Analysis of physiological for emotion recognition with the IRS model
Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as ‘Poker Face’ and the lack of facial expression. In this paper, physiological signals are...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 178; pp. 103 - 111 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as ‘Poker Face’ and the lack of facial expression. In this paper, physiological signals are utilized for inferring user׳s emotion. However, the results of physiological-based emotion recognition are still inaccurate in the user-independent scenario since most existing methods ignore the difference in individual response pattern. To this end, we propose a Group-Based IRS (Individual Response Specificity) model to improve performance of physiological-based emotion recognition by taking user׳s IRS into account. The main contributions of this paper are two-fold: (1) an affective physiological database is collected to analyze human׳s emotional response pattern. The physiological signals are recorded from 30 subjects in four induced emotions (neutral, sadness, fear and pleasure). Three-channel bio-sensors are used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). (2) In the experiment, the Group-based IRS model is proposed for emotion recognition in user-independent scenario, the effectiveness of which has been validated on our database. The results show that the Group-based IRS model can achieve higher recognition precision than the general model.
•We collect affective physiological dataset under four induced emotions.•The theory of IRS is adopted to build a recognition model.•We analyze and discuss the robustness and applicability of physiological signals.•The Group-Based IRS model is utilized to improve performance of emotion recognition. |
---|---|
AbstractList | Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as ‘Poker Face’ and the lack of facial expression. In this paper, physiological signals are utilized for inferring user׳s emotion. However, the results of physiological-based emotion recognition are still inaccurate in the user-independent scenario since most existing methods ignore the difference in individual response pattern. To this end, we propose a Group-Based IRS (Individual Response Specificity) model to improve performance of physiological-based emotion recognition by taking user׳s IRS into account. The main contributions of this paper are two-fold: (1) an affective physiological database is collected to analyze human׳s emotional response pattern. The physiological signals are recorded from 30 subjects in four induced emotions (neutral, sadness, fear and pleasure). Three-channel bio-sensors are used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). (2) In the experiment, the Group-based IRS model is proposed for emotion recognition in user-independent scenario, the effectiveness of which has been validated on our database. The results show that the Group-based IRS model can achieve higher recognition precision than the general model.
•We collect affective physiological dataset under four induced emotions.•The theory of IRS is adopted to build a recognition model.•We analyze and discuss the robustness and applicability of physiological signals.•The Group-Based IRS model is utilized to improve performance of emotion recognition. Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as 'Poker Face' and the lack of facial expression. In this paper, physiological signals are utilized for inferring user's emotion. However, the results of physiological-based emotion recognition are still inaccurate in the user-independent scenario since most existing methods ignore the difference in individual response pattern. To this end, we propose a Group-Based IRS (Individual Response Specificity) model to improve performance of physiological-based emotion recognition by taking user's IRS into account. The main contributions of this paper are two-fold: (1) an affective physiological database is collected to analyze human's emotional response pattern. The physiological signals are recorded from 30 subjects in four induced emotions (neutral, sadness, fear and pleasure). Three-channel bio-sensors are used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). (2) In the experiment, the Group-based IRS model is proposed for emotion recognition in user-independent scenario, the effectiveness of which has been validated on our database. The results show that the Group-based IRS model can achieve higher recognition precision than the general model. |
Author | Xu, Chao Feng, Zhiyong Li, Chao |
Author_xml | – sequence: 1 givenname: Chao surname: Li fullname: Li, Chao organization: School of Computer Science and Technology, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Chao surname: Xu fullname: Xu, Chao email: chaoxu@tju.edu.cn organization: School of Computer Software, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Zhiyong surname: Feng fullname: Feng, Zhiyong organization: School of Computer Science and Technology, Tianjin University, Tianjin 300072, China |
BookMark | eNqFkMtOwzAQRS1UJNrCH7Dwkk2C7TixzQKpKq9KSEg81pbrTFpXSVzsFNS_JyWsWMBqrkb3jDRngkatbwGhc0pSSmhxuUlb2FnfpIzQPCUipZQdoTGVgiWSyWKExkSxPGEZZSdoEuOGECooU2N0M2tNvY8uYl_h7bpPvvYrZ02NKx8wNL5zvsUBrF-17jt_um6NuzXgxfMLbnwJ9Sk6rkwd4exnTtHb3e3r_CF5fLpfzGePieVEdYmqRLHkFcugVP3CFktTABQlo7KQRpJK5tzkVqmSZByslAwEB6qWnIisXNJsii6Gu9vg33cQO924aKGuTQt-FzUVKmOccJn3VT5UbfAxBqj0NrjGhL2mRB-k6Y0epOmDNE2E7qX12NUvzLrOHN7ugnH1f_D1AEPv4MNB0NE6aC2UrvfX6dK7vw98AUNujL8 |
CitedBy_id | crossref_primary_10_22430_22565337_1821 crossref_primary_10_3390_electronics12132933 crossref_primary_10_1109_JSEN_2018_2867221 crossref_primary_10_3390_s19122651 crossref_primary_10_1016_j_inffus_2020_08_007 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_3390_a16030130 crossref_primary_10_1155_2021_3807666 crossref_primary_10_1016_j_bspc_2024_106812 crossref_primary_10_1631_FITEE_1800101 crossref_primary_10_1111_pcn_12799 crossref_primary_10_3390_app9163355 crossref_primary_10_1016_j_inffus_2021_11_006 crossref_primary_10_1108_EC_03_2019_0127 crossref_primary_10_1016_j_bspc_2023_104624 crossref_primary_10_1155_2021_9948733 crossref_primary_10_1155_2018_5296523 crossref_primary_10_1007_s12652_021_03367_7 crossref_primary_10_1016_j_bbe_2019_01_004 crossref_primary_10_1016_j_inffus_2018_10_009 crossref_primary_10_3390_app10103501 crossref_primary_10_1007_s11042_016_3608_7 crossref_primary_10_1007_s11042_023_14671_z crossref_primary_10_1016_j_neucom_2016_08_017 crossref_primary_10_1016_j_cmpb_2016_12_005 crossref_primary_10_1016_j_compbiomed_2020_103875 crossref_primary_10_1007_s10462_023_10606_0 crossref_primary_10_1016_j_buildenv_2020_107267 crossref_primary_10_3390_s23062920 crossref_primary_10_1016_j_neucom_2016_06_093 crossref_primary_10_3389_fnbot_2017_00019 crossref_primary_10_1016_j_inffus_2020_01_011 crossref_primary_10_1155_2018_9750904 crossref_primary_10_1016_j_neucom_2019_05_061 crossref_primary_10_32604_iasc_2022_020849 crossref_primary_10_1016_j_cmpb_2017_06_010 crossref_primary_10_1016_j_compeleceng_2022_108332 crossref_primary_10_3390_s21113760 crossref_primary_10_1109_ACCESS_2020_2974009 crossref_primary_10_1007_s40846_019_00505_7 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_1016_j_inffus_2022_03_009 crossref_primary_10_1088_1741_2552_abea62 crossref_primary_10_1109_ACCESS_2018_2885279 |
Cites_doi | 10.1016/j.imavis.2008.08.005 10.1111/1469-8986.3510001 10.1021/ci050519k 10.1016/j.biopsycho.2010.03.010 10.1016/j.biopsycho.2009.09.012 10.1109/CVPR.2014.233 10.1109/34.954607 10.1109/ICME.2003.1220939 10.1109/TSMCA.2011.2116000 10.1109/T-AFFC.2011.15 10.1016/j.ijhcs.2007.10.011 10.1145/1656274.1656278 10.1016/j.jnca.2006.09.007 10.1109/ICME.2005.1521579 10.1109/CVPR.2013.439 10.1109/TPAMI.2008.52 10.1016/j.ijhcs.2011.07.005 10.1109/T-AFFC.2012.4 10.1097/00006842-199105000-00002 10.1109/CVPR.2015.7298657 10.1001/archpsyc.1960.03590090061010 10.1016/j.ijpsycho.2003.08.002 10.1109/TPAMI.2008.26 10.1109/TE.2005.856149 10.1037/10036-010 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.neucom.2015.07.112 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 111 |
ExternalDocumentID | 10_1016_j_neucom_2015_07_112 S0925231215016045 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW SSH WUQ XPP 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-9f76b4f23ed9409c6ba6ee6d21868a80f854a5c99d034ec882e74e19b4073db13 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Mon Jul 21 11:02:21 EDT 2025 Tue Jul 01 01:46:17 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Fri Feb 23 02:28:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Individual response specificity Affective computing Emotion recognition Physiology-based User-independent system Facial expression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-9f76b4f23ed9409c6ba6ee6d21868a80f854a5c99d034ec882e74e19b4073db13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1793240485 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1793240485 crossref_primary_10_1016_j_neucom_2015_07_112 crossref_citationtrail_10_1016_j_neucom_2015_07_112 elsevier_sciencedirect_doi_10_1016_j_neucom_2015_07_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-20 |
PublicationDateYYYYMMDD | 2016-02-20 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Engel (bib30) 1960; 2 Castellano, Kessous, Caridakis (bib18) 2008; vol. 4868 Kim (bib11) 2007 Witten, Frank, Hall (bib34) 2011 Picard, Vyzas, Healey (bib25) 2001; 23 Zhou, Qu, Helander, Jiao (bib33) 2011; 69 Lacey (bib29) 1967 P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014, pp. 1805–1812. P.J. Lang, M.M. Bradley, B.N. Cuthbert, et al., International affective picture system (iaps): instruction manual and affective ratings, in Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib36) 2009; 11 Andreassi (bib14) 2000 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (bib9) 2012; 3 Gunes, Piccardi (bib17) 2007; 30 Marwitz, Stemmler (bib12) 1998; 35 Stemmler, Wacker (bib31) 2010; 84 Xu, Feng, Meng (bib1) 2015 C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint Christie, Friedman (bib21) 2004; 51 Stemmler (bib13) 1992 AlZoubi, D׳Mello, Calvo (bib27) 2012; 3 B. Schuller, G. Rigoll, M. Lang, Hidden Markov model-based speech emotion recognition, in: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, & Signal Processing, vol. 2, IEEE, 2003, pp. II-1. Graesser, Chipman, Haynes, Olney (bib23) 2005; 48 M.S. Hussain, H. Monkaresi, R. A. Calvo, Combining classifiers in multimodal affect detection, in: Proceedings of the Tenth Australasian Data Mining Conference - Volume 134, AusDM ׳12, Australian Computer Society, Inc., Darlinghurst, Australia, 2012, pp. 103-108. J.I. Lacey, Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome, in: Research in Psychotherapy, April, 1958, Washington, DC; This conference, financed by a grant (M-2031) from the National Institute of Mental Health, US Public Health Service, was held under the auspices of the Division of Clinical Psychology, American Psychological Association, with planning and programming by an Ad Hoc Committee of the Division of Clinical Psychology; Frank Auld, Jr., Morris B. Parloff, Benjamin Pasamanick, George Saslow, Julius Seeman, and Eli A. Rubinstein, Chairman, American Psychological Association, 1959. Plewczynski, Spieser, Koch (bib37) 2006; 46 X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 586–594. Bailenson, Pontikakis, Mauss, Gross, Jabon, Hutcherson, Nass, John (bib8) 2008; 66 Allen, Boquet, Shelley (bib32) 1991; 53 . Z. Wang, S. Wang, Q. Ji, Capturing complex spatio-temporal relations among facial muscles for facial expression recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 3422–3429. Shan, Gong, McOwan (bib2) 2009; 27 Zeng, Pantic, Roisman, Huang (bib19) 2009; 31 The Center for Research in Psychophysiology, University of Florida. J. Wagner, J. Kim, E. André, From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification, in: IEEE International Conference on Multimedia and Expo, IEEE, 2005, pp. 940–943. Kim, André (bib5) 2008; 30 P. Ekman, Handbook of Social Psychophysiology, in: Wiley Handbooks of Psychophysiology, John Wiley & Sons, Oxford, England, 1989, pp. 143–164 (Chapter: The Argument and Evidence About Universals in Facial Expressions of Emotion). Alzoubi, Hussain, Dello, Calvo (bib22) 2011; vol. 6974 Chanel, Rebetez, Bétrancourt, Pun (bib24) 2011; 41 Kreibig (bib35) 2010; 84 Bailenson (10.1016/j.neucom.2015.07.112_bib8) 2008; 66 Lacey (10.1016/j.neucom.2015.07.112_bib29) 1967 Plewczynski (10.1016/j.neucom.2015.07.112_bib37) 2006; 46 Allen (10.1016/j.neucom.2015.07.112_bib32) 1991; 53 Hall (10.1016/j.neucom.2015.07.112_bib36) 2009; 11 Stemmler (10.1016/j.neucom.2015.07.112_bib13) 1992 Picard (10.1016/j.neucom.2015.07.112_bib25) 2001; 23 Witten (10.1016/j.neucom.2015.07.112_bib34) 2011 Shan (10.1016/j.neucom.2015.07.112_bib2) 2009; 27 10.1016/j.neucom.2015.07.112_bib16 10.1016/j.neucom.2015.07.112_bib15 Castellano (10.1016/j.neucom.2015.07.112_bib18) 2008; vol. 4868 Graesser (10.1016/j.neucom.2015.07.112_bib23) 2005; 48 Koelstra (10.1016/j.neucom.2015.07.112_bib9) 2012; 3 Kim (10.1016/j.neucom.2015.07.112_bib5) 2008; 30 Zhou (10.1016/j.neucom.2015.07.112_bib33) 2011; 69 10.1016/j.neucom.2015.07.112_bib10 Kreibig (10.1016/j.neucom.2015.07.112_bib35) 2010; 84 Xu (10.1016/j.neucom.2015.07.112_bib1) 2015 Gunes (10.1016/j.neucom.2015.07.112_bib17) 2007; 30 Kim (10.1016/j.neucom.2015.07.112_bib11) 2007 10.1016/j.neucom.2015.07.112_bib4 Christie (10.1016/j.neucom.2015.07.112_bib21) 2004; 51 Stemmler (10.1016/j.neucom.2015.07.112_bib31) 2010; 84 10.1016/j.neucom.2015.07.112_bib6 10.1016/j.neucom.2015.07.112_bib7 Zeng (10.1016/j.neucom.2015.07.112_bib19) 2009; 31 Chanel (10.1016/j.neucom.2015.07.112_bib24) 2011; 41 AlZoubi (10.1016/j.neucom.2015.07.112_bib27) 2012; 3 10.1016/j.neucom.2015.07.112_bib3 Andreassi (10.1016/j.neucom.2015.07.112_bib14) 2000 10.1016/j.neucom.2015.07.112_bib26 10.1016/j.neucom.2015.07.112_bib28 Alzoubi (10.1016/j.neucom.2015.07.112_bib22) 2011; vol. 6974 Marwitz (10.1016/j.neucom.2015.07.112_bib12) 1998; 35 10.1016/j.neucom.2015.07.112_bib20 Engel (10.1016/j.neucom.2015.07.112_bib30) 1960; 2 |
References_xml | – volume: 84 start-page: 541 year: 2010 end-page: 551 ident: bib31 article-title: Personality, emotion, and individual differences in physiological responses publication-title: Biol. Psychol. – year: 1992 ident: bib13 article-title: Differential Psychophysiology: Persons in Situations – volume: vol. 6974 start-page: 4 year: 2011 end-page: 13 ident: bib22 article-title: Affective modeling from multichannel physiology: analysis of day differences publication-title: Affective Computing and Intelligent Interaction of Lecture Notes in Computer Science – start-page: 14 year: 1967 end-page: 42 ident: bib29 article-title: Somatic response patterning and stress publication-title: Psychol. Stress: Issues Res. – reference: P. Ekman, Handbook of Social Psychophysiology, in: Wiley Handbooks of Psychophysiology, John Wiley & Sons, Oxford, England, 1989, pp. 143–164 (Chapter: The Argument and Evidence About Universals in Facial Expressions of Emotion). – volume: 51 start-page: 143 year: 2004 end-page: 153 ident: bib21 article-title: Autonomic specificity of discrete emotion and dimensions of affective space publication-title: Int. J. Psychophysiol. – volume: vol. 4868 start-page: 92 year: 2008 end-page: 103 ident: bib18 article-title: Emotion recognition through multiple modalities: face, body gesture, speech publication-title: Affect and Emotion in Human-Computer Interaction of Lecture Notes in Computer Science – volume: 27 start-page: 803 year: 2009 end-page: 816 ident: bib2 article-title: Facial expression recognition based on local binary patterns publication-title: Image Vis. Comput. – volume: 3 start-page: 298 year: 2012 end-page: 310 ident: bib27 article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals publication-title: IEEE Trans. Affect. Comput. – reference: J. Wagner, J. Kim, E. André, From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification, in: IEEE International Conference on Multimedia and Expo, IEEE, 2005, pp. 940–943. – reference: P.J. Lang, M.M. Bradley, B.N. Cuthbert, et al., International affective picture system (iaps): instruction manual and affective ratings, in: – reference: P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014, pp. 1805–1812. – year: 2000 ident: bib14 article-title: Psychophysiology: Human Behavior & Physiological Response – reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint – volume: 48 start-page: 612 year: 2005 end-page: 618 ident: bib23 article-title: Autotutor publication-title: IEEE Trans. Educ. – volume: 31 start-page: 39 year: 2009 end-page: 58 ident: bib19 article-title: A survey of affect recognition methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 1 year: 1998 end-page: 15 ident: bib12 article-title: On the status of individual response specificity publication-title: Psychophysiology – volume: 2 start-page: 305 year: 1960 ident: bib30 article-title: Stimulus-response and individual-response specificity publication-title: Arch. Gen. Psychiat. – start-page: 265 year: 2007 end-page: 280 ident: bib11 article-title: Bimodal emotion recognition using speech and physiological changes publication-title: Robust Speech Recognit. Underst. – reference: X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 586–594. – reference: M.S. Hussain, H. Monkaresi, R. A. Calvo, Combining classifiers in multimodal affect detection, in: Proceedings of the Tenth Australasian Data Mining Conference - Volume 134, AusDM ׳12, Australian Computer Society, Inc., Darlinghurst, Australia, 2012, pp. 103-108. – volume: 23 start-page: 1175 year: 2001 end-page: 1191 ident: bib25 article-title: Toward machine emotional intelligence publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Z. Wang, S. Wang, Q. Ji, Capturing complex spatio-temporal relations among facial muscles for facial expression recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 3422–3429. – reference: J.I. Lacey, Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome, in: Research in Psychotherapy, April, 1958, Washington, DC; This conference, financed by a grant (M-2031) from the National Institute of Mental Health, US Public Health Service, was held under the auspices of the Division of Clinical Psychology, American Psychological Association, with planning and programming by an Ad Hoc Committee of the Division of Clinical Psychology; Frank Auld, Jr., Morris B. Parloff, Benjamin Pasamanick, George Saslow, Julius Seeman, and Eli A. Rubinstein, Chairman, American Psychological Association, 1959. – volume: 30 start-page: 2067 year: 2008 end-page: 2083 ident: bib5 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: . – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: bib9 article-title: Deap publication-title: IEEE Trans. Affect. Comput. – start-page: 11 year: 2015 ident: bib1 article-title: Affective experience modeling based on interactive synergetic dependence in big data publication-title: Fut. Gen. Comput. Syst. – volume: 46 start-page: 1098 year: 2006 end-page: 1106 ident: bib37 article-title: Assessing different classification methods for virtual screening publication-title: J. Chem. Inf. Model. – reference: B. Schuller, G. Rigoll, M. Lang, Hidden Markov model-based speech emotion recognition, in: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, & Signal Processing, vol. 2, IEEE, 2003, pp. II-1. – reference: The Center for Research in Psychophysiology, University of Florida. – volume: 69 start-page: 801 year: 2011 end-page: 819 ident: bib33 article-title: Affect prediction from physiological measures via visual stimuli publication-title: Int. J. Hum. Comput. Stud. – volume: 30 start-page: 1334 year: 2007 end-page: 1345 ident: bib17 article-title: Bi-modal emotion recognition from expressive face and body gestures publication-title: J. Netw. Comput. Appl. – volume: 66 start-page: 303 year: 2008 end-page: 317 ident: bib8 article-title: Real-time classification of evoked emotions using facial feature tracking and physiological responses publication-title: Int. J. Hum.–Comput. Stud. – year: 2011 ident: bib34 publication-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 53 start-page: 272 year: 1991 end-page: 288 ident: bib32 article-title: Cluster analyses of cardiovascular responsivity to three laboratory stressors publication-title: Psychosom. Med. – volume: 84 start-page: 394 year: 2010 end-page: 421 ident: bib35 article-title: Autonomic nervous system activity in emotion publication-title: Biol. Psychol. – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib36 article-title: The weka data mining software publication-title: ACM SIGKDD Explor. Newslett. – volume: 41 start-page: 1052 year: 2011 end-page: 1063 ident: bib24 article-title: Emotion assessment from physiological signals for adaptation of game difficulty publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. – volume: 27 start-page: 803 issue: 6 year: 2009 ident: 10.1016/j.neucom.2015.07.112_bib2 article-title: Facial expression recognition based on local binary patterns publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.08.005 – volume: 35 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.neucom.2015.07.112_bib12 article-title: On the status of individual response specificity publication-title: Psychophysiology doi: 10.1111/1469-8986.3510001 – year: 2011 ident: 10.1016/j.neucom.2015.07.112_bib34 – volume: 46 start-page: 1098 issue: 3 year: 2006 ident: 10.1016/j.neucom.2015.07.112_bib37 article-title: Assessing different classification methods for virtual screening publication-title: J. Chem. Inf. Model. doi: 10.1021/ci050519k – volume: 84 start-page: 394 issue: 3 year: 2010 ident: 10.1016/j.neucom.2015.07.112_bib35 article-title: Autonomic nervous system activity in emotion publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2010.03.010 – volume: 84 start-page: 541 issue: 3 year: 2010 ident: 10.1016/j.neucom.2015.07.112_bib31 article-title: Personality, emotion, and individual differences in physiological responses publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2009.09.012 – ident: 10.1016/j.neucom.2015.07.112_bib4 doi: 10.1109/CVPR.2014.233 – year: 1992 ident: 10.1016/j.neucom.2015.07.112_bib13 – volume: 23 start-page: 1175 issue: 10 year: 2001 ident: 10.1016/j.neucom.2015.07.112_bib25 article-title: Toward machine emotional intelligence publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954607 – ident: 10.1016/j.neucom.2015.07.112_bib16 doi: 10.1109/ICME.2003.1220939 – volume: vol. 4868 start-page: 92 year: 2008 ident: 10.1016/j.neucom.2015.07.112_bib18 article-title: Emotion recognition through multiple modalities: face, body gesture, speech – volume: 41 start-page: 1052 issue: 6 year: 2011 ident: 10.1016/j.neucom.2015.07.112_bib24 article-title: Emotion assessment from physiological signals for adaptation of game difficulty publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. doi: 10.1109/TSMCA.2011.2116000 – start-page: 11 year: 2015 ident: 10.1016/j.neucom.2015.07.112_bib1 article-title: Affective experience modeling based on interactive synergetic dependence in big data publication-title: Fut. Gen. Comput. Syst. – start-page: 265 year: 2007 ident: 10.1016/j.neucom.2015.07.112_bib11 article-title: Bimodal emotion recognition using speech and physiological changes publication-title: Robust Speech Recognit. Underst. – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.neucom.2015.07.112_bib9 article-title: Deap publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: 10.1016/j.neucom.2015.07.112_bib10 – volume: 66 start-page: 303 issue: 5 year: 2008 ident: 10.1016/j.neucom.2015.07.112_bib8 article-title: Real-time classification of evoked emotions using facial feature tracking and physiological responses publication-title: Int. J. Hum.–Comput. Stud. doi: 10.1016/j.ijhcs.2007.10.011 – ident: 10.1016/j.neucom.2015.07.112_bib20 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.neucom.2015.07.112_bib36 article-title: The weka data mining software publication-title: ACM SIGKDD Explor. Newslett. doi: 10.1145/1656274.1656278 – year: 2000 ident: 10.1016/j.neucom.2015.07.112_bib14 – volume: 30 start-page: 1334 issue: 4 year: 2007 ident: 10.1016/j.neucom.2015.07.112_bib17 article-title: Bi-modal emotion recognition from expressive face and body gestures publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2006.09.007 – ident: 10.1016/j.neucom.2015.07.112_bib26 doi: 10.1109/ICME.2005.1521579 – ident: 10.1016/j.neucom.2015.07.112_bib3 doi: 10.1109/CVPR.2013.439 – volume: 31 start-page: 39 issue: 1 year: 2009 ident: 10.1016/j.neucom.2015.07.112_bib19 article-title: A survey of affect recognition methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.52 – ident: 10.1016/j.neucom.2015.07.112_bib6 – volume: 69 start-page: 801 issue: 12 year: 2011 ident: 10.1016/j.neucom.2015.07.112_bib33 article-title: Affect prediction from physiological measures via visual stimuli publication-title: Int. J. Hum. Comput. Stud. doi: 10.1016/j.ijhcs.2011.07.005 – volume: 3 start-page: 298 issue: 3 year: 2012 ident: 10.1016/j.neucom.2015.07.112_bib27 article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2012.4 – start-page: 14 year: 1967 ident: 10.1016/j.neucom.2015.07.112_bib29 article-title: Somatic response patterning and stress publication-title: Psychol. Stress: Issues Res. – volume: 53 start-page: 272 issue: 3 year: 1991 ident: 10.1016/j.neucom.2015.07.112_bib32 article-title: Cluster analyses of cardiovascular responsivity to three laboratory stressors publication-title: Psychosom. Med. doi: 10.1097/00006842-199105000-00002 – ident: 10.1016/j.neucom.2015.07.112_bib15 – ident: 10.1016/j.neucom.2015.07.112_bib7 doi: 10.1109/CVPR.2015.7298657 – volume: vol. 6974 start-page: 4 year: 2011 ident: 10.1016/j.neucom.2015.07.112_bib22 article-title: Affective modeling from multichannel physiology: analysis of day differences – volume: 2 start-page: 305 issue: 3 year: 1960 ident: 10.1016/j.neucom.2015.07.112_bib30 article-title: Stimulus-response and individual-response specificity publication-title: Arch. Gen. Psychiat. doi: 10.1001/archpsyc.1960.03590090061010 – volume: 51 start-page: 143 issue: 2 year: 2004 ident: 10.1016/j.neucom.2015.07.112_bib21 article-title: Autonomic specificity of discrete emotion and dimensions of affective space publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2003.08.002 – volume: 30 start-page: 2067 issue: 12 year: 2008 ident: 10.1016/j.neucom.2015.07.112_bib5 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.26 – volume: 48 start-page: 612 issue: 4 year: 2005 ident: 10.1016/j.neucom.2015.07.112_bib23 article-title: Autotutor publication-title: IEEE Trans. Educ. doi: 10.1109/TE.2005.856149 – ident: 10.1016/j.neucom.2015.07.112_bib28 doi: 10.1037/10036-010 |
SSID | ssj0017129 |
Score | 2.3816478 |
Snippet | Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103 |
SubjectTerms | Affective computing Emotion recognition Emotions Face recognition Facial Facial expression Galvanic skin response Human behavior Individual response specificity Pattern recognition Physiology-based Recognition User-independent system |
Title | Analysis of physiological for emotion recognition with the IRS model |
URI | https://dx.doi.org/10.1016/j.neucom.2015.07.112 https://www.proquest.com/docview/1793240485 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lgtfYzWMfOZZqaRV7sBZ6C8luAhXZFm2v_nYnu5uCghS87YZkWWaTb77JTr5B6NZxZ4vIaUKB7hIBPosY8JLEZC6TSeYADv3WwPM4GU7F4yyetVA_nIXxaZUN9teYXqF109JtrNldzufdSSQZRFFeHcGrpAl_0FyI1M_yu69NmgdNKav19lhMfO9wfK7K8Srt2ueMgBOMvYQnpewv9_QLqCvvMzhAew1txL36zQ5Ry5ZHaD-UZMDNCj1G90FkBC8crnYtArhhYKfY1kV78CZtCK79TiwGGohHLxNcFcY5QdPBw2t_SJpCCSSH8GxFpEsTIxzjtpDQkCdGJ9Ymha83leksclksdJxLWURc2BxItU2FpdJANMcLQ_kpapeL0p4hDAGh5dxQZxwXMF56vVRttLFMR-BQzxEP9lF5oyLui1m8q5Au9qZqqypvVRWlEGOwc0Q2o5a1isaW_mkwvfoxGxQA_ZaRN-FLKVgo_u-HLu1i_ak8EgF9EVl88e-nX6JduKuytll0hdqrj7W9BlKyMp1q1nXQTm_0NBx_A7v24UU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB7W9aAX3-LbCHqM2ybp6-BBfLCr7h5cBW-xaRNQpCu6i3jxT_kHnbTNgoIsCN5K2oQySb-ZSb98A7BvuNG5Z1LqY7hLBfosqtBLUhWbOAljg3Botwa6vbB9Ky7ugrsGfLqzMJZWWWN_heklWtctrdqareeHh1bfSxhmUVYdwaqkCcesvNTvb5i3vR51TnGSDxg7P7s5adO6tADNMKEZ0sREoRKGcZ0n2JCFKg21DnNboSlOY8_EgUiDLElyjwudYRiqI6H9RGH-w3Plcxx3CqYFwoUtm3D4MeaV-JHPKoE_FlD7eu68XkkqK_TIklTQ6wZWM9T32W_-8IdnKN3d-QLM1XEqOa5MsQgNXSzBvKsBQWpIWIZTp2pCBoaU2yQOTQmGw0RXVYLImKeE13brl2DcSTrXfVJW4lmB238x3yo0i0Gh14BgBqo5V75Rhgvsn1iB1lSlSrPUQw--DtzZR2a1bLmtnvEkHT_tUVZWldaq0oswqWHrQMe9nivZjgnPR8708tvyk-hZJvTcczMl8cu0v1vSQg9Gr9JCH8ZLIg42_jz6Lsy0b7pX8qrTu9yEWbxTUsaZtwXN4ctIb2NENFQ75QokcP_fS_4L2U0clA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+physiological+for+emotion+recognition+with+the+IRS+model&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Chao&rft.au=Xu%2C+Chao&rft.au=Feng%2C+Zhiyong&rft.date=2016-02-20&rft.issn=0925-2312&rft.volume=178&rft.spage=103&rft.epage=111&rft_id=info:doi/10.1016%2Fj.neucom.2015.07.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2015_07_112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |