3D Visualization of Pulmonary Vessel Based on Low-cost Segmentation and Fast Reconstruction

Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary va...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Huang, Qianghao, Zhang, Lin, Liu, Lilu, Cao, Yuqi, Ma, Honghai, Wang, Luming, Zhou, Chunlin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary vascular visualization due to the lack of vascular labeling datasets. Also, the existing methods have large computational complexity and are low efficiency. This study proposes a method for high-quality 3D visualization of pulmonary vessels based on low-cost segmentation and fast reconstruction, consisting of three steps: (1) Pulmonary vessel feature extraction from lung CT images using self-supervised learning, (2) Segmentation of pulmonary sparse vessels in lung CT images using self-supervised transfer learning, and (3) 3D reconstruction of pulmonary vessels based on segmentation results of step (2) using interpolation. The accuracy of pulmonary vascular contour segmentation was improved from 91.31% using the sparse coding to 98.65% using our proposed method (27,270 test sample points); the classifier evaluation accuracy was improved from 95.33% to 98.26%, and the average running time of the model with the test set data was 44 ms per slice. the segmentation results can automatically generate a complete vascular tree model with an average time of 10.8s ± 1.6s. The results demonstrate that the proposed method provides fast and accurate 3D visualization of pulmonary vessels, and is promising for more precise and reliable information for pneumonoconiosis patients.
AbstractList Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary vascular visualization due to the lack of vascular labeling datasets. Also, the existing methods have large computational complexity and are low efficiency. This study proposes a method for high-quality 3D visualization of pulmonary vessels based on low-cost segmentation and fast reconstruction, consisting of three steps: 1) Pulmonary vessel feature extraction from lung CT images using self-supervised learning, 2) Segmentation of pulmonary sparse vessels in lung CT images using self-supervised transfer learning, and 3) 3D reconstruction of pulmonary vessels based on segmentation results of step (2) using interpolation. The accuracy of pulmonary vascular contour segmentation was improved from 91.31% using the sparse coding to 98.65% using our proposed method (27,270 test sample points); the classifier evaluation accuracy was improved from 95.33% to 98.26%, and the average running time of the model with the test set data was 44 ms per slice. the segmentation results can automatically generate a complete vascular tree model with an average time of 10.8s ± 1 1.6s. The results demonstrate that the proposed method provides fast and accurate 3D visualization of pulmonary vessels, and is promising for more precise and reliable information for pneumonoconiosis patients.
Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary vascular visualization due to the lack of vascular labeling datasets. Also, the existing methods have large computational complexity and are low efficiency. This study proposes a method for high-quality 3D visualization of pulmonary vessels based on low-cost segmentation and fast reconstruction, consisting of three steps: (1) Pulmonary vessel feature extraction from lung CT images using self-supervised learning, (2) Segmentation of pulmonary sparse vessels in lung CT images using self-supervised transfer learning, and (3) 3D reconstruction of pulmonary vessels based on segmentation results of step (2) using interpolation. The accuracy of pulmonary vascular contour segmentation was improved from 91.31% using the sparse coding to 98.65% using our proposed method (27,270 test sample points); the classifier evaluation accuracy was improved from 95.33% to 98.26%, and the average running time of the model with the test set data was 44 ms per slice. the segmentation results can automatically generate a complete vascular tree model with an average time of 10.8s ± 1.6s. The results demonstrate that the proposed method provides fast and accurate 3D visualization of pulmonary vessels, and is promising for more precise and reliable information for pneumonoconiosis patients.
Author Liu, Lilu
Huang, Qianghao
Ma, Honghai
Zhou, Chunlin
Cao, Yuqi
Wang, Luming
Zhang, Lin
Author_xml – sequence: 1
  givenname: Qianghao
  orcidid: 0009-0003-7931-0406
  surname: Huang
  fullname: Huang, Qianghao
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Lilu
  orcidid: 0000-0003-2937-0702
  surname: Liu
  fullname: Liu, Lilu
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Yuqi
  orcidid: 0000-0003-1822-7118
  surname: Cao
  fullname: Cao, Yuqi
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Honghai
  surname: Ma
  fullname: Ma, Honghai
  organization: The First Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
– sequence: 6
  givenname: Luming
  surname: Wang
  fullname: Wang, Luming
  organization: The First Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
– sequence: 7
  givenname: Chunlin
  surname: Zhou
  fullname: Zhou, Chunlin
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNpNkV9LwzAUxYMoqHOfQB8KPnfmT9Mmj3NuKgwUp3vxISTprXR0jSYtop_ezIosEHI5ub9zL5xTdNi6FhA6J3hCCJZX09lsvlpNKKZswmjB4j1AJ5TkMmWc5Yd79TEah7DB8Ygo8eIEvbKbZF2HXjf1t-5q1yauSh77Zuta7b-SNYQATXKtA5RJ_Fy6z9S60CUreNtC2w2IbstkoaP6BNa1ofO93eln6KjSTYDx3ztCL4v58-wuXT7c3s-my9RmWHapJUxnmrFKaCsMFsJkAiTFOTEAHGthLOaSG4pJzgUuCJDMWhoLibWJ5AjdD76l0xv17uttXF05Xatfwfk3pX1X2wZUIXNjypKZqioyDFhaI6xguKDGWMp59LocvN69--ghdGrjet_G9RUVhIqM8WzXxYYu610IHqr_qQSrXShqCEXtQlF_oUTqYqBqANgjCJGEZ-wHVaKJgA
CODEN IAECCG
CitedBy_id crossref_primary_10_1364_OE_510398
Cites_doi 10.1109/TIP.2003.818019
10.1007/s11042-018-7087-x
10.1109/ACCESS.2022.3170893
10.1016/j.cmpb.2018.02.001
10.33963/KP.15174
10.1016/j.jncc.2020.12.001
10.1007/BFb0029240
10.21037/jtd-20-1014
10.1038/s41592-022-01541-z
10.3390/s22082988
10.3390/s22239209
10.1109/ACCESS.2023.3240181
10.1016/j.media.2014.07.003
10.1016/j.cad.2004.09.011
10.1016/j.media.2007.03.004
10.1145/1186562.1015816
10.7717/peerj-cs.654
10.1109/NSSMIC.2016.8069570
10.1109/ICTech55460.2022.00095
10.1109/ACCESS.2022.3197594
10.1038/s41467-020-18606-2
10.1109/TMI.2012.2219881
10.1002/mp.13648
10.1016/j.irbm.2013.12.001
10.1049/el.2016.4438
10.1109/ACCESS.2018.2867859
10.1007/s00530-017-0580-7
10.1016/j.bspc.2017.09.009
10.1148/rg.2015140320
10.1002/cpe.7311
10.1109/ISBI.2016.7493520
10.1016/j.mri.2021.08.004
10.1007/s10278-019-00227-x
10.1016/j.bspc.2021.102790
10.1117/12.768795
10.21037/jtd.2018.05.75
10.1007/BFb0056195
10.33963/KP.15703
10.33963/KP.a2021.0135
10.1145/133994.134011
10.1109/ACCESS.2021.3076359
10.1007/s13369-023-07727-7
10.1147/rd.191.0002
10.1145/359842.359846
10.1109/2945.817351
10.1016/j.recesp.2020.11.006
10.1016/j.cmpb.2015.08.014
10.1155/2019/9712970
10.1109/34.295913
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3273327
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_796bbdd3bff740e09cb8c83072bbc255
10_1109_ACCESS_2023_3273327
10119154
Genre orig-research
GrantInformation_xml – fundername: Key R&D Program of Zhejiang Province, China (NO.2022C04030)
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
4.4
AAYXX
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-c13a4a33f8ac8b088b48e92061bee50a8bc0595b201658071e14cc207190ab4a3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 14:39:16 EDT 2024
Thu Oct 10 19:27:02 EDT 2024
Fri Aug 23 03:12:54 EDT 2024
Mon Nov 04 12:01:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-c13a4a33f8ac8b088b48e92061bee50a8bc0595b201658071e14cc207190ab4a3
ORCID 0000-0003-2937-0702
0009-0003-7931-0406
0000-0003-1822-7118
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10119154
PQID 2812843545
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2812843545
crossref_primary_10_1109_ACCESS_2023_3273327
ieee_primary_10119154
doaj_primary_oai_doaj_org_article_796bbdd3bff740e09cb8c83072bbc255
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
çiçek (ref57) 2016
ref17
ref16
ref19
ref18
ref51
le moal (ref50) 2018
ref46
ref45
ref48
ref47
ref42
ref44
ref43
wild (ref1) 2020
ref8
ref9
ref4
ref3
ref6
ref40
pan (ref35) 2019
kazhdan (ref41) 2006; 6
ref34
ref37
ref36
ref31
ref30
ref33
ref32
he (ref5) 2020; 46
ref2
ref39
ref38
bian (ref24) 2018; 23
ikeda (ref49) 2013; 19
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
zhang (ref7) 2019
ga? (ref21) 2020; 78
vogel (ref52) 2022
References_xml – ident: ref12
  doi: 10.1109/TIP.2003.818019
– ident: ref33
  doi: 10.1007/s11042-018-7087-x
– ident: ref14
  doi: 10.1109/ACCESS.2022.3170893
– ident: ref34
  doi: 10.1016/j.cmpb.2018.02.001
– volume: 23
  start-page: 1450
  year: 2018
  ident: ref24
  article-title: Overview of anatomical structure segmentation methods in lung CT images
  publication-title: J Image Graph
  contributor:
    fullname: bian
– volume: 78
  start-page: 348
  year: 2020
  ident: ref21
  article-title: Multiple atrial septal defects with concomitant partial anomalous pulmonary venous return on cardiac computed tomography
  publication-title: Kardiologia Polska
  doi: 10.33963/KP.15174
  contributor:
    fullname: ga?
– ident: ref3
  doi: 10.1016/j.jncc.2020.12.001
– ident: ref25
  doi: 10.1007/BFb0029240
– ident: ref48
  doi: 10.21037/jtd-20-1014
– ident: ref8
  doi: 10.1038/s41592-022-01541-z
– ident: ref58
  doi: 10.3390/s22082988
– ident: ref10
  doi: 10.3390/s22239209
– start-page: 424
  year: 2016
  ident: ref57
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
  contributor:
    fullname: çiçek
– ident: ref15
  doi: 10.1109/ACCESS.2023.3240181
– ident: ref27
  doi: 10.1016/j.media.2014.07.003
– year: 2022
  ident: ref52
  article-title: Robust centerline prediction for accurate vessel wall visualization of intracranial vessels in multi-contrast 3D MRI data
  publication-title: Med Phys
  contributor:
    fullname: vogel
– ident: ref45
  doi: 10.1016/j.cad.2004.09.011
– volume: 46
  start-page: 2
  year: 2020
  ident: ref5
  article-title: Present situation and challenge of convolutional neural network in medical image segmentation
  publication-title: Comput Netw
  contributor:
    fullname: he
– ident: ref37
  doi: 10.1016/j.media.2007.03.004
– ident: ref43
  doi: 10.1145/1186562.1015816
– ident: ref9
  doi: 10.7717/peerj-cs.654
– ident: ref59
  doi: 10.1109/NSSMIC.2016.8069570
– ident: ref54
  doi: 10.1109/ICTech55460.2022.00095
– ident: ref16
  doi: 10.1109/ACCESS.2022.3197594
– ident: ref55
  doi: 10.1038/s41467-020-18606-2
– ident: ref28
  doi: 10.1109/TMI.2012.2219881
– ident: ref38
  doi: 10.1002/mp.13648
– ident: ref32
  doi: 10.1016/j.irbm.2013.12.001
– ident: ref36
  doi: 10.1049/el.2016.4438
– ident: ref39
  doi: 10.1109/ACCESS.2018.2867859
– volume: 19
  start-page: 15
  year: 2013
  ident: ref49
  article-title: Three dimensional computed tomography lung modeling is useful in simulation and navigation of lung cancer surgery
  publication-title: Journal of Thoracic and Cardiovascular Surgery
  contributor:
    fullname: ikeda
– ident: ref4
  doi: 10.1007/s00530-017-0580-7
– ident: ref53
  doi: 10.1016/j.bspc.2017.09.009
– ident: ref22
  doi: 10.1148/rg.2015140320
– ident: ref13
  doi: 10.1002/cpe.7311
– ident: ref40
  doi: 10.1109/ISBI.2016.7493520
– ident: ref51
  doi: 10.1016/j.mri.2021.08.004
– year: 2019
  ident: ref35
  article-title: Research on segmentation algorithm of non-uniform gray medical image based on multi-scale level set
  contributor:
    fullname: pan
– ident: ref6
  doi: 10.1007/s10278-019-00227-x
– ident: ref18
  doi: 10.1016/j.bspc.2021.102790
– ident: ref31
  doi: 10.1117/12.768795
– volume: 6
  start-page: 61
  year: 2006
  ident: ref41
  article-title: Poisson surface reconstruction
  publication-title: Proc Eurograph Symp Geometry Process
  contributor:
    fullname: kazhdan
– start-page: 196
  year: 2018
  ident: ref50
  article-title: Cancer incidence and mortality in China
  publication-title: Three-Dimensional Computed Tomography Reconstruction for Operative Planning in Robotic Segmentectomy A Pilot Study
  contributor:
    fullname: le moal
– ident: ref2
  doi: 10.21037/jtd.2018.05.75
– ident: ref26
  doi: 10.1007/BFb0056195
– ident: ref20
  doi: 10.33963/KP.15703
– ident: ref19
  doi: 10.33963/KP.a2021.0135
– ident: ref42
  doi: 10.1145/133994.134011
– year: 2020
  ident: ref1
  publication-title: World Cancer Report Cancer Research for Cancer Prevention
  contributor:
    fullname: wild
– ident: ref11
  doi: 10.1109/ACCESS.2021.3076359
– ident: ref17
  doi: 10.1007/s13369-023-07727-7
– year: 2019
  ident: ref7
  article-title: A survey on deep learning of small sample in biomedical image analysis
  publication-title: arXiv 1908 00473
  contributor:
    fullname: zhang
– ident: ref46
  doi: 10.1147/rd.191.0002
– ident: ref47
  doi: 10.1145/359842.359846
– ident: ref44
  doi: 10.1109/2945.817351
– ident: ref23
  doi: 10.1016/j.recesp.2020.11.006
– ident: ref56
  doi: 10.1016/j.cmpb.2015.08.014
– ident: ref30
  doi: 10.1155/2019/9712970
– ident: ref29
  doi: 10.1109/34.295913
SSID ssj0000816957
Score 2.3184352
Snippet Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient 3D visualization of pulmonary vessels are of great research and clinical...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms 3D visualization
Accuracy
Complexity
Computed tomography
CT image
Deep learning
Feature extraction
Image reconstruction
Image segmentation
Interpolation
Low cost
Lung cancer
Lungs
Machine learning
Medical imaging
Model testing
pulmonary vessel
reconstruction
Run time (computers)
segmentation
Self-supervised learning
Surface reconstruction
Three-dimensional displays
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7Ej4nVKTl4tFvb9CM5btUxREXQjYGHkJemIsxW3ET8731pOy148OKtJC1p3kve-72Q93uEnEGObiITzOW4edww48IVifZdFmmjFMvzqLpNeHMbT6bh1Tyat0p92TthNT1wLbhBImKALGOQ50noGU9o4JrjygwANOLhyvp6ohVMVTaY-7GIkoZmCPsHwzTFGfVttfA-Q5_NbB2ZliuqGPubEiu_7HLlbMY7ZLtBiXRY_90u2TDFHtlqcQfuk0d2QWfPS5sTWWdS0jKnd-8LXFbq7ZPOLCf4go7QSWUUO6_LDzctlyt6b55emnyjgqoio2OFrTYK_eGS7ZLp-PIhnbhNpQRXY3y2crXPVKgYy7nSHNBwQMiNCNBXgzGRpzhohFERBDZ5iSOqMH6odYAPwlOAXx6QTlEW5pBQSHRmFCIhy8wuQCkEYHkch8ANj7HTIedrocnXmhBDVoGEJ2QtY2llLBsZO2RkBfv9qmWzrhpQx7LRsfxLxw7pWrW0xrO0dFHokN5aT7LZeksZcOtyGSLDo_8Y-5hs2vnUpy490kFNmBPEISs4rZbcF1dR2PM
  priority: 102
  providerName: Directory of Open Access Journals
Title 3D Visualization of Pulmonary Vessel Based on Low-cost Segmentation and Fast Reconstruction
URI https://ieeexplore.ieee.org/document/10119154
https://www.proquest.com/docview/2812843545
https://doaj.org/article/796bbdd3bff740e09cb8c83072bbc255
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuBAWyhi-5IPHEnIxnnYx3bbVVVBhQStKnGwPI6DKkqC2F1V8Os743jbFRVSb5YdK44_j2fG8XwD8A5bUhONloki4UmKRulE126cyNJ5a2XbluE24afz6vSiOLsqr2KweoiF8d6Hy2c-5WL4l9_0bsFHZSThTEdWFmuwVms9BGvdH6hwBgld1pFZaJzpD4eTCX1EygnCU0lqWnLqmBXtE0j6Y1aVR1tx0C_TDThfjmy4VvIjXcwxdX__IW188tA34WW0NMXhsDS24JnvXsGLFf7B1_BNHovL6xnHVQ7RmKJvxefFDS1N-_uPuGRe8RtxRIquEdT4sb9NXD-biy_--88Ys9QJ2zViaqmWPdkHPtptuJiefJ2cJjHbQuLIx5snbixtYaVslXUKafPBQnmdk75H78vMKnRkipWYcwCUIsvEjwvncirozCL1fAPrXd_5tyCwdo23ZE0xu7tGa8mIa6uqQOVVRY0jeL9EwfwaSDVMcEYybQbQDINmImgjOGKk7h9lRuxQQTNsooCZWleITSOxbesi85l2qJyiHSxHdOQ3jWCbUVl53wDICPaWwJsovjOTK1bbkqzLnf9024XnPMThMGYP1mly_T6ZJ3M8CG79QVicdxoI4yQ
link.rule.ids 315,783,787,799,867,2109,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQAHnq1YKOADRxKycR72sV1YLbBdIdFWlThYHsdBiJJU3V0h-PXMON6yAiFxs-xYcTwezzeO5xuAF9iSmWi0TBQpT1I0Sie6duNEls5bK9u2DLcJjxbV7KR4d1aexWD1EAvjvQ-Xz3zKxfAvv-ndmo_KSMOZjqwsrsMNAtaqHsK1ro5UOIeELuvILTTO9KuDyYQ-I-UU4akkQy05ecyW_Qk0_TGvyl-bcbAw07uw2IxtuFjyNV2vMHU__6Bt_O_B34M7EWuKg2Fx3IdrvnsAt7cYCB_CJ_lanH5ZcmTlEI8p-lZ8WJ_T4rSXP8QpM4ufi0MydY2gxnn_PXH9ciU--s_fYtRSJ2zXiKmlWvZlfzPS7sLJ9M3xZJbEfAuJIy9vlbixtIWVslXWKaTtBwvldU4WH70vM6vQERgrMecQKEXYxI8L53Iq6Mwi9dyDna7v_CMQWLvGW8JTzO-u0VqCcW1VFai8qqhxBC83UjAXA62GCe5Ips0gNMNCM1FoIzhkSV09ypzYoYJm2EQVM7WuEJtGYtvWReYz7VA5RXtYjujIcxrBLktl632DQEawvxG8iQq8NLliwy0JXz7-R7fncHN2fDQ387eL90_gFg93OJrZhx2aaP-UwMoKn4Ul-gvGDeV7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Visualization+of+Pulmonary+Vessel+Based+on+Low-cost+Segmentation+and+Fast+Reconstruction&rft.jtitle=IEEE+access&rft.au=Huang%2C+Qianghao&rft.au=Zhang%2C+Lin&rft.au=Liu%2C+Lilu&rft.au=Cao%2C+Yuqi&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3273327&rft.externalDocID=10119154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon