasets. Also, the existing methods have large computational complexity and are low efficiency. This study proposes a method for high-quality 3D visualization of pulmonary vessels based on low-cost segmentation and fast reconstruction, consisting of three steps: (1) Pulmonary vessel feature extraction from lung CT images using self-supervised learning, (2) Segmentation of pulmonary sparse vessels in lung CT images using self-supervised transfer learning, and (3) 3D reconstruction of pulmonary vessels based on segmentation results of step (2) using interpolation. The accuracy of pulmonary vascular contour segmentation was improved from 91.31% using the sparse coding to 98.65% using our proposed method (27,270 test sample points); the classifier evaluation accuracy was improved from 95.33% to 98.26%, and the average running time of the model with the test set data was 44 ms per slice. the segmentation results can automatically generate a complete vascular tree model with an average time of 10.8s ± 1.6s. The results demonstrate that the proposed method provides fast and accurate 3D visualization of pulmonary vessels, and is promising for more precise and reliable information for pneumonoconiosis patients. |
---|---|
AbstractList | Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary vascular visualization due to the lack of vascular labeling datasets. Also, the existing methods have large computational complexity and are low efficiency. This study proposes a method for high-quality 3D visualization of pulmonary vessels based on low-cost segmentation and fast reconstruction, consisting of three steps: 1) Pulmonary vessel feature extraction from lung CT images using self-supervised learning, 2) Segmentation of pulmonary sparse vessels in lung CT images using self-supervised transfer learning, and 3) 3D reconstruction of pulmonary vessels based on segmentation results of step (2) using interpolation. The accuracy of pulmonary vascular contour segmentation was improved from 91.31% using the sparse coding to 98.65% using our proposed method (27,270 test sample points); the classifier evaluation accuracy was improved from 95.33% to 98.26%, and the average running time of the model with the test set data was 44 ms per slice. the segmentation results can automatically generate a complete vascular tree model with an average time of 10.8s ± 1 1.6s. The results demonstrate that the proposed method provides fast and accurate 3D visualization of pulmonary vessels, and is promising for more precise and reliable information for pneumonoconiosis patients. Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary vascular visualization due to the lack of vascular labeling datasets. Also, the existing methods have large computational complexity and are low efficiency. This study proposes a method for high-quality 3D visualization of pulmonary vessels based on low-cost segmentation and fast reconstruction, consisting of three steps: (1) Pulmonary vessel feature extraction from lung CT images using self-supervised learning, (2) Segmentation of pulmonary sparse vessels in lung CT images using self-supervised transfer learning, and (3) 3D reconstruction of pulmonary vessels based on segmentation results of step (2) using interpolation. The accuracy of pulmonary vascular contour segmentation was improved from 91.31% using the sparse coding to 98.65% using our proposed method (27,270 test sample points); the classifier evaluation accuracy was improved from 95.33% to 98.26%, and the average running time of the model with the test set data was 44 ms per slice. the segmentation results can automatically generate a complete vascular tree model with an average time of 10.8s ± 1.6s. The results demonstrate that the proposed method provides fast and accurate 3D visualization of pulmonary vessels, and is promising for more precise and reliable information for pneumonoconiosis patients. |
Author | Liu, Lilu Huang, Qianghao Ma, Honghai Zhou, Chunlin Cao, Yuqi Wang, Luming Zhang, Lin |
Author_xml | – sequence: 1 givenname: Qianghao orcidid: 0009-0003-7931-0406 surname: Huang fullname: Huang, Qianghao organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Lilu orcidid: 0000-0003-2937-0702 surname: Liu fullname: Liu, Lilu organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Yuqi orcidid: 0000-0003-1822-7118 surname: Cao fullname: Cao, Yuqi organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Honghai surname: Ma fullname: Ma, Honghai organization: The First Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China – sequence: 6 givenname: Luming surname: Wang fullname: Wang, Luming organization: The First Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China – sequence: 7 givenname: Chunlin surname: Zhou fullname: Zhou, Chunlin organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China |
BookMark | eNpNkV9LwzAUxYMoqHOfQB8KPnfmT9Mmj3NuKgwUp3vxISTprXR0jSYtop_ezIosEHI5ub9zL5xTdNi6FhA6J3hCCJZX09lsvlpNKKZswmjB4j1AJ5TkMmWc5Yd79TEah7DB8Ygo8eIEvbKbZF2HXjf1t-5q1yauSh77Zuta7b-SNYQATXKtA5RJ_Fy6z9S60CUreNtC2w2IbstkoaP6BNa1ofO93eln6KjSTYDx3ztCL4v58-wuXT7c3s-my9RmWHapJUxnmrFKaCsMFsJkAiTFOTEAHGthLOaSG4pJzgUuCJDMWhoLibWJ5AjdD76l0xv17uttXF05Xatfwfk3pX1X2wZUIXNjypKZqioyDFhaI6xguKDGWMp59LocvN69--ghdGrjet_G9RUVhIqM8WzXxYYu610IHqr_qQSrXShqCEXtQlF_oUTqYqBqANgjCJGEZ-wHVaKJgA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1364_OE_510398 |
Cites_doi | 10.1109/TIP.2003.818019 10.1007/s11042-018-7087-x 10.1109/ACCESS.2022.3170893 10.1016/j.cmpb.2018.02.001 10.33963/KP.15174 10.1016/j.jncc.2020.12.001 10.1007/BFb0029240 10.21037/jtd-20-1014 10.1038/s41592-022-01541-z 10.3390/s22082988 10.3390/s22239209 10.1109/ACCESS.2023.3240181 10.1016/j.media.2014.07.003 10.1016/j.cad.2004.09.011 10.1016/j.media.2007.03.004 10.1145/1186562.1015816 10.7717/peerj-cs.654 10.1109/NSSMIC.2016.8069570 10.1109/ICTech55460.2022.00095 10.1109/ACCESS.2022.3197594 10.1038/s41467-020-18606-2 10.1109/TMI.2012.2219881 10.1002/mp.13648 10.1016/j.irbm.2013.12.001 10.1049/el.2016.4438 10.1109/ACCESS.2018.2867859 10.1007/s00530-017-0580-7 10.1016/j.bspc.2017.09.009 10.1148/rg.2015140320 10.1002/cpe.7311 10.1109/ISBI.2016.7493520 10.1016/j.mri.2021.08.004 10.1007/s10278-019-00227-x 10.1016/j.bspc.2021.102790 10.1117/12.768795 10.21037/jtd.2018.05.75 10.1007/BFb0056195 10.33963/KP.15703 10.33963/KP.a2021.0135 10.1145/133994.134011 10.1109/ACCESS.2021.3076359 10.1007/s13369-023-07727-7 10.1147/rd.191.0002 10.1145/359842.359846 10.1109/2945.817351 10.1016/j.recesp.2020.11.006 10.1016/j.cmpb.2015.08.014 10.1155/2019/9712970 10.1109/34.295913 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3273327 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_796bbdd3bff740e09cb8c83072bbc255 10_1109_ACCESS_2023_3273327 10119154 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key R&D Program of Zhejiang Province, China (NO.2022C04030) |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-c13a4a33f8ac8b088b48e92061bee50a8bc0595b201658071e14cc207190ab4a3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 14:39:16 EDT 2024 Thu Oct 10 19:27:02 EDT 2024 Fri Aug 23 03:12:54 EDT 2024 Mon Nov 04 12:01:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-c13a4a33f8ac8b088b48e92061bee50a8bc0595b201658071e14cc207190ab4a3 |
ORCID | 0000-0003-2937-0702 0009-0003-7931-0406 0000-0003-1822-7118 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10119154 |
PQID | 2812843545 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2812843545 crossref_primary_10_1109_ACCESS_2023_3273327 ieee_primary_10119154 doaj_primary_oai_doaj_org_article_796bbdd3bff740e09cb8c83072bbc255 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref55 ref10 ref54 çiçek (ref57) 2016 ref17 ref16 ref19 ref18 ref51 le moal (ref50) 2018 ref46 ref45 ref48 ref47 ref42 ref44 ref43 wild (ref1) 2020 ref8 ref9 ref4 ref3 ref6 ref40 pan (ref35) 2019 kazhdan (ref41) 2006; 6 ref34 ref37 ref36 ref31 ref30 ref33 ref32 he (ref5) 2020; 46 ref2 ref39 ref38 bian (ref24) 2018; 23 ikeda (ref49) 2013; 19 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 zhang (ref7) 2019 ga? (ref21) 2020; 78 vogel (ref52) 2022 |
References_xml | – ident: ref12 doi: 10.1109/TIP.2003.818019 – ident: ref33 doi: 10.1007/s11042-018-7087-x – ident: ref14 doi: 10.1109/ACCESS.2022.3170893 – ident: ref34 doi: 10.1016/j.cmpb.2018.02.001 – volume: 23 start-page: 1450 year: 2018 ident: ref24 article-title: Overview of anatomical structure segmentation methods in lung CT images publication-title: J Image Graph contributor: fullname: bian – volume: 78 start-page: 348 year: 2020 ident: ref21 article-title: Multiple atrial septal defects with concomitant partial anomalous pulmonary venous return on cardiac computed tomography publication-title: Kardiologia Polska doi: 10.33963/KP.15174 contributor: fullname: ga? – ident: ref3 doi: 10.1016/j.jncc.2020.12.001 – ident: ref25 doi: 10.1007/BFb0029240 – ident: ref48 doi: 10.21037/jtd-20-1014 – ident: ref8 doi: 10.1038/s41592-022-01541-z – ident: ref58 doi: 10.3390/s22082988 – ident: ref10 doi: 10.3390/s22239209 – start-page: 424 year: 2016 ident: ref57 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent contributor: fullname: çiçek – ident: ref15 doi: 10.1109/ACCESS.2023.3240181 – ident: ref27 doi: 10.1016/j.media.2014.07.003 – year: 2022 ident: ref52 article-title: Robust centerline prediction for accurate vessel wall visualization of intracranial vessels in multi-contrast 3D MRI data publication-title: Med Phys contributor: fullname: vogel – ident: ref45 doi: 10.1016/j.cad.2004.09.011 – volume: 46 start-page: 2 year: 2020 ident: ref5 article-title: Present situation and challenge of convolutional neural network in medical image segmentation publication-title: Comput Netw contributor: fullname: he – ident: ref37 doi: 10.1016/j.media.2007.03.004 – ident: ref43 doi: 10.1145/1186562.1015816 – ident: ref9 doi: 10.7717/peerj-cs.654 – ident: ref59 doi: 10.1109/NSSMIC.2016.8069570 – ident: ref54 doi: 10.1109/ICTech55460.2022.00095 – ident: ref16 doi: 10.1109/ACCESS.2022.3197594 – ident: ref55 doi: 10.1038/s41467-020-18606-2 – ident: ref28 doi: 10.1109/TMI.2012.2219881 – ident: ref38 doi: 10.1002/mp.13648 – ident: ref32 doi: 10.1016/j.irbm.2013.12.001 – ident: ref36 doi: 10.1049/el.2016.4438 – ident: ref39 doi: 10.1109/ACCESS.2018.2867859 – volume: 19 start-page: 15 year: 2013 ident: ref49 article-title: Three dimensional computed tomography lung modeling is useful in simulation and navigation of lung cancer surgery publication-title: Journal of Thoracic and Cardiovascular Surgery contributor: fullname: ikeda – ident: ref4 doi: 10.1007/s00530-017-0580-7 – ident: ref53 doi: 10.1016/j.bspc.2017.09.009 – ident: ref22 doi: 10.1148/rg.2015140320 – ident: ref13 doi: 10.1002/cpe.7311 – ident: ref40 doi: 10.1109/ISBI.2016.7493520 – ident: ref51 doi: 10.1016/j.mri.2021.08.004 – year: 2019 ident: ref35 article-title: Research on segmentation algorithm of non-uniform gray medical image based on multi-scale level set contributor: fullname: pan – ident: ref6 doi: 10.1007/s10278-019-00227-x – ident: ref18 doi: 10.1016/j.bspc.2021.102790 – ident: ref31 doi: 10.1117/12.768795 – volume: 6 start-page: 61 year: 2006 ident: ref41 article-title: Poisson surface reconstruction publication-title: Proc Eurograph Symp Geometry Process contributor: fullname: kazhdan – start-page: 196 year: 2018 ident: ref50 article-title: Cancer incidence and mortality in China publication-title: Three-Dimensional Computed Tomography Reconstruction for Operative Planning in Robotic Segmentectomy A Pilot Study contributor: fullname: le moal – ident: ref2 doi: 10.21037/jtd.2018.05.75 – ident: ref26 doi: 10.1007/BFb0056195 – ident: ref20 doi: 10.33963/KP.15703 – ident: ref19 doi: 10.33963/KP.a2021.0135 – ident: ref42 doi: 10.1145/133994.134011 – year: 2020 ident: ref1 publication-title: World Cancer Report Cancer Research for Cancer Prevention contributor: fullname: wild – ident: ref11 doi: 10.1109/ACCESS.2021.3076359 – ident: ref17 doi: 10.1007/s13369-023-07727-7 – year: 2019 ident: ref7 article-title: A survey on deep learning of small sample in biomedical image analysis publication-title: arXiv 1908 00473 contributor: fullname: zhang – ident: ref46 doi: 10.1147/rd.191.0002 – ident: ref47 doi: 10.1145/359842.359846 – ident: ref44 doi: 10.1109/2945.817351 – ident: ref23 doi: 10.1016/j.recesp.2020.11.006 – ident: ref56 doi: 10.1016/j.cmpb.2015.08.014 – ident: ref30 doi: 10.1155/2019/9712970 – ident: ref29 doi: 10.1109/34.295913 |
SSID | ssj0000816957 |
Score | 2.3184352 |
Snippet | Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | 3D visualization Accuracy Complexity Computed tomography CT image Deep learning Feature extraction Image reconstruction Image segmentation Interpolation Low cost Lung cancer Lungs Machine learning Medical imaging Model testing pulmonary vessel reconstruction Run time (computers) segmentation Self-supervised learning Surface reconstruction Three-dimensional displays Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7Ej4nVKTl4tFvb9CM5btUxREXQjYGHkJemIsxW3ET8731pOy148OKtJC1p3kve-72Q93uEnEGObiITzOW4edww48IVifZdFmmjFMvzqLpNeHMbT6bh1Tyat0p92TthNT1wLbhBImKALGOQ50noGU9o4JrjygwANOLhyvp6ohVMVTaY-7GIkoZmCPsHwzTFGfVttfA-Q5_NbB2ZliuqGPubEiu_7HLlbMY7ZLtBiXRY_90u2TDFHtlqcQfuk0d2QWfPS5sTWWdS0jKnd-8LXFbq7ZPOLCf4go7QSWUUO6_LDzctlyt6b55emnyjgqoio2OFrTYK_eGS7ZLp-PIhnbhNpQRXY3y2crXPVKgYy7nSHNBwQMiNCNBXgzGRpzhohFERBDZ5iSOqMH6odYAPwlOAXx6QTlEW5pBQSHRmFCIhy8wuQCkEYHkch8ANj7HTIedrocnXmhBDVoGEJ2QtY2llLBsZO2RkBfv9qmWzrhpQx7LRsfxLxw7pWrW0xrO0dFHokN5aT7LZeksZcOtyGSLDo_8Y-5hs2vnUpy490kFNmBPEISs4rZbcF1dR2PM priority: 102 providerName: Directory of Open Access Journals |
Title | 3D Visualization of Pulmonary Vessel Based on Low-cost Segmentation and Fast Reconstruction |
URI | https://ieeexplore.ieee.org/document/10119154 https://www.proquest.com/docview/2812843545 https://doaj.org/article/796bbdd3bff740e09cb8c83072bbc255 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuBAWyhi-5IPHEnIxnnYx3bbVVVBhQStKnGwPI6DKkqC2F1V8Os743jbFRVSb5YdK44_j2fG8XwD8A5bUhONloki4UmKRulE126cyNJ5a2XbluE24afz6vSiOLsqr2KweoiF8d6Hy2c-5WL4l9_0bsFHZSThTEdWFmuwVms9BGvdH6hwBgld1pFZaJzpD4eTCX1EygnCU0lqWnLqmBXtE0j6Y1aVR1tx0C_TDThfjmy4VvIjXcwxdX__IW188tA34WW0NMXhsDS24JnvXsGLFf7B1_BNHovL6xnHVQ7RmKJvxefFDS1N-_uPuGRe8RtxRIquEdT4sb9NXD-biy_--88Ys9QJ2zViaqmWPdkHPtptuJiefJ2cJjHbQuLIx5snbixtYaVslXUKafPBQnmdk75H78vMKnRkipWYcwCUIsvEjwvncirozCL1fAPrXd_5tyCwdo23ZE0xu7tGa8mIa6uqQOVVRY0jeL9EwfwaSDVMcEYybQbQDINmImgjOGKk7h9lRuxQQTNsooCZWleITSOxbesi85l2qJyiHSxHdOQ3jWCbUVl53wDICPaWwJsovjOTK1bbkqzLnf9024XnPMThMGYP1mly_T6ZJ3M8CG79QVicdxoI4yQ |
link.rule.ids | 315,783,787,799,867,2109,27937,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQAHnq1YKOADRxKycR72sV1YLbBdIdFWlThYHsdBiJJU3V0h-PXMON6yAiFxs-xYcTwezzeO5xuAF9iSmWi0TBQpT1I0Sie6duNEls5bK9u2DLcJjxbV7KR4d1aexWD1EAvjvQ-Xz3zKxfAvv-ndmo_KSMOZjqwsrsMNAtaqHsK1ro5UOIeELuvILTTO9KuDyYQ-I-UU4akkQy05ecyW_Qk0_TGvyl-bcbAw07uw2IxtuFjyNV2vMHU__6Bt_O_B34M7EWuKg2Fx3IdrvnsAt7cYCB_CJ_lanH5ZcmTlEI8p-lZ8WJ_T4rSXP8QpM4ufi0MydY2gxnn_PXH9ciU--s_fYtRSJ2zXiKmlWvZlfzPS7sLJ9M3xZJbEfAuJIy9vlbixtIWVslXWKaTtBwvldU4WH70vM6vQERgrMecQKEXYxI8L53Iq6Mwi9dyDna7v_CMQWLvGW8JTzO-u0VqCcW1VFai8qqhxBC83UjAXA62GCe5Ips0gNMNCM1FoIzhkSV09ypzYoYJm2EQVM7WuEJtGYtvWReYz7VA5RXtYjujIcxrBLktl632DQEawvxG8iQq8NLliwy0JXz7-R7fncHN2fDQ387eL90_gFg93OJrZhx2aaP-UwMoKn4Ul-gvGDeV7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Visualization+of+Pulmonary+Vessel+Based+on+Low-cost+Segmentation+and+Fast+Reconstruction&rft.jtitle=IEEE+access&rft.au=Huang%2C+Qianghao&rft.au=Zhang%2C+Lin&rft.au=Liu%2C+Lilu&rft.au=Cao%2C+Yuqi&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3273327&rft.externalDocID=10119154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |