Sensitivity of Wind Turbine Array Downstream Effects to the Parameterization Used in WRF

The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied meteorology and climatology Vol. 59; no. 3; pp. 333 - 362
Main Authors Shepherd, T. J., Barthelmie, R. J., Pryor, S. C.
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.
AbstractList Abstract The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.
The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.
Author Shepherd, T. J.
Barthelmie, R. J.
Pryor, S. C.
Author_xml – sequence: 1
  givenname: T. J.
  surname: Shepherd
  fullname: Shepherd, T. J.
– sequence: 2
  givenname: R. J.
  surname: Barthelmie
  fullname: Barthelmie, R. J.
– sequence: 3
  givenname: S. C.
  surname: Pryor
  fullname: Pryor, S. C.
BackLink https://www.osti.gov/biblio/1602330$$D View this record in Osti.gov
BookMark eNo9kEFrGzEQhUVJILbbey4F0Z430ay0K-lo7CRtSUhpEtKbkHZnsUwtuZKc4v76rHHIaebwvcfHm5KTEAMScg7sAkA2lz_md4tqWYGuGPDmAj6QCTSNqpTg9cn7X4szMs15zZgQUjYT8vsBQ_bFv_iyp3Ggzz709HGXnA9I5ynZPV3GfyGXhHZDr4YBu5JpibSskP60yW6wYPL_bfEx0KeMPfWBPv-6_khOB_sn46e3OyNP11ePi2_V7f3N98X8tuoE06Vy0CruLGotVa-kcG3fopOydQMH7IXSzVBjLQeLqACl4w60ssJ1qna61XxGvhx7Yy7e5M4X7FZdDGEUNdCymnM2Ql-P0DbFvzvMxazjLoXRy9Rcg9BSjtyMsCPVpZhzwsFsk9_YtDfAzGFkcxjZLA1ocxjZwBj5fIysc4npna9HsUYD468CJ3qk
CitedBy_id crossref_primary_10_1016_j_atmosres_2023_107047
crossref_primary_10_3389_fenrg_2022_881459
crossref_primary_10_1007_s10546_021_00652_y
crossref_primary_10_5194_wes_9_963_2024
crossref_primary_10_1088_1742_6596_2265_2_022038
crossref_primary_10_1175_JAMC_D_19_0235_1
crossref_primary_10_3390_en17051063
crossref_primary_10_1088_1742_6596_2265_2_022037
crossref_primary_10_1002_we_2758
crossref_primary_10_5194_gmd_14_3141_2021
crossref_primary_10_3390_jmse8080550
crossref_primary_10_5194_wes_7_2085_2022
crossref_primary_10_1088_1742_6596_1934_1_012017
crossref_primary_10_3390_en13164269
crossref_primary_10_1016_j_apenergy_2024_122755
crossref_primary_10_3390_en15072603
crossref_primary_10_1029_2021MS002947
crossref_primary_10_3390_en15124223
crossref_primary_10_1088_1742_6596_1618_6_062023
crossref_primary_10_1175_JAMC_D_20_0033_1
crossref_primary_10_5194_gmd_17_2855_2024
crossref_primary_10_5194_wes_7_2407_2022
Cites_doi 10.1016/j.egypro.2013.08.061
10.1002/2016JD024796
10.1029/2000JD900719
10.1109/JPROC.2012.2204029
10.1073/pnas.1408251112
10.1002/we.1555
10.1029/97JD00237
10.5194/gmd-8-3715-2015
10.1029/2017JD028114
10.5194/wes-3-651-2018
10.1175/2010JCLI3294.1
10.1002/we.1945
10.1038/ncomms4196
10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
10.1016/j.energy.2018.10.111
10.1029/2002JD003296
10.1073/pnas.1000493107
10.1175/2096.1
10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
10.1073/pnas.0406930101
10.1088/1742-6596/1037/7/072010
10.1029/2007JD009216
10.5194/acp-10-2053-2010
10.1175/JCLI-D-12-00376.1
10.1175/MWR-D-11-00056.1
10.1002/joc.4217
10.1016/j.jweia.2010.12.013
10.1088/1748-9326/6/4/045101
10.3390/rs61212234
10.1002/2014JD021696
10.1007/s10546-012-9757-y
10.1175/BAMS-D-15-00255.1
10.5194/wes-4-193-2019
10.1002/qj.828
10.1038/nclimate1505
10.1175/MWR-D-16-0401.1
10.3390/rs11010095
10.1175/BAMS-D-11-00240.1
10.1002/we.2143
10.5194/acp-19-3097-2019
10.1029/2004JD004763
10.1002/we.2011
10.1088/1748-9326/7/4/044025
10.1175/BAMS-D-11-00223.1
10.5194/acp-10-769-2010
10.1038/sdata.2015.60
10.1007/s00382-019-04725-0
10.1016/j.renene.2018.03.056
10.1088/1748-9326/8/3/034006
10.1175/MWR-D-11-00352.1
10.5194/gmd-10-4229-2017
10.1088/1742-6596/1452/1/012084
10.1007/s10546-005-9030-8
10.1016/j.apenergy.2012.12.013
ContentType Journal Article
Copyright 2020 American Meteorological Society
Copyright American Meteorological Society Mar 2020
Copyright_xml – notice: 2020 American Meteorological Society
– notice: Copyright American Meteorological Society Mar 2020
DBID AAYXX
CITATION
3V.
7TG
7UA
7XB
88F
88I
8AF
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L7M
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
R05
S0X
OTOTI
DOI 10.1175/JAMC-D-19-0135.1
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Military Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
University of Michigan
SIRS Editorial
OSTI.GOV
DatabaseTitle CrossRef
University of Michigan
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
University of Michigan


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1558-8432
EndPage 362
ExternalDocumentID 1602330
10_1175_JAMC_D_19_0135_1
26935910
GeographicLocations United States--US
Iowa
GeographicLocations_xml – name: Iowa
– name: United States--US
GroupedDBID -~X
.4S
.DC
29J
4.4
5GY
7XC
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
ABBHK
ABDBF
ABDNZ
ABUWG
ABXSQ
ACGFO
ACGOD
ACIWK
AENEX
AEUPB
AFKRA
AFRAH
AIFVT
AIRJO
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BPHCQ
CCPQU
CS3
D1K
DU5
DWQXO
E.L
EAD
EAP
EAS
EBD
EBS
EDH
EDO
EMK
EPL
EQZMY
EST
ESX
F8P
FAC
FAS
FJW
FRP
GNUQQ
GUQSH
HCIFZ
H~9
I-F
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
K6-
LK5
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM1
QN7
QO4
R05
RWA
RWE
RXW
S0X
SA0
SJFOW
SWMRO
TN5
TUS
U5U
UNMZH
~02
3V.
53G
6TJ
AAYXX
ABFSI
ACYGS
ADACV
ADULT
AEKFB
AI.
BCR
C1A
CAG
CITATION
COF
EJD
H13
JSODD
OHT
PEA
TR2
VH1
7TG
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
ABPTK
ABQIS
ADBSO
OTOTI
ID FETCH-LOGICAL-c409t-b1683bae9978d874b6d6eb776bf31ed4895f2e27faee81e7b3b198a4bc82b9693
IEDL.DBID BENPR
ISSN 1558-8424
IngestDate Thu May 18 22:44:05 EDT 2023
Sun Oct 27 03:49:40 EDT 2024
Fri Aug 23 01:20:04 EDT 2024
Fri Feb 02 07:18:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-b1683bae9978d874b6d6eb776bf31ed4895f2e27faee81e7b3b198a4bc82b9693
Notes USDOE
SC0016438; AC02-05CH11231
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/apme/59/3/jamc-d-19-0135.1.pdf
PQID 2391497723
PQPubID 29229
PageCount 30
ParticipantIDs osti_scitechconnect_1602330
proquest_journals_2391497723
crossref_primary_10_1175_JAMC_D_19_0135_1
jstor_primary_26935910
PublicationCentury 2000
PublicationDate 20200301
2020-03-00
2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200301
  day: 1
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
PublicationTitle Journal of applied meteorology and climatology
PublicationYear 2020
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Baidya Roy (2020062005442224100_bib1) 2011; 99
Staid (2020062005442224100_bib51) 2018; 21
Hersbach (2020062005442224100_bib24) 2016
Dee (2020062005442224100_bib11) 2011; 137
Reynolds (2020062005442224100_bib47) 2010; 23
Mearns (2020062005442224100_bib32) 2012; 93
Ek (2020062005442224100_bib15) 2003; 108
Hahmann (2020062005442224100_bib22) 2015; 35
Zhou (2020062005442224100_bib63) 2012; 2
Cervarich (2020062005442224100_bib8) 2013; 40
Dudhia (2020062005442224100_bib14) 1989; 46
Barthelmie (2020062005442224100_bib6) 2013; 101
Pryor (2020062005442224100_bib40) 2019
Wang (2020062005442224100_bib56) 2010; 10
AWEA (2020062005442224100_bib67) 2016
AWS Truepower LLC (2020062005442224100_bib68) 2010
Pryor (2020062005442224100_bib43) 2018; 3
Draxl (2020062005442224100_bib13) 2014; 17
Pryor (2020062005442224100_bib44) 2018; 1037
Kain (2020062005442224100_bib27) 1993
Olauson (2020062005442224100_bib38) 2018; 126
Carroll (2020062005442224100_bib7) 2017; 20
Piles (2020062005442224100_bib39) 2019; 11
Lo (2020062005442224100_bib31) 2008; 113
Pryor (2020062005442224100_bib42) 2018; 123
Rogers (2020062005442224100_bib48) 2001
AWEA (2020062005442224100_bib66) 2015
National Renewable Energy Laboratory (2020062005442224100_bib37) 2015
Smith (2020062005442224100_bib50) 2013; 8
Pryor (2020062005442224100_bib45) 2020
Fitch (2020062005442224100_bib19) 2013; 26
Xia (2020062005442224100_bib62) 2019; 53
Baidya Roy (2020062005442224100_bib2) 2010; 107
Barrie (2020062005442224100_bib4) 2010; 10
Copernicus Climate Change Service (2020062005442224100_bib10) 2017
National Renewable Energy Laboratory (2020062005442224100_bib36) 2008
Wang (2020062005442224100_bib58) 2019; 166
Gao (2020062005442224100_bib20) 2012; 7
Hoffmann (2020062005442224100_bib25) 2019; 19
Miller (2020062005442224100_bib33) 2015; 112
Kalverla (2020062005442224100_bib28) 2019; 4
Skamarock (2020062005442224100_bib49) 2008
Jiménez (2020062005442224100_bib26) 2012; 140
Taylor (2020062005442224100_bib53) 2001; 106
AWEA (2020062005442224100_bib65) 2014
Fiedler (2020062005442224100_bib16) 2011; 6
U.S. Energy Information Administration (2020062005442224100_bib69) 2000
Fitch (2020062005442224100_bib18) 2012; 140
Volker (2020062005442224100_bib55) 2015; 8
Barthelmie (2020062005442224100_bib5) 2013; 104
U.S. Energy Information Administration (2020062005442224100_bib70) 2015
Chen (2020062005442224100_bib9) 2001; 129
Hacker (2020062005442224100_bib21) 2017; 98
Vautard (2020062005442224100_bib54) 2014; 5
Xia (2020062005442224100_bib61) 2017; 145
Baidya Roy (2020062005442224100_bib3) 2004; 109
Keith (2020062005442224100_bib29) 2004; 101
Wang (2020062005442224100_bib57) 2014; 119
Mlawer (2020062005442224100_bib34) 1997; 102
Diffendorfer (2020062005442224100_bib64) 2015
Wu (2020062005442224100_bib60) 2013; 146
Nakanishi (2020062005442224100_bib35) 2006; 119
Rajewski (2020062005442224100_bib46) 2013; 94
Harris (2020062005442224100_bib23) 2014; 6
Lee (2020062005442224100_bib30) 2017; 10
Wilks (2020062005442224100_bib59) 2011
Fitch (2020062005442224100_bib17) 2016; 19
Diffendorfer (2020062005442224100_bib12) 2015
Pryor (2020062005442224100_bib41) 2004; 43
Sun (2020062005442224100_bib52) 2016; 121
References_xml – volume: 40
  start-page: 530
  year: 2013
  ident: 2020062005442224100_bib8
  article-title: Spatiotemporal structure of wind farm-atmospheric boundary layer interactions
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.08.061
  contributor:
    fullname: Cervarich
– year: 2011
  ident: 2020062005442224100_bib59
  contributor:
    fullname: Wilks
– volume: 121
  start-page: 13 801
  year: 2016
  ident: 2020062005442224100_bib52
  article-title: An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2016JD024796
  contributor:
    fullname: Sun
– volume: 106
  start-page: 7183
  year: 2001
  ident: 2020062005442224100_bib53
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JD900719
  contributor:
    fullname: Taylor
– volume: 101
  start-page: 1010
  year: 2013
  ident: 2020062005442224100_bib6
  article-title: Meteorological controls on wind turbine wakes
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2204029
  contributor:
    fullname: Barthelmie
– year: 2014
  ident: 2020062005442224100_bib65
  contributor:
    fullname: AWEA
– volume: 112
  start-page: 11 169
  year: 2015
  ident: 2020062005442224100_bib33
  article-title: Two methods for estimating limits to large-scale wind power generation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1408251112
  contributor:
    fullname: Miller
– year: 2015
  ident: 2020062005442224100_bib37
  contributor:
    fullname: National Renewable Energy Laboratory
– volume: 17
  start-page: 39
  year: 2014
  ident: 2020062005442224100_bib13
  article-title: Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes
  publication-title: Wind Energy
  doi: 10.1002/we.1555
  contributor:
    fullname: Draxl
– volume: 102
  start-page: 16 663
  year: 1997
  ident: 2020062005442224100_bib34
  article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JD00237
  contributor:
    fullname: Mlawer
– volume: 8
  start-page: 3715
  year: 2015
  ident: 2020062005442224100_bib55
  article-title: The Explicit Wake Parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-3715-2015
  contributor:
    fullname: Volker
– volume: 123
  start-page: 5804
  year: 2018
  ident: 2020062005442224100_bib42
  article-title: The influence of real-world wind turbine deployments on local to mesoscale climate
  publication-title: J. Geophys. Res.
  doi: 10.1029/2017JD028114
  contributor:
    fullname: Pryor
– volume: 3
  start-page: 651
  year: 2018
  ident: 2020062005442224100_bib43
  article-title: Interannual variability of wind climates and wind turbine annual energy production
  publication-title: Wind Energy Sci.
  doi: 10.5194/wes-3-651-2018
  contributor:
    fullname: Pryor
– volume: 23
  start-page: 3545
  year: 2010
  ident: 2020062005442224100_bib47
  article-title: Comparisons of daily sea surface temperature analyses for 2007–08
  publication-title: J. Climate
  doi: 10.1175/2010JCLI3294.1
  contributor:
    fullname: Reynolds
– volume: 19
  start-page: 1757
  year: 2016
  ident: 2020062005442224100_bib17
  article-title: Notes on using the mesoscale wind farm parameterization of Fitch et al. (2012) in WRF
  publication-title: Wind Energy
  doi: 10.1002/we.1945
  contributor:
    fullname: Fitch
– volume: 5
  start-page: 3196
  year: 2014
  ident: 2020062005442224100_bib54
  article-title: Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4196
  contributor:
    fullname: Vautard
– volume: 46
  start-page: 3077
  year: 1989
  ident: 2020062005442224100_bib14
  article-title: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  contributor:
    fullname: Dudhia
– year: 1993
  ident: 2020062005442224100_bib27
  contributor:
    fullname: Kain
– volume: 166
  start-page: 1168
  year: 2019
  ident: 2020062005442224100_bib58
  article-title: Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.111
  contributor:
    fullname: Wang
– volume: 108
  start-page: 8851
  year: 2003
  ident: 2020062005442224100_bib15
  article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD003296
  contributor:
    fullname: Ek
– volume: 107
  start-page: 17 899
  year: 2010
  ident: 2020062005442224100_bib2
  article-title: Impacts of wind farms on surface air temperature
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1000493107
  contributor:
    fullname: Baidya Roy
– volume: 43
  start-page: 739
  year: 2004
  ident: 2020062005442224100_bib41
  article-title: Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? Part II: Quantifying uncertainties associated with distribution fitting methods
  publication-title: J. Appl. Meteor.
  doi: 10.1175/2096.1
  contributor:
    fullname: Pryor
– volume: 129
  start-page: 569
  year: 2001
  ident: 2020062005442224100_bib9
  article-title: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  contributor:
    fullname: Chen
– volume: 101
  start-page: 16 115
  year: 2004
  ident: 2020062005442224100_bib29
  article-title: The influence of large-scale wind power on global climate
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0406930101
  contributor:
    fullname: Keith
– volume: 1037
  year: 2018
  ident: 2020062005442224100_bib44
  article-title: Downstream effects from contemporary wind turbine deployments
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1037/7/072010
  contributor:
    fullname: Pryor
– volume: 113
  start-page: D09112
  year: 2008
  ident: 2020062005442224100_bib31
  article-title: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JD009216
  contributor:
    fullname: Lo
– volume: 10
  start-page: 2053
  year: 2010
  ident: 2020062005442224100_bib56
  article-title: Potential climatic impacts and reliability of very large-scale wind farms
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-2053-2010
  contributor:
    fullname: Wang
– volume: 26
  start-page: 6439
  year: 2013
  ident: 2020062005442224100_bib19
  article-title: Parameterization of wind farms in climate models
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-12-00376.1
  contributor:
    fullname: Fitch
– year: 2016
  ident: 2020062005442224100_bib67
  contributor:
    fullname: AWEA
– volume: 140
  start-page: 898
  year: 2012
  ident: 2020062005442224100_bib26
  article-title: A revised scheme for the WRF surface layer formulation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-11-00056.1
  contributor:
    fullname: Jiménez
– year: 2008
  ident: 2020062005442224100_bib49
  contributor:
    fullname: Skamarock
– volume: 35
  start-page: 3422
  year: 2015
  ident: 2020062005442224100_bib22
  article-title: Wind climate estimation using WRF model output: Method and model sensitivities over the sea
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4217
  contributor:
    fullname: Hahmann
– volume: 99
  start-page: 491
  year: 2011
  ident: 2020062005442224100_bib1
  article-title: Simulating impacts of wind farms on local hydrometeorology
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2010.12.013
  contributor:
    fullname: Baidya Roy
– volume: 6
  year: 2011
  ident: 2020062005442224100_bib16
  article-title: The effect of a giant wind farm on precipitation in a regional climate model
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/6/4/045101
  contributor:
    fullname: Fiedler
– volume: 6
  start-page: 12 234
  year: 2014
  ident: 2020062005442224100_bib23
  article-title: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa
  publication-title: Remote Sens.
  doi: 10.3390/rs61212234
  contributor:
    fullname: Harris
– year: 2019
  ident: 2020062005442224100_bib40
  contributor:
    fullname: Pryor
– volume: 119
  start-page: 8778
  year: 2014
  ident: 2020062005442224100_bib57
  article-title: Downscaling with a nested regional climate model in near-surface fields over the contiguous United States
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014JD021696
  contributor:
    fullname: Wang
– volume: 146
  start-page: 181
  year: 2013
  ident: 2020062005442224100_bib60
  article-title: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-012-9757-y
  contributor:
    fullname: Wu
– year: 2016
  ident: 2020062005442224100_bib24
  contributor:
    fullname: Hersbach
– volume: 98
  start-page: 1129
  year: 2017
  ident: 2020062005442224100_bib21
  article-title: A containerized mesoscale model and analysis toolkit to accelerate classroom learning, collaborative research, and uncertainty quantification
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-15-00255.1
  contributor:
    fullname: Hacker
– volume: 4
  start-page: 193
  year: 2019
  ident: 2020062005442224100_bib28
  article-title: Low-level jets over the North Sea based on ERA5 and observations: Together they do better
  publication-title: Wind Energy Sci.
  doi: 10.5194/wes-4-193-2019
  contributor:
    fullname: Kalverla
– volume: 137
  start-page: 553
  year: 2011
  ident: 2020062005442224100_bib11
  article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.828
  contributor:
    fullname: Dee
– volume: 2
  start-page: 539
  year: 2012
  ident: 2020062005442224100_bib63
  article-title: Impacts of wind farms on land surface temperature
  publication-title: Nat. Climate Change
  doi: 10.1038/nclimate1505
  contributor:
    fullname: Zhou
– volume: 145
  start-page: 4813
  year: 2017
  ident: 2020062005442224100_bib61
  article-title: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Validation with observations
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-16-0401.1
  contributor:
    fullname: Xia
– volume: 11
  start-page: 95
  year: 2019
  ident: 2020062005442224100_bib39
  article-title: Dominant features of global surface soil moisture variability observed by the SMOS satellite
  publication-title: Remote Sens.
  doi: 10.3390/rs11010095
  contributor:
    fullname: Piles
– year: 2008
  ident: 2020062005442224100_bib36
  contributor:
    fullname: National Renewable Energy Laboratory
– volume: 94
  start-page: 655
  year: 2013
  ident: 2020062005442224100_bib46
  article-title: Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-11-00240.1
  contributor:
    fullname: Rajewski
– volume: 21
  start-page: 42
  year: 2018
  ident: 2020062005442224100_bib51
  article-title: A comparison of methods for assessing power output in non-uniform onshore wind farms
  publication-title: Wind Energy
  doi: 10.1002/we.2143
  contributor:
    fullname: Staid
– year: 2000
  ident: 2020062005442224100_bib69
  contributor:
    fullname: U.S. Energy Information Administration
– year: 2010
  ident: 2020062005442224100_bib68
  contributor:
    fullname: AWS Truepower LLC
– year: 2015
  ident: 2020062005442224100_bib12
  contributor:
    fullname: Diffendorfer
– volume: 19
  start-page: 3097
  year: 2019
  ident: 2020062005442224100_bib25
  article-title: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-3097-2019
  contributor:
    fullname: Hoffmann
– volume: 109
  start-page: D19101
  year: 2004
  ident: 2020062005442224100_bib3
  article-title: Can large wind farms affect local meteorology?
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JD004763
  contributor:
    fullname: Baidya Roy
– volume: 20
  start-page: 361
  year: 2017
  ident: 2020062005442224100_bib7
  article-title: Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations
  publication-title: Wind Energy
  doi: 10.1002/we.2011
  contributor:
    fullname: Carroll
– volume: 7
  year: 2012
  ident: 2020062005442224100_bib20
  article-title: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/4/044025
  contributor:
    fullname: Gao
– volume: 93
  start-page: 1337
  year: 2012
  ident: 2020062005442224100_bib32
  article-title: The North American Regional Climate Change Assessment Program: Overview of phase I results
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-D-11-00223.1
  contributor:
    fullname: Mearns
– year: 2015
  ident: 2020062005442224100_bib66
  contributor:
    fullname: AWEA
– volume: 10
  start-page: 769
  year: 2010
  ident: 2020062005442224100_bib4
  article-title: Weather response to a large wind turbine array
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-769-2010
  contributor:
    fullname: Barrie
– volume-title: Sci. Data
  year: 2015
  ident: 2020062005442224100_bib64
  article-title: Onshore industrial wind turbine locations for the United States up to March 2014
  doi: 10.1038/sdata.2015.60
  contributor:
    fullname: Diffendorfer
– volume: 53
  start-page: 1723
  year: 2019
  ident: 2020062005442224100_bib62
  article-title: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Physical mechanisms
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-019-04725-0
  contributor:
    fullname: Xia
– year: 2015
  ident: 2020062005442224100_bib70
  contributor:
    fullname: U.S. Energy Information Administration
– year: 2017
  ident: 2020062005442224100_bib10
  contributor:
    fullname: Copernicus Climate Change Service
– volume: 126
  start-page: 322
  year: 2018
  ident: 2020062005442224100_bib38
  article-title: ERA5: The new champion of wind power modelling?
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.03.056
  contributor:
    fullname: Olauson
– volume: 8
  year: 2013
  ident: 2020062005442224100_bib50
  article-title: In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/8/3/034006
  contributor:
    fullname: Smith
– volume: 140
  start-page: 3017
  year: 2012
  ident: 2020062005442224100_bib18
  article-title: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-11-00352.1
  contributor:
    fullname: Fitch
– year: 2001
  ident: 2020062005442224100_bib48
  contributor:
    fullname: Rogers
– volume: 10
  start-page: 4229
  year: 2017
  ident: 2020062005442224100_bib30
  article-title: Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-4229-2017
  contributor:
    fullname: Lee
– year: 2020
  ident: 2020062005442224100_bib45
  article-title: Assessing the stability of wind resource and operating conditions
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1452/1/012084
  contributor:
    fullname: Pryor
– volume: 119
  start-page: 397
  year: 2006
  ident: 2020062005442224100_bib35
  article-title: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog
  publication-title: Bound.-Layer Meteor.
  doi: 10.1007/s10546-005-9030-8
  contributor:
    fullname: Nakanishi
– volume: 104
  start-page: 834
  year: 2013
  ident: 2020062005442224100_bib5
  article-title: An overview of data for wake model evaluation in the Virtual Wakes Laboratory
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.12.013
  contributor:
    fullname: Barthelmie
SSID ssj0044775
Score 2.464068
Snippet The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be...
Abstract The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that...
SourceID osti
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 333
SubjectTerms Accuracy
Alternative energy sources
Arrays
Climate
Climate change
Climatic conditions
Computer simulation
Deployment
Downstream effects
Electric power
Electricity
Feasibility studies
Laboratories
Measurement techniques
Observational studies
Parameterization
Sensitivity
Simulation
Turbine engines
Turbines
Velocity
Wakes
Weather forecasting
Wind effects
Wind farms
Wind power
Wind power generation
Wind turbines
Title Sensitivity of Wind Turbine Array Downstream Effects to the Parameterization Used in WRF
URI https://www.jstor.org/stable/26935910
https://www.proquest.com/docview/2391497723
https://www.osti.gov/biblio/1602330
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxELVKuPSCoAWRkiIfqko9uMRef55QSUhRJRACInKz7F2vFAmyNNkc-PfM7G6oEFKPq7H2MLZn3ozfzBDyTViNjfIVc6USTBrFWRzaggE4CeAfDBclFjhfXumLqfwzU7Mu4bbqaJUbm9gY6qLKMUd-IjIHYB6wYHb69Jfh1Ch8Xe1GaGyRbQGRwrBHts_Or65vNrZYStO02gWnaZmVQr4-VKoTMGojNmZYw8Mz9ZO_cUwtNxHMdAUX7Z2ZbnzPZJfsdKCR_mp3eY98SItPpH8JeLdaNmlx-p2OHuYAPpuvz2R2i7z0djAErUp6D5E3vVsvIQxO8JtleKZjTCsjzfyRth2MV7SuKMBBeh2QsIU9nNsSTTpdpYLOF_T-ZrJPppPzu9EF62YosBwit5pFrm0WQ3IQLRbWyKgLnaIxOpYZT4W0TpUiCVOGlCxPJmaROxtkzK2ITrvsgPQW1SIdEmq1KngYpljmHLyYiSHKIuVBcmMciPrkx0aB_qltleGbEMMoj8r2Y8-dR2V7WHvQaPh1odBYIsyHfXKEKvfg_7GJbY5sn7z2XAO2yEA62OyE7-7ayv87GV_-Lz4iHwVGyw2DbEB69XKdvgKkqOMx2bKT38fd6XkBKjTJgQ
link.rule.ids 230,315,783,787,888,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagHOCCeFWEFvABIXEwjd_2CaGEEKCpECRqbpa965UqlWxJtgf-PTPeTRFC4rgaaw9je75vxvMg5JVwBhvla-YbLZiymrM0djUDchIBHywXDRY4L87MfKU-r_V6CLjthrTKvU0shrpuK4yRnwjpgcwDF5Tvrn4ynBqFr6vDCI3b5I6SgNVYKT77uLfEStnSaBcg0zGnhLp5ptQnYNImbMqwgodL_Zb_BUt9ZiIY6Rau2T9GuiDP7AG5P1BG-r7f44fkVt48IqMFsN12W4Li9DWdXF4A9Sxfj8n6O2al92MhaNvQc_C76fJ6C05wht9s4y86xaAyJpn_oH3_4h3tWgpkkH6NmK6FHZz7Ak262uWaXmzo-bfZE7KafVhO5myYoMAq8Ns6lrhxMsXswVesnVXJ1CYna01qJM-1cl43IgvbxJwdzzbJxL2LKlVOJG-8PCQHm3aTnxLqjK55HOfUVBwwzKaYVJ2rqLi1HkQj8mavwHDVN8oIxcGwOqCywzRwH1DZAdYeFg3fLBQGC4T5eESOUOUB0B9b2FaY61N1gRtgFhKkx_udCMNN24U_5-LZ_8Uvyd35cnEaTj-dfTki9wT6zSWX7JgcdNvr_BzIRZdelBP0G5yQyiY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQXwRqxavrTYPIvgQ75LN51Mpd13rR0vRHr23kOxmodDe1rvtg_-9M9m9igh9XCbsw2Qy85vkNzOEvBdWY6N8xVyjBJNGcRYntmYATgLEB8NFgwXOp2f6ZC6_LtRi4D-tB1rlxidmR123Fd6Rj0XhAMwDFizGzUCLOJ-Vh7e_GE6QwpfWYZzGY_IEoqJGC7fl541XltLkprsQPi2zUsj7J0s1Bvc2ZTOG1Ty8UJ_4PyGqZymCw27hyP3nsHMUKl-Q5wN8pEf9fm-TR2n5koxOAfm2q3xBTj_Q6fUVwND89YosfiJDvR8RQduGXkIOTi_uVpAQJ_jNKvymM7xgRsL5De17Ga9p11IAhvQ8IHULuzn3xZp0vk41vVrSyx_lazIvjy-mJ2yYpsAqyOE6Frm2RQzJQd5YWyOjrnWKxujYFDzV0jrViCRME1KyPJlYRO5skLGyIjrtih2ytWyX6Q2hVquah0mKTcUhnpkYoqxTFSQ3xoFoRD5uFOhv-6YZPicbRnlUtp957jwq28Panazh-4VCY7Ewn4zIHqrcAxLAdrYV8n6qznMNKKMA6f5mJ_xw6tb-r43sPiw-IE_BePz3L2ff9sgzgSl0ppXtk61udZfeAs7o4rtsQH8AHxDOZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+Wind+Turbine+Array+Downstream+Effects+to+the+Parameterization+Used+in+WRF&rft.jtitle=Journal+of+applied+meteorology+and+climatology&rft.au=Shepherd%2C+T.+J.&rft.au=Barthelmie%2C+R.+J.&rft.au=Pryor%2C+S.+C.&rft.date=2020-03-01&rft.pub=American+Meteorological+Society&rft.issn=1558-8424&rft.eissn=1558-8432&rft.volume=59&rft.issue=3&rft_id=info:doi/10.1175%2FJAMC-D-19-0135.1&rft.externalDocID=1602330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8424&client=summon