Optimum insulation design for buried utilities subject to frost action in cold regions using the Nelder-Mead algorithm

•Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water content.•Using granular soil (sand) as backfill is more critical than clay.•The Nelder-Mead algorithm is effective to determine the optimum design...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 130; pp. 613 - 639
Main Authors Liu, Hongwei, Maghoul, Pooneh, Shalaby, Ahmed
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water content.•Using granular soil (sand) as backfill is more critical than clay.•The Nelder-Mead algorithm is effective to determine the optimum design. Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried utilities against frost damage and reduce the excavation cost is to install thermal insulation over and around the pipe. This paper considers two different conductive heat transfer models, with and without the effect of soil pore-water phase change, as well as a heat and mass transfer model for freezing soils to investigate the effectiveness of insulation systems for frost protection of buried pipes. It was found that the latent heat released during the phase change significantly affects the heat transfer process and that the impact of phase change on insulation design should not be overlooked. Furthermore, by comparing numerical results to field measurement data, it is found that the mass transfer has an insignificant effect on the temperature and unfrozen water content distribution in the frost-susceptible foundation soil. A parametric study was carried out to assess the effects of different factors such as the backfill materials, geometry, total length, thickness of insulation, distance between pipe and insulation as well as the burial depth of pipe on the thermal performance of insulation. Finally, the Nelder-Mead algorithm was implemented to determine the optimum insulation design so that the overall cost is minimized while the pipe is protected from freezing.
AbstractList •Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water content.•Using granular soil (sand) as backfill is more critical than clay.•The Nelder-Mead algorithm is effective to determine the optimum design. Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried utilities against frost damage and reduce the excavation cost is to install thermal insulation over and around the pipe. This paper considers two different conductive heat transfer models, with and without the effect of soil pore-water phase change, as well as a heat and mass transfer model for freezing soils to investigate the effectiveness of insulation systems for frost protection of buried pipes. It was found that the latent heat released during the phase change significantly affects the heat transfer process and that the impact of phase change on insulation design should not be overlooked. Furthermore, by comparing numerical results to field measurement data, it is found that the mass transfer has an insignificant effect on the temperature and unfrozen water content distribution in the frost-susceptible foundation soil. A parametric study was carried out to assess the effects of different factors such as the backfill materials, geometry, total length, thickness of insulation, distance between pipe and insulation as well as the burial depth of pipe on the thermal performance of insulation. Finally, the Nelder-Mead algorithm was implemented to determine the optimum insulation design so that the overall cost is minimized while the pipe is protected from freezing.
Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried utilities against frost damage and reduce the excavation cost is to install thermal insulation over and around the pipe. This paper considers two different conductive heat transfer models, with and without the effect of soil pore-water phase change, as well as a heat and mass transfer model for freezing soils to investigate the effectiveness of insulation systems for frost protection of buried pipes. It was found that the latent heat released during the phase change significantly affects the heat transfer process and that the impact of phase change on insulation design should not be overlooked. Furthermore, by comparing numerical results to field measurement data, it is found that the mass transfer has an insignificant effect on the temperature and unfrozen water content distribution in the frost-susceptible foundation soil. A parametric study was carried out to assess the effects of different factors such as the backfill materials, geometry, total length, thickness of insulation, distance between pipe and insulation as well as the burial depth of pipe on the thermal performance of insulation. Finally, the Nelder-Mead algorithm was implemented to determine the optimum insulation design so that the overall cost is minimized while the pipe is protected from freezing.
Author Maghoul, Pooneh
Shalaby, Ahmed
Liu, Hongwei
Author_xml – sequence: 1
  givenname: Hongwei
  surname: Liu
  fullname: Liu, Hongwei
– sequence: 2
  givenname: Pooneh
  surname: Maghoul
  fullname: Maghoul, Pooneh
  email: Pooneh.Maghoul@umanitoba.ca
– sequence: 3
  givenname: Ahmed
  orcidid: 0000-0001-8670-5826
  surname: Shalaby
  fullname: Shalaby, Ahmed
BookMark eNqVkMFO3DAQhq2KSl1o38FSL1yytROvk9yKUKFFtFy4W4493p0osRfbQerb493tqVzgNBrNP99ovnNy5oMHQi45W3PG5bdxjeMOdJ51SjlqnxzEdc14tz4m2g9kxbu2r2re9WdkxRhvq77h7BM5T2k8tEzIFXl-2Gecl5miT8ukMwZPLSTceupCpMMSESxdMk6YERJNyzCCyTQH6mJImWpz3EFPTZgsjbAtbaJLQr-leQf0D0wWYvUbtKV62oaIeTd_Jh-dnhJ8-VcvyOPNj8frn9X9w-2v66v7ygjW52oQgoumGwwbtG2bQQxMCMYNWDk4KbWwTppOWsFqwze124hayF6auhHdRrjmgnw9YfcxPC2QshrDEn25qGreNp0QktcldXNKmfJRiuCUwXxUUcTipDhTB-VqVK-Vq4PyU6ItoO__gfYRZx3_vgdxd0JAsfKMZZoMgi8fYyzelQ34dtgL2hCxcQ
CitedBy_id crossref_primary_10_29039_2413_1873_2024_35_41_51
crossref_primary_10_1016_j_compgeo_2022_105068
crossref_primary_10_1016_j_coldregions_2019_102912
crossref_primary_10_1016_j_geothermics_2020_101979
crossref_primary_10_5194_tc_16_1157_2022
crossref_primary_10_1016_j_trgeo_2019_100251
crossref_primary_10_53448_akuumubd_1272710
Cites_doi 10.1002/nag.497
10.2136/vzj2004.0693
10.1061/9780784412978.025
10.1139/t94-058
10.1080/14680629.2007.9690094
10.5194/tc-5-469-2011
10.2136/sssaj1980.03615995004400050002x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2018.10.107
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 639
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_10_107
S0017931018334240
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c409t-b441438bc0bad73b4b04401ced6bf66a4df6c86d402c152f5424696c234854f3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 06:39:15 EDT 2025
Tue Jul 01 02:17:05 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Fri Feb 23 02:31:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Insulation
Parametric study
Heat and mass transfer
Buried utilities
Phase change
Nelder-Mead optimization algorithm
Frost action
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-b441438bc0bad73b4b04401ced6bf66a4df6c86d402c152f5424696c234854f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8670-5826
PQID 2173844612
PQPubID 2045464
PageCount 27
ParticipantIDs proquest_journals_2173844612
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_10_107
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_107
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_10_107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References C. Baca, Undergrounding Overhead Utilities in Pebble Beach, Technical report, 2010.
Welty, Rorrer, Foster (b0090) 2014
Liu, Maghoul, Shalaby, Bahari (b0040) 2018
Dall’Amico, Endrizzi, Gruber, Rigon (b0020) 2011; 5
Daigle, Zhao (b0015) 1999
Van Genuchten (b0085) 1980; 44
Miller (b0050) 1965; vol. 287
Zapata, Andrei, Witczak, Houston (b0095) 2007; 8
Moussa, Shalaby, Kavanagh, Maghoul (b0055) 2018
Conn, Scheinberg, Vicente (b0010) 2009; vol. 8
F.P. Incropera, D.P. Dewitt et al., Fundamentals of heat and mass transfer, 2007, pp. a-5.
Sepehr, Goodrich (b0075) 1994; 31
Hansson, Jiri Simunek, Mizoguchi, Lundin, Van Genuchten (b0025) 2004; 3
F.L. Johnson and F.F. Chang, Drainage of Highway Pavements, Technical report, 1984.
Y. Zhang, Thermal-hydro-mechanical model for freezing and thawing of soils,PhD Thesis, University of Michigan, 2014.
Oliver (b0060) 1978
L. Qingfan, Field Measurement and Finite Element Simulation of Pavement Responses to Standard and Reduced Rire Pressure, Master Thesis, 2011.
Ravindran, Reklaitis, Ragsdell (b0070) 2006
J.T. Tables, Dow chemical company, Midland, Michigan, 1965, 1960.
Michalowski, Zhu (b0045) 2006; 30
10.1016/j.ijheatmasstransfer.2018.10.107_b0065
Conn (10.1016/j.ijheatmasstransfer.2018.10.107_b0010) 2009; vol. 8
10.1016/j.ijheatmasstransfer.2018.10.107_b0030
Van Genuchten (10.1016/j.ijheatmasstransfer.2018.10.107_b0085) 1980; 44
Oliver (10.1016/j.ijheatmasstransfer.2018.10.107_b0060) 1978
Daigle (10.1016/j.ijheatmasstransfer.2018.10.107_b0015) 1999
Liu (10.1016/j.ijheatmasstransfer.2018.10.107_b0040) 2018
10.1016/j.ijheatmasstransfer.2018.10.107_b0005
Sepehr (10.1016/j.ijheatmasstransfer.2018.10.107_b0075) 1994; 31
10.1016/j.ijheatmasstransfer.2018.10.107_b0035
10.1016/j.ijheatmasstransfer.2018.10.107_b0100
Hansson (10.1016/j.ijheatmasstransfer.2018.10.107_b0025) 2004; 3
Michalowski (10.1016/j.ijheatmasstransfer.2018.10.107_b0045) 2006; 30
Miller (10.1016/j.ijheatmasstransfer.2018.10.107_b0050) 1965; vol. 287
Welty (10.1016/j.ijheatmasstransfer.2018.10.107_b0090) 2014
10.1016/j.ijheatmasstransfer.2018.10.107_b0080
Moussa (10.1016/j.ijheatmasstransfer.2018.10.107_b0055) 2018
Dall’Amico (10.1016/j.ijheatmasstransfer.2018.10.107_b0020) 2011; 5
Zapata (10.1016/j.ijheatmasstransfer.2018.10.107_b0095) 2007; 8
Ravindran (10.1016/j.ijheatmasstransfer.2018.10.107_b0070) 2006
References_xml – reference: L. Qingfan, Field Measurement and Finite Element Simulation of Pavement Responses to Standard and Reduced Rire Pressure, Master Thesis, 2011.
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b0085
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1
  publication-title: Soil Sci. Soc. Am. J.
– reference: J.T. Tables, Dow chemical company, Midland, Michigan, 1965, 1960.
– volume: 30
  start-page: 703
  year: 2006
  end-page: 722
  ident: b0045
  article-title: Frost heave modelling using porosity rate function
  publication-title: Int. J. Numerical Anal. Methods Geomechanics
– volume: vol. 287
  start-page: 193
  year: 1965
  end-page: 197
  ident: b0050
  article-title: Phase equilibria and soil freezing
  publication-title: Permafrost: Proceedings of the Second International Conference
– volume: vol. 8
  year: 2009
  ident: b0010
  publication-title: Introduction to Derivative-free Optimization
– year: 2006
  ident: b0070
  article-title: Engineering Optimization: Methods and Applications
– reference: C. Baca, Undergrounding Overhead Utilities in Pebble Beach, Technical report, 2010.
– volume: 5
  start-page: 469
  year: 2011
  ident: b0020
  article-title: A robust and energy-conserving model of freezing variably-saturated soil
  publication-title: Cryosphere
– reference: Y. Zhang, Thermal-hydro-mechanical model for freezing and thawing of soils,PhD Thesis, University of Michigan, 2014.
– start-page: 389
  year: 1999
  end-page: 398
  ident: b0015
  article-title: Effectiveness of rigid insulation for thermal protection of buried water pipes in rock trenches
  publication-title: CSCE 1999 Annual Conference-First Cold Regions Specialty Conference
– reference: F.L. Johnson and F.F. Chang, Drainage of Highway Pavements, Technical report, 1984.
– volume: 8
  start-page: 667
  year: 2007
  end-page: 693
  ident: b0095
  article-title: Incorporation of environmental effects in pavement design
  publication-title: Road Mater. Pavement Des.
– year: 2018
  ident: b0055
  article-title: Use of rigid geofoam insulation to mitigate frost heave at shallow culvert installations
  publication-title: J. Cold Regions Eng.
– year: 2014
  ident: b0090
  article-title: Fundamentals of Momentum, Heat and Mass Transfer
– year: 1978
  ident: b0060
  article-title: Climate and man’s environment: an introduction to applied climatology
– year: 2018
  ident: b0040
  article-title: Thermo-hydro-mechanical modeling of frost heave using the theory of poroelasticity for frost-susceptible soils beneath double-barrel culvert
– volume: 31
  start-page: 491
  year: 1994
  end-page: 501
  ident: b0075
  article-title: Frost protection of buried pvc water mains in western canada
  publication-title: Can. Geotechnical J.
– volume: 3
  start-page: 693
  year: 2004
  end-page: 704
  ident: b0025
  article-title: Water flow and heat transport in frozen soil
  publication-title: Vadose Zone J.
– reference: F.P. Incropera, D.P. Dewitt et al., Fundamentals of heat and mass transfer, 2007, pp. a-5.
– volume: 30
  start-page: 703
  issue: 8
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0045
  article-title: Frost heave modelling using porosity rate function
  publication-title: Int. J. Numerical Anal. Methods Geomechanics
  doi: 10.1002/nag.497
– volume: 3
  start-page: 693
  issue: 2
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0025
  article-title: Water flow and heat transport in frozen soil
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2004.0693
– year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0040
– ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0035
– ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0100
  doi: 10.1061/9780784412978.025
– volume: 31
  start-page: 491
  issue: 4
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0075
  article-title: Frost protection of buried pvc water mains in western canada
  publication-title: Can. Geotechnical J.
  doi: 10.1139/t94-058
– ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0080
– year: 1978
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0060
– ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0065
– year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0090
– year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0055
  article-title: Use of rigid geofoam insulation to mitigate frost heave at shallow culvert installations
  publication-title: J. Cold Regions Eng.
– volume: vol. 8
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0010
– volume: 8
  start-page: 667
  issue: 4
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0095
  article-title: Incorporation of environmental effects in pavement design
  publication-title: Road Mater. Pavement Des.
  doi: 10.1080/14680629.2007.9690094
– ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0005
– ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0030
– volume: 5
  start-page: 469
  issue: 2
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0020
  article-title: A robust and energy-conserving model of freezing variably-saturated soil
  publication-title: Cryosphere
  doi: 10.5194/tc-5-469-2011
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0085
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– start-page: 389
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0015
  article-title: Effectiveness of rigid insulation for thermal protection of buried water pipes in rock trenches
– year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0070
– volume: vol. 287
  start-page: 193
  year: 1965
  ident: 10.1016/j.ijheatmasstransfer.2018.10.107_b0050
  article-title: Phase equilibria and soil freezing
SSID ssj0017046
Score 2.3161376
Snippet •Neglecting the phase change effects leads to an erroneous design of the insulation.•Mass transfer is negligible for predicting the temperature and water...
Frost action in soils can cause detrimental damage to buried utilities, such as water and gas pipes. One of the promising approaches to protect buried...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 613
SubjectTerms Algorithms
Backfill
Buried pipes
Buried utilities
Conductive heat transfer
Freezing
Frost
Frost action
Frost damage
Frost protection
Gas pipes
Heat and mass transfer
Heat transfer
Insulation
Latent heat
Mass transfer
Mathematical models
Moisture content
Nelder-Mead optimization algorithm
Parametric study
Phase change
Phase transitions
Soil investigations
Soil water
System effectiveness
Thermal insulation
Underground utilities
Water utilities
Title Optimum insulation design for buried utilities subject to frost action in cold regions using the Nelder-Mead algorithm
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.10.107
https://www.proquest.com/docview/2173844612
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kongRn_ioMgcPXlKb7naTnESKpVqsIIq9hUw20ZY-pE09-tud2SSKigfBU0jYbMLMZOab8M2MECdIIddzI-kgSkUJSiAdPzakEOmlsm6SwDf8Q_-mpzsP6rrf7C-JVlkLw7TKwvfnPt166-LKWSHNs5fBgGt82bi445SUigITV7Arj6289vZB83C9el6sw96YV6-K00-O12DIHm9MMDWzMDHhDqGuX7MrvN9C1TenbSNRe0OsFxASLvK33BRLyWRLrFgqZzzfFq-35AXGizFYmrkVPBjL0wACqIA8o84A2dvINlOF-QL5XwxkU0i5BATyUge6HchIDPDoBjJNYIb8ExBehF7Co70d7tkL0ehpOhtkz-Mdcd--vG91nGK6ghOTSjIHCQgp6WNcx8h4EhXy9GmX5K4x1TpSJtWxrw0lmDEF-bRJMtaBjhtS-U2Vyl1RmUwnyZ4AyuAiNARtuFec0SliGtHG0q8HiI1I7YvzUo5hXHQe5wEYo7CkmA3Dn5oIWRP5Cm9fBB87vORdOP5wb6tUXfjFskIKGn_YpVpqPSy-8nlI6Zz0KZ92Gwf_8pBDsUZnQU5xq4pKNlskR4R5Mjy2Rn0sli-uup0eH7t3j913-kYJSA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BIqAXRB8IKIU5cOjFkGQ3a_tURVFReKWXIHFbebx2CMoDEYffz8zapqJVD0i92t61NTOeh_3NNwAnxCE3bCcqIFKaC5RYBVHqWCEqzFXLZXHk5IP-zdAMbvXlXfduDfp1L4zAKivfX_p0762rI2eVNM8eJxPp8RXjEsYppTQHpnVoCjtVtwHN3sXVYPj6MyFslf064pBlwSZ8_w3zmjyI05txplr4TDETktB2dOqvCP8Vrf7w2z4Yne_AdpVFYq980I-wls0_wYZHc6bLz_D8ix3BbDVDjzT3skfnoRrIOSqSjKlzyCY39XyquFyRfI7BYoG5dIFg2e3Ay5HtxKFMb2DrRAHJj5FTRhxmMt07ENpeTKbjxdOkuJ99gdH5z1F_EFQDFoKUtVIExLmQVhGlLUpcqEiTDKBus-gN5cYk2uUmjYzjGjPlOJ93WcwmNmlH6airc7ULjflinu0BchGXkOPsRujinMmJ8oQ3VlErJuokeh9-1HK0aUU-LjMwprZGmT3YvzVhRRPlFeE-xK87PJZEHO9Y269VZ98Yl-W48Y5dDmut2-pFX1qu6FTEJXW7c_BfbnIMW4PRzbW9vhhefYUPfCYuEW-H0CieVtk3ToEKOqpM_AWmfApW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+insulation+design+for+buried+utilities+subject+to+frost+action+in+cold+regions+using+the+Nelder-Mead+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Liu%2C+Hongwei&rft.au=Maghoul%2C+Pooneh&rft.au=Shalaby%2C+Ahmed&rft.date=2019-03-01&rft.issn=0017-9310&rft.volume=130&rft.spage=613&rft.epage=639&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.10.107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_10_107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon