Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system
•TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of TPIMS.•TPIMS shows robustness and is superior to TMD in the aspect of additional mass. Traditional tuned mass dampers have been studied to redu...
Saved in:
Published in | Engineering structures Vol. 180; pp. 29 - 39 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of TPIMS.•TPIMS shows robustness and is superior to TMD in the aspect of additional mass.
Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required to be installed at the top of the tower, which may be not suitable for existing wind turbine tower. To provide a retrofit technology for in-service wind turbines, the use of a lightweight energy dissipation device, the tuned parallel inerter mass system (TPIMS), for seismic response mitigation of the wind turbine tower, was proposed in this study. The TPIMS consists of a tuned mass, a spring, and a parallel inerter subsystem, of which the spring is used for tuning the mass and the inerter subsystem is set for vibration energy absorbing and dissipation. A TPIMS-design optimization method was developed for wind turbine tower vibration depression with a target performance level. A typical wind turbine tower was modeled according to the Bernoulli-Euler beam theory and its seismic responses subject to stochastic seismic excitations were obtained. Parametric studies were conducted and the robustness of TPIMS for tower seismic vibration mitigation was proved. The results show that the tower top displacement, base shear, and moment can be reduced significantly with the help of TPIMS. Under a same design target, the required physical mass of TPIMS is much smaller than that of the tuned mass damper. Additionally, a lager apparent mass of TPIMS is more effective for reducing seismic responses of the wind turbine tower. |
---|---|
AbstractList | •TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of TPIMS.•TPIMS shows robustness and is superior to TMD in the aspect of additional mass.
Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required to be installed at the top of the tower, which may be not suitable for existing wind turbine tower. To provide a retrofit technology for in-service wind turbines, the use of a lightweight energy dissipation device, the tuned parallel inerter mass system (TPIMS), for seismic response mitigation of the wind turbine tower, was proposed in this study. The TPIMS consists of a tuned mass, a spring, and a parallel inerter subsystem, of which the spring is used for tuning the mass and the inerter subsystem is set for vibration energy absorbing and dissipation. A TPIMS-design optimization method was developed for wind turbine tower vibration depression with a target performance level. A typical wind turbine tower was modeled according to the Bernoulli-Euler beam theory and its seismic responses subject to stochastic seismic excitations were obtained. Parametric studies were conducted and the robustness of TPIMS for tower seismic vibration mitigation was proved. The results show that the tower top displacement, base shear, and moment can be reduced significantly with the help of TPIMS. Under a same design target, the required physical mass of TPIMS is much smaller than that of the tuned mass damper. Additionally, a lager apparent mass of TPIMS is more effective for reducing seismic responses of the wind turbine tower. Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required to be installed at the top of the tower, which may be not suitable for existing wind turbine tower. To provide a retrofit technology for in-service wind turbines, the use of a lightweight energy dissipation device, the tuned parallel inerter mass system (TPIMS), for seismic response mitigation of the wind turbine tower, was proposed in this study. The TPIMS consists of a tuned mass, a spring, and a parallel inerter subsystem, of which the spring is used for tuning the mass and the inerter subsystem is set for vibration energy absorbing and dissipation. A TPIMS-design optimization method was developed for wind turbine tower vibration depression with a target performance level. A typical wind turbine tower was modeled according to the Bernoulli-Euler beam theory and its seismic responses subject to stochastic seismic excitations were obtained. Parametric studies were conducted and the robustness of TPIMS for tower seismic vibration mitigation was proved. The results show that the tower top displacement, base shear, and moment can be reduced significantly with the help of TPIMS. Under a same design target, the required physical mass of TPIMS is much smaller than that of the tuned mass damper. Additionally, a lager apparent mass of TPIMS is more effective for reducing seismic responses of the wind turbine tower. |
Author | Dai, Kaoshan Zhao, Zhipeng Zhang, Ruifu |
Author_xml | – sequence: 1 givenname: Ruifu surname: Zhang fullname: Zhang, Ruifu organization: Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China – sequence: 2 givenname: Zhipeng surname: Zhao fullname: Zhao, Zhipeng organization: Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China – sequence: 3 givenname: Kaoshan orcidid: 0000-0002-0193-6076 surname: Dai fullname: Dai, Kaoshan email: kdai@scu.edu.cn organization: Department of Civil Engineering and Institute for Disaster Management & Reconstruction, Sichuan University, Chengdu 610065, China |
BookMark | eNqNkEtLxDAUhYOM4Iz6Gwy4bs1NO21cuBDxBYILdWtI09shpU1qkir-e6MjLtzo6ly459zHtyIL6ywScgQsBwbVSZ-j3YToZx1zzkDkADnjbIcsQdRFVhe8WJAlgxIyxk-rPbIKoWeMcSHYkjw_oAmj0dRjmJwNSEcTzUZF4yx1HVX0zdiWxtk3xiKN7g09nYOxm9SKs8WWTsqrYcCBJoOPqT2qEGh4DxHHA7LbqSHg4bfuk6ery8eLm-zu_vr24vwu0yU7jZlqBQqAqqqEhgbLag2iqjFJyystmnWdtCk4prsbAMCm5qxLVYmqKZUq9snxdu7k3cuMIcrezd6mlZKDgHotoGDJdbZ1ae9C8NhJbeLXq9ErM0hg8hOp7OUPUvmJVALIhDTl61_5yZtR-fd_JM-3SUwQXg16GbRBq7E1HpO3debPGR-Un5nW |
CitedBy_id | crossref_primary_10_1007_s11071_024_10532_y crossref_primary_10_3390_app10020457 crossref_primary_10_1016_j_engstruct_2020_111422 crossref_primary_10_1016_j_jsv_2020_115827 crossref_primary_10_1016_j_oceaneng_2024_117486 crossref_primary_10_1002_stc_3104 crossref_primary_10_1016_j_soildyn_2023_107976 crossref_primary_10_1016_j_engstruct_2021_113452 crossref_primary_10_1016_j_tws_2023_111356 crossref_primary_10_1016_j_ymssp_2022_108893 crossref_primary_10_1016_j_istruc_2024_107379 crossref_primary_10_1016_j_engstruct_2020_111550 crossref_primary_10_1016_j_engstruct_2021_112488 crossref_primary_10_12677_ojav_2024_122004 crossref_primary_10_1016_j_ijmecsci_2022_107284 crossref_primary_10_1007_s42107_023_00877_x crossref_primary_10_1177_10775463211013221 crossref_primary_10_1016_j_oceaneng_2024_118909 crossref_primary_10_1177_1077546320951662 crossref_primary_10_1016_j_oceaneng_2024_117356 crossref_primary_10_1016_j_engstruct_2019_109324 crossref_primary_10_1016_j_istruc_2024_107804 crossref_primary_10_1016_j_soildyn_2019_105924 crossref_primary_10_1016_j_istruc_2023_105800 crossref_primary_10_1007_s40996_023_01292_7 crossref_primary_10_1016_j_jsv_2019_06_019 crossref_primary_10_1016_j_jsv_2020_115267 crossref_primary_10_1016_j_heliyon_2024_e35870 crossref_primary_10_1080_00423114_2022_2053170 crossref_primary_10_1002_stc_2471 crossref_primary_10_1080_15376494_2022_2084801 crossref_primary_10_3390_app13031404 crossref_primary_10_1016_j_ijmecsci_2023_108796 crossref_primary_10_3390_buildings15020245 crossref_primary_10_1016_j_engstruct_2019_109917 crossref_primary_10_1016_j_engstruct_2020_110928 crossref_primary_10_1016_j_soildyn_2021_106653 crossref_primary_10_3390_app10092999 crossref_primary_10_1016_j_ymssp_2022_108975 crossref_primary_10_1016_j_engstruct_2020_110248 crossref_primary_10_1142_S021945542150098X crossref_primary_10_1016_j_engstruct_2023_116732 crossref_primary_10_1155_2023_1349363 crossref_primary_10_1016_j_istruc_2024_106296 crossref_primary_10_1016_j_ijmecsci_2023_108447 crossref_primary_10_1016_j_ijmecsci_2024_109030 crossref_primary_10_1016_j_ijmecsci_2023_108440 crossref_primary_10_1016_j_engstruct_2024_117450 crossref_primary_10_3390_app9194096 crossref_primary_10_1016_j_ijmecsci_2019_105171 crossref_primary_10_3390_math10152735 crossref_primary_10_1016_j_jsv_2019_03_014 crossref_primary_10_1007_s11071_023_08599_0 crossref_primary_10_1177_10775463231164698 crossref_primary_10_1002_eqe_3430 crossref_primary_10_1016_j_istruc_2021_04_089 crossref_primary_10_1007_s42417_023_00918_4 crossref_primary_10_1007_s42417_024_01642_3 crossref_primary_10_1016_j_renene_2023_04_097 crossref_primary_10_1016_j_ymssp_2022_110087 crossref_primary_10_1007_s10483_020_2588_9 crossref_primary_10_1016_j_engstruct_2024_118678 crossref_primary_10_1142_S0219455425500014 crossref_primary_10_1016_j_renene_2021_07_112 crossref_primary_10_1016_j_istruc_2023_105322 crossref_primary_10_1007_s13369_024_09773_1 crossref_primary_10_3390_buildings12050530 crossref_primary_10_1016_j_conbuildmat_2024_138317 crossref_primary_10_1155_2020_8822611 crossref_primary_10_1016_j_engstruct_2021_112034 crossref_primary_10_5194_wes_9_1089_2024 crossref_primary_10_1002_we_2576 crossref_primary_10_1155_stc_1806600 crossref_primary_10_1016_j_oceaneng_2022_110637 crossref_primary_10_1002_eqe_3416 crossref_primary_10_1016_j_soildyn_2021_106902 crossref_primary_10_1016_j_jobe_2022_104353 crossref_primary_10_1115_1_4049212 crossref_primary_10_1007_s11803_022_2090_7 crossref_primary_10_1002_stc_2673 crossref_primary_10_1016_j_ijmecsci_2021_106535 crossref_primary_10_3390_buildings12050661 crossref_primary_10_1016_j_ijmecsci_2020_105840 crossref_primary_10_1016_j_ijmecsci_2020_105845 crossref_primary_10_1002_eqe_3770 crossref_primary_10_1016_j_ijmecsci_2023_108199 crossref_primary_10_1016_j_ymssp_2022_109070 crossref_primary_10_1007_s42417_024_01301_7 crossref_primary_10_1016_j_engstruct_2025_119720 crossref_primary_10_1177_1077546320985335 crossref_primary_10_1007_s40684_019_00102_8 crossref_primary_10_1016_j_engstruct_2021_113459 crossref_primary_10_1016_j_engstruct_2024_118459 crossref_primary_10_1016_j_istruc_2023_105547 crossref_primary_10_1016_j_jfranklin_2019_02_001 crossref_primary_10_1049_cth2_12702 crossref_primary_10_1016_j_ymssp_2023_110235 crossref_primary_10_1002_stc_3085 crossref_primary_10_1016_j_engstruct_2020_111661 crossref_primary_10_1016_j_istruc_2024_107462 crossref_primary_10_3390_buildings12050558 crossref_primary_10_1016_j_engstruct_2023_117061 crossref_primary_10_1016_j_oceaneng_2022_113167 crossref_primary_10_1016_j_engstruct_2019_05_024 crossref_primary_10_1080_15397734_2024_2319113 crossref_primary_10_1016_j_istruc_2025_108356 crossref_primary_10_1002_stc_2890 crossref_primary_10_1002_stc_2775 crossref_primary_10_1016_j_istruc_2023_03_004 crossref_primary_10_1016_j_engstruct_2022_115504 crossref_primary_10_3390_app10010257 crossref_primary_10_1016_j_apm_2022_10_011 crossref_primary_10_1016_j_ijmecsci_2022_107568 crossref_primary_10_1088_1361_665X_ab3dc8 crossref_primary_10_1016_j_soildyn_2020_106099 crossref_primary_10_1007_s10518_021_01267_x crossref_primary_10_1016_j_ijmecsci_2021_107044 crossref_primary_10_1002_we_2544 crossref_primary_10_1016_j_ijmecsci_2023_108394 crossref_primary_10_1002_stc_2523 crossref_primary_10_1002_stc_2644 crossref_primary_10_1002_stc_2529 crossref_primary_10_1016_j_istruc_2022_06_044 crossref_primary_10_1002_stc_2881 crossref_primary_10_1016_j_istruc_2023_105408 crossref_primary_10_1002_stc_2763 crossref_primary_10_1016_j_engstruct_2022_114308 crossref_primary_10_1016_j_istruc_2024_107526 crossref_primary_10_1016_j_ymssp_2024_111407 crossref_primary_10_1007_s00419_024_02599_1 crossref_primary_10_1007_s11831_023_10040_z crossref_primary_10_1016_j_engstruct_2020_111169 crossref_primary_10_1002_stc_2990 crossref_primary_10_1016_j_engstruct_2023_117436 crossref_primary_10_3390_buildings15030441 crossref_primary_10_1016_j_soildyn_2022_107639 crossref_primary_10_1016_j_engstruct_2022_114885 crossref_primary_10_1016_j_engstruct_2023_116107 crossref_primary_10_1002_tal_1781 crossref_primary_10_1007_s11071_025_10927_5 crossref_primary_10_1061__ASCE_CF_1943_5509_0001366 crossref_primary_10_1016_j_apm_2023_12_007 crossref_primary_10_1038_s41598_025_93971_w crossref_primary_10_1016_j_oceaneng_2023_115974 crossref_primary_10_1155_2022_2983700 crossref_primary_10_1016_j_egyr_2024_03_014 crossref_primary_10_1007_s40430_024_04789_y crossref_primary_10_1016_j_engstruct_2024_118806 crossref_primary_10_1016_j_rser_2020_109710 crossref_primary_10_1155_2024_9922305 crossref_primary_10_1177_16878132221106296 crossref_primary_10_3390_app9183919 crossref_primary_10_1177_01423312211009374 crossref_primary_10_3390_app9235045 crossref_primary_10_1007_s00419_023_02462_9 crossref_primary_10_1016_j_kscej_2025_100158 crossref_primary_10_1016_j_engstruct_2019_05_105 crossref_primary_10_1007_s42107_021_00394_9 crossref_primary_10_1016_j_iintel_2024_100082 crossref_primary_10_1016_j_oceaneng_2024_120182 crossref_primary_10_1002_stc_2602 crossref_primary_10_1016_j_engstruct_2024_118037 crossref_primary_10_1155_2020_8837822 crossref_primary_10_1016_j_engstruct_2023_115819 crossref_primary_10_1002_stc_3016 crossref_primary_10_1155_2020_8875268 crossref_primary_10_1016_j_ijmecsci_2022_107876 crossref_primary_10_1016_j_renene_2020_05_181 crossref_primary_10_1177_1077546320940175 crossref_primary_10_1080_13632469_2020_1778585 crossref_primary_10_1016_j_jsv_2020_115583 crossref_primary_10_1016_j_engstruct_2020_111804 crossref_primary_10_1002_stc_2953 crossref_primary_10_1016_j_marstruc_2020_102778 crossref_primary_10_1016_j_engstruct_2024_119139 crossref_primary_10_1016_j_engstruct_2021_112654 crossref_primary_10_1080_24705314_2023_2176619 crossref_primary_10_1016_j_engstruct_2022_114558 crossref_primary_10_1016_j_oceaneng_2021_109718 crossref_primary_10_1016_j_engstruct_2020_110833 crossref_primary_10_1016_j_istruc_2024_107998 crossref_primary_10_1016_j_engstruct_2024_117508 crossref_primary_10_1177_10775463231156240 crossref_primary_10_1016_j_finel_2019_05_002 crossref_primary_10_1016_j_engstruct_2020_111375 crossref_primary_10_1061_JGGEFK_GTENG_12630 crossref_primary_10_1016_j_ymssp_2022_109915 crossref_primary_10_1088_1742_6596_2647_17_172009 crossref_primary_10_1002_asjc_2700 crossref_primary_10_1007_s11071_023_09054_w crossref_primary_10_1016_j_engstruct_2024_117529 crossref_primary_10_3390_buildings14010150 crossref_primary_10_1016_j_ijmecsci_2022_107654 crossref_primary_10_1016_j_ijmecsci_2020_106087 crossref_primary_10_1088_1742_6596_2647_3_032007 crossref_primary_10_1142_S0219455423500098 |
Cites_doi | 10.1002/eqe.2390 10.1002/eqe.2861 10.1177/1077546316689014 10.1016/S0141-0296(02)00021-4 10.1002/tal.1350 10.1016/j.renene.2014.10.074 10.1002/we.2117 10.1016/j.engstruct.2013.08.044 10.1002/stc.2169 10.1016/j.engstruct.2016.04.020 10.1002/we.426 10.1016/j.soildyn.2016.08.037 10.1016/j.jsv.2013.05.019 10.1002/eqe.1117 10.2172/947422 10.1002/stc.2082 10.1016/j.soildyn.2018.06.022 10.1007/s11803-015-0043-0 10.1002/eqe.1138 10.1016/j.soildyn.2018.07.036 10.1016/S0141-0296(02)00115-3 10.1002/stc.2234 10.1016/j.engstruct.2017.11.042 10.1016/j.engstruct.2017.03.006 10.1002/eqe.2785 10.1016/j.engfailanal.2010.09.008 10.1109/TAC.2002.803532 10.1016/j.engstruct.2008.05.027 10.1002/stc.2051 10.1002/eqe.3098 10.1186/s40984-015-0007-6 10.1177/1077546313495911 10.1016/j.strusafe.2013.08.004 10.1002/we.249 10.1016/j.engstruct.2008.09.001 10.1016/j.rser.2015.05.078 10.1016/S0045-7825(01)00247-X 10.1016/j.jsv.2018.07.008 10.1080/00423110412331289871 10.1002/eqe.3011 10.1177/1687814016675534 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Feb 1, 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2019 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2018.11.020 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
EndPage | 39 |
ExternalDocumentID | 10_1016_j_engstruct_2018_11_020 S0141029618326300 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c409t-ad8e8116668c1be4651867e651d26c8b57d26b32e000b111eb720fb114eab4aa3 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 04:53:19 EDT 2025 Tue Jul 01 03:02:04 EDT 2025 Thu Apr 24 22:53:26 EDT 2025 Fri Feb 23 02:48:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tuned mass Optimum design Inerter system Wind turbine tower Vibration control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-ad8e8116668c1be4651867e651d26c8b57d26b32e000b111eb720fb114eab4aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0193-6076 |
PQID | 2181758130 |
PQPubID | 2045481 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2181758130 crossref_citationtrail_10_1016_j_engstruct_2018_11_020 crossref_primary_10_1016_j_engstruct_2018_11_020 elsevier_sciencedirect_doi_10_1016_j_engstruct_2018_11_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | De Domenico, Ricciardi (b0140) 2018; 25 Pan, Zhang, Luo, Li, Shen (b0175) 2018; 25 Dai, Huang, Gong, Huang, Ren (b0025) 2015; 14 Dai, Wang, Huang, Zhu, Xu (b0010) 2017; 20 Chankong, Haimes (b0235) 1983 Dai, Sheng, Zhao, Yi, Camara, Bitsuamlak (b0030) 2017; 25 Giaralis, Taflanidis (b0135) 2018; 25 De Domenico, Ricciardi (b0275) 2018; 113 Lackner, Rotea (b0060) 2011; 14 Lin, Zhao, Zhang (b0215) 2001; 191 Smith, Wang (b0105) 2004; 42 PEER (b0250) 2018 Chen, Georgakis (b0080) 2015; 21 Luo, Zhang, Weng (b0200) 2016; 90 Taniguchi, Der Kiureghian, Melkumyan (b0265) 2008; 30 Saito, Sugimura, Nakaminami, Kida, Inoue (b0160) 2008 Ikago, Sugimura, Saito, Inoue (b0170) 2012 De Domenico, Ricciardi (b0270) 2018; 2018 Bońkowski, Zembaty, Minch (b0040) 2018; 155 Chopra, Naeim (b0205) 2001 De Angelis, Perno, Reggio (b0230) 2015; 41 Chen, Georgakis (b0075) 2013; 332 De Domenico, Ricciardi (b0130) 2018; 47 Chen, Zhao, Zhang, Pan (b0110) 2018; 433 Chou, Tu (b0015) 2011; 18 Pan, Zhang, Luo, Shen (b0260) 2018; 24 Arakaki, Kuroda, Arima, Inoue, Baba (b0095) 1999; 8 Saito, Inoue (b0145) 2007; 13 Pietrosanti, De Angelis, Basili (b0115) 2017; 46 Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. United States: National Renewable Energy Laboratory (NREL), Golden (CO, United States): U.S. Department of Energy; 2009. Pinkaew, Lukkunaprasit, Chatupote (b0225) 2003; 25 Pan, Zhang (b0180) 2018; 25 Taniguchi, Ikenaga, Nakaminami, Ikago, Inoue (b0185) 2017; 23 Rahman, Zhi, Wen, Julai, Khoo (b0065) 2015; 51 Smith (b0100) 2002; 47 Saito, Sugimura, Inoue (b0155) 2008; 54 Zuo, Bi, Hao (b0050) 2017; 141 Den Hartog (b0245) 1956 Dai, Wang, Mao, Lu, Chen (b0090) 2017; 26 Hashimoto, Fujita, Tsuji, Takewaki (b0120) 2015; 1 Ikago, Saito, Inoue (b0165) 2012; 41 Pan, Zhang, Luo, Shen (b0255) 2016; 8 Murtagh, Ghosh, Basu, Broderick (b0055) 2008; 11 Garrido, Curadelli, Ambrosini (b0195) 2013; 56 Du, Xiang, Ge, Zhu (b0210) 2008 Bazeos, Hatzigeorgiou, Hondros, Karamaneas, Karabalis, Beskos (b0035) 2002; 24 Dai, Bergot, Liang, Xiang, Huang (b0005) 2015; 75 Zhang, Zhao, Pan (b0220) 2018; 114 Patil, Jung, Kwon (b0045) 2016; 120 De Domenico, Ricciardi (b0125) 2018; 47 Colwell, Basu (b0070) 2009; 31 Saito, Kurita, Inoue (b0150) 2007; 53 Sadowski, Camara, Málaga-Chuquitaype, Dai (b0240) 2016; 46 Mensah, Dueñas-Osorio (b0085) 2014; 47 Lazar, Neild, Wagg (b0190) 2014; 43 Chen (10.1016/j.engstruct.2018.11.020_b0080) 2015; 21 Bońkowski (10.1016/j.engstruct.2018.11.020_b0040) 2018; 155 Chou (10.1016/j.engstruct.2018.11.020_b0015) 2011; 18 Murtagh (10.1016/j.engstruct.2018.11.020_b0055) 2008; 11 Saito (10.1016/j.engstruct.2018.11.020_b0145) 2007; 13 Hashimoto (10.1016/j.engstruct.2018.11.020_b0120) 2015; 1 Ikago (10.1016/j.engstruct.2018.11.020_b0165) 2012; 41 Pan (10.1016/j.engstruct.2018.11.020_b0180) 2018; 25 Chopra (10.1016/j.engstruct.2018.11.020_b0205) 2001 Pietrosanti (10.1016/j.engstruct.2018.11.020_b0115) 2017; 46 Dai (10.1016/j.engstruct.2018.11.020_b0005) 2015; 75 Taniguchi (10.1016/j.engstruct.2018.11.020_b0265) 2008; 30 Du (10.1016/j.engstruct.2018.11.020_b0210) 2008 Dai (10.1016/j.engstruct.2018.11.020_b0030) 2017; 25 Rahman (10.1016/j.engstruct.2018.11.020_b0065) 2015; 51 Luo (10.1016/j.engstruct.2018.11.020_b0200) 2016; 90 PEER (10.1016/j.engstruct.2018.11.020_b0250) 2018 Patil (10.1016/j.engstruct.2018.11.020_b0045) 2016; 120 De Domenico (10.1016/j.engstruct.2018.11.020_b0275) 2018; 113 Chen (10.1016/j.engstruct.2018.11.020_b0075) 2013; 332 Chen (10.1016/j.engstruct.2018.11.020_b0110) 2018; 433 Saito (10.1016/j.engstruct.2018.11.020_b0155) 2008; 54 Pan (10.1016/j.engstruct.2018.11.020_b0260) 2018; 24 Bazeos (10.1016/j.engstruct.2018.11.020_b0035) 2002; 24 Arakaki (10.1016/j.engstruct.2018.11.020_b0095) 1999; 8 Dai (10.1016/j.engstruct.2018.11.020_b0090) 2017; 26 Dai (10.1016/j.engstruct.2018.11.020_b0010) 2017; 20 10.1016/j.engstruct.2018.11.020_b0020 Chankong (10.1016/j.engstruct.2018.11.020_b0235) 1983 Ikago (10.1016/j.engstruct.2018.11.020_b0170) 2012 Lin (10.1016/j.engstruct.2018.11.020_b0215) 2001; 191 Pan (10.1016/j.engstruct.2018.11.020_b0255) 2016; 8 Sadowski (10.1016/j.engstruct.2018.11.020_b0240) 2016; 46 De Domenico (10.1016/j.engstruct.2018.11.020_b0130) 2018; 47 Dai (10.1016/j.engstruct.2018.11.020_b0025) 2015; 14 Taniguchi (10.1016/j.engstruct.2018.11.020_b0185) 2017; 23 Lazar (10.1016/j.engstruct.2018.11.020_b0190) 2014; 43 Colwell (10.1016/j.engstruct.2018.11.020_b0070) 2009; 31 Mensah (10.1016/j.engstruct.2018.11.020_b0085) 2014; 47 Smith (10.1016/j.engstruct.2018.11.020_b0100) 2002; 47 De Domenico (10.1016/j.engstruct.2018.11.020_b0140) 2018; 25 De Domenico (10.1016/j.engstruct.2018.11.020_b0270) 2018; 2018 De Angelis (10.1016/j.engstruct.2018.11.020_b0230) 2015; 41 Smith (10.1016/j.engstruct.2018.11.020_b0105) 2004; 42 Pan (10.1016/j.engstruct.2018.11.020_b0175) 2018; 25 Zuo (10.1016/j.engstruct.2018.11.020_b0050) 2017; 141 Garrido (10.1016/j.engstruct.2018.11.020_b0195) 2013; 56 Giaralis (10.1016/j.engstruct.2018.11.020_b0135) 2018; 25 Den Hartog (10.1016/j.engstruct.2018.11.020_b0245) 1956 Lackner (10.1016/j.engstruct.2018.11.020_b0060) 2011; 14 Saito (10.1016/j.engstruct.2018.11.020_b0160) 2008 Zhang (10.1016/j.engstruct.2018.11.020_b0220) 2018; 114 Saito (10.1016/j.engstruct.2018.11.020_b0150) 2007; 53 Pinkaew (10.1016/j.engstruct.2018.11.020_b0225) 2003; 25 De Domenico (10.1016/j.engstruct.2018.11.020_b0125) 2018; 47 |
References_xml | – volume: 41 start-page: 453 year: 2012 end-page: 474 ident: b0165 article-title: Seismic control of single-degree-of-freedom structure using tuned viscous mass damper publication-title: Earthq Eng Struct Dyn – year: 1956 ident: b0245 article-title: Mechanical vibrations – volume: 13 start-page: 457 year: 2007 end-page: 462 ident: b0145 article-title: A study on optimum response control of passive control systems using viscous damper with inertial mass: substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems publication-title: J Technol Des – volume: 47 start-page: 78 year: 2014 end-page: 86 ident: b0085 article-title: Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs) publication-title: Struct Saf – volume: 8 start-page: 239 year: 1999 end-page: 244 ident: b0095 article-title: Development of seismic devices applied to ball screw: Part 1 basic performance test of RD-series publication-title: J Architect Build Sci – volume: 114 start-page: 639 year: 2018 end-page: 649 ident: b0220 article-title: Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks publication-title: Soil Dyn Earthq Eng – year: 2001 ident: b0205 article-title: Dynamics of structures-theory and applications to earthquake engineering – volume: 25 start-page: 79 year: 2017 end-page: 100 ident: b0030 article-title: Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds publication-title: Wind Struct – volume: 11 start-page: 305 year: 2008 end-page: 317 ident: b0055 article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence publication-title: Wind Energy – volume: 41 start-page: 41 year: 2015 end-page: 60 ident: b0230 article-title: Dynamic response and optimal design of structures with large mass ratio TMD publication-title: Earthq Eng Struct Dyn – volume: 155 start-page: 387 year: 2018 end-page: 393 ident: b0040 article-title: Time history response analysis of a slender tower under translational-rocking seismic excitations publication-title: Eng Struct – year: 2008 ident: b0160 article-title: Vibration tests of 1-story response control system using inertial mass and optimized softy spring and viscous element publication-title: The 14th world conference on earthquake engineering, Beijing, China – volume: 30 start-page: 3478 year: 2008 end-page: 3488 ident: b0265 article-title: Effect of tuned mass damper on displacement demand of base-isolated structures publication-title: Eng Struct – volume: 25 start-page: e2082 year: 2018 ident: b0135 article-title: Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria publication-title: Struct Control Health Monit – volume: 53 start-page: 53 year: 2007 end-page: 66 ident: b0150 article-title: Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling publication-title: J Struct Eng – year: 2018 ident: b0250 article-title: PEER ground motion database – volume: 191 start-page: 103 year: 2001 end-page: 111 ident: b0215 article-title: Accurate and highly efficient algorithms for structural stationary/non-stationary random responses publication-title: Comput Meth Appl Mech Eng – volume: 141 start-page: 303 year: 2017 end-page: 315 ident: b0050 article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards publication-title: Eng Struct – volume: 8 start-page: 11 year: 2016 ident: b0255 article-title: Baseline correction of vibration acceleration signals with inconsistent initial velocity and displacement publication-title: Adv Mech Eng – volume: 1 start-page: 9 year: 2015 ident: b0120 article-title: Innovative base-isolated building with large mass-ratio TMD at basement for greater earthquake resilience publication-title: Future Cities Environ – volume: 90 start-page: 183 year: 2016 end-page: 195 ident: b0200 article-title: Mitigation of liquid sloshing in storage tanks by using a hybrid control method publication-title: Soil Dyn Earthq Eng – year: 2012 ident: b0170 article-title: Simple design method for a tuned viscous mass damper seismic control system publication-title: The 15th world conference on earthquake engineering, Lisbon, Portugal – volume: 14 start-page: 373 year: 2011 end-page: 388 ident: b0060 article-title: Passive structural control of offshore wind turbines publication-title: Wind Energy – volume: 24 start-page: 1015 year: 2002 end-page: 1025 ident: b0035 article-title: Static, seismic and stability analyses of a prototype wind turbine steel tower publication-title: Eng Struct – year: 2008 ident: b0210 article-title: Derivation and application of 3D-beam' s element stiffness and mass matrix with shear effect publication-title: J Chongqing Jiaotong Univ – volume: 26 year: 2017 ident: b0090 article-title: Experimental investigation on dynamic characterization and seismic control performance of a TLPD system publication-title: Struct Des Tall Special Build – volume: 47 start-page: 1648 year: 2002 end-page: 1662 ident: b0100 article-title: Synthesis of mechanical networks: the inerter publication-title: IEEE Trans Automat Control – year: 1983 ident: b0235 article-title: Multiobjective decision making theory and methodology – volume: 2018 start-page: 24 year: 2018 ident: b0270 article-title: Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia publication-title: Adv Civ Eng – volume: 14 start-page: 539 year: 2015 end-page: 548 ident: b0025 article-title: Rapid seismic analysis methodology for in-service wind turbine towers publication-title: Earthq Eng Eng Vib – volume: 46 start-page: 201 year: 2016 end-page: 219 ident: b0240 article-title: Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections publication-title: Earthq Eng Struct Dyn – volume: 25 start-page: e2234 year: 2018 ident: b0140 article-title: Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: a comparative study publication-title: Struct Control Health Monit – volume: 54 start-page: 635 year: 2008 end-page: 648 ident: b0155 article-title: A study on response control of a structure using viscous damper with inertial mass publication-title: J Struct Eng – volume: 25 start-page: e2169 year: 2018 ident: b0180 article-title: Design of structure with inerter system based on stochastic response mitigation ratio publication-title: Struct Control Health Monit – volume: 31 start-page: 358 year: 2009 end-page: 368 ident: b0070 article-title: Tuned liquid column dampers in offshore wind turbines for structural control publication-title: Eng Struct – volume: 120 start-page: 92 year: 2016 end-page: 102 ident: b0045 article-title: Structural performance of a parked wind turbine tower subjected to strong ground motions publication-title: Eng Struct – volume: 433 start-page: 1 year: 2018 end-page: 15 ident: b0110 article-title: Impact of soil–structure interaction on structures with inerter system publication-title: J Sound Vib – volume: 46 start-page: 1367 year: 2017 end-page: 1388 ident: b0115 article-title: Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI) publication-title: Earthq Eng Struct Dyn – volume: 56 start-page: 2149 year: 2013 end-page: 2153 ident: b0195 article-title: Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper publication-title: Eng Struct – volume: 25 start-page: 39 year: 2003 end-page: 46 ident: b0225 article-title: Seismic effectiveness of tuned mass dampers for damage reduction of structures publication-title: Eng Struct – volume: 332 start-page: 5271 year: 2013 end-page: 5282 ident: b0075 article-title: Tuned rolling-ball dampers for vibration control in wind turbines publication-title: J Sound Vibr – volume: 43 start-page: 1129 year: 2014 end-page: 1147 ident: b0190 article-title: Using an inerter-based device for structural vibration suppression publication-title: Earthq Eng Struct Dyn – volume: 47 start-page: 1169 year: 2018 end-page: 1192 ident: b0125 article-title: An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI) publication-title: Earthq Eng Struct Dyn – volume: 25 start-page: e2051 year: 2018 ident: b0175 article-title: Demand-based optimal design of oscillator with parallel-layout viscous inerter damper publication-title: Struct Control Health Monit – volume: 23 start-page: 815 year: 2017 end-page: 820 ident: b0185 article-title: An experimental method to examine property change of tuned viscous mass damper publication-title: J Technol Des – volume: 24 start-page: 2562 year: 2018 end-page: 2575 ident: b0260 article-title: Target-based algorithm for baseline correction of inconsistent vibration signals publication-title: J Vib Control – reference: Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. United States: National Renewable Energy Laboratory (NREL), Golden (CO, United States): U.S. Department of Energy; 2009. – volume: 21 year: 2015 ident: b0080 article-title: Spherical tuned liquid damper for vibration control in wind turbines publication-title: J Vib Control – volume: 20 start-page: 1687 year: 2017 end-page: 1710 ident: b0010 article-title: Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers publication-title: Wind Energy – volume: 42 start-page: 235 year: 2004 end-page: 257 ident: b0105 article-title: Performance benefits in passive vehicle suspensions employing inerters publication-title: Veh Syst Dyn – volume: 75 start-page: 911 year: 2015 end-page: 921 ident: b0005 article-title: Environmental issues associated with wind energy – a review publication-title: Renew Energy – volume: 113 start-page: 503 year: 2018 end-page: 521 ident: b0275 article-title: Earthquake-resilient design of base isolated buildings with TMD at basement: application to a case study publication-title: Soil Dyn Earthq Eng – volume: 18 start-page: 295 year: 2011 end-page: 313 ident: b0015 article-title: Failure analysis and risk management of a collapsed large wind turbine tower publication-title: Eng Fail Anal – volume: 51 start-page: 43 year: 2015 end-page: 54 ident: b0065 article-title: Performance enhancement of wind turbine systems with vibration control: a review publication-title: Renew Sust Energy Rev – volume: 47 start-page: 2539 year: 2018 end-page: 2560 ident: b0130 article-title: Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems publication-title: Earthq Eng Struct Dyn – volume: 43 start-page: 1129 issue: 8 year: 2014 ident: 10.1016/j.engstruct.2018.11.020_b0190 article-title: Using an inerter-based device for structural vibration suppression publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.2390 – volume: 46 start-page: 1367 issue: 8 year: 2017 ident: 10.1016/j.engstruct.2018.11.020_b0115 article-title: Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI) publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.2861 – volume: 24 start-page: 2562 issue: 12 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0260 article-title: Target-based algorithm for baseline correction of inconsistent vibration signals publication-title: J Vib Control doi: 10.1177/1077546316689014 – volume: 24 start-page: 1015 issue: 8 year: 2002 ident: 10.1016/j.engstruct.2018.11.020_b0035 article-title: Static, seismic and stability analyses of a prototype wind turbine steel tower publication-title: Eng Struct doi: 10.1016/S0141-0296(02)00021-4 – volume: 26 issue: 7 year: 2017 ident: 10.1016/j.engstruct.2018.11.020_b0090 article-title: Experimental investigation on dynamic characterization and seismic control performance of a TLPD system publication-title: Struct Des Tall Special Build doi: 10.1002/tal.1350 – volume: 75 start-page: 911 year: 2015 ident: 10.1016/j.engstruct.2018.11.020_b0005 article-title: Environmental issues associated with wind energy – a review publication-title: Renew Energy doi: 10.1016/j.renene.2014.10.074 – year: 2008 ident: 10.1016/j.engstruct.2018.11.020_b0210 article-title: Derivation and application of 3D-beam' s element stiffness and mass matrix with shear effect publication-title: J Chongqing Jiaotong Univ – volume: 20 start-page: 1687 issue: 10 year: 2017 ident: 10.1016/j.engstruct.2018.11.020_b0010 article-title: Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers publication-title: Wind Energy doi: 10.1002/we.2117 – volume: 2018 start-page: 24 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0270 article-title: Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia publication-title: Adv Civ Eng – volume: 56 start-page: 2149 year: 2013 ident: 10.1016/j.engstruct.2018.11.020_b0195 article-title: Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.08.044 – volume: 25 start-page: e2169 issue: 6 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0180 article-title: Design of structure with inerter system based on stochastic response mitigation ratio publication-title: Struct Control Health Monit doi: 10.1002/stc.2169 – volume: 120 start-page: 92 year: 2016 ident: 10.1016/j.engstruct.2018.11.020_b0045 article-title: Structural performance of a parked wind turbine tower subjected to strong ground motions publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.04.020 – volume: 14 start-page: 373 issue: 3 year: 2011 ident: 10.1016/j.engstruct.2018.11.020_b0060 article-title: Passive structural control of offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.426 – volume: 90 start-page: 183 year: 2016 ident: 10.1016/j.engstruct.2018.11.020_b0200 article-title: Mitigation of liquid sloshing in storage tanks by using a hybrid control method publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2016.08.037 – volume: 332 start-page: 5271 issue: 21 year: 2013 ident: 10.1016/j.engstruct.2018.11.020_b0075 article-title: Tuned rolling-ball dampers for vibration control in wind turbines publication-title: J Sound Vibr doi: 10.1016/j.jsv.2013.05.019 – volume: 41 start-page: 41 issue: 1 year: 2015 ident: 10.1016/j.engstruct.2018.11.020_b0230 article-title: Dynamic response and optimal design of structures with large mass ratio TMD publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.1117 – ident: 10.1016/j.engstruct.2018.11.020_b0020 doi: 10.2172/947422 – volume: 25 start-page: 79 issue: 1 year: 2017 ident: 10.1016/j.engstruct.2018.11.020_b0030 article-title: Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds publication-title: Wind Struct – volume: 25 start-page: e2082 issue: 2 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0135 article-title: Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria publication-title: Struct Control Health Monit doi: 10.1002/stc.2082 – volume: 113 start-page: 503 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0275 article-title: Earthquake-resilient design of base isolated buildings with TMD at basement: application to a case study publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2018.06.022 – volume: 14 start-page: 539 issue: 3 year: 2015 ident: 10.1016/j.engstruct.2018.11.020_b0025 article-title: Rapid seismic analysis methodology for in-service wind turbine towers publication-title: Earthq Eng Eng Vib doi: 10.1007/s11803-015-0043-0 – volume: 41 start-page: 453 issue: 3 year: 2012 ident: 10.1016/j.engstruct.2018.11.020_b0165 article-title: Seismic control of single-degree-of-freedom structure using tuned viscous mass damper publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.1138 – volume: 114 start-page: 639 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0220 article-title: Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2018.07.036 – volume: 23 start-page: 815 issue: 55 year: 2017 ident: 10.1016/j.engstruct.2018.11.020_b0185 article-title: An experimental method to examine property change of tuned viscous mass damper publication-title: J Technol Des – volume: 25 start-page: 39 issue: 1 year: 2003 ident: 10.1016/j.engstruct.2018.11.020_b0225 article-title: Seismic effectiveness of tuned mass dampers for damage reduction of structures publication-title: Eng Struct doi: 10.1016/S0141-0296(02)00115-3 – volume: 25 start-page: e2234 issue: 10 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0140 article-title: Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: a comparative study publication-title: Struct Control Health Monit doi: 10.1002/stc.2234 – year: 2008 ident: 10.1016/j.engstruct.2018.11.020_b0160 article-title: Vibration tests of 1-story response control system using inertial mass and optimized softy spring and viscous element – year: 2001 ident: 10.1016/j.engstruct.2018.11.020_b0205 – volume: 155 start-page: 387 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0040 article-title: Time history response analysis of a slender tower under translational-rocking seismic excitations publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.11.042 – volume: 141 start-page: 303 year: 2017 ident: 10.1016/j.engstruct.2018.11.020_b0050 article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.03.006 – year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0250 – volume: 54 start-page: 635 year: 2008 ident: 10.1016/j.engstruct.2018.11.020_b0155 article-title: A study on response control of a structure using viscous damper with inertial mass publication-title: J Struct Eng – year: 2012 ident: 10.1016/j.engstruct.2018.11.020_b0170 article-title: Simple design method for a tuned viscous mass damper seismic control system – volume: 53 start-page: 53 year: 2007 ident: 10.1016/j.engstruct.2018.11.020_b0150 article-title: Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling publication-title: J Struct Eng – volume: 46 start-page: 201 issue: 2 year: 2016 ident: 10.1016/j.engstruct.2018.11.020_b0240 article-title: Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.2785 – volume: 18 start-page: 295 issue: 1 year: 2011 ident: 10.1016/j.engstruct.2018.11.020_b0015 article-title: Failure analysis and risk management of a collapsed large wind turbine tower publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2010.09.008 – volume: 47 start-page: 1648 issue: 10 year: 2002 ident: 10.1016/j.engstruct.2018.11.020_b0100 article-title: Synthesis of mechanical networks: the inerter publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2002.803532 – volume: 8 start-page: 239 year: 1999 ident: 10.1016/j.engstruct.2018.11.020_b0095 article-title: Development of seismic devices applied to ball screw: Part 1 basic performance test of RD-series publication-title: J Architect Build Sci – volume: 30 start-page: 3478 issue: 12 year: 2008 ident: 10.1016/j.engstruct.2018.11.020_b0265 article-title: Effect of tuned mass damper on displacement demand of base-isolated structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2008.05.027 – volume: 25 start-page: e2051 issue: 1 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0175 article-title: Demand-based optimal design of oscillator with parallel-layout viscous inerter damper publication-title: Struct Control Health Monit doi: 10.1002/stc.2051 – volume: 47 start-page: 2539 issue: 12 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0130 article-title: Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.3098 – volume: 1 start-page: 9 issue: 1 year: 2015 ident: 10.1016/j.engstruct.2018.11.020_b0120 article-title: Innovative base-isolated building with large mass-ratio TMD at basement for greater earthquake resilience publication-title: Future Cities Environ doi: 10.1186/s40984-015-0007-6 – volume: 21 issue: 10 year: 2015 ident: 10.1016/j.engstruct.2018.11.020_b0080 article-title: Spherical tuned liquid damper for vibration control in wind turbines publication-title: J Vib Control doi: 10.1177/1077546313495911 – year: 1983 ident: 10.1016/j.engstruct.2018.11.020_b0235 – volume: 47 start-page: 78 issue: 47 year: 2014 ident: 10.1016/j.engstruct.2018.11.020_b0085 article-title: Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs) publication-title: Struct Saf doi: 10.1016/j.strusafe.2013.08.004 – volume: 11 start-page: 305 issue: 4 year: 2008 ident: 10.1016/j.engstruct.2018.11.020_b0055 article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence publication-title: Wind Energy doi: 10.1002/we.249 – volume: 31 start-page: 358 issue: 2 year: 2009 ident: 10.1016/j.engstruct.2018.11.020_b0070 article-title: Tuned liquid column dampers in offshore wind turbines for structural control publication-title: Eng Struct doi: 10.1016/j.engstruct.2008.09.001 – volume: 51 start-page: 43 year: 2015 ident: 10.1016/j.engstruct.2018.11.020_b0065 article-title: Performance enhancement of wind turbine systems with vibration control: a review publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2015.05.078 – volume: 191 start-page: 103 issue: 1–2 year: 2001 ident: 10.1016/j.engstruct.2018.11.020_b0215 article-title: Accurate and highly efficient algorithms for structural stationary/non-stationary random responses publication-title: Comput Meth Appl Mech Eng doi: 10.1016/S0045-7825(01)00247-X – volume: 433 start-page: 1 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0110 article-title: Impact of soil–structure interaction on structures with inerter system publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.07.008 – volume: 42 start-page: 235 issue: 4 year: 2004 ident: 10.1016/j.engstruct.2018.11.020_b0105 article-title: Performance benefits in passive vehicle suspensions employing inerters publication-title: Veh Syst Dyn doi: 10.1080/00423110412331289871 – volume: 13 start-page: 457 issue: 26 year: 2007 ident: 10.1016/j.engstruct.2018.11.020_b0145 article-title: A study on optimum response control of passive control systems using viscous damper with inertial mass: substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems publication-title: J Technol Des – year: 1956 ident: 10.1016/j.engstruct.2018.11.020_b0245 – volume: 47 start-page: 1169 issue: 5 year: 2018 ident: 10.1016/j.engstruct.2018.11.020_b0125 article-title: An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI) publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.3011 – volume: 8 start-page: 11 issue: 10 year: 2016 ident: 10.1016/j.engstruct.2018.11.020_b0255 article-title: Baseline correction of vibration acceleration signals with inconsistent initial velocity and displacement publication-title: Adv Mech Eng doi: 10.1177/1687814016675534 |
SSID | ssj0002880 |
Score | 2.6230075 |
Snippet | •TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of... Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | Beam theory (structures) Design optimization Energy absorption Energy dissipation Euler-Bernoulli beams Inerter system Lager Optimum design Seismic engineering Seismic response Subsystems Tuned mass Turbines Vibration Vibration control Vibration isolators Wind power Wind turbine tower Wind turbines |
Title | Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system |
URI | https://dx.doi.org/10.1016/j.engstruct.2018.11.020 https://www.proquest.com/docview/2181758130 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywpk1SN3HYqoqqgOhSKnXCsp2jCkpTBEVs_Hbu8igUITEw5WVH0dm-u0_5_B1jF9azxoMgcEwEoSMkrbmetY4rtCTxFmFztvvdOBhNxc2sN6uxQbUXhmiVpe8vfHrurcs7ndKaneck6UxyiqJPFUswBem6hNuFCGmWtz--aB6-zKunUWOHWm9wvCCbFzKtxPGSbZLzpMLfv0eoH746D0DDPbZbZo68X3zcPqtBdsB2vukJHrKHCSSvi8Tyl4L5CnyRFBoay4wvH7nm7wjBOUYZxMPA8wppnJjvc3y0ekOPy0kKPE0h5bQpEG3OF5hd80Lv-YhNh1f3g5FTFlBwLMK2laNjCdKjH4PSegao7LkMQsBD7AdWml6IR9P1Ae1k0OmBCX33Ec8EaCO07h6zerbM4IRxxFVSB5HXjX3AHCaWkYliF3QkNSK0WDRYUBlN2VJdnIpcpKqikT2ptbUVWRuxh0JrN5i77vhcCGz83eWyGhW1MVcUhoG_OzercVTlcn1VlOcgcMJ4fvqfd5-xbbyKClJ3k9WxAZxjzrIyrXxStthW__p2NP4Ex-ztVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVLAR_gGJqkaeogcUBAVdYLIHHC2M6AgtoU0SLEhZ_iB5nJUhYhcUA9OYpjy5qxZ1Ge3wBsWs8aD8PQMRE2nEDymatb67iBlkzeEtgM7X52HrauguPr-vUIvJd3YRhWWdj-3KZn1rp4Uy2kWX1MkupFBlH0uWIJhSA11y2QlSf4-kJ5W2_36ICUvOX7zcPL_ZZTlBZwLCU0fUfHEqXHv8yk9QxyQXAZNpCa2A-tNPUGtabmI1kMQ-YATcN37-gpQG0CrWs07yiMB2QuuGzC9tsnrsSXWbk2Xp3Dy_sGKsP0PueFZVCZ3Gb-UK40_rtL_OEcMo_XnIHpIlQVe7k0ZmEE0zmY-kJgOA83F5j0OokVTznUFkUnyUk7uqno3gktXijnF-TWKAFHkZVkEwy1v6eu_jOZeMHc4-02tgXfQiQliw6F8yInmF6Aq6GIdRHG0m6KSyAokZM6jLxa7CMFTbGMTBS7qCOpKSWMg2UIS6EpW9CZc1WNtipxaw9qIG3F0qZkR5G0l8EdDHzMGT3-HrJTakV925yK_M7fgyulHlVhH3qKAyvK1CiAWPnP3Bsw0bo8O1WnR-cnqzBJPVGOKK_AGH2MaxQw9c16tkEF3A77RHwAr3goLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+response+mitigation+of+a+wind+turbine+tower+using+a+tuned+parallel+inerter+mass+system&rft.jtitle=Engineering+structures&rft.au=Zhang%2C+Ruifu&rft.au=Zhao%2C+Zhipeng&rft.au=Dai%2C+Kaoshan&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=180&rft.spage=29&rft.epage=39&rft_id=info:doi/10.1016%2Fj.engstruct.2018.11.020&rft.externalDocID=S0141029618326300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |