The fabrication of antibacterial hydrogels for wound healing

[Display omitted] Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for prepa...

Full description

Saved in:
Bibliographic Details
Published inEuropean polymer journal Vol. 146; p. 110268
Main Authors Zhang, Xiumei, Qin, Miao, Xu, Mengjie, Miao, Fenyan, Merzougui, Chaima, Zhang, Xiangyu, Wei, Yan, Chen, Weiyi, Huang, Di
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.03.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for preparing antibacterial hydrogels. One is combining antibacterial agents with hydrogels. Antibacterial drugs include antibiotics, some biological extracts, natural polymers and some metal nanoparticles. In this review, physical combination (directly incorporating, swelling diffusion method, encapsulated in carriers) and chemical combination (hydrogels with inherent antibacterial activity, forming chemical bonds) are introduced depending on the methods and types of antibacterial agents incorporated with hydrogels. The other one is light-assisted antibacterial hydrogels, which involve photo-thermal antibacterial hydrogels and photo-dynamic antibacterial hydrogels. The common methods to prepare light-assisted antibacterial hydrogels are also described in this work. With the rapid improvements in antibacterial technology, many novel antibacterial hydrogels are constantly emerging. The most relevant studies and the latest status of research in this area were evaluated in this review.
AbstractList [Display omitted] Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for preparing antibacterial hydrogels. One is combining antibacterial agents with hydrogels. Antibacterial drugs include antibiotics, some biological extracts, natural polymers and some metal nanoparticles. In this review, physical combination (directly incorporating, swelling diffusion method, encapsulated in carriers) and chemical combination (hydrogels with inherent antibacterial activity, forming chemical bonds) are introduced depending on the methods and types of antibacterial agents incorporated with hydrogels. The other one is light-assisted antibacterial hydrogels, which involve photo-thermal antibacterial hydrogels and photo-dynamic antibacterial hydrogels. The common methods to prepare light-assisted antibacterial hydrogels are also described in this work. With the rapid improvements in antibacterial technology, many novel antibacterial hydrogels are constantly emerging. The most relevant studies and the latest status of research in this area were evaluated in this review.
Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for preparing antibacterial hydrogels. One is combining antibacterial agents with hydrogels. Antibacterial drugs include antibiotics, some biological extracts, natural polymers and some metal nanoparticles. In this review, physical combination (directly incorporating, swelling diffusion method, encapsulated in carriers) and chemical combination (hydrogels with inherent antibacterial activity, forming chemical bonds) are introduced depending on the methods and types of antibacterial agents incorporated with hydrogels. The other one is light-assisted antibacterial hydrogels, which involve photo-thermal antibacterial hydrogels and photo-dynamic antibacterial hydrogels. The common methods to prepare light-assisted antibacterial hydrogels are also described in this work. With the rapid improvements in antibacterial technology, many novel antibacterial hydrogels are constantly emerging. The most relevant studies and the latest status of research in this area were evaluated in this review.
ArticleNumber 110268
Author Chen, Weiyi
Zhang, Xiumei
Merzougui, Chaima
Wei, Yan
Qin, Miao
Miao, Fenyan
Xu, Mengjie
Huang, Di
Zhang, Xiangyu
Author_xml – sequence: 1
  givenname: Xiumei
  surname: Zhang
  fullname: Zhang, Xiumei
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 2
  givenname: Miao
  surname: Qin
  fullname: Qin, Miao
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 3
  givenname: Mengjie
  surname: Xu
  fullname: Xu, Mengjie
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 4
  givenname: Fenyan
  surname: Miao
  fullname: Miao, Fenyan
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 5
  givenname: Chaima
  surname: Merzougui
  fullname: Merzougui, Chaima
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 6
  givenname: Xiangyu
  surname: Zhang
  fullname: Zhang, Xiangyu
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 7
  givenname: Yan
  surname: Wei
  fullname: Wei, Yan
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 8
  givenname: Weiyi
  surname: Chen
  fullname: Chen, Weiyi
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
– sequence: 9
  givenname: Di
  orcidid: 0000-0001-8123-9766
  surname: Huang
  fullname: Huang, Di
  email: huangjw2067@163.com
  organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
BookMark eNqNkD1PwzAURS1UJFrgNxCJOeE5jpNYgqGq-JIqsZTZcuyX1lEaF8cF9d-TEsTAAtMb7j33SWdGJp3rkJArCgkFmt80Ce79zrWHbZOkkNKEUkjz8oRMaVmwmIqMT8gUgGYxA16ckVnfNwBQsJxNye1qg1GtKm-1CtZ1kasj1QVbKR3QW9VGm4Pxbo1tH9XORx9u35log6q13fqCnNaq7fHy-56T14f71eIpXr48Pi_my1hnIEIsUPCyqkFrkZtMF6zK0gp4ypQR1CikpqRDmgue0ZRnnOaizBUirwxlYAp2Tq7H3Z13b3vsg2zc3nfDS5lyYFnOipQPrWJsae_63mMtd95ulT9ICvKoSjbyR5U8qpKjqoG8-0VqG750BK9s-w9-PvKDJXy36GWvLXYajfWogzTO_rnxCdJSjMw
CitedBy_id crossref_primary_10_1002_mabi_202300282
crossref_primary_10_1016_j_ijbiomac_2022_10_067
crossref_primary_10_2139_ssrn_4021922
crossref_primary_10_1016_j_eurpolymj_2021_110680
crossref_primary_10_1016_j_mtchem_2024_102341
crossref_primary_10_1016_j_ijbiomac_2021_04_114
crossref_primary_10_1007_s10570_023_05371_w
crossref_primary_10_1016_j_apmt_2022_101396
crossref_primary_10_1016_j_eurpolymj_2025_113717
crossref_primary_10_1080_10717544_2023_2300945
crossref_primary_10_3390_ijms232315092
crossref_primary_10_1016_j_carbpol_2023_120702
crossref_primary_10_1016_j_colsurfb_2024_113881
crossref_primary_10_1016_j_reactfunctpolym_2023_105592
crossref_primary_10_1039_D3NJ02276E
crossref_primary_10_1007_s40820_024_01323_6
crossref_primary_10_3390_gels11030174
crossref_primary_10_1093_rb_rbad081
crossref_primary_10_1016_j_jece_2024_114190
crossref_primary_10_1016_j_reactfunctpolym_2023_105636
crossref_primary_10_1080_09205063_2023_2217063
crossref_primary_10_1016_j_colsurfa_2022_130832
crossref_primary_10_1002_jbm_b_35510
crossref_primary_10_1016_j_carbpol_2022_120371
crossref_primary_10_1007_s00289_022_04448_z
crossref_primary_10_3390_gels9090738
crossref_primary_10_1038_s41536_023_00313_3
crossref_primary_10_1007_s10570_023_05261_1
crossref_primary_10_1016_j_eurpolymj_2022_111549
crossref_primary_10_1016_j_ijbiomac_2024_130296
crossref_primary_10_1016_j_ijbiomac_2024_138853
crossref_primary_10_1080_00914037_2024_2344602
crossref_primary_10_3390_polym14153135
crossref_primary_10_1016_j_colcom_2023_100697
crossref_primary_10_1021_acsami_2c17366
crossref_primary_10_1166_mex_2021_2049
crossref_primary_10_1021_acsanm_4c02594
crossref_primary_10_3390_foods11010028
crossref_primary_10_1016_j_ijbiomac_2022_03_207
crossref_primary_10_1002_adfm_202303095
crossref_primary_10_1039_D3NJ02114A
crossref_primary_10_1002_mame_202100287
crossref_primary_10_1021_acs_jafc_4c05903
crossref_primary_10_3390_gels7020040
crossref_primary_10_1088_1748_605X_ac49f7
crossref_primary_10_1088_1758_5090_ad30c3
crossref_primary_10_1016_j_ijbiomac_2023_128299
crossref_primary_10_3390_ijms24021109
crossref_primary_10_1002_pi_6304
crossref_primary_10_1016_j_ijbiomac_2023_129146
crossref_primary_10_1016_j_eurpolymj_2022_111047
crossref_primary_10_3390_coatings14080942
crossref_primary_10_1002_app_54641
crossref_primary_10_1002_smll_202309485
crossref_primary_10_1021_acsanm_1c03518
crossref_primary_10_1039_D3LP00077J
crossref_primary_10_1016_j_foodchem_2024_139126
crossref_primary_10_1016_j_eurpolymj_2023_111868
crossref_primary_10_3390_app11209550
crossref_primary_10_1007_s10570_023_05516_x
crossref_primary_10_1016_j_carbpol_2021_118269
crossref_primary_10_1016_j_aej_2024_12_101
crossref_primary_10_1155_2023_7109766
crossref_primary_10_1039_D3BM01181J
crossref_primary_10_1016_j_ijbiomac_2023_127371
crossref_primary_10_3390_gels11020088
crossref_primary_10_1039_D4TB01572J
crossref_primary_10_1002_marc_202400173
crossref_primary_10_3390_gels11040239
crossref_primary_10_1016_j_ijbiomac_2023_128348
crossref_primary_10_1039_D2NR04908B
crossref_primary_10_1002_app_56552
crossref_primary_10_1080_25740881_2021_1988964
crossref_primary_10_1016_j_nanoen_2024_110558
crossref_primary_10_1002_wnan_1745
crossref_primary_10_1088_2053_1591_ac565f
crossref_primary_10_3390_gels9070542
crossref_primary_10_1039_D1SM01066B
crossref_primary_10_1002_mabi_202100475
crossref_primary_10_3390_gels10060408
crossref_primary_10_1016_j_carbpol_2023_121318
crossref_primary_10_1016_j_ijbiomac_2023_123449
crossref_primary_10_1080_09205063_2022_2099662
crossref_primary_10_1039_D3BM01792C
crossref_primary_10_3390_ijms24032191
crossref_primary_10_1016_j_ijbiomac_2023_125000
crossref_primary_10_1021_acsomega_2c07279
crossref_primary_10_1002_jbm_b_35037
crossref_primary_10_1016_j_jep_2022_115663
crossref_primary_10_3390_gels8030167
crossref_primary_10_1016_j_carbon_2022_10_008
crossref_primary_10_1016_j_ijbiomac_2024_129705
crossref_primary_10_1002_pol_20220734
crossref_primary_10_1016_j_polymer_2025_128064
crossref_primary_10_1021_acsabm_2c00859
crossref_primary_10_1016_j_pmatsci_2024_101292
crossref_primary_10_3390_bioengineering9100518
crossref_primary_10_1016_j_intimp_2025_114075
crossref_primary_10_3390_gels9100786
crossref_primary_10_1016_j_mtcomm_2024_108029
crossref_primary_10_1002_pat_5720
crossref_primary_10_1002_app_54665
crossref_primary_10_1021_acsmaterialslett_1c00146
crossref_primary_10_3390_pharmaceutics14112444
crossref_primary_10_3390_ma14205956
crossref_primary_10_1016_j_ijbiomac_2024_133519
crossref_primary_10_1021_acs_biomac_3c00209
crossref_primary_10_1016_j_ijbiomac_2024_135418
crossref_primary_10_1021_acsami_3c19481
crossref_primary_10_1016_j_ccr_2024_216330
crossref_primary_10_1021_acsami_3c09713
crossref_primary_10_1021_acsabm_4c01182
crossref_primary_10_1039_D1TB02800F
crossref_primary_10_1016_j_ijbiomac_2024_135410
crossref_primary_10_1007_s00289_024_05552_y
crossref_primary_10_1038_s41598_024_63186_6
crossref_primary_10_1007_s10853_024_10103_x
crossref_primary_10_1021_acsami_1c13392
crossref_primary_10_1007_s12247_024_09901_2
crossref_primary_10_58803_jlar_v2i5_28
crossref_primary_10_1002_smll_202205682
crossref_primary_10_1016_j_supmat_2024_100064
crossref_primary_10_3390_biomimetics9050278
crossref_primary_10_1021_acsbiomaterials_2c00716
crossref_primary_10_1002_bip_70007
crossref_primary_10_1007_s00604_025_06967_8
crossref_primary_10_2139_ssrn_4092456
crossref_primary_10_1002_adhm_202301809
crossref_primary_10_1016_j_compositesb_2022_110456
crossref_primary_10_1007_s40883_024_00334_4
crossref_primary_10_1016_j_ijbiomac_2023_125029
crossref_primary_10_1208_s12249_024_02827_5
crossref_primary_10_3390_gels9010022
crossref_primary_10_1016_j_jiec_2022_06_012
crossref_primary_10_1016_j_mtcomm_2022_103513
crossref_primary_10_1039_D5TB00042D
crossref_primary_10_3389_fphar_2022_896706
crossref_primary_10_1016_j_carbpol_2023_121662
crossref_primary_10_1021_acsami_2c20229
crossref_primary_10_1016_j_ijbiomac_2024_133194
crossref_primary_10_1002_adhm_202301885
crossref_primary_10_1016_j_smaim_2021_03_004
crossref_primary_10_1166_jbn_2022_3427
crossref_primary_10_3390_ph17091110
crossref_primary_10_1080_00405000_2023_2200319
crossref_primary_10_1002_biot_202400209
Cites_doi 10.1007/s10570-019-02942-8
10.1021/acs.iecr.7b01812
10.1002/bip.22412
10.1016/j.bioactmat.2020.02.004
10.1007/s12274-020-2636-9
10.1039/C9NR02012H
10.3390/ma10030232
10.1016/j.ijbiomac.2018.09.131
10.1002/adfm.202000644
10.1002/adma.201403339
10.1016/j.apsb.2018.12.005
10.1016/j.actbio.2011.10.004
10.1021/acsami.0c00298
10.1021/acsami.6b10491
10.1021/acsabm.8b00625
10.1039/C8CC09000A
10.1007/s10924-019-01586-w
10.1021/acs.biomac.9b01732
10.1021/acs.molpharmaceut.6b01104
10.1016/j.biomaterials.2013.05.005
10.1021/acsabm.0c00252
10.1021/acsami.0c08890
10.1016/j.bioactmat.2020.05.008
10.1038/s41427-020-0206-y
10.1002/smll.201907309
10.1016/j.ijpharm.2018.07.055
10.1021/acsami.7b18927
10.1002/mabi.201900123
10.1038/s41427-018-0103-9
10.1021/acsami.8b10064
10.1016/j.msec.2016.08.086
10.1021/acsnano.7b03513
10.1002/advs.201700527
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 5, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 5, 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.eurpolymj.2021.110268
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-1945
ExternalDocumentID 10_1016_j_eurpolymj_2021_110268
S0014305721000021
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
XPP
ZMT
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SCB
SEW
SMS
SSH
T9H
WUQ
7SR
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c409t-9e958bf0cc96d4c73b42b0523ad91dae1d81f0c69541254516986aee5bd130d73
IEDL.DBID .~1
ISSN 0014-3057
IngestDate Mon Jul 14 10:24:28 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Tue Jul 01 01:58:47 EDT 2025
Fri Feb 23 02:44:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fabrication
Antibacterial hydrogels
Light-assisted antibacterial
Wound healing
Antibacterial agents
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9e958bf0cc96d4c73b42b0523ad91dae1d81f0c69541254516986aee5bd130d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8123-9766
PQID 2503463725
PQPubID 2045478
ParticipantIDs proquest_journals_2503463725
crossref_primary_10_1016_j_eurpolymj_2021_110268
crossref_citationtrail_10_1016_j_eurpolymj_2021_110268
elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2021_110268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-05
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle European polymer journal
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References le Thi, Lee, Hoang Thi (b0530) 2018; 92
Zhang, Zhang, Zhang (b0665) 2020; 382
Deng, Yu, Chen (b0555) 2020; 230
Shanmugapriya, Kim, Kang (b0565) 2020; 247
Kim, Oh, Jang (b0185) 2020; 107
Tantiwatcharothai, Prachayawarakorn (b0135) 2020; 227
Wentao, Tao, Bulei (b0640) 2019; 17
Zhi, Yang, O'Hagan (b0575) 2020; 325
Irwansyah, Li, Shi (b0475) 2015; 27
Zhang, Dang, Liu (b0345) 2017; 102
Caló, Khutoryanskiy (b0095) 2015; 65
Xie, Liao, Zhang (b0085) 2018; 119
Wang, Wang, Li (b0435) 2019; 372
Shanmugapriya, Kang (b0630) 2019; 105
Yu, Yang, Ren (b0445) 2020; 299
Muthuswamy, Viswanathan, Yegappan (b0110) 2018; 2
Huang, Ying, Wang (b0515) 2020; 30
Kaur, Gondil, Chhibber (b0250) 2019; 572
Han, Li, Liu (b0615) 2020; 396
Wei, Liu, Zhou (b0335) 2020; 155
Nešović, Janković, Radetić (b0265) 2019; 121
Zhang, Jiang, Zhang (b0320) 2019; 104
Qu, Zhao, Liang (b0080) 2018; 183
Cao, Wang, Liu (b0355) 2020; 155
Wahid, Zhou, Wang (b0370) 2018; 114
Chen, Cheng, Ran (b0410) 2018; 201
Fang, Wang, Li (b0440) 2019; 365
Zhang, Wang, Chi (b0570) 2019; 183
Ninan, Forget, Shastri (b0545) 2016; 8
Abbasi, Sohail, Minhas (b0150) 2020; 155
Hu, Zhang, Long (b0155) 2020; 324
Basha, Ghosh, Vinothkumar (b0160) 2020; 111
Xu, Zeng, Huang (b0560) 2020; 229
Masood, Ahmed, Tariq (b0190) 2019; 559
Stubbe, Mignon, Declercq (b0025) 2019; 19
Hsu, Hu, Jiang (b0470) 2020; 112
Chin, Romainor, Pang (b0020) 2019; 54
Liu, Li, Guo (b0590) 2020; 382
Song, Zheng, Liu (b0100) 2019; 134
Alkordi (b0485) 2013; 2013
Zhang, Zhang, Yang (b0650) 2019; 374
Hoque, Prakash, Paramanandham (b0105) 2017; 14
Annabi, Rana, Shirzaei Sani (b0130) 2017; 139
Huang, Liu, Liao (b0580) 2020; 12
Xu, Chang, Zhang (b0595) 2020; 12
Hamdi, Feki, Bardaa (b0070) 2020; 113
Qin, Chen, Pu (b0490) 2019; 55
Chen, Lai, Chang (b0465) 2019; 11
Alavi, Nokhodchi (b0310) 2020; 227
He, Shi, Liang (b0420) 2020; 394
Ma, Zhong, Jiang (b0550) 2020; 236
Han, Zhou, Yang (b0115) 2020; 5
Ruseva, Ivanova, Todorova (b0010) 2020; 132
Ma, Wang, Li (b0055) 2017; 56
Raho, Paladini, Lombardi (b0200) 2015; 55
Khan, Pham, Oloketuyi (b0330) 2020; 185
Kong, Fan, Yang (b0075) 2019; 138
Zhu, Li, Wang (b0270) 2018; 10
Liu, Dai, Si (b0510) 2018; 195
Chen, Xing, Tan (b0280) 2017; 70
Veiga, Schneider (b0225) 2013; 100
Picone, Sabatino, Ajovalasit (b0245) 2019; 121
Shariatinia (b0360) 2018; 120
Liang, Chen, Li (b0655) 2020; 21
Herlem, Picaud, Girardet (b0285) 2019
Singh, Kumar (b0050) 2020; 489
Yang, Zhang, Huang (b0450) 2020; 324
Sadeghi, Nourmohammadi, Ghaee (b0295) 2020; 147
de Cicco, Reverchon, Adami (b0065) 2014; 101
Gavel, Kumar, Parmar (b0015) 2020; 3
Wang, Zhang, Yang (b0600) 2019; 494
Kumar, Kaur (b0035) 2020; 145
Pasaribu, Ginting, Masmur (b0405) 2020; 310
Yang, Chen, Zhao (b0380) 2020; 197
Pham, Jiang, Su (b0535) 2020; 146
van den Broeck, Piluso, Soultan (b0620) 2019; 98
Bagher, Ehterami, Safdel (b0170) 2020; 55
Tu, Chen, Li (b0385) 2019; 90
Koehler, Brandl, Goepferich (b0040) 2018; 100
Ahmed, Niazi, Jahan (b0205) 2020; 130
Xie, Zhang, Qin (b0455) 2020; 193
Zhou, Xu, Yan (b0180) 2020; 104
Bayat, Karimi (b0305) 2019; 129
Zhang, He, Shi (b0425) 2020; 400
Qu, Zhao, Liang (b0145) 2019; 362
Tao, Wang, Cai (b0240) 2019; 101
Huang, Huang, Cai (b0365) 2015; 134
Kalantari, Mostafavi, Saleh (b0060) 2020; 134
Chen, Chen, Rehman (b0395) 2018; 10
Gautam, Poudel, Yong (b0605) 2018; 549
Zhang, Chen, Zhong (b0255) 2020; 143
Chen, Cheng, Zhao (b0400) 2019; 11
Mahmoud, Hikmat, Abu Ghith (b0195) 2019; 565
Forero-Doria, Polo, Marican (b0300) 2020; 242
Sun, Ma, Gong (b0045) 2020; 157
Wang, Zhang, Meng (b0350) 2020; 194
Song, Rane, Christman (b0460) 2012; 8
Fu, Wu, Wei (b0610) 2019; 9
Mai, Jia, Liu (b0635) 2020; 12
Yang, Liang, Ma (b0585) 2019; 22
Wang, Wang, Wu (b0090) 2017; 168
Ou, Huang, Fu (b0290) 2020; 382
Mao, Xiang, Liu (b0220) 2017; 11
Liang, Zhao, Hu (b0625) 2019; 556
Liang, Wang, Zhang (b0660) 2019; 378
Raho, Nguyen, Zhang (b0505) 2020; 107
Zhao, Wu, Guo (b0415) 2017; 122
Ilkar Erdagi, Asabuwa Ngwabebhoh, Yildiz (b0235) 2020; 149
Pawar, Dhanka, Srivastava (b0500) 2019; 173
Gonzalez-Henriquez, Sarabia-Vallejos, Rodriguez-Hernandez (b0120) 2017; 10
Kumar, Behl, Chadha (b0215) 2020; 149
Chen, Zhu, Zhang (b0480) 2020; 379
Pan, Jin, Lai (b0375) 2019; 370
Chi, Zhang, Chen (b0005) 2020; 5
Chalitangkoon, Wongkittisin, Monvisade (b0260) 2020; 159
Li, Dong, Xu (b0125) 2018; 5
Koneru, Dharmalingam, Anandalakshmi (b0175) 2020; 148
Rafati, Sirousazar, Hassan (b0165) 2019; 28
Xue, Hu, Xiong (b0340) 2019; 226
Huang, Zhu, Wu (b0230) 2019; 225
Makvandi, Ali, Della Sala (b0210) 2019; 223
Song, Yuan, Jiao (b0140) 2020; 16
Negm, Hefni, Abd-Elaal (b0315) 2020; 152
Jiang, Huang, Wu (b0390) 2020; 149
Ren, Yu, Li (b0540) 2020; 202
Sun, He, Li (b0030) 2020; 12
Gong, Wu, Wang (b0275) 2013; 34
Wang, Wang, Peng (b0645) 2019; 180
Li, Wang, Zhang (b0325) 2020; 27
Chen, Wang, Liu (b0520) 2020; 148
Du, Liu, Wang (b0430) 2019; 104
Li, Jiang, Wang (b0525) 2019; 177
Qiu, Pu, Liu (b0495) 2020; 13
Fang (10.1016/j.eurpolymj.2021.110268_b0440) 2019; 365
Kumar (10.1016/j.eurpolymj.2021.110268_b0035) 2020; 145
Shariatinia (10.1016/j.eurpolymj.2021.110268_b0360) 2018; 120
Jiang (10.1016/j.eurpolymj.2021.110268_b0390) 2020; 149
Huang (10.1016/j.eurpolymj.2021.110268_b0230) 2019; 225
Yang (10.1016/j.eurpolymj.2021.110268_b0380) 2020; 197
Mao (10.1016/j.eurpolymj.2021.110268_b0220) 2017; 11
Tantiwatcharothai (10.1016/j.eurpolymj.2021.110268_b0135) 2020; 227
Pham (10.1016/j.eurpolymj.2021.110268_b0535) 2020; 146
Chi (10.1016/j.eurpolymj.2021.110268_b0005) 2020; 5
Li (10.1016/j.eurpolymj.2021.110268_b0125) 2018; 5
Wang (10.1016/j.eurpolymj.2021.110268_b0350) 2020; 194
Du (10.1016/j.eurpolymj.2021.110268_b0430) 2019; 104
Kong (10.1016/j.eurpolymj.2021.110268_b0075) 2019; 138
Gavel (10.1016/j.eurpolymj.2021.110268_b0015) 2020; 3
Basha (10.1016/j.eurpolymj.2021.110268_b0160) 2020; 111
Wei (10.1016/j.eurpolymj.2021.110268_b0335) 2020; 155
Ou (10.1016/j.eurpolymj.2021.110268_b0290) 2020; 382
Veiga (10.1016/j.eurpolymj.2021.110268_b0225) 2013; 100
Hu (10.1016/j.eurpolymj.2021.110268_b0155) 2020; 324
Xie (10.1016/j.eurpolymj.2021.110268_b0085) 2018; 119
Zhi (10.1016/j.eurpolymj.2021.110268_b0575) 2020; 325
Qu (10.1016/j.eurpolymj.2021.110268_b0080) 2018; 183
Song (10.1016/j.eurpolymj.2021.110268_b0140) 2020; 16
Herlem (10.1016/j.eurpolymj.2021.110268_b0285) 2019
Kalantari (10.1016/j.eurpolymj.2021.110268_b0060) 2020; 134
Negm (10.1016/j.eurpolymj.2021.110268_b0315) 2020; 152
Deng (10.1016/j.eurpolymj.2021.110268_b0555) 2020; 230
Hoque (10.1016/j.eurpolymj.2021.110268_b0105) 2017; 14
Ren (10.1016/j.eurpolymj.2021.110268_b0540) 2020; 202
Nešović (10.1016/j.eurpolymj.2021.110268_b0265) 2019; 121
Zhang (10.1016/j.eurpolymj.2021.110268_b0425) 2020; 400
Wentao (10.1016/j.eurpolymj.2021.110268_b0640) 2019; 17
Abbasi (10.1016/j.eurpolymj.2021.110268_b0150) 2020; 155
Sun (10.1016/j.eurpolymj.2021.110268_b0045) 2020; 157
Bagher (10.1016/j.eurpolymj.2021.110268_b0170) 2020; 55
Tu (10.1016/j.eurpolymj.2021.110268_b0385) 2019; 90
Chen (10.1016/j.eurpolymj.2021.110268_b0410) 2018; 201
Sadeghi (10.1016/j.eurpolymj.2021.110268_b0295) 2020; 147
Huang (10.1016/j.eurpolymj.2021.110268_b0515) 2020; 30
Cao (10.1016/j.eurpolymj.2021.110268_b0355) 2020; 155
Chen (10.1016/j.eurpolymj.2021.110268_b0520) 2020; 148
Ma (10.1016/j.eurpolymj.2021.110268_b0055) 2017; 56
van den Broeck (10.1016/j.eurpolymj.2021.110268_b0620) 2019; 98
Chin (10.1016/j.eurpolymj.2021.110268_b0020) 2019; 54
Sun (10.1016/j.eurpolymj.2021.110268_b0030) 2020; 12
Huang (10.1016/j.eurpolymj.2021.110268_b0365) 2015; 134
Han (10.1016/j.eurpolymj.2021.110268_b0115) 2020; 5
Makvandi (10.1016/j.eurpolymj.2021.110268_b0210) 2019; 223
Zhang (10.1016/j.eurpolymj.2021.110268_b0345) 2017; 102
Pawar (10.1016/j.eurpolymj.2021.110268_b0500) 2019; 173
Shanmugapriya (10.1016/j.eurpolymj.2021.110268_b0630) 2019; 105
Xie (10.1016/j.eurpolymj.2021.110268_b0455) 2020; 193
Liang (10.1016/j.eurpolymj.2021.110268_b0660) 2019; 378
Zhang (10.1016/j.eurpolymj.2021.110268_b0665) 2020; 382
Yang (10.1016/j.eurpolymj.2021.110268_b0585) 2019; 22
Li (10.1016/j.eurpolymj.2021.110268_b0325) 2020; 27
Alkordi (10.1016/j.eurpolymj.2021.110268_b0485) 2013; 2013
Stubbe (10.1016/j.eurpolymj.2021.110268_b0025) 2019; 19
Chen (10.1016/j.eurpolymj.2021.110268_b0465) 2019; 11
Mai (10.1016/j.eurpolymj.2021.110268_b0635) 2020; 12
Qiu (10.1016/j.eurpolymj.2021.110268_b0495) 2020; 13
Ruseva (10.1016/j.eurpolymj.2021.110268_b0010) 2020; 132
Zhang (10.1016/j.eurpolymj.2021.110268_b0255) 2020; 143
Ninan (10.1016/j.eurpolymj.2021.110268_b0545) 2016; 8
Picone (10.1016/j.eurpolymj.2021.110268_b0245) 2019; 121
Kaur (10.1016/j.eurpolymj.2021.110268_b0250) 2019; 572
Hsu (10.1016/j.eurpolymj.2021.110268_b0470) 2020; 112
Hamdi (10.1016/j.eurpolymj.2021.110268_b0070) 2020; 113
Chalitangkoon (10.1016/j.eurpolymj.2021.110268_b0260) 2020; 159
Fu (10.1016/j.eurpolymj.2021.110268_b0610) 2019; 9
Caló (10.1016/j.eurpolymj.2021.110268_b0095) 2015; 65
Huang (10.1016/j.eurpolymj.2021.110268_b0580) 2020; 12
Yu (10.1016/j.eurpolymj.2021.110268_b0445) 2020; 299
de Cicco (10.1016/j.eurpolymj.2021.110268_b0065) 2014; 101
Gong (10.1016/j.eurpolymj.2021.110268_b0275) 2013; 34
Kumar (10.1016/j.eurpolymj.2021.110268_b0215) 2020; 149
Liang (10.1016/j.eurpolymj.2021.110268_b0625) 2019; 556
Chen (10.1016/j.eurpolymj.2021.110268_b0400) 2019; 11
Ahmed (10.1016/j.eurpolymj.2021.110268_b0205) 2020; 130
Wang (10.1016/j.eurpolymj.2021.110268_b0600) 2019; 494
Forero-Doria (10.1016/j.eurpolymj.2021.110268_b0300) 2020; 242
Wang (10.1016/j.eurpolymj.2021.110268_b0090) 2017; 168
Alavi (10.1016/j.eurpolymj.2021.110268_b0310) 2020; 227
Wang (10.1016/j.eurpolymj.2021.110268_b0645) 2019; 180
Zhao (10.1016/j.eurpolymj.2021.110268_b0415) 2017; 122
Masood (10.1016/j.eurpolymj.2021.110268_b0190) 2019; 559
Tao (10.1016/j.eurpolymj.2021.110268_b0240) 2019; 101
Xu (10.1016/j.eurpolymj.2021.110268_b0560) 2020; 229
Raho (10.1016/j.eurpolymj.2021.110268_b0200) 2015; 55
Mahmoud (10.1016/j.eurpolymj.2021.110268_b0195) 2019; 565
Song (10.1016/j.eurpolymj.2021.110268_b0100) 2019; 134
Gonzalez-Henriquez (10.1016/j.eurpolymj.2021.110268_b0120) 2017; 10
Gautam (10.1016/j.eurpolymj.2021.110268_b0605) 2018; 549
Rafati (10.1016/j.eurpolymj.2021.110268_b0165) 2019; 28
Liang (10.1016/j.eurpolymj.2021.110268_b0655) 2020; 21
Annabi (10.1016/j.eurpolymj.2021.110268_b0130) 2017; 139
Khan (10.1016/j.eurpolymj.2021.110268_b0330) 2020; 185
Li (10.1016/j.eurpolymj.2021.110268_b0525) 2019; 177
Zhou (10.1016/j.eurpolymj.2021.110268_b0180) 2020; 104
Wang (10.1016/j.eurpolymj.2021.110268_b0435) 2019; 372
Pan (10.1016/j.eurpolymj.2021.110268_b0375) 2019; 370
Raho (10.1016/j.eurpolymj.2021.110268_b0505) 2020; 107
Qu (10.1016/j.eurpolymj.2021.110268_b0145) 2019; 362
Shanmugapriya (10.1016/j.eurpolymj.2021.110268_b0565) 2020; 247
Zhang (10.1016/j.eurpolymj.2021.110268_b0650) 2019; 374
Zhang (10.1016/j.eurpolymj.2021.110268_b0320) 2019; 104
Chen (10.1016/j.eurpolymj.2021.110268_b0280) 2017; 70
Han (10.1016/j.eurpolymj.2021.110268_b0615) 2020; 396
Liu (10.1016/j.eurpolymj.2021.110268_b0510) 2018; 195
Xu (10.1016/j.eurpolymj.2021.110268_b0595) 2020; 12
Pasaribu (10.1016/j.eurpolymj.2021.110268_b0405) 2020; 310
Koneru (10.1016/j.eurpolymj.2021.110268_b0175) 2020; 148
Wahid (10.1016/j.eurpolymj.2021.110268_b0370) 2018; 114
Koehler (10.1016/j.eurpolymj.2021.110268_b0040) 2018; 100
Irwansyah (10.1016/j.eurpolymj.2021.110268_b0475) 2015; 27
Liu (10.1016/j.eurpolymj.2021.110268_b0590) 2020; 382
Zhang (10.1016/j.eurpolymj.2021.110268_b0570) 2019; 183
Kim (10.1016/j.eurpolymj.2021.110268_b0185) 2020; 107
Chen (10.1016/j.eurpolymj.2021.110268_b0480) 2020; 379
Xue (10.1016/j.eurpolymj.2021.110268_b0340) 2019; 226
Chen (10.1016/j.eurpolymj.2021.110268_b0395) 2018; 10
Ilkar Erdagi (10.1016/j.eurpolymj.2021.110268_b0235) 2020; 149
Zhu (10.1016/j.eurpolymj.2021.110268_b0270) 2018; 10
Song (10.1016/j.eurpolymj.2021.110268_b0460) 2012; 8
Singh (10.1016/j.eurpolymj.2021.110268_b0050) 2020; 489
Muthuswamy (10.1016/j.eurpolymj.2021.110268_b0110) 2018; 2
le Thi (10.1016/j.eurpolymj.2021.110268_b0530) 2018; 92
Bayat (10.1016/j.eurpolymj.2021.110268_b0305) 2019; 129
Ma (10.1016/j.eurpolymj.2021.110268_b0550) 2020; 236
Yang (10.1016/j.eurpolymj.2021.110268_b0450) 2020; 324
He (10.1016/j.eurpolymj.2021.110268_b0420) 2020; 394
Qin (10.1016/j.eurpolymj.2021.110268_b0490) 2019; 55
References_xml – volume: 8
  start-page: 41
  year: 2012
  end-page: 50
  ident: b0460
  article-title: Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing
  publication-title: Acta Biomater.
– volume: 565
  year: 2019
  ident: b0195
  article-title: Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles' shape and surface modification
  publication-title: Int. J. Pharm.
– volume: 98
  year: 2019
  ident: b0620
  article-title: Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 180
  year: 2019
  ident: b0645
  article-title: Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing
  publication-title: Colloids Surf. B Biointerfaces
– volume: 90
  year: 2019
  ident: b0385
  article-title: Advances in injectable self-healing biomedical hydrogels
  publication-title: Acta Biomater
– volume: 11
  start-page: 9010
  year: 2017
  end-page: 9021
  ident: b0220
  article-title: Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures
  publication-title: ACS Nano
– volume: 155
  year: 2020
  ident: b0355
  article-title: Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 310
  year: 2020
  ident: b0405
  article-title: Silver chloride nanoparticles embedded in self-healing hydrogels with biocompatible and antibacterial properties
  publication-title: J. Mol. Liq.
– volume: 201
  year: 2018
  ident: b0410
  article-title: An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing
  publication-title: Carbohydr. Polym.
– volume: 21
  start-page: 1841
  year: 2020
  end-page: 1852
  ident: b0655
  article-title: Injectable Antimicrobial Conductive Hydrogels for Wound Disinfection and Infectious Wound Healing
  publication-title: Biomacromolecules
– volume: 195
  year: 2018
  ident: b0510
  article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers
  publication-title: Carbohydr. Polym.
– volume: 55
  start-page: 2206
  year: 2019
  end-page: 2209
  ident: b0490
  article-title: A hydrogel directly assembled from a copper metal-organic polyhedron for antimicrobial application
  publication-title: Chem. Commun. (Camb.)
– volume: 173
  year: 2019
  ident: b0500
  article-title: Cefuroxime conjugated chitosan hydrogel for treatment of wound infections
  publication-title: Colloids Surf. B Biointerfaces
– volume: 183
  year: 2019
  ident: b0570
  article-title: Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties
  publication-title: Mater. Des.
– volume: 223
  year: 2019
  ident: b0210
  article-title: Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing
  publication-title: Carbohydr. Polym.
– volume: 197
  year: 2020
  ident: b0380
  article-title: Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing
  publication-title: Compos. Part B: Eng.
– volume: 12
  start-page: 25
  year: 2020
  ident: b0030
  article-title: An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration
  publication-title: NPG Asia Mater.
– volume: 159
  year: 2020
  ident: b0260
  article-title: Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings
  publication-title: Int. J. Biol. Macromol.
– volume: 13
  start-page: 496
  year: 2020
  end-page: 502
  ident: b0495
  article-title: Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing
  publication-title: Nano Res.
– volume: 14
  start-page: 1218
  year: 2017
  end-page: 1230
  ident: b0105
  article-title: Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties
  publication-title: Mol. Pharm.
– volume: 230
  year: 2020
  ident: b0555
  article-title: Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection
  publication-title: Carbohydr. Polym.
– volume: 225
  year: 2019
  ident: b0230
  article-title: Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration
  publication-title: Carbohydr. Polym.
– volume: 54
  year: 2019
  ident: b0020
  article-title: Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 324
  year: 2020
  ident: b0450
  article-title: Triclosan-based supramolecular hydrogels as nanoantibiotics for enhanced antibacterial activity
  publication-title: J. Control Release
– volume: 100
  year: 2018
  ident: b0040
  article-title: Hydrogel wound dressings for bioactive treatment of acute and chronic wounds
  publication-title: Europ. Polym. J.
– volume: 34
  start-page: 6377
  year: 2013
  end-page: 6387
  ident: b0275
  article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing
  publication-title: Biomaterials
– volume: 104
  year: 2019
  ident: b0320
  article-title: Novel lignin-chitosan-PVA composite hydrogel for wound dressing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 12
  start-page: 10156
  year: 2020
  end-page: 10169
  ident: b0635
  article-title: Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 604
  year: 2019
  end-page: 614
  ident: b0610
  article-title: Prussian blue nanosphere-embedded in situ hydrogel for photothermal therapy by peritumoral administration
  publication-title: Acta Pharm. Sin. B
– volume: 11
  start-page: 11696
  year: 2019
  end-page: 11708
  ident: b0465
  article-title: Star-shaped polypeptides exhibit potent antibacterial activities
  publication-title: Nanoscale
– volume: 549
  start-page: 31
  year: 2018
  end-page: 49
  ident: b0605
  article-title: Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment
  publication-title: Int. J. Pharm.
– volume: 374
  year: 2019
  ident: b0650
  article-title: Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection
  publication-title: Chem. Eng. J.
– volume: 362
  year: 2019
  ident: b0145
  article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1700527
  year: 2018
  ident: b0125
  article-title: Antibacterial Hydrogels
  publication-title: Adv. Sci. (Weinh)
– volume: 92
  year: 2018
  ident: b0530
  article-title: Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 17
  year: 2019
  ident: b0640
  article-title: Functionalization of polyvinyl alcohol composite film wrapped in a-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing
  publication-title: Appl. Mater. Today
– volume: 101
  year: 2019
  ident: b0240
  article-title: Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 27
  start-page: 648
  year: 2015
  end-page: 654
  ident: b0475
  article-title: Gram-positive antimicrobial activity of amino acid-based hydrogels
  publication-title: Adv. Mater.
– volume: 2013
  start-page: 37
  year: 2013
  end-page: 43
  ident: b0485
  article-title: Self-Assembled Metal-Organic Polyhedra (MOPs): Opportunities in Biomedical Applications
  publication-title: Glob. Cardiol. Sci. Pract.
– volume: 134
  year: 2019
  ident: b0100
  article-title: A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties
  publication-title: Int. J. Biol. Macromol.
– volume: 55
  year: 2015
  ident: b0200
  article-title: In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 556
  year: 2019
  ident: b0625
  article-title: Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 13304
  year: 2018
  end-page: 13316
  ident: b0270
  article-title: Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 120
  start-page: 1406
  year: 2018
  end-page: 1419
  ident: b0360
  article-title: Carboxymethyl chitosan: Properties and biomedical applications
  publication-title: Int. J. Biol. Macromol.
– volume: 105
  year: 2019
  ident: b0630
  article-title: Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: review
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 183
  year: 2018
  ident: b0080
  article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing
  publication-title: Biomaterials
– volume: 30
  start-page: 2000644
  year: 2020
  ident: b0515
  article-title: A Macroporous Hydrogel Dressing with Enhanced Antibacterial and Anti-Inflammatory Capabilities for Accelerated Wound Healing
  publication-title: Adv. Funct. Mater.
– volume: 372
  year: 2019
  ident: b0435
  article-title: Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method
  publication-title: Chem. Eng. J.
– volume: 370
  year: 2019
  ident: b0375
  article-title: An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking
  publication-title: Chem. Eng. J.
– volume: 489
  year: 2020
  ident: b0050
  article-title: Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications
  publication-title: Carbohydr. Res.
– volume: 19
  year: 2019
  ident: b0025
  article-title: Development of Gelatin-Alginate Hydrogels for Burn Wound Treatment
  publication-title: Macromol. Biosci.
– volume: 119
  year: 2018
  ident: b0085
  article-title: Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 121
  year: 2019
  ident: b0265
  article-title: Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study
  publication-title: Eur. Polym. J.
– volume: 152
  year: 2020
  ident: b0315
  article-title: Advancement on modification of chitosan biopolymer and its potential applications
  publication-title: Int. J. Biol. Macromol.
– volume: 396
  year: 2020
  ident: b0615
  article-title: Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds
  publication-title: Chem. Eng. J.
– volume: 177
  year: 2019
  ident: b0525
  article-title: In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application
  publication-title: Colloids Surf. B Biointerfaces
– volume: 325
  year: 2020
  ident: b0575
  article-title: Photothermal therapy
  publication-title: J. Control Release
– volume: 10
  start-page: 232
  year: 2017
  ident: b0120
  article-title: Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications
  publication-title: Materials (Basel)
– volume: 148
  year: 2020
  ident: b0175
  article-title: Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications
  publication-title: Int. J. Biol. Macromol.
– volume: 122
  year: 2017
  ident: b0415
  article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing
  publication-title: Biomaterials
– volume: 394
  year: 2020
  ident: b0420
  article-title: Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds
  publication-title: Chem. Eng. J.
– volume: 100
  start-page: 637
  year: 2013
  end-page: 644
  ident: b0225
  article-title: Antimicrobial hydrogels for the treatment of infection
  publication-title: Biopolymers
– volume: 114
  year: 2018
  ident: b0370
  article-title: Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity
  publication-title: Int. J. Biol. Macromol.
– volume: 149
  year: 2020
  ident: b0390
  article-title: Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds
  publication-title: Int. J. Biol. Macromol.
– volume: 494
  year: 2019
  ident: b0600
  article-title: Poly (vinyl alcohol) (PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing
  publication-title: Appl. Surf. Sci.
– volume: 146
  year: 2020
  ident: b0535
  article-title: In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities
  publication-title: Int. J. Biol. Macromol.
– volume: 112
  year: 2020
  ident: b0470
  article-title: Antibacterial polypeptide/heparin composite hydrogels carrying growth factor for wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 129
  year: 2019
  ident: b0305
  article-title: Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent
  publication-title: Int. J. Biol. Macromol.
– volume: 157
  year: 2020
  ident: b0045
  article-title: Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings
  publication-title: Int. J. Biol. Macromol.
– volume: 12
  start-page: 28952
  year: 2020
  end-page: 28964
  ident: b0580
  article-title: Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 113
  year: 2020
  ident: b0070
  article-title: A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 227
  year: 2020
  ident: b0135
  article-title: Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage- ZnO nanocomposite by borax crosslinking
  publication-title: Carbohydr. Polym.
– volume: 382
  year: 2020
  ident: b0665
  article-title: A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing
  publication-title: Chem. Eng. J.
– volume: 70
  start-page: 287
  year: 2017
  end-page: 295
  ident: b0280
  article-title: Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 365
  year: 2019
  ident: b0440
  article-title: A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications
  publication-title: Chem. Eng. J.
– volume: 149
  year: 2020
  ident: b0235
  article-title: Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications
  publication-title: Int. J. Biol. Macromol.
– volume: 229
  year: 2020
  ident: b0560
  article-title: Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy
  publication-title: Carbohydr. Polym.
– volume: 11
  start-page: 3
  year: 2019
  ident: b0400
  article-title: An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair
  publication-title: NPG Asia Mater.
– volume: 379
  year: 2020
  ident: b0480
  article-title: Engineering a multifunctional N-halamine-based antibacterial hydrogel using a super-convenient strategy for infected skin defect therapy
  publication-title: Chem. Eng. J.
– volume: 378
  year: 2019
  ident: b0660
  article-title: Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing
  publication-title: Chem. Eng. J.
– volume: 155
  year: 2020
  ident: b0150
  article-title: Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 10
  start-page: 33523
  year: 2018
  end-page: 33531
  ident: b0395
  article-title: Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 226
  year: 2019
  ident: b0340
  article-title: Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration
  publication-title: Carbohydr. Polym.
– volume: 8
  start-page: 28511
  year: 2016
  end-page: 28521
  ident: b0545
  article-title: Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 227
  year: 2020
  ident: b0310
  article-title: An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers
  publication-title: Carbohydr. Polym.
– volume: 102
  year: 2017
  ident: b0345
  article-title: Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing
  publication-title: Int. J. Biol. Macromol.
– volume: 2
  start-page: 378
  year: 2018
  end-page: 387
  ident: b0110
  article-title: Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing
  publication-title: ACS Appl. Bio Mater.
– volume: 134
  year: 2020
  ident: b0060
  article-title: Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications
  publication-title: Eur. Polym. J.
– volume: 247
  year: 2020
  ident: b0565
  article-title: Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation
  publication-title: Carbohydr. Polym.
– volume: 168
  year: 2017
  ident: b0090
  article-title: Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties
  publication-title: Carbohydr. Polym.
– volume: 143
  year: 2020
  ident: b0255
  article-title: Zn(2+)-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing
  publication-title: Int. J. Biol. Macromol.
– volume: 3
  start-page: 3326
  year: 2020
  end-page: 3336
  ident: b0015
  article-title: Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing
  publication-title: ACS Appl. Bio Mater.
– volume: 132
  year: 2020
  ident: b0010
  article-title: Antibiofilm poly(carboxybetaine methacrylate) hydrogels for chronic wounds dressings
  publication-title: Eur. Polym. J.
– volume: 400
  year: 2020
  ident: b0425
  article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration
  publication-title: Chem. Eng. J.
– volume: 138
  year: 2019
  ident: b0075
  article-title: 5-hydroxymethylfurfural-embedded poly (vinyl alcohol)/sodium alginate hybrid hydrogels accelerate wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 5
  start-page: 253
  year: 2020
  end-page: 259
  ident: b0005
  article-title: Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing
  publication-title: Bioact. Mater.
– volume: 572
  year: 2019
  ident: b0250
  article-title: A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics
  publication-title: Int. J. Pharm.
– volume: 28
  start-page: 32
  year: 2019
  end-page: 46
  ident: b0165
  article-title: Honey-Loaded Egg White/Poly(vinyl alcohol)/Clay Bionanocomposite Hydrogel Wound Dressings. In Vitro and In Vivo Evaluations
  publication-title: J. Polym. Environ.
– volume: 65
  year: 2015
  ident: b0095
  article-title: Biomedical applications of hydrogels: A review of patents and commercial products
  publication-title: Eur. Polym. J.
– volume: 111
  year: 2020
  ident: b0160
  article-title: Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 145
  year: 2020
  ident: b0035
  article-title: Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects
  publication-title: Int. J. Biol. Macromol.
– volume: 194
  year: 2020
  ident: b0350
  article-title: The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing
  publication-title: Colloids Surf. B Biointerfaces
– volume: 134
  year: 2015
  ident: b0365
  article-title: Carboxymethyl chitosan/clay nanocomposites and their copper complexes: Fabrication and property
  publication-title: Carbohydr. Polym.
– volume: 185
  year: 2020
  ident: b0330
  article-title: Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria
  publication-title: Colloids Surf. B Biointerfaces
– start-page: 469
  year: 2019
  end-page: 529
  ident: b0285
  publication-title: Carbon Nanotubes
– volume: 12
  start-page: 31255
  year: 2020
  end-page: 31269
  ident: b0595
  article-title: PDA/Cu Bioactive Hydrogel with “Hot Ions Effect” for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 104
  year: 2020
  ident: b0180
  article-title: Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing
  publication-title: Food Hydrocolloids
– volume: 202
  year: 2020
  ident: b0540
  article-title: Fabrication of pH-responsive TA-keratin bio-composited hydrogels encapsulated with photoluminescent GO quantum dots for improved bacterial inhibition and healing efficacy in wound care management: In vivo wound evaluations
  publication-title: J. Photochem. Photobiol., B
– volume: 16
  year: 2020
  ident: b0140
  article-title: Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Self-Assembly
  publication-title: Small
– volume: 382
  year: 2020
  ident: b0590
  article-title: Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections
  publication-title: Chem. Eng. J.
– volume: 139
  year: 2017
  ident: b0130
  article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing
  publication-title: Biomaterials
– volume: 382
  year: 2020
  ident: b0290
  article-title: Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration
  publication-title: Chem. Eng. J.
– volume: 104
  year: 2019
  ident: b0430
  article-title: Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 22
  year: 2019
  ident: b0585
  article-title: Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment
  publication-title: Sustain. Mater. Technol.
– volume: 130
  year: 2020
  ident: b0205
  article-title: In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing
  publication-title: Eur. Polym. J.
– volume: 148
  year: 2020
  ident: b0520
  article-title: In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property
  publication-title: Int. J. Biol. Macromol.
– volume: 299
  year: 2020
  ident: b0445
  article-title: Multifunctional hydrogel based on ionic liquid with antibacterial performance
  publication-title: J. Mol. Liquids
– volume: 193
  year: 2020
  ident: b0455
  article-title: Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels
  publication-title: Colloids Surf. B Biointerfaces
– volume: 101
  year: 2014
  ident: b0065
  article-title: In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying
  publication-title: Carbohydr. Polym.
– volume: 242
  year: 2020
  ident: b0300
  article-title: Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties
  publication-title: Carbohydr. Polym.
– volume: 55
  year: 2020
  ident: b0170
  article-title: Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 147
  year: 2020
  ident: b0295
  article-title: Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing
  publication-title: Int. J. Biol. Macromol.
– volume: 27
  start-page: 2637
  year: 2020
  end-page: 2650
  ident: b0325
  article-title: All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing
  publication-title: Cellulose
– volume: 236
  year: 2020
  ident: b0550
  article-title: Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing
  publication-title: Carbohydr. Polym.
– volume: 324
  year: 2020
  ident: b0155
  article-title: Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing
  publication-title: J. Control. Release
– volume: 107
  year: 2020
  ident: b0185
  article-title: Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 149
  year: 2020
  ident: b0215
  article-title: Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects
  publication-title: Int. J. Biol. Macromol.
– volume: 559
  year: 2019
  ident: b0190
  article-title: Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits
  publication-title: Int. J. Pharm.
– volume: 121
  year: 2019
  ident: b0245
  article-title: Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application
  publication-title: Int. J. Biol. Macromol.
– volume: 56
  start-page: 7971
  year: 2017
  end-page: 7976
  ident: b0055
  article-title: A Novel Method for Preparing Poly(vinyl alcohol) Hydrogels: Preparation, Characterization, and Application
  publication-title: Ind. Eng. Chem. Res.
– volume: 107
  year: 2020
  ident: b0505
  article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 5
  start-page: 768
  year: 2020
  end-page: 778
  ident: b0115
  article-title: Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing
  publication-title: Bioact. Mater.
– volume: 155
  year: 2020
  ident: b0335
  article-title: Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications
  publication-title: Int. J. Biol. Macromol.
– volume: 183
  issue: 185–99
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0080
  article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing
  publication-title: Biomaterials
– volume: 152
  issue: 681–702
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0315
  article-title: Advancement on modification of chitosan biopolymer and its potential applications
  publication-title: Int. J. Biol. Macromol.
– volume: 27
  start-page: 2637
  issue: 5
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0325
  article-title: All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02942-8
– volume: 56
  start-page: 7971
  issue: 28
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0055
  article-title: A Novel Method for Preparing Poly(vinyl alcohol) Hydrogels: Preparation, Characterization, and Application
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01812
– volume: 299
  issue: 112185
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0445
  article-title: Multifunctional hydrogel based on ionic liquid with antibacterial performance
  publication-title: J. Mol. Liquids
– volume: 92
  issue: 52–60
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0530
  article-title: Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 100
  start-page: 637
  issue: 6
  year: 2013
  ident: 10.1016/j.eurpolymj.2021.110268_b0225
  article-title: Antimicrobial hydrogels for the treatment of infection
  publication-title: Biopolymers
  doi: 10.1002/bip.22412
– volume: 121
  issue: 784–95
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0245
  article-title: Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application
  publication-title: Int. J. Biol. Macromol.
– volume: 114
  issue: 1233–9
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0370
  article-title: Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity
  publication-title: Int. J. Biol. Macromol.
– volume: 101
  issue: 1216–24
  year: 2014
  ident: 10.1016/j.eurpolymj.2021.110268_b0065
  article-title: In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying
  publication-title: Carbohydr. Polym.
– volume: 104
  issue: 110002
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0320
  article-title: Novel lignin-chitosan-PVA composite hydrogel for wound dressing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 143
  issue: 235–42
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0255
  article-title: Zn(2+)-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing
  publication-title: Int. J. Biol. Macromol.
– volume: 223
  issue: 115023
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0210
  article-title: Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing
  publication-title: Carbohydr. Polym.
– volume: 155
  issue: 153–62
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0335
  article-title: Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications
  publication-title: Int. J. Biol. Macromol.
– volume: 201
  issue: 522–31
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0410
  article-title: An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing
  publication-title: Carbohydr. Polym.
– volume: 12
  start-page: 28952
  issue: 26
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0580
  article-title: Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  issue: 101239
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0020
  article-title: Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 148
  issue: 501–9
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0520
  article-title: In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property
  publication-title: Int. J. Biol. Macromol.
– volume: 5
  start-page: 253
  issue: 2
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0005
  article-title: Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2020.02.004
– volume: 101
  issue: 341–51
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0240
  article-title: Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 100
  issue: 1–11
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0040
  article-title: Hydrogel wound dressings for bioactive treatment of acute and chronic wounds
  publication-title: Europ. Polym. J.
– volume: 107
  issue: 110352
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0185
  article-title: Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 572
  issue: 118779
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0250
  article-title: A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics
  publication-title: Int. J. Pharm.
– volume: 13
  start-page: 496
  issue: 2
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0495
  article-title: Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2636-9
– volume: 365
  issue: 153–64
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0440
  article-title: A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 11696
  issue: 24
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0465
  article-title: Star-shaped polypeptides exhibit potent antibacterial activities
  publication-title: Nanoscale
  doi: 10.1039/C9NR02012H
– volume: 325
  issue: 52–71
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0575
  article-title: Photothermal therapy
  publication-title: J. Control Release
– volume: 10
  start-page: 232
  issue: 3
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0120
  article-title: Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications
  publication-title: Materials (Basel)
  doi: 10.3390/ma10030232
– volume: 120
  start-page: 1406
  issue: Pt B
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0360
  article-title: Carboxymethyl chitosan: Properties and biomedical applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.09.131
– volume: 168
  issue: 112–20
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0090
  article-title: Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties
  publication-title: Carbohydr. Polym.
– volume: 104
  issue: 109930
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0430
  article-title: Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 396
  issue: 125194
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0615
  article-title: Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds
  publication-title: Chem. Eng. J.
– volume: 382
  issue: 122849
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0665
  article-title: A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing
  publication-title: Chem. Eng. J.
– volume: 2013
  start-page: 37
  issue: 1
  year: 2013
  ident: 10.1016/j.eurpolymj.2021.110268_b0485
  article-title: Self-Assembled Metal-Organic Polyhedra (MOPs): Opportunities in Biomedical Applications
  publication-title: Glob. Cardiol. Sci. Pract.
– volume: 149
  issue: 148–57
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0390
  article-title: Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds
  publication-title: Int. J. Biol. Macromol.
– volume: 30
  start-page: 2000644
  issue: 21
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0515
  article-title: A Macroporous Hydrogel Dressing with Enhanced Antibacterial and Anti-Inflammatory Capabilities for Accelerated Wound Healing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000644
– volume: 173
  issue: 776–87
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0500
  article-title: Cefuroxime conjugated chitosan hydrogel for treatment of wound infections
  publication-title: Colloids Surf. B Biointerfaces
– volume: 193
  issue: 111099
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0455
  article-title: Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels
  publication-title: Colloids Surf. B Biointerfaces
– volume: 362
  issue: 548–60
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0145
  article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing
  publication-title: Chem. Eng. J.
– volume: 121
  issue: 109257
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0265
  article-title: Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study
  publication-title: Eur. Polym. J.
– volume: 230
  issue: 115565
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0555
  article-title: Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection
  publication-title: Carbohydr. Polym.
– volume: 400
  issue: 125994
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0425
  article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 648
  issue: 4
  year: 2015
  ident: 10.1016/j.eurpolymj.2021.110268_b0475
  article-title: Gram-positive antimicrobial activity of amino acid-based hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403339
– volume: 382
  issue: 123019
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0290
  article-title: Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration
  publication-title: Chem. Eng. J.
– volume: 105
  issue: 110110
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0630
  article-title: Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: review
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 195
  issue: 63–70
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0510
  article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 604
  issue: 3
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0610
  article-title: Prussian blue nanosphere-embedded in situ hydrogel for photothermal therapy by peritumoral administration
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2018.12.005
– volume: 8
  start-page: 41
  issue: 1
  year: 2012
  ident: 10.1016/j.eurpolymj.2021.110268_b0460
  article-title: Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.10.004
– volume: 12
  start-page: 10156
  issue: 9
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0635
  article-title: Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00298
– volume: 139
  issue: 229–43
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0130
  article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing
  publication-title: Biomaterials
– volume: 138
  issue: 933–49
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0075
  article-title: 5-hydroxymethylfurfural-embedded poly (vinyl alcohol)/sodium alginate hybrid hydrogels accelerate wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 394
  issue: 124888
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0420
  article-title: Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds
  publication-title: Chem. Eng. J.
– volume: 370
  issue: 1228–38
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0375
  article-title: An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 28511
  issue: 42
  year: 2016
  ident: 10.1016/j.eurpolymj.2021.110268_b0545
  article-title: Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10491
– volume: 134
  issue: 109853
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0060
  article-title: Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications
  publication-title: Eur. Polym. J.
– volume: 130
  issue: 109650
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0205
  article-title: In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing
  publication-title: Eur. Polym. J.
– volume: 494
  issue: 708–20
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0600
  article-title: Poly (vinyl alcohol) (PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing
  publication-title: Appl. Surf. Sci.
– volume: 55
  issue: 101379
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0170
  article-title: Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 90
  issue: 1–20
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0385
  article-title: Advances in injectable self-healing biomedical hydrogels
  publication-title: Acta Biomater
– volume: 242
  issue: 116383
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0300
  article-title: Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties
  publication-title: Carbohydr. Polym.
– volume: 2
  start-page: 378
  issue: 1
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0110
  article-title: Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.8b00625
– volume: 559
  issue: 23–36
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0190
  article-title: Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits
  publication-title: Int. J. Pharm.
– volume: 382
  issue: 122990
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0590
  article-title: Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections
  publication-title: Chem. Eng. J.
– volume: 225
  issue: 115110
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0230
  article-title: Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration
  publication-title: Carbohydr. Polym.
– volume: 149
  issue: 1262–74
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0215
  article-title: Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects
  publication-title: Int. J. Biol. Macromol.
– volume: 129
  issue: 927–35
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0305
  article-title: Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent
  publication-title: Int. J. Biol. Macromol.
– volume: 55
  start-page: 2206
  issue: 15
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0490
  article-title: A hydrogel directly assembled from a copper metal-organic polyhedron for antimicrobial application
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C8CC09000A
– volume: 247
  issue: 116624
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0565
  article-title: Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation
  publication-title: Carbohydr. Polym.
– volume: 183
  issue: 108166
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0570
  article-title: Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties
  publication-title: Mater. Des.
– volume: 28
  start-page: 32
  issue: 1
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0165
  article-title: Honey-Loaded Egg White/Poly(vinyl alcohol)/Clay Bionanocomposite Hydrogel Wound Dressings. In Vitro and In Vivo Evaluations
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-019-01586-w
– volume: 236
  issue: 116096
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0550
  article-title: Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing
  publication-title: Carbohydr. Polym.
– volume: 112
  issue: 110923
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0470
  article-title: Antibacterial polypeptide/heparin composite hydrogels carrying growth factor for wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 229
  issue: 115394
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0560
  article-title: Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy
  publication-title: Carbohydr. Polym.
– volume: 21
  start-page: 1841
  issue: 5
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0655
  article-title: Injectable Antimicrobial Conductive Hydrogels for Wound Disinfection and Infectious Wound Healing
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01732
– volume: 22
  issue: e00109
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0585
  article-title: Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment
  publication-title: Sustain. Mater. Technol.
– volume: 14
  start-page: 1218
  issue: 4
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0105
  article-title: Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.6b01104
– volume: 147
  issue: 1239–47
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0295
  article-title: Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing
  publication-title: Int. J. Biol. Macromol.
– volume: 132
  issue: 109673
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0010
  article-title: Antibiofilm poly(carboxybetaine methacrylate) hydrogels for chronic wounds dressings
  publication-title: Eur. Polym. J.
– start-page: 469
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0285
  publication-title: Carbon Nanotubes
– volume: 34
  start-page: 6377
  issue: 27
  year: 2013
  ident: 10.1016/j.eurpolymj.2021.110268_b0275
  article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.05.005
– volume: 119
  issue: 402–12
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0085
  article-title: Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 3
  start-page: 3326
  issue: 5
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0015
  article-title: Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00252
– volume: 12
  start-page: 31255
  issue: 28
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0595
  article-title: PDA/Cu Bioactive Hydrogel with “Hot Ions Effect” for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08890
– volume: 148
  issue: 833–42
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0175
  article-title: Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications
  publication-title: Int. J. Biol. Macromol.
– volume: 149
  issue: 651–63
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0235
  article-title: Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications
  publication-title: Int. J. Biol. Macromol.
– volume: 489
  issue: 107949
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0050
  article-title: Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications
  publication-title: Carbohydr. Res.
– volume: 379
  issue: 122238
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0480
  article-title: Engineering a multifunctional N-halamine-based antibacterial hydrogel using a super-convenient strategy for infected skin defect therapy
  publication-title: Chem. Eng. J.
– volume: 155
  issue: 625–35
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0355
  article-title: Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 98
  issue: 1133–44
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0620
  article-title: Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 5
  start-page: 768
  issue: 4
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0115
  article-title: Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2020.05.008
– volume: 227
  issue: 115360
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0135
  article-title: Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage- ZnO nanocomposite by borax crosslinking
  publication-title: Carbohydr. Polym.
– volume: 12
  start-page: 25
  issue: 1
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0030
  article-title: An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-0206-y
– volume: 146
  issue: 1050–9
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0535
  article-title: In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities
  publication-title: Int. J. Biol. Macromol.
– volume: 113
  issue: 110978
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0070
  article-title: A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 378
  issue: 122043
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0660
  article-title: Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing
  publication-title: Chem. Eng. J.
– volume: 226
  issue: 115302
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0340
  article-title: Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration
  publication-title: Carbohydr. Polym.
– volume: 159
  issue: 194–203
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0260
  article-title: Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings
  publication-title: Int. J. Biol. Macromol.
– volume: 374
  issue: 596–604
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0650
  article-title: Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection
  publication-title: Chem. Eng. J.
– volume: 565
  issue: 174–86
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0195
  article-title: Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles' shape and surface modification
  publication-title: Int. J. Pharm.
– volume: 145
  issue: 950–64
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0035
  article-title: Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects
  publication-title: Int. J. Biol. Macromol.
– volume: 65
  issue: 252–67
  year: 2015
  ident: 10.1016/j.eurpolymj.2021.110268_b0095
  article-title: Biomedical applications of hydrogels: A review of patents and commercial products
  publication-title: Eur. Polym. J.
– volume: 16
  issue: 8
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0140
  article-title: Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Self-Assembly
  publication-title: Small
  doi: 10.1002/smll.201907309
– volume: 102
  issue: 457–67
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0345
  article-title: Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing
  publication-title: Int. J. Biol. Macromol.
– volume: 155
  issue: 751–65
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0150
  article-title: Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing
  publication-title: Int. J. Biol. Macromol.
– volume: 17
  issue: 36–44
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0640
  article-title: Functionalization of polyvinyl alcohol composite film wrapped in a-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing
  publication-title: Appl. Mater. Today
– volume: 111
  issue: 110743
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0160
  article-title: Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 324
  issue: 204–17
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0155
  article-title: Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing
  publication-title: J. Control. Release
– volume: 324
  issue: 354–65
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0450
  article-title: Triclosan-based supramolecular hydrogels as nanoantibiotics for enhanced antibacterial activity
  publication-title: J. Control Release
– volume: 556
  issue: 514–28
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0625
  article-title: Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin
  publication-title: J. Colloid Interface Sci.
– volume: 202
  issue: 111676
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0540
  article-title: Fabrication of pH-responsive TA-keratin bio-composited hydrogels encapsulated with photoluminescent GO quantum dots for improved bacterial inhibition and healing efficacy in wound care management: In vivo wound evaluations
  publication-title: J. Photochem. Photobiol., B
– volume: 177
  issue: 370–6
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0525
  article-title: In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application
  publication-title: Colloids Surf. B Biointerfaces
– volume: 549
  start-page: 31
  issue: 1–2
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0605
  article-title: Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.07.055
– volume: 55
  issue: 42–9
  year: 2015
  ident: 10.1016/j.eurpolymj.2021.110268_b0200
  article-title: In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 10
  start-page: 13304
  issue: 16
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0270
  article-title: Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18927
– volume: 19
  issue: 8
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0025
  article-title: Development of Gelatin-Alginate Hydrogels for Burn Wound Treatment
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201900123
– volume: 107
  issue: 110219
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0505
  article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 194
  issue: 111191
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0350
  article-title: The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing
  publication-title: Colloids Surf. B Biointerfaces
– volume: 134
  issue: 390–7
  year: 2015
  ident: 10.1016/j.eurpolymj.2021.110268_b0365
  article-title: Carboxymethyl chitosan/clay nanocomposites and their copper complexes: Fabrication and property
  publication-title: Carbohydr. Polym.
– volume: 157
  issue: 522–9
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0045
  article-title: Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings
  publication-title: Int. J. Biol. Macromol.
– volume: 227
  issue: 115349
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0310
  article-title: An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers
  publication-title: Carbohydr. Polym.
– volume: 122
  issue: 34–47
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0415
  article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing
  publication-title: Biomaterials
– volume: 134
  issue: 91–9
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0100
  article-title: A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties
  publication-title: Int. J. Biol. Macromol.
– volume: 310
  issue: 113263
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0405
  article-title: Silver chloride nanoparticles embedded in self-healing hydrogels with biocompatible and antibacterial properties
  publication-title: J. Mol. Liq.
– volume: 185
  issue: 110627
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0330
  article-title: Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria
  publication-title: Colloids Surf. B Biointerfaces
– volume: 197
  issue: 108139
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0380
  article-title: Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing
  publication-title: Compos. Part B: Eng.
– volume: 11
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0400
  article-title: An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0103-9
– volume: 10
  start-page: 33523
  issue: 39
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0395
  article-title: Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10064
– volume: 180
  issue: 237–44
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0645
  article-title: Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing
  publication-title: Colloids Surf. B Biointerfaces
– volume: 70
  start-page: 287
  issue: Pt 1
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0280
  article-title: Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2016.08.086
– volume: 104
  issue: 105702
  year: 2020
  ident: 10.1016/j.eurpolymj.2021.110268_b0180
  article-title: Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing
  publication-title: Food Hydrocolloids
– volume: 11
  start-page: 9010
  issue: 9
  year: 2017
  ident: 10.1016/j.eurpolymj.2021.110268_b0220
  article-title: Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03513
– volume: 372
  issue: 216–25
  year: 2019
  ident: 10.1016/j.eurpolymj.2021.110268_b0435
  article-title: Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1700527
  issue: 5
  year: 2018
  ident: 10.1016/j.eurpolymj.2021.110268_b0125
  article-title: Antibacterial Hydrogels
  publication-title: Adv. Sci. (Weinh)
  doi: 10.1002/advs.201700527
SSID ssj0007363
Score 2.6484737
SecondaryResourceType review_article
Snippet [Display omitted] Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore,...
Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110268
SubjectTerms Antibacterial agents
Antibacterial hydrogels
Antibiotics
Antimicrobial agents
Bonding agents
Chemical activity
Chemical bonds
Fabrication
Hydrogels
Light-assisted antibacterial
Medical dressings
Nanoparticles
Natural polymers
Wound healing
Title The fabrication of antibacterial hydrogels for wound healing
URI https://dx.doi.org/10.1016/j.eurpolymj.2021.110268
https://www.proquest.com/docview/2503463725
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QPOjF-Iwokh68VtjudkuNF0IkqJGTJNw23UcVgpQgxnDxtzvTbjEYEw4e22b6-GY6j53ZGUKusIUZt2nip7plfDABxk-MMr5miiWBaAuaYkb3aSD6Q_4wCkcV0i33wmBZpdP9hU7PtbU703RoNufjMe7xpdivCkIYVLr5ZnLOI5Ty66-fMo-IuWlqFDMAYbRR42XhY7Lp6m0CgWJAsSQ-wJ6rf1uoX7o6N0C9A7LvPEevU7zcIanY2RHZ7ZYD247JLbDcSxO1cMtwXpZ6gNtYFQ2ZgfZ1ZRbZCzzLA1fV-8SJSh56imC-Tsiwd_fc7ftuOIKvISRb-rGNw7ZKW1rHwnAdMcUDhWu8iYmpSSw1bQpXRRxy8GFwHG_cFom1oTJgtkzETkl1ls3sGfEipTTmP2OtgW82UEILo5imOoAAltIaESUgUrvO4TjAYirLErGJXCMpEUlZIFkjrTXhvGiesZ3kpkRcbsiBBBW_nbhe8ki6X_Fdgo_HuGBREJ7_594XZA-P8vKzsE6qy8WHvQR_ZKkaucA1yE7n_rE_-Aazl-C4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IHvBi_Iwo6g5eJ3TdOma8GCJBBU6QcGvWjykEGUGM4eLf7ntbh8GYcPC65nXbr-37aF_fj5BrLGHmmyR2E9XQLpgA7cZaalcxyWKPNzlN8ES31-edof80CkYl0iruwmBapdX9uU7PtLV9Urdo1ufjMd7xpVivCkIYVLp4mXzHh-WLNAY3Xz95HiGzdGoUjwCCcCPJy8DfpNPV2wQiRY9iTryHRVf_NlG_lHVmgdr7ZM-6js59_nUHpGRmh6TSKhjbjsgdjLmTxHJh9-GcNHEAuLHMKzKD7OtKL9IXeJcDvqrziZRKDrqKYL-OybD9MGh1XMuO4CqIyZZuZKKgKZOGUhHXvgqZ9D2Jm7yxjqiODdVNCq08CnxwYpCPN2ry2JhAarBbOmQnpDxLZ-aUOKGUCg9AI6Vg4IwnueJaMkWVBxEspVXCC0CEsqXDkcFiKoocsYlYIykQSZEjWSWNteA8r56xXeS2QFxsTAQBOn67cK0YI2HX4rsAJ4_5nIVecPafvq9IpTPodUX3sf98TnaxJctFC2qkvFx8mAtwTpbyMpt83-5i4kY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fabrication+of+antibacterial+hydrogels+for+wound+healing&rft.jtitle=European+polymer+journal&rft.au=Zhang%2C+Xiumei&rft.au=Qin%2C+Miao&rft.au=Xu%2C+Mengjie&rft.au=Miao%2C+Fenyan&rft.date=2021-03-05&rft.pub=Elsevier+Ltd&rft.issn=0014-3057&rft.eissn=1873-1945&rft.volume=146&rft_id=info:doi/10.1016%2Fj.eurpolymj.2021.110268&rft.externalDocID=S0014305721000021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon