Sensitivity of Wind Turbine Array Downstream Effects to the Parameterization Used in WRF
The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a...
Saved in:
Published in | Journal of applied meteorology and climatology Vol. 59; no. 3; pp. 333 - 362 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
American Meteorological Society
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification. |
---|---|
AbstractList | Abstract
The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification. The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification. |
Author | Shepherd, T. J. Barthelmie, R. J. Pryor, S. C. |
Author_xml | – sequence: 1 givenname: T. J. surname: Shepherd fullname: Shepherd, T. J. – sequence: 2 givenname: R. J. surname: Barthelmie fullname: Barthelmie, R. J. – sequence: 3 givenname: S. C. surname: Pryor fullname: Pryor, S. C. |
BackLink | https://www.osti.gov/biblio/1602330$$D View this record in Osti.gov |
BookMark | eNo9kEFrGzEQhUVJILbbey4F0Z430ay0K-lo7CRtSUhpEtKbkHZnsUwtuZKc4v76rHHIaebwvcfHm5KTEAMScg7sAkA2lz_md4tqWYGuGPDmAj6QCTSNqpTg9cn7X4szMs15zZgQUjYT8vsBQ_bFv_iyp3Ggzz709HGXnA9I5ynZPV3GfyGXhHZDr4YBu5JpibSskP60yW6wYPL_bfEx0KeMPfWBPv-6_khOB_sn46e3OyNP11ePi2_V7f3N98X8tuoE06Vy0CruLGotVa-kcG3fopOydQMH7IXSzVBjLQeLqACl4w60ssJ1qna61XxGvhx7Yy7e5M4X7FZdDGEUNdCymnM2Ql-P0DbFvzvMxazjLoXRy9Rcg9BSjtyMsCPVpZhzwsFsk9_YtDfAzGFkcxjZLA1ocxjZwBj5fIysc4npna9HsUYD468CJ3qk |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2023_107047 crossref_primary_10_3389_fenrg_2022_881459 crossref_primary_10_1007_s10546_021_00652_y crossref_primary_10_5194_wes_9_963_2024 crossref_primary_10_1088_1742_6596_2265_2_022038 crossref_primary_10_1175_JAMC_D_19_0235_1 crossref_primary_10_3390_en17051063 crossref_primary_10_1088_1742_6596_2265_2_022037 crossref_primary_10_1002_we_2758 crossref_primary_10_5194_gmd_14_3141_2021 crossref_primary_10_3390_jmse8080550 crossref_primary_10_5194_wes_7_2085_2022 crossref_primary_10_1088_1742_6596_1934_1_012017 crossref_primary_10_3390_en13164269 crossref_primary_10_1016_j_apenergy_2024_122755 crossref_primary_10_3390_en15072603 crossref_primary_10_1029_2021MS002947 crossref_primary_10_3390_en15124223 crossref_primary_10_1088_1742_6596_1618_6_062023 crossref_primary_10_1175_JAMC_D_20_0033_1 crossref_primary_10_5194_gmd_17_2855_2024 crossref_primary_10_5194_wes_7_2407_2022 |
Cites_doi | 10.1016/j.egypro.2013.08.061 10.1002/2016JD024796 10.1029/2000JD900719 10.1109/JPROC.2012.2204029 10.1073/pnas.1408251112 10.1002/we.1555 10.1029/97JD00237 10.5194/gmd-8-3715-2015 10.1029/2017JD028114 10.5194/wes-3-651-2018 10.1175/2010JCLI3294.1 10.1002/we.1945 10.1038/ncomms4196 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 10.1016/j.energy.2018.10.111 10.1029/2002JD003296 10.1073/pnas.1000493107 10.1175/2096.1 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 10.1073/pnas.0406930101 10.1088/1742-6596/1037/7/072010 10.1029/2007JD009216 10.5194/acp-10-2053-2010 10.1175/JCLI-D-12-00376.1 10.1175/MWR-D-11-00056.1 10.1002/joc.4217 10.1016/j.jweia.2010.12.013 10.1088/1748-9326/6/4/045101 10.3390/rs61212234 10.1002/2014JD021696 10.1007/s10546-012-9757-y 10.1175/BAMS-D-15-00255.1 10.5194/wes-4-193-2019 10.1002/qj.828 10.1038/nclimate1505 10.1175/MWR-D-16-0401.1 10.3390/rs11010095 10.1175/BAMS-D-11-00240.1 10.1002/we.2143 10.5194/acp-19-3097-2019 10.1029/2004JD004763 10.1002/we.2011 10.1088/1748-9326/7/4/044025 10.1175/BAMS-D-11-00223.1 10.5194/acp-10-769-2010 10.1038/sdata.2015.60 10.1007/s00382-019-04725-0 10.1016/j.renene.2018.03.056 10.1088/1748-9326/8/3/034006 10.1175/MWR-D-11-00352.1 10.5194/gmd-10-4229-2017 10.1088/1742-6596/1452/1/012084 10.1007/s10546-005-9030-8 10.1016/j.apenergy.2012.12.013 |
ContentType | Journal Article |
Copyright | 2020 American Meteorological Society Copyright American Meteorological Society Mar 2020 |
Copyright_xml | – notice: 2020 American Meteorological Society – notice: Copyright American Meteorological Society Mar 2020 |
DBID | AAYXX CITATION 3V. 7TG 7UA 7XB 88F 88I 8AF 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L7M M1Q M2O M2P MBDVC P5Z P62 PATMY PCBAR PQEST PQQKQ PQUKI PYCSY Q9U R05 S0X OTOTI |
DOI | 10.1175/JAMC-D-19-0135.1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Military Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic University of Michigan SIRS Editorial OSTI.GOV |
DatabaseTitle | CrossRef University of Michigan Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial elibrary ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef University of Michigan |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1558-8432 |
EndPage | 362 |
ExternalDocumentID | 1602330 10_1175_JAMC_D_19_0135_1 26935910 |
GeographicLocations | United States--US Iowa |
GeographicLocations_xml | – name: Iowa – name: United States--US |
GroupedDBID | -~X .4S .DC 29J 4.4 5GY 7XC 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 ABBHK ABDBF ABDNZ ABUWG ABXSQ ACGFO ACGOD ACIWK AENEX AEUPB AFKRA AFRAH AIFVT AIRJO ALMA_UNASSIGNED_HOLDINGS ALQLQ ARAPS ARCSS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKOMP BKSAR BLC BPHCQ CCPQU CS3 D1K DU5 DWQXO E.L EAD EAP EAS EBD EBS EDH EDO EMK EPL EQZMY EST ESX F8P FAC FAS FJW FRP GNUQQ GUQSH HCIFZ H~9 I-F IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST K6- LK5 M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PQQKQ PROAC PYCSY Q2X QF4 QM1 QN7 QO4 R05 RWA RWE RXW S0X SA0 SJFOW SWMRO TN5 TUS U5U UNMZH ~02 3V. 53G 6TJ AAYXX ABFSI ACYGS ADACV ADULT AEKFB AI. BCR C1A CAG CITATION COF EJD H13 JSODD OHT PEA TR2 VH1 7TG 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KL. KR7 L.G L7M MBDVC PQEST PQUKI Q9U ABPTK ABQIS ADBSO OTOTI |
ID | FETCH-LOGICAL-c409t-b1683bae9978d874b6d6eb776bf31ed4895f2e27faee81e7b3b198a4bc82b9693 |
IEDL.DBID | BENPR |
ISSN | 1558-8424 |
IngestDate | Thu May 18 22:44:05 EDT 2023 Sun Oct 27 03:49:40 EDT 2024 Fri Aug 23 01:20:04 EDT 2024 Fri Feb 02 07:18:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-b1683bae9978d874b6d6eb776bf31ed4895f2e27faee81e7b3b198a4bc82b9693 |
Notes | USDOE SC0016438; AC02-05CH11231 |
OpenAccessLink | https://journals.ametsoc.org/downloadpdf/journals/apme/59/3/jamc-d-19-0135.1.pdf |
PQID | 2391497723 |
PQPubID | 29229 |
PageCount | 30 |
ParticipantIDs | osti_scitechconnect_1602330 proquest_journals_2391497723 crossref_primary_10_1175_JAMC_D_19_0135_1 jstor_primary_26935910 |
PublicationCentury | 2000 |
PublicationDate | 20200301 2020-03-00 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200301 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: United States |
PublicationTitle | Journal of applied meteorology and climatology |
PublicationYear | 2020 |
Publisher | American Meteorological Society |
Publisher_xml | – name: American Meteorological Society |
References | Baidya Roy (2020062005442224100_bib1) 2011; 99 Staid (2020062005442224100_bib51) 2018; 21 Hersbach (2020062005442224100_bib24) 2016 Dee (2020062005442224100_bib11) 2011; 137 Reynolds (2020062005442224100_bib47) 2010; 23 Mearns (2020062005442224100_bib32) 2012; 93 Ek (2020062005442224100_bib15) 2003; 108 Hahmann (2020062005442224100_bib22) 2015; 35 Zhou (2020062005442224100_bib63) 2012; 2 Cervarich (2020062005442224100_bib8) 2013; 40 Dudhia (2020062005442224100_bib14) 1989; 46 Barthelmie (2020062005442224100_bib6) 2013; 101 Pryor (2020062005442224100_bib40) 2019 Wang (2020062005442224100_bib56) 2010; 10 AWEA (2020062005442224100_bib67) 2016 AWS Truepower LLC (2020062005442224100_bib68) 2010 Pryor (2020062005442224100_bib43) 2018; 3 Draxl (2020062005442224100_bib13) 2014; 17 Pryor (2020062005442224100_bib44) 2018; 1037 Kain (2020062005442224100_bib27) 1993 Olauson (2020062005442224100_bib38) 2018; 126 Carroll (2020062005442224100_bib7) 2017; 20 Piles (2020062005442224100_bib39) 2019; 11 Lo (2020062005442224100_bib31) 2008; 113 Pryor (2020062005442224100_bib42) 2018; 123 Rogers (2020062005442224100_bib48) 2001 AWEA (2020062005442224100_bib66) 2015 National Renewable Energy Laboratory (2020062005442224100_bib37) 2015 Smith (2020062005442224100_bib50) 2013; 8 Pryor (2020062005442224100_bib45) 2020 Fitch (2020062005442224100_bib19) 2013; 26 Xia (2020062005442224100_bib62) 2019; 53 Baidya Roy (2020062005442224100_bib2) 2010; 107 Barrie (2020062005442224100_bib4) 2010; 10 Copernicus Climate Change Service (2020062005442224100_bib10) 2017 National Renewable Energy Laboratory (2020062005442224100_bib36) 2008 Wang (2020062005442224100_bib58) 2019; 166 Gao (2020062005442224100_bib20) 2012; 7 Hoffmann (2020062005442224100_bib25) 2019; 19 Miller (2020062005442224100_bib33) 2015; 112 Kalverla (2020062005442224100_bib28) 2019; 4 Skamarock (2020062005442224100_bib49) 2008 Jiménez (2020062005442224100_bib26) 2012; 140 Taylor (2020062005442224100_bib53) 2001; 106 AWEA (2020062005442224100_bib65) 2014 Fiedler (2020062005442224100_bib16) 2011; 6 U.S. Energy Information Administration (2020062005442224100_bib69) 2000 Fitch (2020062005442224100_bib18) 2012; 140 Volker (2020062005442224100_bib55) 2015; 8 Barthelmie (2020062005442224100_bib5) 2013; 104 U.S. Energy Information Administration (2020062005442224100_bib70) 2015 Chen (2020062005442224100_bib9) 2001; 129 Hacker (2020062005442224100_bib21) 2017; 98 Vautard (2020062005442224100_bib54) 2014; 5 Xia (2020062005442224100_bib61) 2017; 145 Baidya Roy (2020062005442224100_bib3) 2004; 109 Keith (2020062005442224100_bib29) 2004; 101 Wang (2020062005442224100_bib57) 2014; 119 Mlawer (2020062005442224100_bib34) 1997; 102 Diffendorfer (2020062005442224100_bib64) 2015 Wu (2020062005442224100_bib60) 2013; 146 Nakanishi (2020062005442224100_bib35) 2006; 119 Rajewski (2020062005442224100_bib46) 2013; 94 Harris (2020062005442224100_bib23) 2014; 6 Lee (2020062005442224100_bib30) 2017; 10 Wilks (2020062005442224100_bib59) 2011 Fitch (2020062005442224100_bib17) 2016; 19 Diffendorfer (2020062005442224100_bib12) 2015 Pryor (2020062005442224100_bib41) 2004; 43 Sun (2020062005442224100_bib52) 2016; 121 |
References_xml | – volume: 40 start-page: 530 year: 2013 ident: 2020062005442224100_bib8 article-title: Spatiotemporal structure of wind farm-atmospheric boundary layer interactions publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.08.061 contributor: fullname: Cervarich – year: 2011 ident: 2020062005442224100_bib59 contributor: fullname: Wilks – volume: 121 start-page: 13 801 year: 2016 ident: 2020062005442224100_bib52 article-title: An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2016JD024796 contributor: fullname: Sun – volume: 106 start-page: 7183 year: 2001 ident: 2020062005442224100_bib53 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. doi: 10.1029/2000JD900719 contributor: fullname: Taylor – volume: 101 start-page: 1010 year: 2013 ident: 2020062005442224100_bib6 article-title: Meteorological controls on wind turbine wakes publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2204029 contributor: fullname: Barthelmie – year: 2014 ident: 2020062005442224100_bib65 contributor: fullname: AWEA – volume: 112 start-page: 11 169 year: 2015 ident: 2020062005442224100_bib33 article-title: Two methods for estimating limits to large-scale wind power generation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1408251112 contributor: fullname: Miller – year: 2015 ident: 2020062005442224100_bib37 contributor: fullname: National Renewable Energy Laboratory – volume: 17 start-page: 39 year: 2014 ident: 2020062005442224100_bib13 article-title: Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes publication-title: Wind Energy doi: 10.1002/we.1555 contributor: fullname: Draxl – volume: 102 start-page: 16 663 year: 1997 ident: 2020062005442224100_bib34 article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave publication-title: J. Geophys. Res. doi: 10.1029/97JD00237 contributor: fullname: Mlawer – volume: 8 start-page: 3715 year: 2015 ident: 2020062005442224100_bib55 article-title: The Explicit Wake Parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-3715-2015 contributor: fullname: Volker – volume: 123 start-page: 5804 year: 2018 ident: 2020062005442224100_bib42 article-title: The influence of real-world wind turbine deployments on local to mesoscale climate publication-title: J. Geophys. Res. doi: 10.1029/2017JD028114 contributor: fullname: Pryor – volume: 3 start-page: 651 year: 2018 ident: 2020062005442224100_bib43 article-title: Interannual variability of wind climates and wind turbine annual energy production publication-title: Wind Energy Sci. doi: 10.5194/wes-3-651-2018 contributor: fullname: Pryor – volume: 23 start-page: 3545 year: 2010 ident: 2020062005442224100_bib47 article-title: Comparisons of daily sea surface temperature analyses for 2007–08 publication-title: J. Climate doi: 10.1175/2010JCLI3294.1 contributor: fullname: Reynolds – volume: 19 start-page: 1757 year: 2016 ident: 2020062005442224100_bib17 article-title: Notes on using the mesoscale wind farm parameterization of Fitch et al. (2012) in WRF publication-title: Wind Energy doi: 10.1002/we.1945 contributor: fullname: Fitch – volume: 5 start-page: 3196 year: 2014 ident: 2020062005442224100_bib54 article-title: Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms publication-title: Nat. Commun. doi: 10.1038/ncomms4196 contributor: fullname: Vautard – volume: 46 start-page: 3077 year: 1989 ident: 2020062005442224100_bib14 article-title: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 contributor: fullname: Dudhia – year: 1993 ident: 2020062005442224100_bib27 contributor: fullname: Kain – volume: 166 start-page: 1168 year: 2019 ident: 2020062005442224100_bib58 article-title: Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations publication-title: Energy doi: 10.1016/j.energy.2018.10.111 contributor: fullname: Wang – volume: 108 start-page: 8851 year: 2003 ident: 2020062005442224100_bib15 article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model publication-title: J. Geophys. Res. doi: 10.1029/2002JD003296 contributor: fullname: Ek – volume: 107 start-page: 17 899 year: 2010 ident: 2020062005442224100_bib2 article-title: Impacts of wind farms on surface air temperature publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1000493107 contributor: fullname: Baidya Roy – volume: 43 start-page: 739 year: 2004 ident: 2020062005442224100_bib41 article-title: Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? Part II: Quantifying uncertainties associated with distribution fitting methods publication-title: J. Appl. Meteor. doi: 10.1175/2096.1 contributor: fullname: Pryor – volume: 129 start-page: 569 year: 2001 ident: 2020062005442224100_bib9 article-title: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 contributor: fullname: Chen – volume: 101 start-page: 16 115 year: 2004 ident: 2020062005442224100_bib29 article-title: The influence of large-scale wind power on global climate publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406930101 contributor: fullname: Keith – volume: 1037 year: 2018 ident: 2020062005442224100_bib44 article-title: Downstream effects from contemporary wind turbine deployments publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1037/7/072010 contributor: fullname: Pryor – volume: 113 start-page: D09112 year: 2008 ident: 2020062005442224100_bib31 article-title: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model publication-title: J. Geophys. Res. doi: 10.1029/2007JD009216 contributor: fullname: Lo – volume: 10 start-page: 2053 year: 2010 ident: 2020062005442224100_bib56 article-title: Potential climatic impacts and reliability of very large-scale wind farms publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-2053-2010 contributor: fullname: Wang – volume: 26 start-page: 6439 year: 2013 ident: 2020062005442224100_bib19 article-title: Parameterization of wind farms in climate models publication-title: J. Climate doi: 10.1175/JCLI-D-12-00376.1 contributor: fullname: Fitch – year: 2016 ident: 2020062005442224100_bib67 contributor: fullname: AWEA – volume: 140 start-page: 898 year: 2012 ident: 2020062005442224100_bib26 article-title: A revised scheme for the WRF surface layer formulation publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-11-00056.1 contributor: fullname: Jiménez – year: 2008 ident: 2020062005442224100_bib49 contributor: fullname: Skamarock – volume: 35 start-page: 3422 year: 2015 ident: 2020062005442224100_bib22 article-title: Wind climate estimation using WRF model output: Method and model sensitivities over the sea publication-title: Int. J. Climatol. doi: 10.1002/joc.4217 contributor: fullname: Hahmann – volume: 99 start-page: 491 year: 2011 ident: 2020062005442224100_bib1 article-title: Simulating impacts of wind farms on local hydrometeorology publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2010.12.013 contributor: fullname: Baidya Roy – volume: 6 year: 2011 ident: 2020062005442224100_bib16 article-title: The effect of a giant wind farm on precipitation in a regional climate model publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/6/4/045101 contributor: fullname: Fiedler – volume: 6 start-page: 12 234 year: 2014 ident: 2020062005442224100_bib23 article-title: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa publication-title: Remote Sens. doi: 10.3390/rs61212234 contributor: fullname: Harris – year: 2019 ident: 2020062005442224100_bib40 contributor: fullname: Pryor – volume: 119 start-page: 8778 year: 2014 ident: 2020062005442224100_bib57 article-title: Downscaling with a nested regional climate model in near-surface fields over the contiguous United States publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014JD021696 contributor: fullname: Wang – volume: 146 start-page: 181 year: 2013 ident: 2020062005442224100_bib60 article-title: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-012-9757-y contributor: fullname: Wu – year: 2016 ident: 2020062005442224100_bib24 contributor: fullname: Hersbach – volume: 98 start-page: 1129 year: 2017 ident: 2020062005442224100_bib21 article-title: A containerized mesoscale model and analysis toolkit to accelerate classroom learning, collaborative research, and uncertainty quantification publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-15-00255.1 contributor: fullname: Hacker – volume: 4 start-page: 193 year: 2019 ident: 2020062005442224100_bib28 article-title: Low-level jets over the North Sea based on ERA5 and observations: Together they do better publication-title: Wind Energy Sci. doi: 10.5194/wes-4-193-2019 contributor: fullname: Kalverla – volume: 137 start-page: 553 year: 2011 ident: 2020062005442224100_bib11 article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.828 contributor: fullname: Dee – volume: 2 start-page: 539 year: 2012 ident: 2020062005442224100_bib63 article-title: Impacts of wind farms on land surface temperature publication-title: Nat. Climate Change doi: 10.1038/nclimate1505 contributor: fullname: Zhou – volume: 145 start-page: 4813 year: 2017 ident: 2020062005442224100_bib61 article-title: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Validation with observations publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-16-0401.1 contributor: fullname: Xia – volume: 11 start-page: 95 year: 2019 ident: 2020062005442224100_bib39 article-title: Dominant features of global surface soil moisture variability observed by the SMOS satellite publication-title: Remote Sens. doi: 10.3390/rs11010095 contributor: fullname: Piles – year: 2008 ident: 2020062005442224100_bib36 contributor: fullname: National Renewable Energy Laboratory – volume: 94 start-page: 655 year: 2013 ident: 2020062005442224100_bib46 article-title: Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-11-00240.1 contributor: fullname: Rajewski – volume: 21 start-page: 42 year: 2018 ident: 2020062005442224100_bib51 article-title: A comparison of methods for assessing power output in non-uniform onshore wind farms publication-title: Wind Energy doi: 10.1002/we.2143 contributor: fullname: Staid – year: 2000 ident: 2020062005442224100_bib69 contributor: fullname: U.S. Energy Information Administration – year: 2010 ident: 2020062005442224100_bib68 contributor: fullname: AWS Truepower LLC – year: 2015 ident: 2020062005442224100_bib12 contributor: fullname: Diffendorfer – volume: 19 start-page: 3097 year: 2019 ident: 2020062005442224100_bib25 article-title: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-3097-2019 contributor: fullname: Hoffmann – volume: 109 start-page: D19101 year: 2004 ident: 2020062005442224100_bib3 article-title: Can large wind farms affect local meteorology? publication-title: J. Geophys. Res. doi: 10.1029/2004JD004763 contributor: fullname: Baidya Roy – volume: 20 start-page: 361 year: 2017 ident: 2020062005442224100_bib7 article-title: Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations publication-title: Wind Energy doi: 10.1002/we.2011 contributor: fullname: Carroll – volume: 7 year: 2012 ident: 2020062005442224100_bib20 article-title: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/4/044025 contributor: fullname: Gao – volume: 93 start-page: 1337 year: 2012 ident: 2020062005442224100_bib32 article-title: The North American Regional Climate Change Assessment Program: Overview of phase I results publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-11-00223.1 contributor: fullname: Mearns – year: 2015 ident: 2020062005442224100_bib66 contributor: fullname: AWEA – volume: 10 start-page: 769 year: 2010 ident: 2020062005442224100_bib4 article-title: Weather response to a large wind turbine array publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-769-2010 contributor: fullname: Barrie – volume-title: Sci. Data year: 2015 ident: 2020062005442224100_bib64 article-title: Onshore industrial wind turbine locations for the United States up to March 2014 doi: 10.1038/sdata.2015.60 contributor: fullname: Diffendorfer – volume: 53 start-page: 1723 year: 2019 ident: 2020062005442224100_bib62 article-title: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Physical mechanisms publication-title: Climate Dyn. doi: 10.1007/s00382-019-04725-0 contributor: fullname: Xia – year: 2015 ident: 2020062005442224100_bib70 contributor: fullname: U.S. Energy Information Administration – year: 2017 ident: 2020062005442224100_bib10 contributor: fullname: Copernicus Climate Change Service – volume: 126 start-page: 322 year: 2018 ident: 2020062005442224100_bib38 article-title: ERA5: The new champion of wind power modelling? publication-title: Renewable Energy doi: 10.1016/j.renene.2018.03.056 contributor: fullname: Olauson – volume: 8 year: 2013 ident: 2020062005442224100_bib50 article-title: In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/3/034006 contributor: fullname: Smith – volume: 140 start-page: 3017 year: 2012 ident: 2020062005442224100_bib18 article-title: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-11-00352.1 contributor: fullname: Fitch – year: 2001 ident: 2020062005442224100_bib48 contributor: fullname: Rogers – volume: 10 start-page: 4229 year: 2017 ident: 2020062005442224100_bib30 article-title: Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-4229-2017 contributor: fullname: Lee – year: 2020 ident: 2020062005442224100_bib45 article-title: Assessing the stability of wind resource and operating conditions publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1452/1/012084 contributor: fullname: Pryor – volume: 119 start-page: 397 year: 2006 ident: 2020062005442224100_bib35 article-title: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog publication-title: Bound.-Layer Meteor. doi: 10.1007/s10546-005-9030-8 contributor: fullname: Nakanishi – volume: 104 start-page: 834 year: 2013 ident: 2020062005442224100_bib5 article-title: An overview of data for wake model evaluation in the Virtual Wakes Laboratory publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.12.013 contributor: fullname: Barthelmie |
SSID | ssj0044775 |
Score | 2.464068 |
Snippet | The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be... Abstract The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that... |
SourceID | osti proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 333 |
SubjectTerms | Accuracy Alternative energy sources Arrays Climate Climate change Climatic conditions Computer simulation Deployment Downstream effects Electric power Electricity Feasibility studies Laboratories Measurement techniques Observational studies Parameterization Sensitivity Simulation Turbine engines Turbines Velocity Wakes Weather forecasting Wind effects Wind farms Wind power Wind power generation Wind turbines |
Title | Sensitivity of Wind Turbine Array Downstream Effects to the Parameterization Used in WRF |
URI | https://www.jstor.org/stable/26935910 https://www.proquest.com/docview/2391497723 https://www.osti.gov/biblio/1602330 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxELVKuPSCoAWRkiIfqko9uMRef55QSUhRJRACInKz7F2vFAmyNNkc-PfM7G6oEFKPq7H2MLZn3ozfzBDyTViNjfIVc6USTBrFWRzaggE4CeAfDBclFjhfXumLqfwzU7Mu4bbqaJUbm9gY6qLKMUd-IjIHYB6wYHb69Jfh1Ch8Xe1GaGyRbQGRwrBHts_Or65vNrZYStO02gWnaZmVQr4-VKoTMGojNmZYw8Mz9ZO_cUwtNxHMdAUX7Z2ZbnzPZJfsdKCR_mp3eY98SItPpH8JeLdaNmlx-p2OHuYAPpuvz2R2i7z0djAErUp6D5E3vVsvIQxO8JtleKZjTCsjzfyRth2MV7SuKMBBeh2QsIU9nNsSTTpdpYLOF_T-ZrJPppPzu9EF62YosBwit5pFrm0WQ3IQLRbWyKgLnaIxOpYZT4W0TpUiCVOGlCxPJmaROxtkzK2ITrvsgPQW1SIdEmq1KngYpljmHLyYiSHKIuVBcmMciPrkx0aB_qltleGbEMMoj8r2Y8-dR2V7WHvQaPh1odBYIsyHfXKEKvfg_7GJbY5sn7z2XAO2yEA62OyE7-7ayv87GV_-Lz4iHwVGyw2DbEB69XKdvgKkqOMx2bKT38fd6XkBKjTJgQ |
link.rule.ids | 230,315,783,787,888,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHOCCeFWEFvABIXEwjd_2CaGEEKCpECRqbpa965UqlWxJtgf-PTPeTRFC4rgaaw9je75vxvMg5JVwBhvla-YbLZiymrM0djUDchIBHywXDRY4L87MfKU-r_V6CLjthrTKvU0shrpuK4yRnwjpgcwDF5Tvrn4ynBqFr6vDCI3b5I6SgNVYKT77uLfEStnSaBcg0zGnhLp5ptQnYNImbMqwgodL_Zb_BUt9ZiIY6Rau2T9GuiDP7AG5P1BG-r7f44fkVt48IqMFsN12W4Li9DWdXF4A9Sxfj8n6O2al92MhaNvQc_C76fJ6C05wht9s4y86xaAyJpn_oH3_4h3tWgpkkH6NmK6FHZz7Ak262uWaXmzo-bfZE7KafVhO5myYoMAq8Ns6lrhxMsXswVesnVXJ1CYna01qJM-1cl43IgvbxJwdzzbJxL2LKlVOJG-8PCQHm3aTnxLqjK55HOfUVBwwzKaYVJ2rqLi1HkQj8mavwHDVN8oIxcGwOqCywzRwH1DZAdYeFg3fLBQGC4T5eESOUOUB0B9b2FaY61N1gRtgFhKkx_udCMNN24U_5-LZ_8Uvyd35cnEaTj-dfTki9wT6zSWX7JgcdNvr_BzIRZdelBP0G5yQyiY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQXwRqxavrTYPIvgQ75LN51Mpd13rR0vRHr23kOxmodDe1rvtg_-9M9m9igh9XCbsw2Qy85vkNzOEvBdWY6N8xVyjBJNGcRYntmYATgLEB8NFgwXOp2f6ZC6_LtRi4D-tB1rlxidmR123Fd6Rj0XhAMwDFizGzUCLOJ-Vh7e_GE6QwpfWYZzGY_IEoqJGC7fl541XltLkprsQPi2zUsj7J0s1Bvc2ZTOG1Ty8UJ_4PyGqZymCw27hyP3nsHMUKl-Q5wN8pEf9fm-TR2n5koxOAfm2q3xBTj_Q6fUVwND89YosfiJDvR8RQduGXkIOTi_uVpAQJ_jNKvymM7xgRsL5De17Ga9p11IAhvQ8IHULuzn3xZp0vk41vVrSyx_lazIvjy-mJ2yYpsAqyOE6Frm2RQzJQd5YWyOjrnWKxujYFDzV0jrViCRME1KyPJlYRO5skLGyIjrtih2ytWyX6Q2hVquah0mKTcUhnpkYoqxTFSQ3xoFoRD5uFOhv-6YZPicbRnlUtp957jwq28Panazh-4VCY7Ewn4zIHqrcAxLAdrYV8n6qznMNKKMA6f5mJ_xw6tb-r43sPiw-IE_BePz3L2ff9sgzgSl0ppXtk61udZfeAs7o4rtsQH8AHxDOZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+Wind+Turbine+Array+Downstream+Effects+to+the+Parameterization+Used+in+WRF&rft.jtitle=Journal+of+applied+meteorology+and+climatology&rft.au=Shepherd%2C+T.+J.&rft.au=Barthelmie%2C+R.+J.&rft.au=Pryor%2C+S.+C.&rft.date=2020-03-01&rft.pub=American+Meteorological+Society&rft.issn=1558-8424&rft.eissn=1558-8432&rft.volume=59&rft.issue=3&rft_id=info:doi/10.1175%2FJAMC-D-19-0135.1&rft.externalDocID=1602330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8424&client=summon |