Analysis of physiological for emotion recognition with the IRS model

Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as ‘Poker Face’ and the lack of facial expression. In this paper, physiological signals are...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 178; pp. 103 - 111
Main Authors Li, Chao, Xu, Chao, Feng, Zhiyong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as ‘Poker Face’ and the lack of facial expression. In this paper, physiological signals are utilized for inferring user׳s emotion. However, the results of physiological-based emotion recognition are still inaccurate in the user-independent scenario since most existing methods ignore the difference in individual response pattern. To this end, we propose a Group-Based IRS (Individual Response Specificity) model to improve performance of physiological-based emotion recognition by taking user׳s IRS into account. The main contributions of this paper are two-fold: (1) an affective physiological database is collected to analyze human׳s emotional response pattern. The physiological signals are recorded from 30 subjects in four induced emotions (neutral, sadness, fear and pleasure). Three-channel bio-sensors are used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). (2) In the experiment, the Group-based IRS model is proposed for emotion recognition in user-independent scenario, the effectiveness of which has been validated on our database. The results show that the Group-based IRS model can achieve higher recognition precision than the general model. •We collect affective physiological dataset under four induced emotions.•The theory of IRS is adopted to build a recognition model.•We analyze and discuss the robustness and applicability of physiological signals.•The Group-Based IRS model is utilized to improve performance of emotion recognition.
AbstractList Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as ‘Poker Face’ and the lack of facial expression. In this paper, physiological signals are utilized for inferring user׳s emotion. However, the results of physiological-based emotion recognition are still inaccurate in the user-independent scenario since most existing methods ignore the difference in individual response pattern. To this end, we propose a Group-Based IRS (Individual Response Specificity) model to improve performance of physiological-based emotion recognition by taking user׳s IRS into account. The main contributions of this paper are two-fold: (1) an affective physiological database is collected to analyze human׳s emotional response pattern. The physiological signals are recorded from 30 subjects in four induced emotions (neutral, sadness, fear and pleasure). Three-channel bio-sensors are used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). (2) In the experiment, the Group-based IRS model is proposed for emotion recognition in user-independent scenario, the effectiveness of which has been validated on our database. The results show that the Group-based IRS model can achieve higher recognition precision than the general model. •We collect affective physiological dataset under four induced emotions.•The theory of IRS is adopted to build a recognition model.•We analyze and discuss the robustness and applicability of physiological signals.•The Group-Based IRS model is utilized to improve performance of emotion recognition.
Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g. physiological signals, for some specific blue such as 'Poker Face' and the lack of facial expression. In this paper, physiological signals are utilized for inferring user's emotion. However, the results of physiological-based emotion recognition are still inaccurate in the user-independent scenario since most existing methods ignore the difference in individual response pattern. To this end, we propose a Group-Based IRS (Individual Response Specificity) model to improve performance of physiological-based emotion recognition by taking user's IRS into account. The main contributions of this paper are two-fold: (1) an affective physiological database is collected to analyze human's emotional response pattern. The physiological signals are recorded from 30 subjects in four induced emotions (neutral, sadness, fear and pleasure). Three-channel bio-sensors are used to measure users electrocardiogram (ECG), galvanic skin response (GSR) and photo plethysmography (PPG). (2) In the experiment, the Group-based IRS model is proposed for emotion recognition in user-independent scenario, the effectiveness of which has been validated on our database. The results show that the Group-based IRS model can achieve higher recognition precision than the general model.
Author Xu, Chao
Feng, Zhiyong
Li, Chao
Author_xml – sequence: 1
  givenname: Chao
  surname: Li
  fullname: Li, Chao
  organization: School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Chao
  surname: Xu
  fullname: Xu, Chao
  email: chaoxu@tju.edu.cn
  organization: School of Computer Software, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Zhiyong
  surname: Feng
  fullname: Feng, Zhiyong
  organization: School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
BookMark eNqFkMtOwzAQRS1UJNrCH7Dwkk2C7TixzQKpKq9KSEg81pbrTFpXSVzsFNS_JyWsWMBqrkb3jDRngkatbwGhc0pSSmhxuUlb2FnfpIzQPCUipZQdoTGVgiWSyWKExkSxPGEZZSdoEuOGECooU2N0M2tNvY8uYl_h7bpPvvYrZ02NKx8wNL5zvsUBrF-17jt_um6NuzXgxfMLbnwJ9Sk6rkwd4exnTtHb3e3r_CF5fLpfzGePieVEdYmqRLHkFcugVP3CFktTABQlo7KQRpJK5tzkVqmSZByslAwEB6qWnIisXNJsii6Gu9vg33cQO924aKGuTQt-FzUVKmOccJn3VT5UbfAxBqj0NrjGhL2mRB-k6Y0epOmDNE2E7qX12NUvzLrOHN7ugnH1f_D1AEPv4MNB0NE6aC2UrvfX6dK7vw98AUNujL8
CitedBy_id crossref_primary_10_22430_22565337_1821
crossref_primary_10_3390_electronics12132933
crossref_primary_10_1109_JSEN_2018_2867221
crossref_primary_10_3390_s19122651
crossref_primary_10_1016_j_inffus_2020_08_007
crossref_primary_10_1016_j_jnca_2019_102423
crossref_primary_10_3390_a16030130
crossref_primary_10_1155_2021_3807666
crossref_primary_10_1016_j_bspc_2024_106812
crossref_primary_10_1631_FITEE_1800101
crossref_primary_10_1111_pcn_12799
crossref_primary_10_3390_app9163355
crossref_primary_10_1016_j_inffus_2021_11_006
crossref_primary_10_1108_EC_03_2019_0127
crossref_primary_10_1016_j_bspc_2023_104624
crossref_primary_10_1155_2021_9948733
crossref_primary_10_1155_2018_5296523
crossref_primary_10_1007_s12652_021_03367_7
crossref_primary_10_1016_j_bbe_2019_01_004
crossref_primary_10_1016_j_inffus_2018_10_009
crossref_primary_10_3390_app10103501
crossref_primary_10_1007_s11042_016_3608_7
crossref_primary_10_1007_s11042_023_14671_z
crossref_primary_10_1016_j_neucom_2016_08_017
crossref_primary_10_1016_j_cmpb_2016_12_005
crossref_primary_10_1016_j_compbiomed_2020_103875
crossref_primary_10_1007_s10462_023_10606_0
crossref_primary_10_1016_j_buildenv_2020_107267
crossref_primary_10_3390_s23062920
crossref_primary_10_1016_j_neucom_2016_06_093
crossref_primary_10_3389_fnbot_2017_00019
crossref_primary_10_1016_j_inffus_2020_01_011
crossref_primary_10_1155_2018_9750904
crossref_primary_10_1016_j_neucom_2019_05_061
crossref_primary_10_32604_iasc_2022_020849
crossref_primary_10_1016_j_cmpb_2017_06_010
crossref_primary_10_1016_j_compeleceng_2022_108332
crossref_primary_10_3390_s21113760
crossref_primary_10_1109_ACCESS_2020_2974009
crossref_primary_10_1007_s40846_019_00505_7
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_1016_j_inffus_2022_03_009
crossref_primary_10_1088_1741_2552_abea62
crossref_primary_10_1109_ACCESS_2018_2885279
Cites_doi 10.1016/j.imavis.2008.08.005
10.1111/1469-8986.3510001
10.1021/ci050519k
10.1016/j.biopsycho.2010.03.010
10.1016/j.biopsycho.2009.09.012
10.1109/CVPR.2014.233
10.1109/34.954607
10.1109/ICME.2003.1220939
10.1109/TSMCA.2011.2116000
10.1109/T-AFFC.2011.15
10.1016/j.ijhcs.2007.10.011
10.1145/1656274.1656278
10.1016/j.jnca.2006.09.007
10.1109/ICME.2005.1521579
10.1109/CVPR.2013.439
10.1109/TPAMI.2008.52
10.1016/j.ijhcs.2011.07.005
10.1109/T-AFFC.2012.4
10.1097/00006842-199105000-00002
10.1109/CVPR.2015.7298657
10.1001/archpsyc.1960.03590090061010
10.1016/j.ijpsycho.2003.08.002
10.1109/TPAMI.2008.26
10.1109/TE.2005.856149
10.1037/10036-010
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2015.07.112
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 111
ExternalDocumentID 10_1016_j_neucom_2015_07_112
S0925231215016045
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-9f76b4f23ed9409c6ba6ee6d21868a80f854a5c99d034ec882e74e19b4073db13
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Mon Jul 21 11:02:21 EDT 2025
Tue Jul 01 01:46:17 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:28:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Individual response specificity
Affective computing
Emotion recognition
Physiology-based
User-independent system
Facial expression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9f76b4f23ed9409c6ba6ee6d21868a80f854a5c99d034ec882e74e19b4073db13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793240485
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1793240485
crossref_primary_10_1016_j_neucom_2015_07_112
crossref_citationtrail_10_1016_j_neucom_2015_07_112
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_07_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-20
PublicationDateYYYYMMDD 2016-02-20
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-20
  day: 20
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Engel (bib30) 1960; 2
Castellano, Kessous, Caridakis (bib18) 2008; vol. 4868
Kim (bib11) 2007
Witten, Frank, Hall (bib34) 2011
Picard, Vyzas, Healey (bib25) 2001; 23
Zhou, Qu, Helander, Jiao (bib33) 2011; 69
Lacey (bib29) 1967
P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014, pp. 1805–1812.
P.J. Lang, M.M. Bradley, B.N. Cuthbert, et al., International affective picture system (iaps): instruction manual and affective ratings, in
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib36) 2009; 11
Andreassi (bib14) 2000
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (bib9) 2012; 3
Gunes, Piccardi (bib17) 2007; 30
Marwitz, Stemmler (bib12) 1998; 35
Stemmler, Wacker (bib31) 2010; 84
Xu, Feng, Meng (bib1) 2015
C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint
Christie, Friedman (bib21) 2004; 51
Stemmler (bib13) 1992
AlZoubi, D׳Mello, Calvo (bib27) 2012; 3
B. Schuller, G. Rigoll, M. Lang, Hidden Markov model-based speech emotion recognition, in: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, & Signal Processing, vol. 2, IEEE, 2003, pp. II-1.
Graesser, Chipman, Haynes, Olney (bib23) 2005; 48
M.S. Hussain, H. Monkaresi, R. A. Calvo, Combining classifiers in multimodal affect detection, in: Proceedings of the Tenth Australasian Data Mining Conference - Volume 134, AusDM ׳12, Australian Computer Society, Inc., Darlinghurst, Australia, 2012, pp. 103-108.
J.I. Lacey, Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome, in: Research in Psychotherapy, April, 1958, Washington, DC; This conference, financed by a grant (M-2031) from the National Institute of Mental Health, US Public Health Service, was held under the auspices of the Division of Clinical Psychology, American Psychological Association, with planning and programming by an Ad Hoc Committee of the Division of Clinical Psychology; Frank Auld, Jr., Morris B. Parloff, Benjamin Pasamanick, George Saslow, Julius Seeman, and Eli A. Rubinstein, Chairman, American Psychological Association, 1959.
Plewczynski, Spieser, Koch (bib37) 2006; 46
X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 586–594.
Bailenson, Pontikakis, Mauss, Gross, Jabon, Hutcherson, Nass, John (bib8) 2008; 66
Allen, Boquet, Shelley (bib32) 1991; 53
.
Z. Wang, S. Wang, Q. Ji, Capturing complex spatio-temporal relations among facial muscles for facial expression recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 3422–3429.
Shan, Gong, McOwan (bib2) 2009; 27
Zeng, Pantic, Roisman, Huang (bib19) 2009; 31
The Center for Research in Psychophysiology, University of Florida.
J. Wagner, J. Kim, E. André, From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification, in: IEEE International Conference on Multimedia and Expo, IEEE, 2005, pp. 940–943.
Kim, André (bib5) 2008; 30
P. Ekman, Handbook of Social Psychophysiology, in: Wiley Handbooks of Psychophysiology, John Wiley & Sons, Oxford, England, 1989, pp. 143–164 (Chapter: The Argument and Evidence About Universals in Facial Expressions of Emotion).
Alzoubi, Hussain, Dello, Calvo (bib22) 2011; vol. 6974
Chanel, Rebetez, Bétrancourt, Pun (bib24) 2011; 41
Kreibig (bib35) 2010; 84
Bailenson (10.1016/j.neucom.2015.07.112_bib8) 2008; 66
Lacey (10.1016/j.neucom.2015.07.112_bib29) 1967
Plewczynski (10.1016/j.neucom.2015.07.112_bib37) 2006; 46
Allen (10.1016/j.neucom.2015.07.112_bib32) 1991; 53
Hall (10.1016/j.neucom.2015.07.112_bib36) 2009; 11
Stemmler (10.1016/j.neucom.2015.07.112_bib13) 1992
Picard (10.1016/j.neucom.2015.07.112_bib25) 2001; 23
Witten (10.1016/j.neucom.2015.07.112_bib34) 2011
Shan (10.1016/j.neucom.2015.07.112_bib2) 2009; 27
10.1016/j.neucom.2015.07.112_bib16
10.1016/j.neucom.2015.07.112_bib15
Castellano (10.1016/j.neucom.2015.07.112_bib18) 2008; vol. 4868
Graesser (10.1016/j.neucom.2015.07.112_bib23) 2005; 48
Koelstra (10.1016/j.neucom.2015.07.112_bib9) 2012; 3
Kim (10.1016/j.neucom.2015.07.112_bib5) 2008; 30
Zhou (10.1016/j.neucom.2015.07.112_bib33) 2011; 69
10.1016/j.neucom.2015.07.112_bib10
Kreibig (10.1016/j.neucom.2015.07.112_bib35) 2010; 84
Xu (10.1016/j.neucom.2015.07.112_bib1) 2015
Gunes (10.1016/j.neucom.2015.07.112_bib17) 2007; 30
Kim (10.1016/j.neucom.2015.07.112_bib11) 2007
10.1016/j.neucom.2015.07.112_bib4
Christie (10.1016/j.neucom.2015.07.112_bib21) 2004; 51
Stemmler (10.1016/j.neucom.2015.07.112_bib31) 2010; 84
10.1016/j.neucom.2015.07.112_bib6
10.1016/j.neucom.2015.07.112_bib7
Zeng (10.1016/j.neucom.2015.07.112_bib19) 2009; 31
Chanel (10.1016/j.neucom.2015.07.112_bib24) 2011; 41
AlZoubi (10.1016/j.neucom.2015.07.112_bib27) 2012; 3
10.1016/j.neucom.2015.07.112_bib3
Andreassi (10.1016/j.neucom.2015.07.112_bib14) 2000
10.1016/j.neucom.2015.07.112_bib26
10.1016/j.neucom.2015.07.112_bib28
Alzoubi (10.1016/j.neucom.2015.07.112_bib22) 2011; vol. 6974
Marwitz (10.1016/j.neucom.2015.07.112_bib12) 1998; 35
10.1016/j.neucom.2015.07.112_bib20
Engel (10.1016/j.neucom.2015.07.112_bib30) 1960; 2
References_xml – volume: 84
  start-page: 541
  year: 2010
  end-page: 551
  ident: bib31
  article-title: Personality, emotion, and individual differences in physiological responses
  publication-title: Biol. Psychol.
– year: 1992
  ident: bib13
  article-title: Differential Psychophysiology: Persons in Situations
– volume: vol. 6974
  start-page: 4
  year: 2011
  end-page: 13
  ident: bib22
  article-title: Affective modeling from multichannel physiology: analysis of day differences
  publication-title: Affective Computing and Intelligent Interaction of Lecture Notes in Computer Science
– start-page: 14
  year: 1967
  end-page: 42
  ident: bib29
  article-title: Somatic response patterning and stress
  publication-title: Psychol. Stress: Issues Res.
– reference: P. Ekman, Handbook of Social Psychophysiology, in: Wiley Handbooks of Psychophysiology, John Wiley & Sons, Oxford, England, 1989, pp. 143–164 (Chapter: The Argument and Evidence About Universals in Facial Expressions of Emotion).
– volume: 51
  start-page: 143
  year: 2004
  end-page: 153
  ident: bib21
  article-title: Autonomic specificity of discrete emotion and dimensions of affective space
  publication-title: Int. J. Psychophysiol.
– volume: vol. 4868
  start-page: 92
  year: 2008
  end-page: 103
  ident: bib18
  article-title: Emotion recognition through multiple modalities: face, body gesture, speech
  publication-title: Affect and Emotion in Human-Computer Interaction of Lecture Notes in Computer Science
– volume: 27
  start-page: 803
  year: 2009
  end-page: 816
  ident: bib2
  article-title: Facial expression recognition based on local binary patterns
  publication-title: Image Vis. Comput.
– volume: 3
  start-page: 298
  year: 2012
  end-page: 310
  ident: bib27
  article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– reference: J. Wagner, J. Kim, E. André, From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification, in: IEEE International Conference on Multimedia and Expo, IEEE, 2005, pp. 940–943.
– reference: P.J. Lang, M.M. Bradley, B.N. Cuthbert, et al., International affective picture system (iaps): instruction manual and affective ratings, in:
– reference: P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014, pp. 1805–1812.
– year: 2000
  ident: bib14
  article-title: Psychophysiology: Human Behavior & Physiological Response
– reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint
– volume: 48
  start-page: 612
  year: 2005
  end-page: 618
  ident: bib23
  article-title: Autotutor
  publication-title: IEEE Trans. Educ.
– volume: 31
  start-page: 39
  year: 2009
  end-page: 58
  ident: bib19
  article-title: A survey of affect recognition methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 1
  year: 1998
  end-page: 15
  ident: bib12
  article-title: On the status of individual response specificity
  publication-title: Psychophysiology
– volume: 2
  start-page: 305
  year: 1960
  ident: bib30
  article-title: Stimulus-response and individual-response specificity
  publication-title: Arch. Gen. Psychiat.
– start-page: 265
  year: 2007
  end-page: 280
  ident: bib11
  article-title: Bimodal emotion recognition using speech and physiological changes
  publication-title: Robust Speech Recognit. Underst.
– reference: X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 586–594.
– reference: M.S. Hussain, H. Monkaresi, R. A. Calvo, Combining classifiers in multimodal affect detection, in: Proceedings of the Tenth Australasian Data Mining Conference - Volume 134, AusDM ׳12, Australian Computer Society, Inc., Darlinghurst, Australia, 2012, pp. 103-108.
– volume: 23
  start-page: 1175
  year: 2001
  end-page: 1191
  ident: bib25
  article-title: Toward machine emotional intelligence
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Z. Wang, S. Wang, Q. Ji, Capturing complex spatio-temporal relations among facial muscles for facial expression recognition, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013, pp. 3422–3429.
– reference: J.I. Lacey, Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome, in: Research in Psychotherapy, April, 1958, Washington, DC; This conference, financed by a grant (M-2031) from the National Institute of Mental Health, US Public Health Service, was held under the auspices of the Division of Clinical Psychology, American Psychological Association, with planning and programming by an Ad Hoc Committee of the Division of Clinical Psychology; Frank Auld, Jr., Morris B. Parloff, Benjamin Pasamanick, George Saslow, Julius Seeman, and Eli A. Rubinstein, Chairman, American Psychological Association, 1959.
– volume: 30
  start-page: 2067
  year: 2008
  end-page: 2083
  ident: bib5
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: .
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: bib9
  article-title: Deap
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 11
  year: 2015
  ident: bib1
  article-title: Affective experience modeling based on interactive synergetic dependence in big data
  publication-title: Fut. Gen. Comput. Syst.
– volume: 46
  start-page: 1098
  year: 2006
  end-page: 1106
  ident: bib37
  article-title: Assessing different classification methods for virtual screening
  publication-title: J. Chem. Inf. Model.
– reference: B. Schuller, G. Rigoll, M. Lang, Hidden Markov model-based speech emotion recognition, in: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, & Signal Processing, vol. 2, IEEE, 2003, pp. II-1.
– reference: The Center for Research in Psychophysiology, University of Florida.
– volume: 69
  start-page: 801
  year: 2011
  end-page: 819
  ident: bib33
  article-title: Affect prediction from physiological measures via visual stimuli
  publication-title: Int. J. Hum. Comput. Stud.
– volume: 30
  start-page: 1334
  year: 2007
  end-page: 1345
  ident: bib17
  article-title: Bi-modal emotion recognition from expressive face and body gestures
  publication-title: J. Netw. Comput. Appl.
– volume: 66
  start-page: 303
  year: 2008
  end-page: 317
  ident: bib8
  article-title: Real-time classification of evoked emotions using facial feature tracking and physiological responses
  publication-title: Int. J. Hum.–Comput. Stud.
– year: 2011
  ident: bib34
  publication-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 53
  start-page: 272
  year: 1991
  end-page: 288
  ident: bib32
  article-title: Cluster analyses of cardiovascular responsivity to three laboratory stressors
  publication-title: Psychosom. Med.
– volume: 84
  start-page: 394
  year: 2010
  end-page: 421
  ident: bib35
  article-title: Autonomic nervous system activity in emotion
  publication-title: Biol. Psychol.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib36
  article-title: The weka data mining software
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 41
  start-page: 1052
  year: 2011
  end-page: 1063
  ident: bib24
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
  publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
– volume: 27
  start-page: 803
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2015.07.112_bib2
  article-title: Facial expression recognition based on local binary patterns
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.08.005
– volume: 35
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.neucom.2015.07.112_bib12
  article-title: On the status of individual response specificity
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3510001
– year: 2011
  ident: 10.1016/j.neucom.2015.07.112_bib34
– volume: 46
  start-page: 1098
  issue: 3
  year: 2006
  ident: 10.1016/j.neucom.2015.07.112_bib37
  article-title: Assessing different classification methods for virtual screening
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci050519k
– volume: 84
  start-page: 394
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2015.07.112_bib35
  article-title: Autonomic nervous system activity in emotion
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2010.03.010
– volume: 84
  start-page: 541
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2015.07.112_bib31
  article-title: Personality, emotion, and individual differences in physiological responses
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2009.09.012
– ident: 10.1016/j.neucom.2015.07.112_bib4
  doi: 10.1109/CVPR.2014.233
– year: 1992
  ident: 10.1016/j.neucom.2015.07.112_bib13
– volume: 23
  start-page: 1175
  issue: 10
  year: 2001
  ident: 10.1016/j.neucom.2015.07.112_bib25
  article-title: Toward machine emotional intelligence
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– ident: 10.1016/j.neucom.2015.07.112_bib16
  doi: 10.1109/ICME.2003.1220939
– volume: vol. 4868
  start-page: 92
  year: 2008
  ident: 10.1016/j.neucom.2015.07.112_bib18
  article-title: Emotion recognition through multiple modalities: face, body gesture, speech
– volume: 41
  start-page: 1052
  issue: 6
  year: 2011
  ident: 10.1016/j.neucom.2015.07.112_bib24
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
  publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
  doi: 10.1109/TSMCA.2011.2116000
– start-page: 11
  year: 2015
  ident: 10.1016/j.neucom.2015.07.112_bib1
  article-title: Affective experience modeling based on interactive synergetic dependence in big data
  publication-title: Fut. Gen. Comput. Syst.
– start-page: 265
  year: 2007
  ident: 10.1016/j.neucom.2015.07.112_bib11
  article-title: Bimodal emotion recognition using speech and physiological changes
  publication-title: Robust Speech Recognit. Underst.
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2015.07.112_bib9
  article-title: Deap
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– ident: 10.1016/j.neucom.2015.07.112_bib10
– volume: 66
  start-page: 303
  issue: 5
  year: 2008
  ident: 10.1016/j.neucom.2015.07.112_bib8
  article-title: Real-time classification of evoked emotions using facial feature tracking and physiological responses
  publication-title: Int. J. Hum.–Comput. Stud.
  doi: 10.1016/j.ijhcs.2007.10.011
– ident: 10.1016/j.neucom.2015.07.112_bib20
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2015.07.112_bib36
  article-title: The weka data mining software
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1656274.1656278
– year: 2000
  ident: 10.1016/j.neucom.2015.07.112_bib14
– volume: 30
  start-page: 1334
  issue: 4
  year: 2007
  ident: 10.1016/j.neucom.2015.07.112_bib17
  article-title: Bi-modal emotion recognition from expressive face and body gestures
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2006.09.007
– ident: 10.1016/j.neucom.2015.07.112_bib26
  doi: 10.1109/ICME.2005.1521579
– ident: 10.1016/j.neucom.2015.07.112_bib3
  doi: 10.1109/CVPR.2013.439
– volume: 31
  start-page: 39
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2015.07.112_bib19
  article-title: A survey of affect recognition methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.52
– ident: 10.1016/j.neucom.2015.07.112_bib6
– volume: 69
  start-page: 801
  issue: 12
  year: 2011
  ident: 10.1016/j.neucom.2015.07.112_bib33
  article-title: Affect prediction from physiological measures via visual stimuli
  publication-title: Int. J. Hum. Comput. Stud.
  doi: 10.1016/j.ijhcs.2011.07.005
– volume: 3
  start-page: 298
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2015.07.112_bib27
  article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2012.4
– start-page: 14
  year: 1967
  ident: 10.1016/j.neucom.2015.07.112_bib29
  article-title: Somatic response patterning and stress
  publication-title: Psychol. Stress: Issues Res.
– volume: 53
  start-page: 272
  issue: 3
  year: 1991
  ident: 10.1016/j.neucom.2015.07.112_bib32
  article-title: Cluster analyses of cardiovascular responsivity to three laboratory stressors
  publication-title: Psychosom. Med.
  doi: 10.1097/00006842-199105000-00002
– ident: 10.1016/j.neucom.2015.07.112_bib15
– ident: 10.1016/j.neucom.2015.07.112_bib7
  doi: 10.1109/CVPR.2015.7298657
– volume: vol. 6974
  start-page: 4
  year: 2011
  ident: 10.1016/j.neucom.2015.07.112_bib22
  article-title: Affective modeling from multichannel physiology: analysis of day differences
– volume: 2
  start-page: 305
  issue: 3
  year: 1960
  ident: 10.1016/j.neucom.2015.07.112_bib30
  article-title: Stimulus-response and individual-response specificity
  publication-title: Arch. Gen. Psychiat.
  doi: 10.1001/archpsyc.1960.03590090061010
– volume: 51
  start-page: 143
  issue: 2
  year: 2004
  ident: 10.1016/j.neucom.2015.07.112_bib21
  article-title: Autonomic specificity of discrete emotion and dimensions of affective space
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2003.08.002
– volume: 30
  start-page: 2067
  issue: 12
  year: 2008
  ident: 10.1016/j.neucom.2015.07.112_bib5
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– volume: 48
  start-page: 612
  issue: 4
  year: 2005
  ident: 10.1016/j.neucom.2015.07.112_bib23
  article-title: Autotutor
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/TE.2005.856149
– ident: 10.1016/j.neucom.2015.07.112_bib28
  doi: 10.1037/10036-010
SSID ssj0017129
Score 2.3816478
Snippet Facial expression-based emotion recognition has attracted lots of attention. Higher accurate performance could be expected with help of the other cues, e.g....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Affective computing
Emotion recognition
Emotions
Face recognition
Facial
Facial expression
Galvanic skin response
Human behavior
Individual response specificity
Pattern recognition
Physiology-based
Recognition
User-independent system
Title Analysis of physiological for emotion recognition with the IRS model
URI https://dx.doi.org/10.1016/j.neucom.2015.07.112
https://www.proquest.com/docview/1793240485
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lgtfYzWMfOZZqaRV7sBZ6C8luAhXZFm2v_nYnu5uCghS87YZkWWaTb77JTr5B6NZxZ4vIaUKB7hIBPosY8JLEZC6TSeYADv3WwPM4GU7F4yyetVA_nIXxaZUN9teYXqF109JtrNldzufdSSQZRFFeHcGrpAl_0FyI1M_yu69NmgdNKav19lhMfO9wfK7K8Srt2ueMgBOMvYQnpewv9_QLqCvvMzhAew1txL36zQ5Ry5ZHaD-UZMDNCj1G90FkBC8crnYtArhhYKfY1kV78CZtCK79TiwGGohHLxNcFcY5QdPBw2t_SJpCCSSH8GxFpEsTIxzjtpDQkCdGJ9Ymha83leksclksdJxLWURc2BxItU2FpdJANMcLQ_kpapeL0p4hDAGh5dxQZxwXMF56vVRttLFMR-BQzxEP9lF5oyLui1m8q5Au9qZqqypvVRWlEGOwc0Q2o5a1isaW_mkwvfoxGxQA_ZaRN-FLKVgo_u-HLu1i_ak8EgF9EVl88e-nX6JduKuytll0hdqrj7W9BlKyMp1q1nXQTm_0NBx_A7v24UU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB7W9aAX3-LbCHqM2ybp6-BBfLCr7h5cBW-xaRNQpCu6i3jxT_kHnbTNgoIsCN5K2oQySb-ZSb98A7BvuNG5Z1LqY7hLBfosqtBLUhWbOAljg3Botwa6vbB9Ky7ugrsGfLqzMJZWWWN_heklWtctrdqareeHh1bfSxhmUVYdwaqkCcesvNTvb5i3vR51TnGSDxg7P7s5adO6tADNMKEZ0sREoRKGcZ0n2JCFKg21DnNboSlOY8_EgUiDLElyjwudYRiqI6H9RGH-w3Plcxx3CqYFwoUtm3D4MeaV-JHPKoE_FlD7eu68XkkqK_TIklTQ6wZWM9T32W_-8IdnKN3d-QLM1XEqOa5MsQgNXSzBvKsBQWpIWIZTp2pCBoaU2yQOTQmGw0RXVYLImKeE13brl2DcSTrXfVJW4lmB238x3yo0i0Gh14BgBqo5V75Rhgvsn1iB1lSlSrPUQw--DtzZR2a1bLmtnvEkHT_tUVZWldaq0oswqWHrQMe9nivZjgnPR8708tvyk-hZJvTcczMl8cu0v1vSQg9Gr9JCH8ZLIg42_jz6Lsy0b7pX8qrTu9yEWbxTUsaZtwXN4ctIb2NENFQ75QokcP_fS_4L2U0clA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+physiological+for+emotion+recognition+with+the+IRS+model&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Chao&rft.au=Xu%2C+Chao&rft.au=Feng%2C+Zhiyong&rft.date=2016-02-20&rft.issn=0925-2312&rft.volume=178&rft.spage=103&rft.epage=111&rft_id=info:doi/10.1016%2Fj.neucom.2015.07.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2015_07_112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon