Optimum insulation design for buried utilities subject to frost action in cold regions using the Nelder-Mead algorithm
•Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water content.•Using granular soil (sand) as backfill is more critical than clay.•The Nelder-Mead algorithm is effective to determine the optimum design...
Saved in:
Published in | International journal of heat and mass transfer Vol. 130; pp. 613 - 639 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water content.•Using granular soil (sand) as backfill is more critical than clay.•The Nelder-Mead algorithm is effective to determine the optimum design.
Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried utilities against frost damage and reduce the excavation cost is to install thermal insulation over and around the pipe. This paper considers two different conductive heat transfer models, with and without the effect of soil pore-water phase change, as well as a heat and mass transfer model for freezing soils to investigate the effectiveness of insulation systems for frost protection of buried pipes. It was found that the latent heat released during the phase change significantly affects the heat transfer process and that the impact of phase change on insulation design should not be overlooked. Furthermore, by comparing numerical results to field measurement data, it is found that the mass transfer has an insignificant effect on the temperature and unfrozen water content distribution in the frost-susceptible foundation soil.
A parametric study was carried out to assess the effects of different factors such as the backfill materials, geometry, total length, thickness of insulation, distance between pipe and insulation as well as the burial depth of pipe on the thermal performance of insulation. Finally, the Nelder-Mead algorithm was implemented to determine the optimum insulation design so that the overall cost is minimized while the pipe is protected from freezing. |
---|---|
AbstractList | •Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water content.•Using granular soil (sand) as backfill is more critical than clay.•The Nelder-Mead algorithm is effective to determine the optimum design.
Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried utilities against frost damage and reduce the excavation cost is to install thermal insulation over and around the pipe. This paper considers two different conductive heat transfer models, with and without the effect of soil pore-water phase change, as well as a heat and mass transfer model for freezing soils to investigate the effectiveness of insulation systems for frost protection of buried pipes. It was found that the latent heat released during the phase change significantly affects the heat transfer process and that the impact of phase change on insulation design should not be overlooked. Furthermore, by comparing numerical results to field measurement data, it is found that the mass transfer has an insignificant effect on the temperature and unfrozen water content distribution in the frost-susceptible foundation soil.
A parametric study was carried out to assess the effects of different factors such as the backfill materials, geometry, total length, thickness of insulation, distance between pipe and insulation as well as the burial depth of pipe on the thermal performance of insulation. Finally, the Nelder-Mead algorithm was implemented to determine the optimum insulation design so that the overall cost is minimized while the pipe is protected from freezing. Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried utilities against frost damage and reduce the excavation cost is to install thermal insulation over and around the pipe. This paper considers two different conductive heat transfer models, with and without the effect of soil pore-water phase change, as well as a heat and mass transfer model for freezing soils to investigate the effectiveness of insulation systems for frost protection of buried pipes. It was found that the latent heat released during the phase change significantly affects the heat transfer process and that the impact of phase change on insulation design should not be overlooked. Furthermore, by comparing numerical results to field measurement data, it is found that the mass transfer has an insignificant effect on the temperature and unfrozen water content distribution in the frost-susceptible foundation soil. A parametric study was carried out to assess the effects of different factors such as the backfill materials, geometry, total length, thickness of insulation, distance between pipe and insulation as well as the burial depth of pipe on the thermal performance of insulation. Finally, the Nelder-Mead algorithm was implemented to determine the optimum insulation design so that the overall cost is minimized while the pipe is protected from freezing. |
Author | Maghoul, Pooneh Shalaby, Ahmed Liu, Hongwei |
Author_xml | – sequence: 1 givenname: Hongwei surname: Liu fullname: Liu, Hongwei – sequence: 2 givenname: Pooneh surname: Maghoul fullname: Maghoul, Pooneh email: Pooneh.Maghoul@umanitoba.ca – sequence: 3 givenname: Ahmed orcidid: 0000-0001-8670-5826 surname: Shalaby fullname: Shalaby, Ahmed |
BookMark | eNqVkMFO3DAQhq2KSl1o38FSL1yytROvk9yKUKFFtFy4W4493p0osRfbQerb493tqVzgNBrNP99ovnNy5oMHQi45W3PG5bdxjeMOdJ51SjlqnxzEdc14tz4m2g9kxbu2r2re9WdkxRhvq77h7BM5T2k8tEzIFXl-2Gecl5miT8ukMwZPLSTceupCpMMSESxdMk6YERJNyzCCyTQH6mJImWpz3EFPTZgsjbAtbaJLQr-leQf0D0wWYvUbtKV62oaIeTd_Jh-dnhJ8-VcvyOPNj8frn9X9w-2v66v7ygjW52oQgoumGwwbtG2bQQxMCMYNWDk4KbWwTppOWsFqwze124hayF6auhHdRrjmgnw9YfcxPC2QshrDEn25qGreNp0QktcldXNKmfJRiuCUwXxUUcTipDhTB-VqVK-Vq4PyU6ItoO__gfYRZx3_vgdxd0JAsfKMZZoMgi8fYyzelQ34dtgL2hCxcQ |
CitedBy_id | crossref_primary_10_29039_2413_1873_2024_35_41_51 crossref_primary_10_1016_j_compgeo_2022_105068 crossref_primary_10_1016_j_coldregions_2019_102912 crossref_primary_10_1016_j_geothermics_2020_101979 crossref_primary_10_5194_tc_16_1157_2022 crossref_primary_10_1016_j_trgeo_2019_100251 crossref_primary_10_53448_akuumubd_1272710 |
Cites_doi | 10.1002/nag.497 10.2136/vzj2004.0693 10.1061/9780784412978.025 10.1139/t94-058 10.1080/14680629.2007.9690094 10.5194/tc-5-469-2011 10.2136/sssaj1980.03615995004400050002x |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Mar 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2018.10.107 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 639 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2018_10_107 S0017931018334240 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c409t-b441438bc0bad73b4b04401ced6bf66a4df6c86d402c152f5424696c234854f3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 06:39:15 EDT 2025 Tue Jul 01 02:17:05 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Fri Feb 23 02:31:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Insulation Parametric study Heat and mass transfer Buried utilities Phase change Nelder-Mead optimization algorithm Frost action |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-b441438bc0bad73b4b04401ced6bf66a4df6c86d402c152f5424696c234854f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8670-5826 |
PQID | 2173844612 |
PQPubID | 2045464 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2173844612 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_10_107 crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_107 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_10_107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | C. Baca, Undergrounding Overhead Utilities in Pebble Beach, Technical report, 2010. Welty, Rorrer, Foster (b0090) 2014 Liu, Maghoul, Shalaby, Bahari (b0040) 2018 Dall’Amico, Endrizzi, Gruber, Rigon (b0020) 2011; 5 Daigle, Zhao (b0015) 1999 Van Genuchten (b0085) 1980; 44 Miller (b0050) 1965; vol. 287 Zapata, Andrei, Witczak, Houston (b0095) 2007; 8 Moussa, Shalaby, Kavanagh, Maghoul (b0055) 2018 Conn, Scheinberg, Vicente (b0010) 2009; vol. 8 F.P. Incropera, D.P. Dewitt et al., Fundamentals of heat and mass transfer, 2007, pp. a-5. Sepehr, Goodrich (b0075) 1994; 31 Hansson, Jiri Simunek, Mizoguchi, Lundin, Van Genuchten (b0025) 2004; 3 F.L. Johnson and F.F. Chang, Drainage of Highway Pavements, Technical report, 1984. Y. Zhang, Thermal-hydro-mechanical model for freezing and thawing of soils,PhD Thesis, University of Michigan, 2014. Oliver (b0060) 1978 L. Qingfan, Field Measurement and Finite Element Simulation of Pavement Responses to Standard and Reduced Rire Pressure, Master Thesis, 2011. Ravindran, Reklaitis, Ragsdell (b0070) 2006 J.T. Tables, Dow chemical company, Midland, Michigan, 1965, 1960. Michalowski, Zhu (b0045) 2006; 30 10.1016/j.ijheatmasstransfer.2018.10.107_b0065 Conn (10.1016/j.ijheatmasstransfer.2018.10.107_b0010) 2009; vol. 8 10.1016/j.ijheatmasstransfer.2018.10.107_b0030 Van Genuchten (10.1016/j.ijheatmasstransfer.2018.10.107_b0085) 1980; 44 Oliver (10.1016/j.ijheatmasstransfer.2018.10.107_b0060) 1978 Daigle (10.1016/j.ijheatmasstransfer.2018.10.107_b0015) 1999 Liu (10.1016/j.ijheatmasstransfer.2018.10.107_b0040) 2018 10.1016/j.ijheatmasstransfer.2018.10.107_b0005 Sepehr (10.1016/j.ijheatmasstransfer.2018.10.107_b0075) 1994; 31 10.1016/j.ijheatmasstransfer.2018.10.107_b0035 10.1016/j.ijheatmasstransfer.2018.10.107_b0100 Hansson (10.1016/j.ijheatmasstransfer.2018.10.107_b0025) 2004; 3 Michalowski (10.1016/j.ijheatmasstransfer.2018.10.107_b0045) 2006; 30 Miller (10.1016/j.ijheatmasstransfer.2018.10.107_b0050) 1965; vol. 287 Welty (10.1016/j.ijheatmasstransfer.2018.10.107_b0090) 2014 10.1016/j.ijheatmasstransfer.2018.10.107_b0080 Moussa (10.1016/j.ijheatmasstransfer.2018.10.107_b0055) 2018 Dall’Amico (10.1016/j.ijheatmasstransfer.2018.10.107_b0020) 2011; 5 Zapata (10.1016/j.ijheatmasstransfer.2018.10.107_b0095) 2007; 8 Ravindran (10.1016/j.ijheatmasstransfer.2018.10.107_b0070) 2006 |
References_xml | – reference: L. Qingfan, Field Measurement and Finite Element Simulation of Pavement Responses to Standard and Reduced Rire Pressure, Master Thesis, 2011. – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: b0085 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1 publication-title: Soil Sci. Soc. Am. J. – reference: J.T. Tables, Dow chemical company, Midland, Michigan, 1965, 1960. – volume: 30 start-page: 703 year: 2006 end-page: 722 ident: b0045 article-title: Frost heave modelling using porosity rate function publication-title: Int. J. Numerical Anal. Methods Geomechanics – volume: vol. 287 start-page: 193 year: 1965 end-page: 197 ident: b0050 article-title: Phase equilibria and soil freezing publication-title: Permafrost: Proceedings of the Second International Conference – volume: vol. 8 year: 2009 ident: b0010 publication-title: Introduction to Derivative-free Optimization – year: 2006 ident: b0070 article-title: Engineering Optimization: Methods and Applications – reference: C. Baca, Undergrounding Overhead Utilities in Pebble Beach, Technical report, 2010. – volume: 5 start-page: 469 year: 2011 ident: b0020 article-title: A robust and energy-conserving model of freezing variably-saturated soil publication-title: Cryosphere – reference: Y. Zhang, Thermal-hydro-mechanical model for freezing and thawing of soils,PhD Thesis, University of Michigan, 2014. – start-page: 389 year: 1999 end-page: 398 ident: b0015 article-title: Effectiveness of rigid insulation for thermal protection of buried water pipes in rock trenches publication-title: CSCE 1999 Annual Conference-First Cold Regions Specialty Conference – reference: F.L. Johnson and F.F. Chang, Drainage of Highway Pavements, Technical report, 1984. – volume: 8 start-page: 667 year: 2007 end-page: 693 ident: b0095 article-title: Incorporation of environmental effects in pavement design publication-title: Road Mater. Pavement Des. – year: 2018 ident: b0055 article-title: Use of rigid geofoam insulation to mitigate frost heave at shallow culvert installations publication-title: J. Cold Regions Eng. – year: 2014 ident: b0090 article-title: Fundamentals of Momentum, Heat and Mass Transfer – year: 1978 ident: b0060 article-title: Climate and man’s environment: an introduction to applied climatology – year: 2018 ident: b0040 article-title: Thermo-hydro-mechanical modeling of frost heave using the theory of poroelasticity for frost-susceptible soils beneath double-barrel culvert – volume: 31 start-page: 491 year: 1994 end-page: 501 ident: b0075 article-title: Frost protection of buried pvc water mains in western canada publication-title: Can. Geotechnical J. – volume: 3 start-page: 693 year: 2004 end-page: 704 ident: b0025 article-title: Water flow and heat transport in frozen soil publication-title: Vadose Zone J. – reference: F.P. Incropera, D.P. Dewitt et al., Fundamentals of heat and mass transfer, 2007, pp. a-5. – volume: 30 start-page: 703 issue: 8 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0045 article-title: Frost heave modelling using porosity rate function publication-title: Int. J. Numerical Anal. Methods Geomechanics doi: 10.1002/nag.497 – volume: 3 start-page: 693 issue: 2 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0025 article-title: Water flow and heat transport in frozen soil publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0693 – year: 2018 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0040 – ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0035 – ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0100 doi: 10.1061/9780784412978.025 – volume: 31 start-page: 491 issue: 4 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0075 article-title: Frost protection of buried pvc water mains in western canada publication-title: Can. Geotechnical J. doi: 10.1139/t94-058 – ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0080 – year: 1978 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0060 – ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0065 – year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0090 – year: 2018 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0055 article-title: Use of rigid geofoam insulation to mitigate frost heave at shallow culvert installations publication-title: J. Cold Regions Eng. – volume: vol. 8 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0010 – volume: 8 start-page: 667 issue: 4 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0095 article-title: Incorporation of environmental effects in pavement design publication-title: Road Mater. Pavement Des. doi: 10.1080/14680629.2007.9690094 – ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0005 – ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0030 – volume: 5 start-page: 469 issue: 2 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0020 article-title: A robust and energy-conserving model of freezing variably-saturated soil publication-title: Cryosphere doi: 10.5194/tc-5-469-2011 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0085 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – start-page: 389 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0015 article-title: Effectiveness of rigid insulation for thermal protection of buried water pipes in rock trenches – year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0070 – volume: vol. 287 start-page: 193 year: 1965 ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0050 article-title: Phase equilibria and soil freezing |
SSID | ssj0017046 |
Score | 2.3161376 |
Snippet | •Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water... Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 613 |
SubjectTerms | Algorithms Backfill Buried pipes Buried utilities Conductive heat transfer Freezing Frost Frost action Frost damage Frost protection Gas pipes Heat and mass transfer Heat transfer Insulation Latent heat Mass transfer Mathematical models Moisture content Nelder-Mead optimization algorithm Parametric study Phase change Phase transitions Soil investigations Soil water System effectiveness Thermal insulation Underground utilities Water utilities |
Title | Optimum insulation design for buried utilities subject to frost action in cold regions using the Nelder-Mead algorithm |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.10.107 https://www.proquest.com/docview/2173844612 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kongRn_ioMgcPXlKb7naTnESKpVqsIIq9hUw20ZY-pE09-tud2SSKigfBU0jYbMLMZOab8M2MECdIIddzI-kgSkUJSiAdPzakEOmlsm6SwDf8Q_-mpzsP6rrf7C-JVlkLw7TKwvfnPt166-LKWSHNs5fBgGt82bi445SUigITV7Arj6289vZB83C9el6sw96YV6-K00-O12DIHm9MMDWzMDHhDqGuX7MrvN9C1TenbSNRe0OsFxASLvK33BRLyWRLrFgqZzzfFq-35AXGizFYmrkVPBjL0wACqIA8o84A2dvINlOF-QL5XwxkU0i5BATyUge6HchIDPDoBjJNYIb8ExBehF7Co70d7tkL0ehpOhtkz-Mdcd--vG91nGK6ghOTSjIHCQgp6WNcx8h4EhXy9GmX5K4x1TpSJtWxrw0lmDEF-bRJMtaBjhtS-U2Vyl1RmUwnyZ4AyuAiNARtuFec0SliGtHG0q8HiI1I7YvzUo5hXHQe5wEYo7CkmA3Dn5oIWRP5Cm9fBB87vORdOP5wb6tUXfjFskIKGn_YpVpqPSy-8nlI6Zz0KZ92Gwf_8pBDsUZnQU5xq4pKNlskR4R5Mjy2Rn0sli-uup0eH7t3j913-kYJSA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BIqAXRB8IKIU5cOjFkGQ3a_tURVFReKWXIHFbebx2CMoDEYffz8zapqJVD0i92t61NTOeh_3NNwAnxCE3bCcqIFKaC5RYBVHqWCEqzFXLZXHk5IP-zdAMbvXlXfduDfp1L4zAKivfX_p0762rI2eVNM8eJxPp8RXjEsYppTQHpnVoCjtVtwHN3sXVYPj6MyFslf064pBlwSZ8_w3zmjyI05txplr4TDETktB2dOqvCP8Vrf7w2z4Yne_AdpVFYq980I-wls0_wYZHc6bLz_D8ix3BbDVDjzT3skfnoRrIOSqSjKlzyCY39XyquFyRfI7BYoG5dIFg2e3Ay5HtxKFMb2DrRAHJj5FTRhxmMt07ENpeTKbjxdOkuJ99gdH5z1F_EFQDFoKUtVIExLmQVhGlLUpcqEiTDKBus-gN5cYk2uUmjYzjGjPlOJ93WcwmNmlH6airc7ULjflinu0BchGXkOPsRujinMmJ8oQ3VlErJuokeh9-1HK0aUU-LjMwprZGmT3YvzVhRRPlFeE-xK87PJZEHO9Y269VZ98Yl-W48Y5dDmut2-pFX1qu6FTEJXW7c_BfbnIMW4PRzbW9vhhefYUPfCYuEW-H0CieVtk3ToEKOqpM_AWmfApW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+insulation+design+for+buried+utilities+subject+to+frost+action+in+cold+regions+using+the+Nelder-Mead+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Liu%2C+Hongwei&rft.au=Maghoul%2C+Pooneh&rft.au=Shalaby%2C+Ahmed&rft.date=2019-03-01&rft.issn=0017-9310&rft.volume=130&rft.spage=613&rft.epage=639&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.10.107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_10_107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |