Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system

•TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of TPIMS.•TPIMS shows robustness and is superior to TMD in the aspect of additional mass. Traditional tuned mass dampers have been studied to redu...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 180; pp. 29 - 39
Main Authors Zhang, Ruifu, Zhao, Zhipeng, Dai, Kaoshan
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of TPIMS.•TPIMS shows robustness and is superior to TMD in the aspect of additional mass. Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required to be installed at the top of the tower, which may be not suitable for existing wind turbine tower. To provide a retrofit technology for in-service wind turbines, the use of a lightweight energy dissipation device, the tuned parallel inerter mass system (TPIMS), for seismic response mitigation of the wind turbine tower, was proposed in this study. The TPIMS consists of a tuned mass, a spring, and a parallel inerter subsystem, of which the spring is used for tuning the mass and the inerter subsystem is set for vibration energy absorbing and dissipation. A TPIMS-design optimization method was developed for wind turbine tower vibration depression with a target performance level. A typical wind turbine tower was modeled according to the Bernoulli-Euler beam theory and its seismic responses subject to stochastic seismic excitations were obtained. Parametric studies were conducted and the robustness of TPIMS for tower seismic vibration mitigation was proved. The results show that the tower top displacement, base shear, and moment can be reduced significantly with the help of TPIMS. Under a same design target, the required physical mass of TPIMS is much smaller than that of the tuned mass damper. Additionally, a lager apparent mass of TPIMS is more effective for reducing seismic responses of the wind turbine tower.
AbstractList •TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of TPIMS.•TPIMS shows robustness and is superior to TMD in the aspect of additional mass. Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required to be installed at the top of the tower, which may be not suitable for existing wind turbine tower. To provide a retrofit technology for in-service wind turbines, the use of a lightweight energy dissipation device, the tuned parallel inerter mass system (TPIMS), for seismic response mitigation of the wind turbine tower, was proposed in this study. The TPIMS consists of a tuned mass, a spring, and a parallel inerter subsystem, of which the spring is used for tuning the mass and the inerter subsystem is set for vibration energy absorbing and dissipation. A TPIMS-design optimization method was developed for wind turbine tower vibration depression with a target performance level. A typical wind turbine tower was modeled according to the Bernoulli-Euler beam theory and its seismic responses subject to stochastic seismic excitations were obtained. Parametric studies were conducted and the robustness of TPIMS for tower seismic vibration mitigation was proved. The results show that the tower top displacement, base shear, and moment can be reduced significantly with the help of TPIMS. Under a same design target, the required physical mass of TPIMS is much smaller than that of the tuned mass damper. Additionally, a lager apparent mass of TPIMS is more effective for reducing seismic responses of the wind turbine tower.
Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required to be installed at the top of the tower, which may be not suitable for existing wind turbine tower. To provide a retrofit technology for in-service wind turbines, the use of a lightweight energy dissipation device, the tuned parallel inerter mass system (TPIMS), for seismic response mitigation of the wind turbine tower, was proposed in this study. The TPIMS consists of a tuned mass, a spring, and a parallel inerter subsystem, of which the spring is used for tuning the mass and the inerter subsystem is set for vibration energy absorbing and dissipation. A TPIMS-design optimization method was developed for wind turbine tower vibration depression with a target performance level. A typical wind turbine tower was modeled according to the Bernoulli-Euler beam theory and its seismic responses subject to stochastic seismic excitations were obtained. Parametric studies were conducted and the robustness of TPIMS for tower seismic vibration mitigation was proved. The results show that the tower top displacement, base shear, and moment can be reduced significantly with the help of TPIMS. Under a same design target, the required physical mass of TPIMS is much smaller than that of the tuned mass damper. Additionally, a lager apparent mass of TPIMS is more effective for reducing seismic responses of the wind turbine tower.
Author Dai, Kaoshan
Zhao, Zhipeng
Zhang, Ruifu
Author_xml – sequence: 1
  givenname: Ruifu
  surname: Zhang
  fullname: Zhang, Ruifu
  organization: Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China
– sequence: 2
  givenname: Zhipeng
  surname: Zhao
  fullname: Zhao, Zhipeng
  organization: Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China
– sequence: 3
  givenname: Kaoshan
  orcidid: 0000-0002-0193-6076
  surname: Dai
  fullname: Dai, Kaoshan
  email: kdai@scu.edu.cn
  organization: Department of Civil Engineering and Institute for Disaster Management & Reconstruction, Sichuan University, Chengdu 610065, China
BookMark eNqNkEtLxDAUhYOM4Iz6Gwy4bs1NO21cuBDxBYILdWtI09shpU1qkir-e6MjLtzo6ly459zHtyIL6ywScgQsBwbVSZ-j3YToZx1zzkDkADnjbIcsQdRFVhe8WJAlgxIyxk-rPbIKoWeMcSHYkjw_oAmj0dRjmJwNSEcTzUZF4yx1HVX0zdiWxtk3xiKN7g09nYOxm9SKs8WWTsqrYcCBJoOPqT2qEGh4DxHHA7LbqSHg4bfuk6ery8eLm-zu_vr24vwu0yU7jZlqBQqAqqqEhgbLag2iqjFJyystmnWdtCk4prsbAMCm5qxLVYmqKZUq9snxdu7k3cuMIcrezd6mlZKDgHotoGDJdbZ1ae9C8NhJbeLXq9ErM0hg8hOp7OUPUvmJVALIhDTl61_5yZtR-fd_JM-3SUwQXg16GbRBq7E1HpO3debPGR-Un5nW
CitedBy_id crossref_primary_10_1007_s11071_024_10532_y
crossref_primary_10_3390_app10020457
crossref_primary_10_1016_j_engstruct_2020_111422
crossref_primary_10_1016_j_jsv_2020_115827
crossref_primary_10_1016_j_oceaneng_2024_117486
crossref_primary_10_1002_stc_3104
crossref_primary_10_1016_j_soildyn_2023_107976
crossref_primary_10_1016_j_engstruct_2021_113452
crossref_primary_10_1016_j_tws_2023_111356
crossref_primary_10_1016_j_ymssp_2022_108893
crossref_primary_10_1016_j_istruc_2024_107379
crossref_primary_10_1016_j_engstruct_2020_111550
crossref_primary_10_1016_j_engstruct_2021_112488
crossref_primary_10_12677_ojav_2024_122004
crossref_primary_10_1016_j_ijmecsci_2022_107284
crossref_primary_10_1007_s42107_023_00877_x
crossref_primary_10_1177_10775463211013221
crossref_primary_10_1016_j_oceaneng_2024_118909
crossref_primary_10_1177_1077546320951662
crossref_primary_10_1016_j_oceaneng_2024_117356
crossref_primary_10_1016_j_engstruct_2019_109324
crossref_primary_10_1016_j_istruc_2024_107804
crossref_primary_10_1016_j_soildyn_2019_105924
crossref_primary_10_1016_j_istruc_2023_105800
crossref_primary_10_1007_s40996_023_01292_7
crossref_primary_10_1016_j_jsv_2019_06_019
crossref_primary_10_1016_j_jsv_2020_115267
crossref_primary_10_1016_j_heliyon_2024_e35870
crossref_primary_10_1080_00423114_2022_2053170
crossref_primary_10_1002_stc_2471
crossref_primary_10_1080_15376494_2022_2084801
crossref_primary_10_3390_app13031404
crossref_primary_10_1016_j_ijmecsci_2023_108796
crossref_primary_10_3390_buildings15020245
crossref_primary_10_1016_j_engstruct_2019_109917
crossref_primary_10_1016_j_engstruct_2020_110928
crossref_primary_10_1016_j_soildyn_2021_106653
crossref_primary_10_3390_app10092999
crossref_primary_10_1016_j_ymssp_2022_108975
crossref_primary_10_1016_j_engstruct_2020_110248
crossref_primary_10_1142_S021945542150098X
crossref_primary_10_1016_j_engstruct_2023_116732
crossref_primary_10_1155_2023_1349363
crossref_primary_10_1016_j_istruc_2024_106296
crossref_primary_10_1016_j_ijmecsci_2023_108447
crossref_primary_10_1016_j_ijmecsci_2024_109030
crossref_primary_10_1016_j_ijmecsci_2023_108440
crossref_primary_10_1016_j_engstruct_2024_117450
crossref_primary_10_3390_app9194096
crossref_primary_10_1016_j_ijmecsci_2019_105171
crossref_primary_10_3390_math10152735
crossref_primary_10_1016_j_jsv_2019_03_014
crossref_primary_10_1007_s11071_023_08599_0
crossref_primary_10_1177_10775463231164698
crossref_primary_10_1002_eqe_3430
crossref_primary_10_1016_j_istruc_2021_04_089
crossref_primary_10_1007_s42417_023_00918_4
crossref_primary_10_1007_s42417_024_01642_3
crossref_primary_10_1016_j_renene_2023_04_097
crossref_primary_10_1016_j_ymssp_2022_110087
crossref_primary_10_1007_s10483_020_2588_9
crossref_primary_10_1016_j_engstruct_2024_118678
crossref_primary_10_1142_S0219455425500014
crossref_primary_10_1016_j_renene_2021_07_112
crossref_primary_10_1016_j_istruc_2023_105322
crossref_primary_10_1007_s13369_024_09773_1
crossref_primary_10_3390_buildings12050530
crossref_primary_10_1016_j_conbuildmat_2024_138317
crossref_primary_10_1155_2020_8822611
crossref_primary_10_1016_j_engstruct_2021_112034
crossref_primary_10_5194_wes_9_1089_2024
crossref_primary_10_1002_we_2576
crossref_primary_10_1155_stc_1806600
crossref_primary_10_1016_j_oceaneng_2022_110637
crossref_primary_10_1002_eqe_3416
crossref_primary_10_1016_j_soildyn_2021_106902
crossref_primary_10_1016_j_jobe_2022_104353
crossref_primary_10_1115_1_4049212
crossref_primary_10_1007_s11803_022_2090_7
crossref_primary_10_1002_stc_2673
crossref_primary_10_1016_j_ijmecsci_2021_106535
crossref_primary_10_3390_buildings12050661
crossref_primary_10_1016_j_ijmecsci_2020_105840
crossref_primary_10_1016_j_ijmecsci_2020_105845
crossref_primary_10_1002_eqe_3770
crossref_primary_10_1016_j_ijmecsci_2023_108199
crossref_primary_10_1016_j_ymssp_2022_109070
crossref_primary_10_1007_s42417_024_01301_7
crossref_primary_10_1016_j_engstruct_2025_119720
crossref_primary_10_1177_1077546320985335
crossref_primary_10_1007_s40684_019_00102_8
crossref_primary_10_1016_j_engstruct_2021_113459
crossref_primary_10_1016_j_engstruct_2024_118459
crossref_primary_10_1016_j_istruc_2023_105547
crossref_primary_10_1016_j_jfranklin_2019_02_001
crossref_primary_10_1049_cth2_12702
crossref_primary_10_1016_j_ymssp_2023_110235
crossref_primary_10_1002_stc_3085
crossref_primary_10_1016_j_engstruct_2020_111661
crossref_primary_10_1016_j_istruc_2024_107462
crossref_primary_10_3390_buildings12050558
crossref_primary_10_1016_j_engstruct_2023_117061
crossref_primary_10_1016_j_oceaneng_2022_113167
crossref_primary_10_1016_j_engstruct_2019_05_024
crossref_primary_10_1080_15397734_2024_2319113
crossref_primary_10_1016_j_istruc_2025_108356
crossref_primary_10_1002_stc_2890
crossref_primary_10_1002_stc_2775
crossref_primary_10_1016_j_istruc_2023_03_004
crossref_primary_10_1016_j_engstruct_2022_115504
crossref_primary_10_3390_app10010257
crossref_primary_10_1016_j_apm_2022_10_011
crossref_primary_10_1016_j_ijmecsci_2022_107568
crossref_primary_10_1088_1361_665X_ab3dc8
crossref_primary_10_1016_j_soildyn_2020_106099
crossref_primary_10_1007_s10518_021_01267_x
crossref_primary_10_1016_j_ijmecsci_2021_107044
crossref_primary_10_1002_we_2544
crossref_primary_10_1016_j_ijmecsci_2023_108394
crossref_primary_10_1002_stc_2523
crossref_primary_10_1002_stc_2644
crossref_primary_10_1002_stc_2529
crossref_primary_10_1016_j_istruc_2022_06_044
crossref_primary_10_1002_stc_2881
crossref_primary_10_1016_j_istruc_2023_105408
crossref_primary_10_1002_stc_2763
crossref_primary_10_1016_j_engstruct_2022_114308
crossref_primary_10_1016_j_istruc_2024_107526
crossref_primary_10_1016_j_ymssp_2024_111407
crossref_primary_10_1007_s00419_024_02599_1
crossref_primary_10_1007_s11831_023_10040_z
crossref_primary_10_1016_j_engstruct_2020_111169
crossref_primary_10_1002_stc_2990
crossref_primary_10_1016_j_engstruct_2023_117436
crossref_primary_10_3390_buildings15030441
crossref_primary_10_1016_j_soildyn_2022_107639
crossref_primary_10_1016_j_engstruct_2022_114885
crossref_primary_10_1016_j_engstruct_2023_116107
crossref_primary_10_1002_tal_1781
crossref_primary_10_1007_s11071_025_10927_5
crossref_primary_10_1061__ASCE_CF_1943_5509_0001366
crossref_primary_10_1016_j_apm_2023_12_007
crossref_primary_10_1038_s41598_025_93971_w
crossref_primary_10_1016_j_oceaneng_2023_115974
crossref_primary_10_1155_2022_2983700
crossref_primary_10_1016_j_egyr_2024_03_014
crossref_primary_10_1007_s40430_024_04789_y
crossref_primary_10_1016_j_engstruct_2024_118806
crossref_primary_10_1016_j_rser_2020_109710
crossref_primary_10_1155_2024_9922305
crossref_primary_10_1177_16878132221106296
crossref_primary_10_3390_app9183919
crossref_primary_10_1177_01423312211009374
crossref_primary_10_3390_app9235045
crossref_primary_10_1007_s00419_023_02462_9
crossref_primary_10_1016_j_kscej_2025_100158
crossref_primary_10_1016_j_engstruct_2019_05_105
crossref_primary_10_1007_s42107_021_00394_9
crossref_primary_10_1016_j_iintel_2024_100082
crossref_primary_10_1016_j_oceaneng_2024_120182
crossref_primary_10_1002_stc_2602
crossref_primary_10_1016_j_engstruct_2024_118037
crossref_primary_10_1155_2020_8837822
crossref_primary_10_1016_j_engstruct_2023_115819
crossref_primary_10_1002_stc_3016
crossref_primary_10_1155_2020_8875268
crossref_primary_10_1016_j_ijmecsci_2022_107876
crossref_primary_10_1016_j_renene_2020_05_181
crossref_primary_10_1177_1077546320940175
crossref_primary_10_1080_13632469_2020_1778585
crossref_primary_10_1016_j_jsv_2020_115583
crossref_primary_10_1016_j_engstruct_2020_111804
crossref_primary_10_1002_stc_2953
crossref_primary_10_1016_j_marstruc_2020_102778
crossref_primary_10_1016_j_engstruct_2024_119139
crossref_primary_10_1016_j_engstruct_2021_112654
crossref_primary_10_1080_24705314_2023_2176619
crossref_primary_10_1016_j_engstruct_2022_114558
crossref_primary_10_1016_j_oceaneng_2021_109718
crossref_primary_10_1016_j_engstruct_2020_110833
crossref_primary_10_1016_j_istruc_2024_107998
crossref_primary_10_1016_j_engstruct_2024_117508
crossref_primary_10_1177_10775463231156240
crossref_primary_10_1016_j_finel_2019_05_002
crossref_primary_10_1016_j_engstruct_2020_111375
crossref_primary_10_1061_JGGEFK_GTENG_12630
crossref_primary_10_1016_j_ymssp_2022_109915
crossref_primary_10_1088_1742_6596_2647_17_172009
crossref_primary_10_1002_asjc_2700
crossref_primary_10_1007_s11071_023_09054_w
crossref_primary_10_1016_j_engstruct_2024_117529
crossref_primary_10_3390_buildings14010150
crossref_primary_10_1016_j_ijmecsci_2022_107654
crossref_primary_10_1016_j_ijmecsci_2020_106087
crossref_primary_10_1088_1742_6596_2647_3_032007
crossref_primary_10_1142_S0219455423500098
Cites_doi 10.1002/eqe.2390
10.1002/eqe.2861
10.1177/1077546316689014
10.1016/S0141-0296(02)00021-4
10.1002/tal.1350
10.1016/j.renene.2014.10.074
10.1002/we.2117
10.1016/j.engstruct.2013.08.044
10.1002/stc.2169
10.1016/j.engstruct.2016.04.020
10.1002/we.426
10.1016/j.soildyn.2016.08.037
10.1016/j.jsv.2013.05.019
10.1002/eqe.1117
10.2172/947422
10.1002/stc.2082
10.1016/j.soildyn.2018.06.022
10.1007/s11803-015-0043-0
10.1002/eqe.1138
10.1016/j.soildyn.2018.07.036
10.1016/S0141-0296(02)00115-3
10.1002/stc.2234
10.1016/j.engstruct.2017.11.042
10.1016/j.engstruct.2017.03.006
10.1002/eqe.2785
10.1016/j.engfailanal.2010.09.008
10.1109/TAC.2002.803532
10.1016/j.engstruct.2008.05.027
10.1002/stc.2051
10.1002/eqe.3098
10.1186/s40984-015-0007-6
10.1177/1077546313495911
10.1016/j.strusafe.2013.08.004
10.1002/we.249
10.1016/j.engstruct.2008.09.001
10.1016/j.rser.2015.05.078
10.1016/S0045-7825(01)00247-X
10.1016/j.jsv.2018.07.008
10.1080/00423110412331289871
10.1002/eqe.3011
10.1177/1687814016675534
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2019
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2018.11.020
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
EndPage 39
ExternalDocumentID 10_1016_j_engstruct_2018_11_020
S0141029618326300
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SSH
VH1
WUQ
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c409t-ad8e8116668c1be4651867e651d26c8b57d26b32e000b111eb720fb114eab4aa3
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 04:53:19 EDT 2025
Tue Jul 01 03:02:04 EDT 2025
Thu Apr 24 22:53:26 EDT 2025
Fri Feb 23 02:48:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tuned mass
Optimum design
Inerter system
Wind turbine tower
Vibration control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-ad8e8116668c1be4651867e651d26c8b57d26b32e000b111eb720fb114eab4aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0193-6076
PQID 2181758130
PQPubID 2045481
PageCount 11
ParticipantIDs proquest_journals_2181758130
crossref_citationtrail_10_1016_j_engstruct_2018_11_020
crossref_primary_10_1016_j_engstruct_2018_11_020
elsevier_sciencedirect_doi_10_1016_j_engstruct_2018_11_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References De Domenico, Ricciardi (b0140) 2018; 25
Pan, Zhang, Luo, Li, Shen (b0175) 2018; 25
Dai, Huang, Gong, Huang, Ren (b0025) 2015; 14
Dai, Wang, Huang, Zhu, Xu (b0010) 2017; 20
Chankong, Haimes (b0235) 1983
Dai, Sheng, Zhao, Yi, Camara, Bitsuamlak (b0030) 2017; 25
Giaralis, Taflanidis (b0135) 2018; 25
De Domenico, Ricciardi (b0275) 2018; 113
Lackner, Rotea (b0060) 2011; 14
Lin, Zhao, Zhang (b0215) 2001; 191
Smith, Wang (b0105) 2004; 42
PEER (b0250) 2018
Chen, Georgakis (b0080) 2015; 21
Luo, Zhang, Weng (b0200) 2016; 90
Taniguchi, Der Kiureghian, Melkumyan (b0265) 2008; 30
Saito, Sugimura, Nakaminami, Kida, Inoue (b0160) 2008
Ikago, Sugimura, Saito, Inoue (b0170) 2012
De Domenico, Ricciardi (b0270) 2018; 2018
Bońkowski, Zembaty, Minch (b0040) 2018; 155
Chopra, Naeim (b0205) 2001
De Angelis, Perno, Reggio (b0230) 2015; 41
Chen, Georgakis (b0075) 2013; 332
De Domenico, Ricciardi (b0130) 2018; 47
Chen, Zhao, Zhang, Pan (b0110) 2018; 433
Chou, Tu (b0015) 2011; 18
Pan, Zhang, Luo, Shen (b0260) 2018; 24
Arakaki, Kuroda, Arima, Inoue, Baba (b0095) 1999; 8
Saito, Inoue (b0145) 2007; 13
Pietrosanti, De Angelis, Basili (b0115) 2017; 46
Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. United States: National Renewable Energy Laboratory (NREL), Golden (CO, United States): U.S. Department of Energy; 2009.
Pinkaew, Lukkunaprasit, Chatupote (b0225) 2003; 25
Pan, Zhang (b0180) 2018; 25
Taniguchi, Ikenaga, Nakaminami, Ikago, Inoue (b0185) 2017; 23
Rahman, Zhi, Wen, Julai, Khoo (b0065) 2015; 51
Smith (b0100) 2002; 47
Saito, Sugimura, Inoue (b0155) 2008; 54
Zuo, Bi, Hao (b0050) 2017; 141
Den Hartog (b0245) 1956
Dai, Wang, Mao, Lu, Chen (b0090) 2017; 26
Hashimoto, Fujita, Tsuji, Takewaki (b0120) 2015; 1
Ikago, Saito, Inoue (b0165) 2012; 41
Pan, Zhang, Luo, Shen (b0255) 2016; 8
Murtagh, Ghosh, Basu, Broderick (b0055) 2008; 11
Garrido, Curadelli, Ambrosini (b0195) 2013; 56
Du, Xiang, Ge, Zhu (b0210) 2008
Bazeos, Hatzigeorgiou, Hondros, Karamaneas, Karabalis, Beskos (b0035) 2002; 24
Dai, Bergot, Liang, Xiang, Huang (b0005) 2015; 75
Zhang, Zhao, Pan (b0220) 2018; 114
Patil, Jung, Kwon (b0045) 2016; 120
De Domenico, Ricciardi (b0125) 2018; 47
Colwell, Basu (b0070) 2009; 31
Saito, Kurita, Inoue (b0150) 2007; 53
Sadowski, Camara, Málaga-Chuquitaype, Dai (b0240) 2016; 46
Mensah, Dueñas-Osorio (b0085) 2014; 47
Lazar, Neild, Wagg (b0190) 2014; 43
Chen (10.1016/j.engstruct.2018.11.020_b0080) 2015; 21
Bońkowski (10.1016/j.engstruct.2018.11.020_b0040) 2018; 155
Chou (10.1016/j.engstruct.2018.11.020_b0015) 2011; 18
Murtagh (10.1016/j.engstruct.2018.11.020_b0055) 2008; 11
Saito (10.1016/j.engstruct.2018.11.020_b0145) 2007; 13
Hashimoto (10.1016/j.engstruct.2018.11.020_b0120) 2015; 1
Ikago (10.1016/j.engstruct.2018.11.020_b0165) 2012; 41
Pan (10.1016/j.engstruct.2018.11.020_b0180) 2018; 25
Chopra (10.1016/j.engstruct.2018.11.020_b0205) 2001
Pietrosanti (10.1016/j.engstruct.2018.11.020_b0115) 2017; 46
Dai (10.1016/j.engstruct.2018.11.020_b0005) 2015; 75
Taniguchi (10.1016/j.engstruct.2018.11.020_b0265) 2008; 30
Du (10.1016/j.engstruct.2018.11.020_b0210) 2008
Dai (10.1016/j.engstruct.2018.11.020_b0030) 2017; 25
Rahman (10.1016/j.engstruct.2018.11.020_b0065) 2015; 51
Luo (10.1016/j.engstruct.2018.11.020_b0200) 2016; 90
PEER (10.1016/j.engstruct.2018.11.020_b0250) 2018
Patil (10.1016/j.engstruct.2018.11.020_b0045) 2016; 120
De Domenico (10.1016/j.engstruct.2018.11.020_b0275) 2018; 113
Chen (10.1016/j.engstruct.2018.11.020_b0075) 2013; 332
Chen (10.1016/j.engstruct.2018.11.020_b0110) 2018; 433
Saito (10.1016/j.engstruct.2018.11.020_b0155) 2008; 54
Pan (10.1016/j.engstruct.2018.11.020_b0260) 2018; 24
Bazeos (10.1016/j.engstruct.2018.11.020_b0035) 2002; 24
Arakaki (10.1016/j.engstruct.2018.11.020_b0095) 1999; 8
Dai (10.1016/j.engstruct.2018.11.020_b0090) 2017; 26
Dai (10.1016/j.engstruct.2018.11.020_b0010) 2017; 20
10.1016/j.engstruct.2018.11.020_b0020
Chankong (10.1016/j.engstruct.2018.11.020_b0235) 1983
Ikago (10.1016/j.engstruct.2018.11.020_b0170) 2012
Lin (10.1016/j.engstruct.2018.11.020_b0215) 2001; 191
Pan (10.1016/j.engstruct.2018.11.020_b0255) 2016; 8
Sadowski (10.1016/j.engstruct.2018.11.020_b0240) 2016; 46
De Domenico (10.1016/j.engstruct.2018.11.020_b0130) 2018; 47
Dai (10.1016/j.engstruct.2018.11.020_b0025) 2015; 14
Taniguchi (10.1016/j.engstruct.2018.11.020_b0185) 2017; 23
Lazar (10.1016/j.engstruct.2018.11.020_b0190) 2014; 43
Colwell (10.1016/j.engstruct.2018.11.020_b0070) 2009; 31
Mensah (10.1016/j.engstruct.2018.11.020_b0085) 2014; 47
Smith (10.1016/j.engstruct.2018.11.020_b0100) 2002; 47
De Domenico (10.1016/j.engstruct.2018.11.020_b0140) 2018; 25
De Domenico (10.1016/j.engstruct.2018.11.020_b0270) 2018; 2018
De Angelis (10.1016/j.engstruct.2018.11.020_b0230) 2015; 41
Smith (10.1016/j.engstruct.2018.11.020_b0105) 2004; 42
Pan (10.1016/j.engstruct.2018.11.020_b0175) 2018; 25
Zuo (10.1016/j.engstruct.2018.11.020_b0050) 2017; 141
Garrido (10.1016/j.engstruct.2018.11.020_b0195) 2013; 56
Giaralis (10.1016/j.engstruct.2018.11.020_b0135) 2018; 25
Den Hartog (10.1016/j.engstruct.2018.11.020_b0245) 1956
Lackner (10.1016/j.engstruct.2018.11.020_b0060) 2011; 14
Saito (10.1016/j.engstruct.2018.11.020_b0160) 2008
Zhang (10.1016/j.engstruct.2018.11.020_b0220) 2018; 114
Saito (10.1016/j.engstruct.2018.11.020_b0150) 2007; 53
Pinkaew (10.1016/j.engstruct.2018.11.020_b0225) 2003; 25
De Domenico (10.1016/j.engstruct.2018.11.020_b0125) 2018; 47
References_xml – volume: 41
  start-page: 453
  year: 2012
  end-page: 474
  ident: b0165
  article-title: Seismic control of single-degree-of-freedom structure using tuned viscous mass damper
  publication-title: Earthq Eng Struct Dyn
– year: 1956
  ident: b0245
  article-title: Mechanical vibrations
– volume: 13
  start-page: 457
  year: 2007
  end-page: 462
  ident: b0145
  article-title: A study on optimum response control of passive control systems using viscous damper with inertial mass: substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems
  publication-title: J Technol Des
– volume: 47
  start-page: 78
  year: 2014
  end-page: 86
  ident: b0085
  article-title: Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs)
  publication-title: Struct Saf
– volume: 8
  start-page: 239
  year: 1999
  end-page: 244
  ident: b0095
  article-title: Development of seismic devices applied to ball screw: Part 1 basic performance test of RD-series
  publication-title: J Architect Build Sci
– volume: 114
  start-page: 639
  year: 2018
  end-page: 649
  ident: b0220
  article-title: Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks
  publication-title: Soil Dyn Earthq Eng
– year: 2001
  ident: b0205
  article-title: Dynamics of structures-theory and applications to earthquake engineering
– volume: 25
  start-page: 79
  year: 2017
  end-page: 100
  ident: b0030
  article-title: Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds
  publication-title: Wind Struct
– volume: 11
  start-page: 305
  year: 2008
  end-page: 317
  ident: b0055
  article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence
  publication-title: Wind Energy
– volume: 41
  start-page: 41
  year: 2015
  end-page: 60
  ident: b0230
  article-title: Dynamic response and optimal design of structures with large mass ratio TMD
  publication-title: Earthq Eng Struct Dyn
– volume: 155
  start-page: 387
  year: 2018
  end-page: 393
  ident: b0040
  article-title: Time history response analysis of a slender tower under translational-rocking seismic excitations
  publication-title: Eng Struct
– year: 2008
  ident: b0160
  article-title: Vibration tests of 1-story response control system using inertial mass and optimized softy spring and viscous element
  publication-title: The 14th world conference on earthquake engineering, Beijing, China
– volume: 30
  start-page: 3478
  year: 2008
  end-page: 3488
  ident: b0265
  article-title: Effect of tuned mass damper on displacement demand of base-isolated structures
  publication-title: Eng Struct
– volume: 25
  start-page: e2082
  year: 2018
  ident: b0135
  article-title: Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria
  publication-title: Struct Control Health Monit
– volume: 53
  start-page: 53
  year: 2007
  end-page: 66
  ident: b0150
  article-title: Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling
  publication-title: J Struct Eng
– year: 2018
  ident: b0250
  article-title: PEER ground motion database
– volume: 191
  start-page: 103
  year: 2001
  end-page: 111
  ident: b0215
  article-title: Accurate and highly efficient algorithms for structural stationary/non-stationary random responses
  publication-title: Comput Meth Appl Mech Eng
– volume: 141
  start-page: 303
  year: 2017
  end-page: 315
  ident: b0050
  article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards
  publication-title: Eng Struct
– volume: 8
  start-page: 11
  year: 2016
  ident: b0255
  article-title: Baseline correction of vibration acceleration signals with inconsistent initial velocity and displacement
  publication-title: Adv Mech Eng
– volume: 1
  start-page: 9
  year: 2015
  ident: b0120
  article-title: Innovative base-isolated building with large mass-ratio TMD at basement for greater earthquake resilience
  publication-title: Future Cities Environ
– volume: 90
  start-page: 183
  year: 2016
  end-page: 195
  ident: b0200
  article-title: Mitigation of liquid sloshing in storage tanks by using a hybrid control method
  publication-title: Soil Dyn Earthq Eng
– year: 2012
  ident: b0170
  article-title: Simple design method for a tuned viscous mass damper seismic control system
  publication-title: The 15th world conference on earthquake engineering, Lisbon, Portugal
– volume: 14
  start-page: 373
  year: 2011
  end-page: 388
  ident: b0060
  article-title: Passive structural control of offshore wind turbines
  publication-title: Wind Energy
– volume: 24
  start-page: 1015
  year: 2002
  end-page: 1025
  ident: b0035
  article-title: Static, seismic and stability analyses of a prototype wind turbine steel tower
  publication-title: Eng Struct
– year: 2008
  ident: b0210
  article-title: Derivation and application of 3D-beam' s element stiffness and mass matrix with shear effect
  publication-title: J Chongqing Jiaotong Univ
– volume: 26
  year: 2017
  ident: b0090
  article-title: Experimental investigation on dynamic characterization and seismic control performance of a TLPD system
  publication-title: Struct Des Tall Special Build
– volume: 47
  start-page: 1648
  year: 2002
  end-page: 1662
  ident: b0100
  article-title: Synthesis of mechanical networks: the inerter
  publication-title: IEEE Trans Automat Control
– year: 1983
  ident: b0235
  article-title: Multiobjective decision making theory and methodology
– volume: 2018
  start-page: 24
  year: 2018
  ident: b0270
  article-title: Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia
  publication-title: Adv Civ Eng
– volume: 14
  start-page: 539
  year: 2015
  end-page: 548
  ident: b0025
  article-title: Rapid seismic analysis methodology for in-service wind turbine towers
  publication-title: Earthq Eng Eng Vib
– volume: 46
  start-page: 201
  year: 2016
  end-page: 219
  ident: b0240
  article-title: Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections
  publication-title: Earthq Eng Struct Dyn
– volume: 25
  start-page: e2234
  year: 2018
  ident: b0140
  article-title: Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: a comparative study
  publication-title: Struct Control Health Monit
– volume: 54
  start-page: 635
  year: 2008
  end-page: 648
  ident: b0155
  article-title: A study on response control of a structure using viscous damper with inertial mass
  publication-title: J Struct Eng
– volume: 25
  start-page: e2169
  year: 2018
  ident: b0180
  article-title: Design of structure with inerter system based on stochastic response mitigation ratio
  publication-title: Struct Control Health Monit
– volume: 31
  start-page: 358
  year: 2009
  end-page: 368
  ident: b0070
  article-title: Tuned liquid column dampers in offshore wind turbines for structural control
  publication-title: Eng Struct
– volume: 120
  start-page: 92
  year: 2016
  end-page: 102
  ident: b0045
  article-title: Structural performance of a parked wind turbine tower subjected to strong ground motions
  publication-title: Eng Struct
– volume: 433
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0110
  article-title: Impact of soil–structure interaction on structures with inerter system
  publication-title: J Sound Vib
– volume: 46
  start-page: 1367
  year: 2017
  end-page: 1388
  ident: b0115
  article-title: Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)
  publication-title: Earthq Eng Struct Dyn
– volume: 56
  start-page: 2149
  year: 2013
  end-page: 2153
  ident: b0195
  article-title: Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper
  publication-title: Eng Struct
– volume: 25
  start-page: 39
  year: 2003
  end-page: 46
  ident: b0225
  article-title: Seismic effectiveness of tuned mass dampers for damage reduction of structures
  publication-title: Eng Struct
– volume: 332
  start-page: 5271
  year: 2013
  end-page: 5282
  ident: b0075
  article-title: Tuned rolling-ball dampers for vibration control in wind turbines
  publication-title: J Sound Vibr
– volume: 43
  start-page: 1129
  year: 2014
  end-page: 1147
  ident: b0190
  article-title: Using an inerter-based device for structural vibration suppression
  publication-title: Earthq Eng Struct Dyn
– volume: 47
  start-page: 1169
  year: 2018
  end-page: 1192
  ident: b0125
  article-title: An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)
  publication-title: Earthq Eng Struct Dyn
– volume: 25
  start-page: e2051
  year: 2018
  ident: b0175
  article-title: Demand-based optimal design of oscillator with parallel-layout viscous inerter damper
  publication-title: Struct Control Health Monit
– volume: 23
  start-page: 815
  year: 2017
  end-page: 820
  ident: b0185
  article-title: An experimental method to examine property change of tuned viscous mass damper
  publication-title: J Technol Des
– volume: 24
  start-page: 2562
  year: 2018
  end-page: 2575
  ident: b0260
  article-title: Target-based algorithm for baseline correction of inconsistent vibration signals
  publication-title: J Vib Control
– reference: Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. United States: National Renewable Energy Laboratory (NREL), Golden (CO, United States): U.S. Department of Energy; 2009.
– volume: 21
  year: 2015
  ident: b0080
  article-title: Spherical tuned liquid damper for vibration control in wind turbines
  publication-title: J Vib Control
– volume: 20
  start-page: 1687
  year: 2017
  end-page: 1710
  ident: b0010
  article-title: Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers
  publication-title: Wind Energy
– volume: 42
  start-page: 235
  year: 2004
  end-page: 257
  ident: b0105
  article-title: Performance benefits in passive vehicle suspensions employing inerters
  publication-title: Veh Syst Dyn
– volume: 75
  start-page: 911
  year: 2015
  end-page: 921
  ident: b0005
  article-title: Environmental issues associated with wind energy – a review
  publication-title: Renew Energy
– volume: 113
  start-page: 503
  year: 2018
  end-page: 521
  ident: b0275
  article-title: Earthquake-resilient design of base isolated buildings with TMD at basement: application to a case study
  publication-title: Soil Dyn Earthq Eng
– volume: 18
  start-page: 295
  year: 2011
  end-page: 313
  ident: b0015
  article-title: Failure analysis and risk management of a collapsed large wind turbine tower
  publication-title: Eng Fail Anal
– volume: 51
  start-page: 43
  year: 2015
  end-page: 54
  ident: b0065
  article-title: Performance enhancement of wind turbine systems with vibration control: a review
  publication-title: Renew Sust Energy Rev
– volume: 47
  start-page: 2539
  year: 2018
  end-page: 2560
  ident: b0130
  article-title: Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems
  publication-title: Earthq Eng Struct Dyn
– volume: 43
  start-page: 1129
  issue: 8
  year: 2014
  ident: 10.1016/j.engstruct.2018.11.020_b0190
  article-title: Using an inerter-based device for structural vibration suppression
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.2390
– volume: 46
  start-page: 1367
  issue: 8
  year: 2017
  ident: 10.1016/j.engstruct.2018.11.020_b0115
  article-title: Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.2861
– volume: 24
  start-page: 2562
  issue: 12
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0260
  article-title: Target-based algorithm for baseline correction of inconsistent vibration signals
  publication-title: J Vib Control
  doi: 10.1177/1077546316689014
– volume: 24
  start-page: 1015
  issue: 8
  year: 2002
  ident: 10.1016/j.engstruct.2018.11.020_b0035
  article-title: Static, seismic and stability analyses of a prototype wind turbine steel tower
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(02)00021-4
– volume: 26
  issue: 7
  year: 2017
  ident: 10.1016/j.engstruct.2018.11.020_b0090
  article-title: Experimental investigation on dynamic characterization and seismic control performance of a TLPD system
  publication-title: Struct Des Tall Special Build
  doi: 10.1002/tal.1350
– volume: 75
  start-page: 911
  year: 2015
  ident: 10.1016/j.engstruct.2018.11.020_b0005
  article-title: Environmental issues associated with wind energy – a review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.10.074
– year: 2008
  ident: 10.1016/j.engstruct.2018.11.020_b0210
  article-title: Derivation and application of 3D-beam' s element stiffness and mass matrix with shear effect
  publication-title: J Chongqing Jiaotong Univ
– volume: 20
  start-page: 1687
  issue: 10
  year: 2017
  ident: 10.1016/j.engstruct.2018.11.020_b0010
  article-title: Development of a modified stochastic subspace identification method for rapid structural assessment of in-service utility-scale wind turbine towers
  publication-title: Wind Energy
  doi: 10.1002/we.2117
– volume: 2018
  start-page: 24
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0270
  article-title: Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia
  publication-title: Adv Civ Eng
– volume: 56
  start-page: 2149
  year: 2013
  ident: 10.1016/j.engstruct.2018.11.020_b0195
  article-title: Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.08.044
– volume: 25
  start-page: e2169
  issue: 6
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0180
  article-title: Design of structure with inerter system based on stochastic response mitigation ratio
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2169
– volume: 120
  start-page: 92
  year: 2016
  ident: 10.1016/j.engstruct.2018.11.020_b0045
  article-title: Structural performance of a parked wind turbine tower subjected to strong ground motions
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.04.020
– volume: 14
  start-page: 373
  issue: 3
  year: 2011
  ident: 10.1016/j.engstruct.2018.11.020_b0060
  article-title: Passive structural control of offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.426
– volume: 90
  start-page: 183
  year: 2016
  ident: 10.1016/j.engstruct.2018.11.020_b0200
  article-title: Mitigation of liquid sloshing in storage tanks by using a hybrid control method
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2016.08.037
– volume: 332
  start-page: 5271
  issue: 21
  year: 2013
  ident: 10.1016/j.engstruct.2018.11.020_b0075
  article-title: Tuned rolling-ball dampers for vibration control in wind turbines
  publication-title: J Sound Vibr
  doi: 10.1016/j.jsv.2013.05.019
– volume: 41
  start-page: 41
  issue: 1
  year: 2015
  ident: 10.1016/j.engstruct.2018.11.020_b0230
  article-title: Dynamic response and optimal design of structures with large mass ratio TMD
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.1117
– ident: 10.1016/j.engstruct.2018.11.020_b0020
  doi: 10.2172/947422
– volume: 25
  start-page: 79
  issue: 1
  year: 2017
  ident: 10.1016/j.engstruct.2018.11.020_b0030
  article-title: Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds
  publication-title: Wind Struct
– volume: 25
  start-page: e2082
  issue: 2
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0135
  article-title: Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2082
– volume: 113
  start-page: 503
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0275
  article-title: Earthquake-resilient design of base isolated buildings with TMD at basement: application to a case study
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2018.06.022
– volume: 14
  start-page: 539
  issue: 3
  year: 2015
  ident: 10.1016/j.engstruct.2018.11.020_b0025
  article-title: Rapid seismic analysis methodology for in-service wind turbine towers
  publication-title: Earthq Eng Eng Vib
  doi: 10.1007/s11803-015-0043-0
– volume: 41
  start-page: 453
  issue: 3
  year: 2012
  ident: 10.1016/j.engstruct.2018.11.020_b0165
  article-title: Seismic control of single-degree-of-freedom structure using tuned viscous mass damper
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.1138
– volume: 114
  start-page: 639
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0220
  article-title: Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2018.07.036
– volume: 23
  start-page: 815
  issue: 55
  year: 2017
  ident: 10.1016/j.engstruct.2018.11.020_b0185
  article-title: An experimental method to examine property change of tuned viscous mass damper
  publication-title: J Technol Des
– volume: 25
  start-page: 39
  issue: 1
  year: 2003
  ident: 10.1016/j.engstruct.2018.11.020_b0225
  article-title: Seismic effectiveness of tuned mass dampers for damage reduction of structures
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(02)00115-3
– volume: 25
  start-page: e2234
  issue: 10
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0140
  article-title: Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: a comparative study
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2234
– year: 2008
  ident: 10.1016/j.engstruct.2018.11.020_b0160
  article-title: Vibration tests of 1-story response control system using inertial mass and optimized softy spring and viscous element
– year: 2001
  ident: 10.1016/j.engstruct.2018.11.020_b0205
– volume: 155
  start-page: 387
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0040
  article-title: Time history response analysis of a slender tower under translational-rocking seismic excitations
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.11.042
– volume: 141
  start-page: 303
  year: 2017
  ident: 10.1016/j.engstruct.2018.11.020_b0050
  article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.03.006
– year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0250
– volume: 54
  start-page: 635
  year: 2008
  ident: 10.1016/j.engstruct.2018.11.020_b0155
  article-title: A study on response control of a structure using viscous damper with inertial mass
  publication-title: J Struct Eng
– year: 2012
  ident: 10.1016/j.engstruct.2018.11.020_b0170
  article-title: Simple design method for a tuned viscous mass damper seismic control system
– volume: 53
  start-page: 53
  year: 2007
  ident: 10.1016/j.engstruct.2018.11.020_b0150
  article-title: Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling
  publication-title: J Struct Eng
– volume: 46
  start-page: 201
  issue: 2
  year: 2016
  ident: 10.1016/j.engstruct.2018.11.020_b0240
  article-title: Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.2785
– volume: 18
  start-page: 295
  issue: 1
  year: 2011
  ident: 10.1016/j.engstruct.2018.11.020_b0015
  article-title: Failure analysis and risk management of a collapsed large wind turbine tower
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2010.09.008
– volume: 47
  start-page: 1648
  issue: 10
  year: 2002
  ident: 10.1016/j.engstruct.2018.11.020_b0100
  article-title: Synthesis of mechanical networks: the inerter
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2002.803532
– volume: 8
  start-page: 239
  year: 1999
  ident: 10.1016/j.engstruct.2018.11.020_b0095
  article-title: Development of seismic devices applied to ball screw: Part 1 basic performance test of RD-series
  publication-title: J Architect Build Sci
– volume: 30
  start-page: 3478
  issue: 12
  year: 2008
  ident: 10.1016/j.engstruct.2018.11.020_b0265
  article-title: Effect of tuned mass damper on displacement demand of base-isolated structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2008.05.027
– volume: 25
  start-page: e2051
  issue: 1
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0175
  article-title: Demand-based optimal design of oscillator with parallel-layout viscous inerter damper
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2051
– volume: 47
  start-page: 2539
  issue: 12
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0130
  article-title: Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.3098
– volume: 1
  start-page: 9
  issue: 1
  year: 2015
  ident: 10.1016/j.engstruct.2018.11.020_b0120
  article-title: Innovative base-isolated building with large mass-ratio TMD at basement for greater earthquake resilience
  publication-title: Future Cities Environ
  doi: 10.1186/s40984-015-0007-6
– volume: 21
  issue: 10
  year: 2015
  ident: 10.1016/j.engstruct.2018.11.020_b0080
  article-title: Spherical tuned liquid damper for vibration control in wind turbines
  publication-title: J Vib Control
  doi: 10.1177/1077546313495911
– year: 1983
  ident: 10.1016/j.engstruct.2018.11.020_b0235
– volume: 47
  start-page: 78
  issue: 47
  year: 2014
  ident: 10.1016/j.engstruct.2018.11.020_b0085
  article-title: Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs)
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2013.08.004
– volume: 11
  start-page: 305
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2018.11.020_b0055
  article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence
  publication-title: Wind Energy
  doi: 10.1002/we.249
– volume: 31
  start-page: 358
  issue: 2
  year: 2009
  ident: 10.1016/j.engstruct.2018.11.020_b0070
  article-title: Tuned liquid column dampers in offshore wind turbines for structural control
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2008.09.001
– volume: 51
  start-page: 43
  year: 2015
  ident: 10.1016/j.engstruct.2018.11.020_b0065
  article-title: Performance enhancement of wind turbine systems with vibration control: a review
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/j.rser.2015.05.078
– volume: 191
  start-page: 103
  issue: 1–2
  year: 2001
  ident: 10.1016/j.engstruct.2018.11.020_b0215
  article-title: Accurate and highly efficient algorithms for structural stationary/non-stationary random responses
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00247-X
– volume: 433
  start-page: 1
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0110
  article-title: Impact of soil–structure interaction on structures with inerter system
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.07.008
– volume: 42
  start-page: 235
  issue: 4
  year: 2004
  ident: 10.1016/j.engstruct.2018.11.020_b0105
  article-title: Performance benefits in passive vehicle suspensions employing inerters
  publication-title: Veh Syst Dyn
  doi: 10.1080/00423110412331289871
– volume: 13
  start-page: 457
  issue: 26
  year: 2007
  ident: 10.1016/j.engstruct.2018.11.020_b0145
  article-title: A study on optimum response control of passive control systems using viscous damper with inertial mass: substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems
  publication-title: J Technol Des
– year: 1956
  ident: 10.1016/j.engstruct.2018.11.020_b0245
– volume: 47
  start-page: 1169
  issue: 5
  year: 2018
  ident: 10.1016/j.engstruct.2018.11.020_b0125
  article-title: An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.3011
– volume: 8
  start-page: 11
  issue: 10
  year: 2016
  ident: 10.1016/j.engstruct.2018.11.020_b0255
  article-title: Baseline correction of vibration acceleration signals with inconsistent initial velocity and displacement
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814016675534
SSID ssj0002880
Score 2.6230075
Snippet •TPIMS was proposed as a lightweight device to reduce wind turbine tower vibrations.•An optimum design method was developed to minimize tuned mass weight of...
Traditional tuned mass dampers have been studied to reduce vibration responses of wind turbine towers. However, the large additional mass is usually required...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Beam theory (structures)
Design optimization
Energy absorption
Energy dissipation
Euler-Bernoulli beams
Inerter system
Lager
Optimum design
Seismic engineering
Seismic response
Subsystems
Tuned mass
Turbines
Vibration
Vibration control
Vibration isolators
Wind power
Wind turbine tower
Wind turbines
Title Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system
URI https://dx.doi.org/10.1016/j.engstruct.2018.11.020
https://www.proquest.com/docview/2181758130
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywpk1SN3HYqoqqgOhSKnXCsp2jCkpTBEVs_Hbu8igUITEw5WVH0dm-u0_5_B1jF9azxoMgcEwEoSMkrbmetY4rtCTxFmFztvvdOBhNxc2sN6uxQbUXhmiVpe8vfHrurcs7ndKaneck6UxyiqJPFUswBem6hNuFCGmWtz--aB6-zKunUWOHWm9wvCCbFzKtxPGSbZLzpMLfv0eoH746D0DDPbZbZo68X3zcPqtBdsB2vukJHrKHCSSvi8Tyl4L5CnyRFBoay4wvH7nm7wjBOUYZxMPA8wppnJjvc3y0ekOPy0kKPE0h5bQpEG3OF5hd80Lv-YhNh1f3g5FTFlBwLMK2laNjCdKjH4PSegao7LkMQsBD7AdWml6IR9P1Ae1k0OmBCX33Ec8EaCO07h6zerbM4IRxxFVSB5HXjX3AHCaWkYliF3QkNSK0WDRYUBlN2VJdnIpcpKqikT2ptbUVWRuxh0JrN5i77vhcCGz83eWyGhW1MVcUhoG_OzercVTlcn1VlOcgcMJ4fvqfd5-xbbyKClJ3k9WxAZxjzrIyrXxStthW__p2NP4Ex-ztVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVLAR_gGJqkaeogcUBAVdYLIHHC2M6AgtoU0SLEhZ_iB5nJUhYhcUA9OYpjy5qxZ1Ge3wBsWs8aD8PQMRE2nEDymatb67iBlkzeEtgM7X52HrauguPr-vUIvJd3YRhWWdj-3KZn1rp4Uy2kWX1MkupFBlH0uWIJhSA11y2QlSf4-kJ5W2_36ICUvOX7zcPL_ZZTlBZwLCU0fUfHEqXHv8yk9QxyQXAZNpCa2A-tNPUGtabmI1kMQ-YATcN37-gpQG0CrWs07yiMB2QuuGzC9tsnrsSXWbk2Xp3Dy_sGKsP0PueFZVCZ3Gb-UK40_rtL_OEcMo_XnIHpIlQVe7k0ZmEE0zmY-kJgOA83F5j0OokVTznUFkUnyUk7uqno3gktXijnF-TWKAFHkZVkEwy1v6eu_jOZeMHc4-02tgXfQiQliw6F8yInmF6Aq6GIdRHG0m6KSyAokZM6jLxa7CMFTbGMTBS7qCOpKSWMg2UIS6EpW9CZc1WNtipxaw9qIG3F0qZkR5G0l8EdDHzMGT3-HrJTakV925yK_M7fgyulHlVhH3qKAyvK1CiAWPnP3Bsw0bo8O1WnR-cnqzBJPVGOKK_AGH2MaxQw9c16tkEF3A77RHwAr3goLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+response+mitigation+of+a+wind+turbine+tower+using+a+tuned+parallel+inerter+mass+system&rft.jtitle=Engineering+structures&rft.au=Zhang%2C+Ruifu&rft.au=Zhao%2C+Zhipeng&rft.au=Dai%2C+Kaoshan&rft.date=2019-02-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=180&rft.spage=29&rft.epage=39&rft_id=info:doi/10.1016%2Fj.engstruct.2018.11.020&rft.externalDocID=S0141029618326300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon