Trust-Based Distributed Set-Membership Filtering for Target Tracking Under Network Attacks
For target tracking problems in wireless sensor networks subject to malicious network attacks, this paper proposes a distributed set-membership filtering algorithm based on trust dynamic combination strategy. The algorithm has a prediction-correction recursive updating structure similar to Kalman fi...
Saved in:
Published in | IEEE access Vol. 11; pp. 84468 - 84474 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For target tracking problems in wireless sensor networks subject to malicious network attacks, this paper proposes a distributed set-membership filtering algorithm based on trust dynamic combination strategy. The algorithm has a prediction-correction recursive updating structure similar to Kalman filtering, by introducing the clustering fusion step of received data from other nodes between the prediction step and the measurement correction update step, the clustering fusion step uses K-means to cluster and classify the data of trusted and untrusted nodes, the target state is updated by the fusion of trusted received data set, to improve the resistance to various wicked network attacks. Simulation results show that compared with the traditional distributed set-membership filtering method, the proposed method has better target tracking performance in the face of wicked network attacks such as random attacks, false data injection, replay attacks, and hybrid attacks. |
---|---|
AbstractList | For target tracking problems in wireless sensor networks subject to malicious network attacks, this paper proposes a distributed set-membership filtering algorithm based on trust dynamic combination strategy. The algorithm has a prediction-correction recursive updating structure similar to Kalman filtering, by introducing the clustering fusion step of received data from other nodes between the prediction step and the measurement correction update step, the clustering fusion step uses K-means to cluster and classify the data of trusted and untrusted nodes, the target state is updated by the fusion of trusted received data set, to improve the resistance to various wicked network attacks. Simulation results show that compared with the traditional distributed set-membership filtering method, the proposed method has better target tracking performance in the face of wicked network attacks such as random attacks, false data injection, replay attacks, and hybrid attacks. |
Author | Amuri, Minane Joel Villier Li, Xueyang Zhu, Hongbo Wu, Haibo |
Author_xml | – sequence: 1 givenname: Haibo orcidid: 0009-0009-6037-1245 surname: Wu fullname: Wu, Haibo organization: School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, China – sequence: 2 givenname: Hongbo orcidid: 0000-0003-4013-3943 surname: Zhu fullname: Zhu, Hongbo email: hbzhu@aust.edu.cn organization: School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, China – sequence: 3 givenname: Xueyang orcidid: 0000-0002-0877-7135 surname: Li fullname: Li, Xueyang organization: School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, China – sequence: 4 givenname: Minane Joel Villier orcidid: 0000-0001-7807-899X surname: Amuri fullname: Amuri, Minane Joel Villier organization: School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, China |
BookMark | eNp9kU9vEzEQxS1UJErpJ4DDSpw3-M_a6z2G0EKlAoekFy7WrD0OTtN1sB0hvj0OW6SKA2NpPHqa9zTS7yU5m-KEhLxmdMEYHd4tV6ur9XrBKRcLIajgVDwj55ypoRVSqLMn8wtymfOO1tJVkv05-bZJx1za95DRNR9CLimMx1LnNZb2Mz6MmPL3cGiuw75gCtO28TE1G0hbLM0mgb0_aXeTw9R8wfIzpvtmWUrV8yvy3MM-4-Xjf0Hurq82q0_t7dePN6vlbWs7OpQWuIKuY6MXg3eeOadkT2vzMFIYnNK9FoMGL4F7oTrPqcfOIkJ9vfIoLsjNnOsi7MwhhQdIv0yEYP4IMW0NpBLsHs04IlBkUkmNnbc9aGYVRaeFdRY7VbPezlmHFH8cMRezi8c01fMN15IJKXvd1a1h3rIp5pzQGxsKlBCnkiDsDaPmRMbMZMyJjHkkU73iH-_fi__vejO7AiI-cXBGK1bxG9R_nYI |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1002_jemt_24767 crossref_primary_10_1109_ACCESS_2023_3326874 crossref_primary_10_1109_ACCESS_2025_3528653 crossref_primary_10_1016_j_isatra_2023_12_014 |
Cites_doi | 10.1109/TCYB.2017.2769722 10.1016/j.cose.2017.06.009 10.1016/j.automatica.2021.109684 10.1109/JSAC.2013.130713 10.1109/TCYB.2018.2885653 10.1016/j.sigpro.2016.07.033 10.1109/ACCESS.2019.2905514 10.1109/TAC.2019.2934389 10.1109/TVT.2022.3231598 10.1109/JIOT.2022.3222188 10.1109/TIM.2020.2967875 10.1109/TAC.2010.2042987 10.1109/ICWMC.2009.25 10.1109/MED.2012.6265722 10.1109/CIT/IUCC/DASC/PICOM.2015.36 10.1109/ICDSP.2015.7251992 10.1016/j.comcom.2015.09.006 10.1016/j.inffus.2018.04.002 10.1109/TII.2015.2475695 10.1145/1031495.1031518 10.1109/SNPA.2003.1203362 10.4236/wsn.2011.34014 10.1155/2015/841462 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3303203 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 84474 |
ExternalDocumentID | oai_doaj_org_article_bbea0e15658e4fc7a81c60ed83cdce46 10_1109_ACCESS_2023_3303203 10210536 |
Genre | orig-research |
GrantInformation_xml | – fundername: Anhui Provincial Natural Science Foundation grantid: 2008085QF298 funderid: 10.13039/501100003995 – fundername: Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining grantid: 2022KLMI01 – fundername: National Natural Science Foundation of China grantid: 62003001 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-a26a441bf39fdf1dd6570d65fab0a9d6878398af5a2f364f20fe4ceeaeae76fe3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:08:32 EDT 2025 Mon Jun 30 05:31:49 EDT 2025 Tue Jul 01 02:49:13 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Wed Aug 27 02:14:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-a26a441bf39fdf1dd6570d65fab0a9d6878398af5a2f364f20fe4ceeaeae76fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0877-7135 0000-0001-7807-899X 0009-0009-6037-1245 0000-0003-4013-3943 |
OpenAccessLink | https://doaj.org/article/bbea0e15658e4fc7a81c60ed83cdce46 |
PQID | 2851355784 |
PQPubID | 4845423 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2023_3303203 doaj_primary_oai_doaj_org_article_bbea0e15658e4fc7a81c60ed83cdce46 ieee_primary_10210536 crossref_citationtrail_10_1109_ACCESS_2023_3303203 proquest_journals_2851355784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref2 ref1 ref17 ref16 ref19 fard (ref18) 2012 ref24 ref23 ref25 ref20 ref22 ref21 zhang (ref14) 2017; 47 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/TCYB.2017.2769722 – ident: ref17 doi: 10.1016/j.cose.2017.06.009 – ident: ref11 doi: 10.1016/j.automatica.2021.109684 – ident: ref2 doi: 10.1109/JSAC.2013.130713 – ident: ref8 doi: 10.1109/TCYB.2018.2885653 – ident: ref23 doi: 10.1016/j.sigpro.2016.07.033 – ident: ref10 doi: 10.1109/ACCESS.2019.2905514 – ident: ref12 doi: 10.1109/TAC.2019.2934389 – ident: ref9 doi: 10.1109/TVT.2022.3231598 – ident: ref3 doi: 10.1109/JIOT.2022.3222188 – ident: ref21 doi: 10.1109/TIM.2020.2967875 – ident: ref24 doi: 10.1109/TAC.2010.2042987 – ident: ref15 doi: 10.1109/ICWMC.2009.25 – volume: 47 start-page: 1618 year: 2017 ident: ref14 article-title: Energy-efficient distributed filtering in sensor networks: A unified switched system approach publication-title: IEEE Trans Cybern – ident: ref19 doi: 10.1109/MED.2012.6265722 – year: 2012 ident: ref18 article-title: Secure tracking in sensor networks using adaptive extended Kalman filter publication-title: arXiv 1204 3141 – ident: ref25 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.36 – ident: ref22 doi: 10.1109/ICDSP.2015.7251992 – ident: ref4 doi: 10.1016/j.comcom.2015.09.006 – ident: ref6 doi: 10.1016/j.inffus.2018.04.002 – ident: ref7 doi: 10.1109/TII.2015.2475695 – ident: ref20 doi: 10.1145/1031495.1031518 – ident: ref1 doi: 10.1109/SNPA.2003.1203362 – ident: ref16 doi: 10.4236/wsn.2011.34014 – ident: ref5 doi: 10.1155/2015/841462 |
SSID | ssj0000816957 |
Score | 2.3041456 |
Snippet | For target tracking problems in wireless sensor networks subject to malicious network attacks, this paper proposes a distributed set-membership filtering... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 84468 |
SubjectTerms | Algorithms Clustering Distributed set-membership filter Ellipsoids Filtering Filtering algorithms Heuristic algorithms information fusion Kalman filters network attack Nodes Stochastic processes Target tracking Tracking Trustworthiness Wireless sensor networks |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9sn_RBrVY8rSUPfTTb7Hf28Xp6lELvxSsUX0I-JiDKtejei3-9M9ncURRFFpZl2exm-U0yM8nM_ADOkKTAoYrS-yFI0sdWauedbHtVxqH0qCtOcL5edZc3zdVte5uT1VMuDCKm4DMs-DLt5Yc7v-WlsnOmoSah6Q7ggDy3KVlrv6DCDBJD2-fKQqUazueLBf1EwQThBbntdbVjxsraJxXpz6wqf0zFSb8sn8Fq17MprORrsR1d4X_-VrTxv7v-HJ5mS1PMJ9E4gke4eQFPHtQffAmf15xxIS9IkwXxgUvoMvsVXX_CUV4jc4VwMJdYfuE9dWoiyMQV6xQ8LkjLeV5nF4k6SaymeHIxH0dO2z-Gm-XH9eJSZrIF6cnFG6WtOkumkYv1EEMsQ-CYGDpF65QdQqd7MqW0ja2tYt01sVIRG9Kwlo6-i1i_gsPN3QZfg8BKt31PQCumXR9q6zxNY77RJb2obtoZVDsQjM-VyJkQ45tJHokazIScYeRMRm4G7_eN7qdCHP9-_ILR3T_KVbTTDULF5EFpnEOrkDzYVmMTfW916TuFQdc-eGy6GRwzkg--N4E4g5OdsJg85H8Y-umSjLdeN2_-0uwtPOYuTgs4J3A4ft_iOzJpRneaRPkXENXzoA priority: 102 providerName: IEEE |
Title | Trust-Based Distributed Set-Membership Filtering for Target Tracking Under Network Attacks |
URI | https://ieeexplore.ieee.org/document/10210536 https://www.proquest.com/docview/2851355784 https://doaj.org/article/bbea0e15658e4fc7a81c60ed83cdce46 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykx7Ej4nTOXLwaLb0Oz1u0zGE7eIGw0tI0gQEmaL1__e9NBsFQS9SKCWkTfPymvde-vL7EXJrQQu05Y4ZU1YM7LFiQhvNsoJHroyMFTFucF4s8_k6fdxkmxbVF-aENfDAjeBGWlvFLUQZmbCpM4USkcm5rURiKmNTD7YNNq8VTPk5WER5mRUBZiji5Wg8nUKPhsgWPoQYPol3NFnBFHnE_kCx8mNe9sZmdkKOg5dIx83bnZIDuz0jRy3swHPyvMLdEmwCVqii9wh_i8xVcP1ka7awyPOBiVh09oL_w-EWCu4pXfnEbwoWyuAaOfW0R3TZ5ILTcV3jlvsuWc8eVtM5C0QJzEB4VjMV5wrcGu2S0lUuqirMZ4GTU5qrsspFAW6QUC5TsUvy1MXc2RSso4KjyJ1NLkhn-7a1l4TaWGRFAYPEkTK9TJQ2MAWZVETwoCTNeiTeyUyagCKOZBav0kcTvJSNoCUKWgZB98jd_qb3BkTj9-oTHIx9VUTA9gWgFzLohfxLL3qki0PZag-C2yyB8v5ubGX4XD8ldDoCx6sQ6dV_tH1NDrE_zUpNn3Tqjy97A75LrQdeTQd-m-E3au7sTw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPIu6UMAHjjjNO85xu7BaoLsXtlLFxfJjLFWgLYLshV_PjONdVSAQihRFkZ3Y-saesT0zH8BrJCmwmAfpXO8l6WMjlXVWNl1ehL5wqEoOcF6u2sVF_eGyuUzB6jEWBhGj8xlm_BjP8v212_JW2SnTUJPQtLfhDin-phjDtfZbKswh0Tddyi1U5P3pdDajbmRMEZ7Rwr0qd9xYSf_ENP2JV-WPyThqmPkDWO3aNjqWfMm2g83cz9_SNv534x_C_WRriukoHI_gFm4ew-GNDIRP4POaYy7kGekyL95yEl3mv6LnTzjIJTJbCLtzifkVn6pTFUFGrlhH93FBes7xTruI5EliNXqUi-kwcOD-EVzM361nC5noFqSjRd4gTdkaMo5sqPrgQ-E9e8XQLRibm963qiNjSpnQmDJUbR3KPGBNOtbQ1bUBq6dwsLne4DEILFXTdQR1zsTrfWWso4nM1aqgD1V1M4FyB4J2KRc5U2J81XFNkvd6RE4zcjohN4E3-0rfxlQc_y5-xujui3Ie7fiCUNFpWGpr0eRIa9hGYR1cZ1Th2hy9qpx3WLcTOGIkb_xvBHECJzth0WnQ_9DU6YLMt07Vz_5S7RXcXayX5_r8_erjc7jHzR23c07gYPi-xRdk4Az2ZRTrX-ls9uk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trust-Based+Distributed+Set-Membership+Filtering+for+Target+Tracking+Under+Network+Attacks&rft.jtitle=IEEE+access&rft.au=Wu%2C+Haibo&rft.au=Zhu%2C+Hongbo&rft.au=Li%2C+Xueyang&rft.au=Amuri%2C+Minane+Joel+Villier&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=84468&rft.epage=84474&rft_id=info:doi/10.1109%2FACCESS.2023.3303203&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3303203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |