The fabrication of antibacterial hydrogels for wound healing
[Display omitted] Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for prepa...
Saved in:
Published in | European polymer journal Vol. 146; p. 110268 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
05.03.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for preparing antibacterial hydrogels. One is combining antibacterial agents with hydrogels. Antibacterial drugs include antibiotics, some biological extracts, natural polymers and some metal nanoparticles. In this review, physical combination (directly incorporating, swelling diffusion method, encapsulated in carriers) and chemical combination (hydrogels with inherent antibacterial activity, forming chemical bonds) are introduced depending on the methods and types of antibacterial agents incorporated with hydrogels. The other one is light-assisted antibacterial hydrogels, which involve photo-thermal antibacterial hydrogels and photo-dynamic antibacterial hydrogels. The common methods to prepare light-assisted antibacterial hydrogels are also described in this work. With the rapid improvements in antibacterial technology, many novel antibacterial hydrogels are constantly emerging. The most relevant studies and the latest status of research in this area were evaluated in this review. |
---|---|
AbstractList | [Display omitted]
Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for preparing antibacterial hydrogels. One is combining antibacterial agents with hydrogels. Antibacterial drugs include antibiotics, some biological extracts, natural polymers and some metal nanoparticles. In this review, physical combination (directly incorporating, swelling diffusion method, encapsulated in carriers) and chemical combination (hydrogels with inherent antibacterial activity, forming chemical bonds) are introduced depending on the methods and types of antibacterial agents incorporated with hydrogels. The other one is light-assisted antibacterial hydrogels, which involve photo-thermal antibacterial hydrogels and photo-dynamic antibacterial hydrogels. The common methods to prepare light-assisted antibacterial hydrogels are also described in this work. With the rapid improvements in antibacterial technology, many novel antibacterial hydrogels are constantly emerging. The most relevant studies and the latest status of research in this area were evaluated in this review. Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists have made efforts to design and synthesize antibacterial hydrogels. At present, there are two commonly used methods for preparing antibacterial hydrogels. One is combining antibacterial agents with hydrogels. Antibacterial drugs include antibiotics, some biological extracts, natural polymers and some metal nanoparticles. In this review, physical combination (directly incorporating, swelling diffusion method, encapsulated in carriers) and chemical combination (hydrogels with inherent antibacterial activity, forming chemical bonds) are introduced depending on the methods and types of antibacterial agents incorporated with hydrogels. The other one is light-assisted antibacterial hydrogels, which involve photo-thermal antibacterial hydrogels and photo-dynamic antibacterial hydrogels. The common methods to prepare light-assisted antibacterial hydrogels are also described in this work. With the rapid improvements in antibacterial technology, many novel antibacterial hydrogels are constantly emerging. The most relevant studies and the latest status of research in this area were evaluated in this review. |
ArticleNumber | 110268 |
Author | Chen, Weiyi Zhang, Xiumei Merzougui, Chaima Wei, Yan Qin, Miao Miao, Fenyan Xu, Mengjie Huang, Di Zhang, Xiangyu |
Author_xml | – sequence: 1 givenname: Xiumei surname: Zhang fullname: Zhang, Xiumei organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 2 givenname: Miao surname: Qin fullname: Qin, Miao organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 3 givenname: Mengjie surname: Xu fullname: Xu, Mengjie organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 4 givenname: Fenyan surname: Miao fullname: Miao, Fenyan organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 5 givenname: Chaima surname: Merzougui fullname: Merzougui, Chaima organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 6 givenname: Xiangyu surname: Zhang fullname: Zhang, Xiangyu organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 7 givenname: Yan surname: Wei fullname: Wei, Yan organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 8 givenname: Weiyi surname: Chen fullname: Chen, Weiyi organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China – sequence: 9 givenname: Di orcidid: 0000-0001-8123-9766 surname: Huang fullname: Huang, Di email: huangjw2067@163.com organization: Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China |
BookMark | eNqNkD1PwzAURS1UJFrgNxCJOeE5jpNYgqGq-JIqsZTZcuyX1lEaF8cF9d-TEsTAAtMb7j33SWdGJp3rkJArCgkFmt80Ce79zrWHbZOkkNKEUkjz8oRMaVmwmIqMT8gUgGYxA16ckVnfNwBQsJxNye1qg1GtKm-1CtZ1kasj1QVbKR3QW9VGm4Pxbo1tH9XORx9u35log6q13fqCnNaq7fHy-56T14f71eIpXr48Pi_my1hnIEIsUPCyqkFrkZtMF6zK0gp4ypQR1CikpqRDmgue0ZRnnOaizBUirwxlYAp2Tq7H3Z13b3vsg2zc3nfDS5lyYFnOipQPrWJsae_63mMtd95ulT9ICvKoSjbyR5U8qpKjqoG8-0VqG750BK9s-w9-PvKDJXy36GWvLXYajfWogzTO_rnxCdJSjMw |
CitedBy_id | crossref_primary_10_1002_mabi_202300282 crossref_primary_10_1016_j_ijbiomac_2022_10_067 crossref_primary_10_2139_ssrn_4021922 crossref_primary_10_1016_j_eurpolymj_2021_110680 crossref_primary_10_1016_j_mtchem_2024_102341 crossref_primary_10_1016_j_ijbiomac_2021_04_114 crossref_primary_10_1007_s10570_023_05371_w crossref_primary_10_1016_j_apmt_2022_101396 crossref_primary_10_1016_j_eurpolymj_2025_113717 crossref_primary_10_1080_10717544_2023_2300945 crossref_primary_10_3390_ijms232315092 crossref_primary_10_1016_j_carbpol_2023_120702 crossref_primary_10_1016_j_colsurfb_2024_113881 crossref_primary_10_1016_j_reactfunctpolym_2023_105592 crossref_primary_10_1039_D3NJ02276E crossref_primary_10_1007_s40820_024_01323_6 crossref_primary_10_3390_gels11030174 crossref_primary_10_1093_rb_rbad081 crossref_primary_10_1016_j_jece_2024_114190 crossref_primary_10_1016_j_reactfunctpolym_2023_105636 crossref_primary_10_1080_09205063_2023_2217063 crossref_primary_10_1016_j_colsurfa_2022_130832 crossref_primary_10_1002_jbm_b_35510 crossref_primary_10_1016_j_carbpol_2022_120371 crossref_primary_10_1007_s00289_022_04448_z crossref_primary_10_3390_gels9090738 crossref_primary_10_1038_s41536_023_00313_3 crossref_primary_10_1007_s10570_023_05261_1 crossref_primary_10_1016_j_eurpolymj_2022_111549 crossref_primary_10_1016_j_ijbiomac_2024_130296 crossref_primary_10_1016_j_ijbiomac_2024_138853 crossref_primary_10_1080_00914037_2024_2344602 crossref_primary_10_3390_polym14153135 crossref_primary_10_1016_j_colcom_2023_100697 crossref_primary_10_1021_acsami_2c17366 crossref_primary_10_1166_mex_2021_2049 crossref_primary_10_1021_acsanm_4c02594 crossref_primary_10_3390_foods11010028 crossref_primary_10_1016_j_ijbiomac_2022_03_207 crossref_primary_10_1002_adfm_202303095 crossref_primary_10_1039_D3NJ02114A crossref_primary_10_1002_mame_202100287 crossref_primary_10_1021_acs_jafc_4c05903 crossref_primary_10_3390_gels7020040 crossref_primary_10_1088_1748_605X_ac49f7 crossref_primary_10_1088_1758_5090_ad30c3 crossref_primary_10_1016_j_ijbiomac_2023_128299 crossref_primary_10_3390_ijms24021109 crossref_primary_10_1002_pi_6304 crossref_primary_10_1016_j_ijbiomac_2023_129146 crossref_primary_10_1016_j_eurpolymj_2022_111047 crossref_primary_10_3390_coatings14080942 crossref_primary_10_1002_app_54641 crossref_primary_10_1002_smll_202309485 crossref_primary_10_1021_acsanm_1c03518 crossref_primary_10_1039_D3LP00077J crossref_primary_10_1016_j_foodchem_2024_139126 crossref_primary_10_1016_j_eurpolymj_2023_111868 crossref_primary_10_3390_app11209550 crossref_primary_10_1007_s10570_023_05516_x crossref_primary_10_1016_j_carbpol_2021_118269 crossref_primary_10_1016_j_aej_2024_12_101 crossref_primary_10_1155_2023_7109766 crossref_primary_10_1039_D3BM01181J crossref_primary_10_1016_j_ijbiomac_2023_127371 crossref_primary_10_3390_gels11020088 crossref_primary_10_1039_D4TB01572J crossref_primary_10_1002_marc_202400173 crossref_primary_10_3390_gels11040239 crossref_primary_10_1016_j_ijbiomac_2023_128348 crossref_primary_10_1039_D2NR04908B crossref_primary_10_1002_app_56552 crossref_primary_10_1080_25740881_2021_1988964 crossref_primary_10_1016_j_nanoen_2024_110558 crossref_primary_10_1002_wnan_1745 crossref_primary_10_1088_2053_1591_ac565f crossref_primary_10_3390_gels9070542 crossref_primary_10_1039_D1SM01066B crossref_primary_10_1002_mabi_202100475 crossref_primary_10_3390_gels10060408 crossref_primary_10_1016_j_carbpol_2023_121318 crossref_primary_10_1016_j_ijbiomac_2023_123449 crossref_primary_10_1080_09205063_2022_2099662 crossref_primary_10_1039_D3BM01792C crossref_primary_10_3390_ijms24032191 crossref_primary_10_1016_j_ijbiomac_2023_125000 crossref_primary_10_1021_acsomega_2c07279 crossref_primary_10_1002_jbm_b_35037 crossref_primary_10_1016_j_jep_2022_115663 crossref_primary_10_3390_gels8030167 crossref_primary_10_1016_j_carbon_2022_10_008 crossref_primary_10_1016_j_ijbiomac_2024_129705 crossref_primary_10_1002_pol_20220734 crossref_primary_10_1016_j_polymer_2025_128064 crossref_primary_10_1021_acsabm_2c00859 crossref_primary_10_1016_j_pmatsci_2024_101292 crossref_primary_10_3390_bioengineering9100518 crossref_primary_10_1016_j_intimp_2025_114075 crossref_primary_10_3390_gels9100786 crossref_primary_10_1016_j_mtcomm_2024_108029 crossref_primary_10_1002_pat_5720 crossref_primary_10_1002_app_54665 crossref_primary_10_1021_acsmaterialslett_1c00146 crossref_primary_10_3390_pharmaceutics14112444 crossref_primary_10_3390_ma14205956 crossref_primary_10_1016_j_ijbiomac_2024_133519 crossref_primary_10_1021_acs_biomac_3c00209 crossref_primary_10_1016_j_ijbiomac_2024_135418 crossref_primary_10_1021_acsami_3c19481 crossref_primary_10_1016_j_ccr_2024_216330 crossref_primary_10_1021_acsami_3c09713 crossref_primary_10_1021_acsabm_4c01182 crossref_primary_10_1039_D1TB02800F crossref_primary_10_1016_j_ijbiomac_2024_135410 crossref_primary_10_1007_s00289_024_05552_y crossref_primary_10_1038_s41598_024_63186_6 crossref_primary_10_1007_s10853_024_10103_x crossref_primary_10_1021_acsami_1c13392 crossref_primary_10_1007_s12247_024_09901_2 crossref_primary_10_58803_jlar_v2i5_28 crossref_primary_10_1002_smll_202205682 crossref_primary_10_1016_j_supmat_2024_100064 crossref_primary_10_3390_biomimetics9050278 crossref_primary_10_1021_acsbiomaterials_2c00716 crossref_primary_10_1002_bip_70007 crossref_primary_10_1007_s00604_025_06967_8 crossref_primary_10_2139_ssrn_4092456 crossref_primary_10_1002_adhm_202301809 crossref_primary_10_1016_j_compositesb_2022_110456 crossref_primary_10_1007_s40883_024_00334_4 crossref_primary_10_1016_j_ijbiomac_2023_125029 crossref_primary_10_1208_s12249_024_02827_5 crossref_primary_10_3390_gels9010022 crossref_primary_10_1016_j_jiec_2022_06_012 crossref_primary_10_1016_j_mtcomm_2022_103513 crossref_primary_10_1039_D5TB00042D crossref_primary_10_3389_fphar_2022_896706 crossref_primary_10_1016_j_carbpol_2023_121662 crossref_primary_10_1021_acsami_2c20229 crossref_primary_10_1016_j_ijbiomac_2024_133194 crossref_primary_10_1002_adhm_202301885 crossref_primary_10_1016_j_smaim_2021_03_004 crossref_primary_10_1166_jbn_2022_3427 crossref_primary_10_3390_ph17091110 crossref_primary_10_1080_00405000_2023_2200319 crossref_primary_10_1002_biot_202400209 |
Cites_doi | 10.1007/s10570-019-02942-8 10.1021/acs.iecr.7b01812 10.1002/bip.22412 10.1016/j.bioactmat.2020.02.004 10.1007/s12274-020-2636-9 10.1039/C9NR02012H 10.3390/ma10030232 10.1016/j.ijbiomac.2018.09.131 10.1002/adfm.202000644 10.1002/adma.201403339 10.1016/j.apsb.2018.12.005 10.1016/j.actbio.2011.10.004 10.1021/acsami.0c00298 10.1021/acsami.6b10491 10.1021/acsabm.8b00625 10.1039/C8CC09000A 10.1007/s10924-019-01586-w 10.1021/acs.biomac.9b01732 10.1021/acs.molpharmaceut.6b01104 10.1016/j.biomaterials.2013.05.005 10.1021/acsabm.0c00252 10.1021/acsami.0c08890 10.1016/j.bioactmat.2020.05.008 10.1038/s41427-020-0206-y 10.1002/smll.201907309 10.1016/j.ijpharm.2018.07.055 10.1021/acsami.7b18927 10.1002/mabi.201900123 10.1038/s41427-018-0103-9 10.1021/acsami.8b10064 10.1016/j.msec.2016.08.086 10.1021/acsnano.7b03513 10.1002/advs.201700527 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 5, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 5, 2021 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1016/j.eurpolymj.2021.110268 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1945 |
ExternalDocumentID | 10_1016_j_eurpolymj_2021_110268 S0014305721000021 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K XPP ZMT ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SCB SEW SMS SSH T9H WUQ 7SR 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c409t-9e958bf0cc96d4c73b42b0523ad91dae1d81f0c69541254516986aee5bd130d73 |
IEDL.DBID | .~1 |
ISSN | 0014-3057 |
IngestDate | Mon Jul 14 10:24:28 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Tue Jul 01 01:58:47 EDT 2025 Fri Feb 23 02:44:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fabrication Antibacterial hydrogels Light-assisted antibacterial Wound healing Antibacterial agents |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-9e958bf0cc96d4c73b42b0523ad91dae1d81f0c69541254516986aee5bd130d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8123-9766 |
PQID | 2503463725 |
PQPubID | 2045478 |
ParticipantIDs | proquest_journals_2503463725 crossref_primary_10_1016_j_eurpolymj_2021_110268 crossref_citationtrail_10_1016_j_eurpolymj_2021_110268 elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2021_110268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-05 |
PublicationDateYYYYMMDD | 2021-03-05 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | European polymer journal |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | le Thi, Lee, Hoang Thi (b0530) 2018; 92 Zhang, Zhang, Zhang (b0665) 2020; 382 Deng, Yu, Chen (b0555) 2020; 230 Shanmugapriya, Kim, Kang (b0565) 2020; 247 Kim, Oh, Jang (b0185) 2020; 107 Tantiwatcharothai, Prachayawarakorn (b0135) 2020; 227 Wentao, Tao, Bulei (b0640) 2019; 17 Zhi, Yang, O'Hagan (b0575) 2020; 325 Irwansyah, Li, Shi (b0475) 2015; 27 Zhang, Dang, Liu (b0345) 2017; 102 Caló, Khutoryanskiy (b0095) 2015; 65 Xie, Liao, Zhang (b0085) 2018; 119 Wang, Wang, Li (b0435) 2019; 372 Shanmugapriya, Kang (b0630) 2019; 105 Yu, Yang, Ren (b0445) 2020; 299 Muthuswamy, Viswanathan, Yegappan (b0110) 2018; 2 Huang, Ying, Wang (b0515) 2020; 30 Kaur, Gondil, Chhibber (b0250) 2019; 572 Han, Li, Liu (b0615) 2020; 396 Wei, Liu, Zhou (b0335) 2020; 155 Nešović, Janković, Radetić (b0265) 2019; 121 Zhang, Jiang, Zhang (b0320) 2019; 104 Qu, Zhao, Liang (b0080) 2018; 183 Cao, Wang, Liu (b0355) 2020; 155 Wahid, Zhou, Wang (b0370) 2018; 114 Chen, Cheng, Ran (b0410) 2018; 201 Fang, Wang, Li (b0440) 2019; 365 Zhang, Wang, Chi (b0570) 2019; 183 Ninan, Forget, Shastri (b0545) 2016; 8 Abbasi, Sohail, Minhas (b0150) 2020; 155 Hu, Zhang, Long (b0155) 2020; 324 Basha, Ghosh, Vinothkumar (b0160) 2020; 111 Xu, Zeng, Huang (b0560) 2020; 229 Masood, Ahmed, Tariq (b0190) 2019; 559 Stubbe, Mignon, Declercq (b0025) 2019; 19 Hsu, Hu, Jiang (b0470) 2020; 112 Chin, Romainor, Pang (b0020) 2019; 54 Liu, Li, Guo (b0590) 2020; 382 Song, Zheng, Liu (b0100) 2019; 134 Alkordi (b0485) 2013; 2013 Zhang, Zhang, Yang (b0650) 2019; 374 Hoque, Prakash, Paramanandham (b0105) 2017; 14 Annabi, Rana, Shirzaei Sani (b0130) 2017; 139 Huang, Liu, Liao (b0580) 2020; 12 Xu, Chang, Zhang (b0595) 2020; 12 Hamdi, Feki, Bardaa (b0070) 2020; 113 Qin, Chen, Pu (b0490) 2019; 55 Chen, Lai, Chang (b0465) 2019; 11 Alavi, Nokhodchi (b0310) 2020; 227 He, Shi, Liang (b0420) 2020; 394 Ma, Zhong, Jiang (b0550) 2020; 236 Han, Zhou, Yang (b0115) 2020; 5 Ruseva, Ivanova, Todorova (b0010) 2020; 132 Ma, Wang, Li (b0055) 2017; 56 Raho, Paladini, Lombardi (b0200) 2015; 55 Khan, Pham, Oloketuyi (b0330) 2020; 185 Kong, Fan, Yang (b0075) 2019; 138 Zhu, Li, Wang (b0270) 2018; 10 Liu, Dai, Si (b0510) 2018; 195 Chen, Xing, Tan (b0280) 2017; 70 Veiga, Schneider (b0225) 2013; 100 Picone, Sabatino, Ajovalasit (b0245) 2019; 121 Shariatinia (b0360) 2018; 120 Liang, Chen, Li (b0655) 2020; 21 Herlem, Picaud, Girardet (b0285) 2019 Singh, Kumar (b0050) 2020; 489 Yang, Zhang, Huang (b0450) 2020; 324 Sadeghi, Nourmohammadi, Ghaee (b0295) 2020; 147 de Cicco, Reverchon, Adami (b0065) 2014; 101 Gavel, Kumar, Parmar (b0015) 2020; 3 Wang, Zhang, Yang (b0600) 2019; 494 Kumar, Kaur (b0035) 2020; 145 Pasaribu, Ginting, Masmur (b0405) 2020; 310 Yang, Chen, Zhao (b0380) 2020; 197 Pham, Jiang, Su (b0535) 2020; 146 van den Broeck, Piluso, Soultan (b0620) 2019; 98 Bagher, Ehterami, Safdel (b0170) 2020; 55 Tu, Chen, Li (b0385) 2019; 90 Koehler, Brandl, Goepferich (b0040) 2018; 100 Ahmed, Niazi, Jahan (b0205) 2020; 130 Xie, Zhang, Qin (b0455) 2020; 193 Zhou, Xu, Yan (b0180) 2020; 104 Bayat, Karimi (b0305) 2019; 129 Zhang, He, Shi (b0425) 2020; 400 Qu, Zhao, Liang (b0145) 2019; 362 Tao, Wang, Cai (b0240) 2019; 101 Huang, Huang, Cai (b0365) 2015; 134 Kalantari, Mostafavi, Saleh (b0060) 2020; 134 Chen, Chen, Rehman (b0395) 2018; 10 Gautam, Poudel, Yong (b0605) 2018; 549 Zhang, Chen, Zhong (b0255) 2020; 143 Chen, Cheng, Zhao (b0400) 2019; 11 Mahmoud, Hikmat, Abu Ghith (b0195) 2019; 565 Forero-Doria, Polo, Marican (b0300) 2020; 242 Sun, Ma, Gong (b0045) 2020; 157 Wang, Zhang, Meng (b0350) 2020; 194 Song, Rane, Christman (b0460) 2012; 8 Fu, Wu, Wei (b0610) 2019; 9 Mai, Jia, Liu (b0635) 2020; 12 Yang, Liang, Ma (b0585) 2019; 22 Wang, Wang, Wu (b0090) 2017; 168 Ou, Huang, Fu (b0290) 2020; 382 Mao, Xiang, Liu (b0220) 2017; 11 Liang, Zhao, Hu (b0625) 2019; 556 Liang, Wang, Zhang (b0660) 2019; 378 Raho, Nguyen, Zhang (b0505) 2020; 107 Zhao, Wu, Guo (b0415) 2017; 122 Ilkar Erdagi, Asabuwa Ngwabebhoh, Yildiz (b0235) 2020; 149 Pawar, Dhanka, Srivastava (b0500) 2019; 173 Gonzalez-Henriquez, Sarabia-Vallejos, Rodriguez-Hernandez (b0120) 2017; 10 Kumar, Behl, Chadha (b0215) 2020; 149 Chen, Zhu, Zhang (b0480) 2020; 379 Pan, Jin, Lai (b0375) 2019; 370 Chi, Zhang, Chen (b0005) 2020; 5 Chalitangkoon, Wongkittisin, Monvisade (b0260) 2020; 159 Li, Dong, Xu (b0125) 2018; 5 Koneru, Dharmalingam, Anandalakshmi (b0175) 2020; 148 Rafati, Sirousazar, Hassan (b0165) 2019; 28 Xue, Hu, Xiong (b0340) 2019; 226 Huang, Zhu, Wu (b0230) 2019; 225 Makvandi, Ali, Della Sala (b0210) 2019; 223 Song, Yuan, Jiao (b0140) 2020; 16 Negm, Hefni, Abd-Elaal (b0315) 2020; 152 Jiang, Huang, Wu (b0390) 2020; 149 Ren, Yu, Li (b0540) 2020; 202 Sun, He, Li (b0030) 2020; 12 Gong, Wu, Wang (b0275) 2013; 34 Wang, Wang, Peng (b0645) 2019; 180 Li, Wang, Zhang (b0325) 2020; 27 Chen, Wang, Liu (b0520) 2020; 148 Du, Liu, Wang (b0430) 2019; 104 Li, Jiang, Wang (b0525) 2019; 177 Qiu, Pu, Liu (b0495) 2020; 13 Fang (10.1016/j.eurpolymj.2021.110268_b0440) 2019; 365 Kumar (10.1016/j.eurpolymj.2021.110268_b0035) 2020; 145 Shariatinia (10.1016/j.eurpolymj.2021.110268_b0360) 2018; 120 Jiang (10.1016/j.eurpolymj.2021.110268_b0390) 2020; 149 Huang (10.1016/j.eurpolymj.2021.110268_b0230) 2019; 225 Yang (10.1016/j.eurpolymj.2021.110268_b0380) 2020; 197 Mao (10.1016/j.eurpolymj.2021.110268_b0220) 2017; 11 Tantiwatcharothai (10.1016/j.eurpolymj.2021.110268_b0135) 2020; 227 Pham (10.1016/j.eurpolymj.2021.110268_b0535) 2020; 146 Chi (10.1016/j.eurpolymj.2021.110268_b0005) 2020; 5 Li (10.1016/j.eurpolymj.2021.110268_b0125) 2018; 5 Wang (10.1016/j.eurpolymj.2021.110268_b0350) 2020; 194 Du (10.1016/j.eurpolymj.2021.110268_b0430) 2019; 104 Kong (10.1016/j.eurpolymj.2021.110268_b0075) 2019; 138 Gavel (10.1016/j.eurpolymj.2021.110268_b0015) 2020; 3 Basha (10.1016/j.eurpolymj.2021.110268_b0160) 2020; 111 Wei (10.1016/j.eurpolymj.2021.110268_b0335) 2020; 155 Ou (10.1016/j.eurpolymj.2021.110268_b0290) 2020; 382 Veiga (10.1016/j.eurpolymj.2021.110268_b0225) 2013; 100 Hu (10.1016/j.eurpolymj.2021.110268_b0155) 2020; 324 Xie (10.1016/j.eurpolymj.2021.110268_b0085) 2018; 119 Zhi (10.1016/j.eurpolymj.2021.110268_b0575) 2020; 325 Qu (10.1016/j.eurpolymj.2021.110268_b0080) 2018; 183 Song (10.1016/j.eurpolymj.2021.110268_b0140) 2020; 16 Herlem (10.1016/j.eurpolymj.2021.110268_b0285) 2019 Kalantari (10.1016/j.eurpolymj.2021.110268_b0060) 2020; 134 Negm (10.1016/j.eurpolymj.2021.110268_b0315) 2020; 152 Deng (10.1016/j.eurpolymj.2021.110268_b0555) 2020; 230 Hoque (10.1016/j.eurpolymj.2021.110268_b0105) 2017; 14 Ren (10.1016/j.eurpolymj.2021.110268_b0540) 2020; 202 Nešović (10.1016/j.eurpolymj.2021.110268_b0265) 2019; 121 Zhang (10.1016/j.eurpolymj.2021.110268_b0425) 2020; 400 Wentao (10.1016/j.eurpolymj.2021.110268_b0640) 2019; 17 Abbasi (10.1016/j.eurpolymj.2021.110268_b0150) 2020; 155 Sun (10.1016/j.eurpolymj.2021.110268_b0045) 2020; 157 Bagher (10.1016/j.eurpolymj.2021.110268_b0170) 2020; 55 Tu (10.1016/j.eurpolymj.2021.110268_b0385) 2019; 90 Chen (10.1016/j.eurpolymj.2021.110268_b0410) 2018; 201 Sadeghi (10.1016/j.eurpolymj.2021.110268_b0295) 2020; 147 Huang (10.1016/j.eurpolymj.2021.110268_b0515) 2020; 30 Cao (10.1016/j.eurpolymj.2021.110268_b0355) 2020; 155 Chen (10.1016/j.eurpolymj.2021.110268_b0520) 2020; 148 Ma (10.1016/j.eurpolymj.2021.110268_b0055) 2017; 56 van den Broeck (10.1016/j.eurpolymj.2021.110268_b0620) 2019; 98 Chin (10.1016/j.eurpolymj.2021.110268_b0020) 2019; 54 Sun (10.1016/j.eurpolymj.2021.110268_b0030) 2020; 12 Huang (10.1016/j.eurpolymj.2021.110268_b0365) 2015; 134 Han (10.1016/j.eurpolymj.2021.110268_b0115) 2020; 5 Makvandi (10.1016/j.eurpolymj.2021.110268_b0210) 2019; 223 Zhang (10.1016/j.eurpolymj.2021.110268_b0345) 2017; 102 Pawar (10.1016/j.eurpolymj.2021.110268_b0500) 2019; 173 Shanmugapriya (10.1016/j.eurpolymj.2021.110268_b0630) 2019; 105 Xie (10.1016/j.eurpolymj.2021.110268_b0455) 2020; 193 Liang (10.1016/j.eurpolymj.2021.110268_b0660) 2019; 378 Zhang (10.1016/j.eurpolymj.2021.110268_b0665) 2020; 382 Yang (10.1016/j.eurpolymj.2021.110268_b0585) 2019; 22 Li (10.1016/j.eurpolymj.2021.110268_b0325) 2020; 27 Alkordi (10.1016/j.eurpolymj.2021.110268_b0485) 2013; 2013 Stubbe (10.1016/j.eurpolymj.2021.110268_b0025) 2019; 19 Chen (10.1016/j.eurpolymj.2021.110268_b0465) 2019; 11 Mai (10.1016/j.eurpolymj.2021.110268_b0635) 2020; 12 Qiu (10.1016/j.eurpolymj.2021.110268_b0495) 2020; 13 Ruseva (10.1016/j.eurpolymj.2021.110268_b0010) 2020; 132 Zhang (10.1016/j.eurpolymj.2021.110268_b0255) 2020; 143 Ninan (10.1016/j.eurpolymj.2021.110268_b0545) 2016; 8 Picone (10.1016/j.eurpolymj.2021.110268_b0245) 2019; 121 Kaur (10.1016/j.eurpolymj.2021.110268_b0250) 2019; 572 Hsu (10.1016/j.eurpolymj.2021.110268_b0470) 2020; 112 Hamdi (10.1016/j.eurpolymj.2021.110268_b0070) 2020; 113 Chalitangkoon (10.1016/j.eurpolymj.2021.110268_b0260) 2020; 159 Fu (10.1016/j.eurpolymj.2021.110268_b0610) 2019; 9 Caló (10.1016/j.eurpolymj.2021.110268_b0095) 2015; 65 Huang (10.1016/j.eurpolymj.2021.110268_b0580) 2020; 12 Yu (10.1016/j.eurpolymj.2021.110268_b0445) 2020; 299 de Cicco (10.1016/j.eurpolymj.2021.110268_b0065) 2014; 101 Gong (10.1016/j.eurpolymj.2021.110268_b0275) 2013; 34 Kumar (10.1016/j.eurpolymj.2021.110268_b0215) 2020; 149 Liang (10.1016/j.eurpolymj.2021.110268_b0625) 2019; 556 Chen (10.1016/j.eurpolymj.2021.110268_b0400) 2019; 11 Ahmed (10.1016/j.eurpolymj.2021.110268_b0205) 2020; 130 Wang (10.1016/j.eurpolymj.2021.110268_b0600) 2019; 494 Forero-Doria (10.1016/j.eurpolymj.2021.110268_b0300) 2020; 242 Wang (10.1016/j.eurpolymj.2021.110268_b0090) 2017; 168 Alavi (10.1016/j.eurpolymj.2021.110268_b0310) 2020; 227 Wang (10.1016/j.eurpolymj.2021.110268_b0645) 2019; 180 Zhao (10.1016/j.eurpolymj.2021.110268_b0415) 2017; 122 Masood (10.1016/j.eurpolymj.2021.110268_b0190) 2019; 559 Tao (10.1016/j.eurpolymj.2021.110268_b0240) 2019; 101 Xu (10.1016/j.eurpolymj.2021.110268_b0560) 2020; 229 Raho (10.1016/j.eurpolymj.2021.110268_b0200) 2015; 55 Mahmoud (10.1016/j.eurpolymj.2021.110268_b0195) 2019; 565 Song (10.1016/j.eurpolymj.2021.110268_b0100) 2019; 134 Gonzalez-Henriquez (10.1016/j.eurpolymj.2021.110268_b0120) 2017; 10 Gautam (10.1016/j.eurpolymj.2021.110268_b0605) 2018; 549 Rafati (10.1016/j.eurpolymj.2021.110268_b0165) 2019; 28 Liang (10.1016/j.eurpolymj.2021.110268_b0655) 2020; 21 Annabi (10.1016/j.eurpolymj.2021.110268_b0130) 2017; 139 Khan (10.1016/j.eurpolymj.2021.110268_b0330) 2020; 185 Li (10.1016/j.eurpolymj.2021.110268_b0525) 2019; 177 Zhou (10.1016/j.eurpolymj.2021.110268_b0180) 2020; 104 Wang (10.1016/j.eurpolymj.2021.110268_b0435) 2019; 372 Pan (10.1016/j.eurpolymj.2021.110268_b0375) 2019; 370 Raho (10.1016/j.eurpolymj.2021.110268_b0505) 2020; 107 Qu (10.1016/j.eurpolymj.2021.110268_b0145) 2019; 362 Shanmugapriya (10.1016/j.eurpolymj.2021.110268_b0565) 2020; 247 Zhang (10.1016/j.eurpolymj.2021.110268_b0650) 2019; 374 Zhang (10.1016/j.eurpolymj.2021.110268_b0320) 2019; 104 Chen (10.1016/j.eurpolymj.2021.110268_b0280) 2017; 70 Han (10.1016/j.eurpolymj.2021.110268_b0615) 2020; 396 Liu (10.1016/j.eurpolymj.2021.110268_b0510) 2018; 195 Xu (10.1016/j.eurpolymj.2021.110268_b0595) 2020; 12 Pasaribu (10.1016/j.eurpolymj.2021.110268_b0405) 2020; 310 Koneru (10.1016/j.eurpolymj.2021.110268_b0175) 2020; 148 Wahid (10.1016/j.eurpolymj.2021.110268_b0370) 2018; 114 Koehler (10.1016/j.eurpolymj.2021.110268_b0040) 2018; 100 Irwansyah (10.1016/j.eurpolymj.2021.110268_b0475) 2015; 27 Liu (10.1016/j.eurpolymj.2021.110268_b0590) 2020; 382 Zhang (10.1016/j.eurpolymj.2021.110268_b0570) 2019; 183 Kim (10.1016/j.eurpolymj.2021.110268_b0185) 2020; 107 Chen (10.1016/j.eurpolymj.2021.110268_b0480) 2020; 379 Xue (10.1016/j.eurpolymj.2021.110268_b0340) 2019; 226 Chen (10.1016/j.eurpolymj.2021.110268_b0395) 2018; 10 Ilkar Erdagi (10.1016/j.eurpolymj.2021.110268_b0235) 2020; 149 Zhu (10.1016/j.eurpolymj.2021.110268_b0270) 2018; 10 Song (10.1016/j.eurpolymj.2021.110268_b0460) 2012; 8 Singh (10.1016/j.eurpolymj.2021.110268_b0050) 2020; 489 Muthuswamy (10.1016/j.eurpolymj.2021.110268_b0110) 2018; 2 le Thi (10.1016/j.eurpolymj.2021.110268_b0530) 2018; 92 Bayat (10.1016/j.eurpolymj.2021.110268_b0305) 2019; 129 Ma (10.1016/j.eurpolymj.2021.110268_b0550) 2020; 236 Yang (10.1016/j.eurpolymj.2021.110268_b0450) 2020; 324 He (10.1016/j.eurpolymj.2021.110268_b0420) 2020; 394 Qin (10.1016/j.eurpolymj.2021.110268_b0490) 2019; 55 |
References_xml | – volume: 8 start-page: 41 year: 2012 end-page: 50 ident: b0460 article-title: Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing publication-title: Acta Biomater. – volume: 565 year: 2019 ident: b0195 article-title: Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles' shape and surface modification publication-title: Int. J. Pharm. – volume: 98 year: 2019 ident: b0620 article-title: Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 180 year: 2019 ident: b0645 article-title: Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing publication-title: Colloids Surf. B Biointerfaces – volume: 90 year: 2019 ident: b0385 article-title: Advances in injectable self-healing biomedical hydrogels publication-title: Acta Biomater – volume: 11 start-page: 9010 year: 2017 end-page: 9021 ident: b0220 article-title: Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures publication-title: ACS Nano – volume: 155 year: 2020 ident: b0355 article-title: Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing publication-title: Int. J. Biol. Macromol. – volume: 310 year: 2020 ident: b0405 article-title: Silver chloride nanoparticles embedded in self-healing hydrogels with biocompatible and antibacterial properties publication-title: J. Mol. Liq. – volume: 201 year: 2018 ident: b0410 article-title: An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing publication-title: Carbohydr. Polym. – volume: 21 start-page: 1841 year: 2020 end-page: 1852 ident: b0655 article-title: Injectable Antimicrobial Conductive Hydrogels for Wound Disinfection and Infectious Wound Healing publication-title: Biomacromolecules – volume: 195 year: 2018 ident: b0510 article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers publication-title: Carbohydr. Polym. – volume: 55 start-page: 2206 year: 2019 end-page: 2209 ident: b0490 article-title: A hydrogel directly assembled from a copper metal-organic polyhedron for antimicrobial application publication-title: Chem. Commun. (Camb.) – volume: 173 year: 2019 ident: b0500 article-title: Cefuroxime conjugated chitosan hydrogel for treatment of wound infections publication-title: Colloids Surf. B Biointerfaces – volume: 183 year: 2019 ident: b0570 article-title: Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties publication-title: Mater. Des. – volume: 223 year: 2019 ident: b0210 article-title: Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing publication-title: Carbohydr. Polym. – volume: 197 year: 2020 ident: b0380 article-title: Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing publication-title: Compos. Part B: Eng. – volume: 12 start-page: 25 year: 2020 ident: b0030 article-title: An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration publication-title: NPG Asia Mater. – volume: 159 year: 2020 ident: b0260 article-title: Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings publication-title: Int. J. Biol. Macromol. – volume: 13 start-page: 496 year: 2020 end-page: 502 ident: b0495 article-title: Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing publication-title: Nano Res. – volume: 14 start-page: 1218 year: 2017 end-page: 1230 ident: b0105 article-title: Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties publication-title: Mol. Pharm. – volume: 230 year: 2020 ident: b0555 article-title: Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection publication-title: Carbohydr. Polym. – volume: 225 year: 2019 ident: b0230 article-title: Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration publication-title: Carbohydr. Polym. – volume: 54 year: 2019 ident: b0020 article-title: Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers publication-title: J. Drug Delivery Sci. Technol. – volume: 324 year: 2020 ident: b0450 article-title: Triclosan-based supramolecular hydrogels as nanoantibiotics for enhanced antibacterial activity publication-title: J. Control Release – volume: 100 year: 2018 ident: b0040 article-title: Hydrogel wound dressings for bioactive treatment of acute and chronic wounds publication-title: Europ. Polym. J. – volume: 34 start-page: 6377 year: 2013 end-page: 6387 ident: b0275 article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing publication-title: Biomaterials – volume: 104 year: 2019 ident: b0320 article-title: Novel lignin-chitosan-PVA composite hydrogel for wound dressing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 12 start-page: 10156 year: 2020 end-page: 10169 ident: b0635 article-title: Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 604 year: 2019 end-page: 614 ident: b0610 article-title: Prussian blue nanosphere-embedded in situ hydrogel for photothermal therapy by peritumoral administration publication-title: Acta Pharm. Sin. B – volume: 11 start-page: 11696 year: 2019 end-page: 11708 ident: b0465 article-title: Star-shaped polypeptides exhibit potent antibacterial activities publication-title: Nanoscale – volume: 549 start-page: 31 year: 2018 end-page: 49 ident: b0605 article-title: Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment publication-title: Int. J. Pharm. – volume: 374 year: 2019 ident: b0650 article-title: Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection publication-title: Chem. Eng. J. – volume: 362 year: 2019 ident: b0145 article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing publication-title: Chem. Eng. J. – volume: 5 start-page: 1700527 year: 2018 ident: b0125 article-title: Antibacterial Hydrogels publication-title: Adv. Sci. (Weinh) – volume: 92 year: 2018 ident: b0530 article-title: Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 17 year: 2019 ident: b0640 article-title: Functionalization of polyvinyl alcohol composite film wrapped in a-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing publication-title: Appl. Mater. Today – volume: 101 year: 2019 ident: b0240 article-title: Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 27 start-page: 648 year: 2015 end-page: 654 ident: b0475 article-title: Gram-positive antimicrobial activity of amino acid-based hydrogels publication-title: Adv. Mater. – volume: 2013 start-page: 37 year: 2013 end-page: 43 ident: b0485 article-title: Self-Assembled Metal-Organic Polyhedra (MOPs): Opportunities in Biomedical Applications publication-title: Glob. Cardiol. Sci. Pract. – volume: 134 year: 2019 ident: b0100 article-title: A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties publication-title: Int. J. Biol. Macromol. – volume: 55 year: 2015 ident: b0200 article-title: In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 556 year: 2019 ident: b0625 article-title: Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 13304 year: 2018 end-page: 13316 ident: b0270 article-title: Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing publication-title: ACS Appl. Mater. Interfaces – volume: 120 start-page: 1406 year: 2018 end-page: 1419 ident: b0360 article-title: Carboxymethyl chitosan: Properties and biomedical applications publication-title: Int. J. Biol. Macromol. – volume: 105 year: 2019 ident: b0630 article-title: Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: review publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 183 year: 2018 ident: b0080 article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing publication-title: Biomaterials – volume: 30 start-page: 2000644 year: 2020 ident: b0515 article-title: A Macroporous Hydrogel Dressing with Enhanced Antibacterial and Anti-Inflammatory Capabilities for Accelerated Wound Healing publication-title: Adv. Funct. Mater. – volume: 372 year: 2019 ident: b0435 article-title: Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method publication-title: Chem. Eng. J. – volume: 370 year: 2019 ident: b0375 article-title: An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking publication-title: Chem. Eng. J. – volume: 489 year: 2020 ident: b0050 article-title: Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications publication-title: Carbohydr. Res. – volume: 19 year: 2019 ident: b0025 article-title: Development of Gelatin-Alginate Hydrogels for Burn Wound Treatment publication-title: Macromol. Biosci. – volume: 119 year: 2018 ident: b0085 article-title: Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing publication-title: Int. J. Biol. Macromol. – volume: 121 year: 2019 ident: b0265 article-title: Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study publication-title: Eur. Polym. J. – volume: 152 year: 2020 ident: b0315 article-title: Advancement on modification of chitosan biopolymer and its potential applications publication-title: Int. J. Biol. Macromol. – volume: 396 year: 2020 ident: b0615 article-title: Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds publication-title: Chem. Eng. J. – volume: 177 year: 2019 ident: b0525 article-title: In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application publication-title: Colloids Surf. B Biointerfaces – volume: 325 year: 2020 ident: b0575 article-title: Photothermal therapy publication-title: J. Control Release – volume: 10 start-page: 232 year: 2017 ident: b0120 article-title: Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications publication-title: Materials (Basel) – volume: 148 year: 2020 ident: b0175 article-title: Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications publication-title: Int. J. Biol. Macromol. – volume: 122 year: 2017 ident: b0415 article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing publication-title: Biomaterials – volume: 394 year: 2020 ident: b0420 article-title: Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds publication-title: Chem. Eng. J. – volume: 100 start-page: 637 year: 2013 end-page: 644 ident: b0225 article-title: Antimicrobial hydrogels for the treatment of infection publication-title: Biopolymers – volume: 114 year: 2018 ident: b0370 article-title: Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity publication-title: Int. J. Biol. Macromol. – volume: 149 year: 2020 ident: b0390 article-title: Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds publication-title: Int. J. Biol. Macromol. – volume: 494 year: 2019 ident: b0600 article-title: Poly (vinyl alcohol) (PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing publication-title: Appl. Surf. Sci. – volume: 146 year: 2020 ident: b0535 article-title: In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities publication-title: Int. J. Biol. Macromol. – volume: 112 year: 2020 ident: b0470 article-title: Antibacterial polypeptide/heparin composite hydrogels carrying growth factor for wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 129 year: 2019 ident: b0305 article-title: Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent publication-title: Int. J. Biol. Macromol. – volume: 157 year: 2020 ident: b0045 article-title: Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings publication-title: Int. J. Biol. Macromol. – volume: 12 start-page: 28952 year: 2020 end-page: 28964 ident: b0580 article-title: Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing publication-title: ACS Appl. Mater. Interfaces – volume: 113 year: 2020 ident: b0070 article-title: A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 227 year: 2020 ident: b0135 article-title: Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage- ZnO nanocomposite by borax crosslinking publication-title: Carbohydr. Polym. – volume: 382 year: 2020 ident: b0665 article-title: A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing publication-title: Chem. Eng. J. – volume: 70 start-page: 287 year: 2017 end-page: 295 ident: b0280 article-title: Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 365 year: 2019 ident: b0440 article-title: A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications publication-title: Chem. Eng. J. – volume: 149 year: 2020 ident: b0235 article-title: Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications publication-title: Int. J. Biol. Macromol. – volume: 229 year: 2020 ident: b0560 article-title: Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy publication-title: Carbohydr. Polym. – volume: 11 start-page: 3 year: 2019 ident: b0400 article-title: An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair publication-title: NPG Asia Mater. – volume: 379 year: 2020 ident: b0480 article-title: Engineering a multifunctional N-halamine-based antibacterial hydrogel using a super-convenient strategy for infected skin defect therapy publication-title: Chem. Eng. J. – volume: 378 year: 2019 ident: b0660 article-title: Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing publication-title: Chem. Eng. J. – volume: 155 year: 2020 ident: b0150 article-title: Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing publication-title: Int. J. Biol. Macromol. – volume: 10 start-page: 33523 year: 2018 end-page: 33531 ident: b0395 article-title: Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing publication-title: ACS Appl. Mater. Interfaces – volume: 226 year: 2019 ident: b0340 article-title: Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration publication-title: Carbohydr. Polym. – volume: 8 start-page: 28511 year: 2016 end-page: 28521 ident: b0545 article-title: Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing publication-title: ACS Appl. Mater. Interfaces – volume: 227 year: 2020 ident: b0310 article-title: An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers publication-title: Carbohydr. Polym. – volume: 102 year: 2017 ident: b0345 article-title: Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing publication-title: Int. J. Biol. Macromol. – volume: 2 start-page: 378 year: 2018 end-page: 387 ident: b0110 article-title: Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing publication-title: ACS Appl. Bio Mater. – volume: 134 year: 2020 ident: b0060 article-title: Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications publication-title: Eur. Polym. J. – volume: 247 year: 2020 ident: b0565 article-title: Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation publication-title: Carbohydr. Polym. – volume: 168 year: 2017 ident: b0090 article-title: Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties publication-title: Carbohydr. Polym. – volume: 143 year: 2020 ident: b0255 article-title: Zn(2+)-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing publication-title: Int. J. Biol. Macromol. – volume: 3 start-page: 3326 year: 2020 end-page: 3336 ident: b0015 article-title: Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing publication-title: ACS Appl. Bio Mater. – volume: 132 year: 2020 ident: b0010 article-title: Antibiofilm poly(carboxybetaine methacrylate) hydrogels for chronic wounds dressings publication-title: Eur. Polym. J. – volume: 400 year: 2020 ident: b0425 article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration publication-title: Chem. Eng. J. – volume: 138 year: 2019 ident: b0075 article-title: 5-hydroxymethylfurfural-embedded poly (vinyl alcohol)/sodium alginate hybrid hydrogels accelerate wound healing publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: 253 year: 2020 end-page: 259 ident: b0005 article-title: Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing publication-title: Bioact. Mater. – volume: 572 year: 2019 ident: b0250 article-title: A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics publication-title: Int. J. Pharm. – volume: 28 start-page: 32 year: 2019 end-page: 46 ident: b0165 article-title: Honey-Loaded Egg White/Poly(vinyl alcohol)/Clay Bionanocomposite Hydrogel Wound Dressings. In Vitro and In Vivo Evaluations publication-title: J. Polym. Environ. – volume: 65 year: 2015 ident: b0095 article-title: Biomedical applications of hydrogels: A review of patents and commercial products publication-title: Eur. Polym. J. – volume: 111 year: 2020 ident: b0160 article-title: Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 145 year: 2020 ident: b0035 article-title: Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects publication-title: Int. J. Biol. Macromol. – volume: 194 year: 2020 ident: b0350 article-title: The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing publication-title: Colloids Surf. B Biointerfaces – volume: 134 year: 2015 ident: b0365 article-title: Carboxymethyl chitosan/clay nanocomposites and their copper complexes: Fabrication and property publication-title: Carbohydr. Polym. – volume: 185 year: 2020 ident: b0330 article-title: Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria publication-title: Colloids Surf. B Biointerfaces – start-page: 469 year: 2019 end-page: 529 ident: b0285 publication-title: Carbon Nanotubes – volume: 12 start-page: 31255 year: 2020 end-page: 31269 ident: b0595 article-title: PDA/Cu Bioactive Hydrogel with “Hot Ions Effect” for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing publication-title: ACS Appl. Mater. Interfaces – volume: 104 year: 2020 ident: b0180 article-title: Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing publication-title: Food Hydrocolloids – volume: 202 year: 2020 ident: b0540 article-title: Fabrication of pH-responsive TA-keratin bio-composited hydrogels encapsulated with photoluminescent GO quantum dots for improved bacterial inhibition and healing efficacy in wound care management: In vivo wound evaluations publication-title: J. Photochem. Photobiol., B – volume: 16 year: 2020 ident: b0140 article-title: Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Self-Assembly publication-title: Small – volume: 382 year: 2020 ident: b0590 article-title: Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections publication-title: Chem. Eng. J. – volume: 139 year: 2017 ident: b0130 article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing publication-title: Biomaterials – volume: 382 year: 2020 ident: b0290 article-title: Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration publication-title: Chem. Eng. J. – volume: 104 year: 2019 ident: b0430 article-title: Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 22 year: 2019 ident: b0585 article-title: Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment publication-title: Sustain. Mater. Technol. – volume: 130 year: 2020 ident: b0205 article-title: In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing publication-title: Eur. Polym. J. – volume: 148 year: 2020 ident: b0520 article-title: In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property publication-title: Int. J. Biol. Macromol. – volume: 299 year: 2020 ident: b0445 article-title: Multifunctional hydrogel based on ionic liquid with antibacterial performance publication-title: J. Mol. Liquids – volume: 193 year: 2020 ident: b0455 article-title: Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels publication-title: Colloids Surf. B Biointerfaces – volume: 101 year: 2014 ident: b0065 article-title: In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying publication-title: Carbohydr. Polym. – volume: 242 year: 2020 ident: b0300 article-title: Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties publication-title: Carbohydr. Polym. – volume: 55 year: 2020 ident: b0170 article-title: Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model publication-title: J. Drug Delivery Sci. Technol. – volume: 147 year: 2020 ident: b0295 article-title: Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing publication-title: Int. J. Biol. Macromol. – volume: 27 start-page: 2637 year: 2020 end-page: 2650 ident: b0325 article-title: All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing publication-title: Cellulose – volume: 236 year: 2020 ident: b0550 article-title: Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing publication-title: Carbohydr. Polym. – volume: 324 year: 2020 ident: b0155 article-title: Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing publication-title: J. Control. Release – volume: 107 year: 2020 ident: b0185 article-title: Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 149 year: 2020 ident: b0215 article-title: Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects publication-title: Int. J. Biol. Macromol. – volume: 559 year: 2019 ident: b0190 article-title: Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits publication-title: Int. J. Pharm. – volume: 121 year: 2019 ident: b0245 article-title: Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application publication-title: Int. J. Biol. Macromol. – volume: 56 start-page: 7971 year: 2017 end-page: 7976 ident: b0055 article-title: A Novel Method for Preparing Poly(vinyl alcohol) Hydrogels: Preparation, Characterization, and Application publication-title: Ind. Eng. Chem. Res. – volume: 107 year: 2020 ident: b0505 article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 5 start-page: 768 year: 2020 end-page: 778 ident: b0115 article-title: Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing publication-title: Bioact. Mater. – volume: 155 year: 2020 ident: b0335 article-title: Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications publication-title: Int. J. Biol. Macromol. – volume: 183 issue: 185–99 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0080 article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing publication-title: Biomaterials – volume: 152 issue: 681–702 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0315 article-title: Advancement on modification of chitosan biopolymer and its potential applications publication-title: Int. J. Biol. Macromol. – volume: 27 start-page: 2637 issue: 5 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0325 article-title: All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing publication-title: Cellulose doi: 10.1007/s10570-019-02942-8 – volume: 56 start-page: 7971 issue: 28 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0055 article-title: A Novel Method for Preparing Poly(vinyl alcohol) Hydrogels: Preparation, Characterization, and Application publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01812 – volume: 299 issue: 112185 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0445 article-title: Multifunctional hydrogel based on ionic liquid with antibacterial performance publication-title: J. Mol. Liquids – volume: 92 issue: 52–60 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0530 article-title: Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 100 start-page: 637 issue: 6 year: 2013 ident: 10.1016/j.eurpolymj.2021.110268_b0225 article-title: Antimicrobial hydrogels for the treatment of infection publication-title: Biopolymers doi: 10.1002/bip.22412 – volume: 121 issue: 784–95 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0245 article-title: Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application publication-title: Int. J. Biol. Macromol. – volume: 114 issue: 1233–9 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0370 article-title: Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity publication-title: Int. J. Biol. Macromol. – volume: 101 issue: 1216–24 year: 2014 ident: 10.1016/j.eurpolymj.2021.110268_b0065 article-title: In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying publication-title: Carbohydr. Polym. – volume: 104 issue: 110002 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0320 article-title: Novel lignin-chitosan-PVA composite hydrogel for wound dressing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 143 issue: 235–42 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0255 article-title: Zn(2+)-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing publication-title: Int. J. Biol. Macromol. – volume: 223 issue: 115023 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0210 article-title: Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing publication-title: Carbohydr. Polym. – volume: 155 issue: 153–62 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0335 article-title: Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications publication-title: Int. J. Biol. Macromol. – volume: 201 issue: 522–31 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0410 article-title: An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing publication-title: Carbohydr. Polym. – volume: 12 start-page: 28952 issue: 26 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0580 article-title: Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing publication-title: ACS Appl. Mater. Interfaces – volume: 54 issue: 101239 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0020 article-title: Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers publication-title: J. Drug Delivery Sci. Technol. – volume: 148 issue: 501–9 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0520 article-title: In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: 253 issue: 2 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0005 article-title: Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2020.02.004 – volume: 101 issue: 341–51 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0240 article-title: Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 100 issue: 1–11 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0040 article-title: Hydrogel wound dressings for bioactive treatment of acute and chronic wounds publication-title: Europ. Polym. J. – volume: 107 issue: 110352 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0185 article-title: Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 572 issue: 118779 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0250 article-title: A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics publication-title: Int. J. Pharm. – volume: 13 start-page: 496 issue: 2 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0495 article-title: Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing publication-title: Nano Res. doi: 10.1007/s12274-020-2636-9 – volume: 365 issue: 153–64 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0440 article-title: A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications publication-title: Chem. Eng. J. – volume: 11 start-page: 11696 issue: 24 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0465 article-title: Star-shaped polypeptides exhibit potent antibacterial activities publication-title: Nanoscale doi: 10.1039/C9NR02012H – volume: 325 issue: 52–71 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0575 article-title: Photothermal therapy publication-title: J. Control Release – volume: 10 start-page: 232 issue: 3 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0120 article-title: Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications publication-title: Materials (Basel) doi: 10.3390/ma10030232 – volume: 120 start-page: 1406 issue: Pt B year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0360 article-title: Carboxymethyl chitosan: Properties and biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.09.131 – volume: 168 issue: 112–20 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0090 article-title: Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties publication-title: Carbohydr. Polym. – volume: 104 issue: 109930 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0430 article-title: Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 396 issue: 125194 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0615 article-title: Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds publication-title: Chem. Eng. J. – volume: 382 issue: 122849 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0665 article-title: A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing publication-title: Chem. Eng. J. – volume: 2013 start-page: 37 issue: 1 year: 2013 ident: 10.1016/j.eurpolymj.2021.110268_b0485 article-title: Self-Assembled Metal-Organic Polyhedra (MOPs): Opportunities in Biomedical Applications publication-title: Glob. Cardiol. Sci. Pract. – volume: 149 issue: 148–57 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0390 article-title: Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds publication-title: Int. J. Biol. Macromol. – volume: 30 start-page: 2000644 issue: 21 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0515 article-title: A Macroporous Hydrogel Dressing with Enhanced Antibacterial and Anti-Inflammatory Capabilities for Accelerated Wound Healing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000644 – volume: 173 issue: 776–87 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0500 article-title: Cefuroxime conjugated chitosan hydrogel for treatment of wound infections publication-title: Colloids Surf. B Biointerfaces – volume: 193 issue: 111099 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0455 article-title: Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels publication-title: Colloids Surf. B Biointerfaces – volume: 362 issue: 548–60 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0145 article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing publication-title: Chem. Eng. J. – volume: 121 issue: 109257 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0265 article-title: Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study publication-title: Eur. Polym. J. – volume: 230 issue: 115565 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0555 article-title: Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection publication-title: Carbohydr. Polym. – volume: 400 issue: 125994 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0425 article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration publication-title: Chem. Eng. J. – volume: 27 start-page: 648 issue: 4 year: 2015 ident: 10.1016/j.eurpolymj.2021.110268_b0475 article-title: Gram-positive antimicrobial activity of amino acid-based hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201403339 – volume: 382 issue: 123019 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0290 article-title: Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration publication-title: Chem. Eng. J. – volume: 105 issue: 110110 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0630 article-title: Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: review publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 195 issue: 63–70 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0510 article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers publication-title: Carbohydr. Polym. – volume: 9 start-page: 604 issue: 3 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0610 article-title: Prussian blue nanosphere-embedded in situ hydrogel for photothermal therapy by peritumoral administration publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2018.12.005 – volume: 8 start-page: 41 issue: 1 year: 2012 ident: 10.1016/j.eurpolymj.2021.110268_b0460 article-title: Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.10.004 – volume: 12 start-page: 10156 issue: 9 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0635 article-title: Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00298 – volume: 139 issue: 229–43 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0130 article-title: Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing publication-title: Biomaterials – volume: 138 issue: 933–49 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0075 article-title: 5-hydroxymethylfurfural-embedded poly (vinyl alcohol)/sodium alginate hybrid hydrogels accelerate wound healing publication-title: Int. J. Biol. Macromol. – volume: 394 issue: 124888 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0420 article-title: Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds publication-title: Chem. Eng. J. – volume: 370 issue: 1228–38 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0375 article-title: An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking publication-title: Chem. Eng. J. – volume: 8 start-page: 28511 issue: 42 year: 2016 ident: 10.1016/j.eurpolymj.2021.110268_b0545 article-title: Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10491 – volume: 134 issue: 109853 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0060 article-title: Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications publication-title: Eur. Polym. J. – volume: 130 issue: 109650 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0205 article-title: In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing publication-title: Eur. Polym. J. – volume: 494 issue: 708–20 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0600 article-title: Poly (vinyl alcohol) (PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing publication-title: Appl. Surf. Sci. – volume: 55 issue: 101379 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0170 article-title: Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model publication-title: J. Drug Delivery Sci. Technol. – volume: 90 issue: 1–20 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0385 article-title: Advances in injectable self-healing biomedical hydrogels publication-title: Acta Biomater – volume: 242 issue: 116383 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0300 article-title: Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties publication-title: Carbohydr. Polym. – volume: 2 start-page: 378 issue: 1 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0110 article-title: Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.8b00625 – volume: 559 issue: 23–36 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0190 article-title: Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits publication-title: Int. J. Pharm. – volume: 382 issue: 122990 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0590 article-title: Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections publication-title: Chem. Eng. J. – volume: 225 issue: 115110 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0230 article-title: Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration publication-title: Carbohydr. Polym. – volume: 149 issue: 1262–74 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0215 article-title: Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects publication-title: Int. J. Biol. Macromol. – volume: 129 issue: 927–35 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0305 article-title: Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent publication-title: Int. J. Biol. Macromol. – volume: 55 start-page: 2206 issue: 15 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0490 article-title: A hydrogel directly assembled from a copper metal-organic polyhedron for antimicrobial application publication-title: Chem. Commun. (Camb.) doi: 10.1039/C8CC09000A – volume: 247 issue: 116624 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0565 article-title: Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation publication-title: Carbohydr. Polym. – volume: 183 issue: 108166 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0570 article-title: Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties publication-title: Mater. Des. – volume: 28 start-page: 32 issue: 1 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0165 article-title: Honey-Loaded Egg White/Poly(vinyl alcohol)/Clay Bionanocomposite Hydrogel Wound Dressings. In Vitro and In Vivo Evaluations publication-title: J. Polym. Environ. doi: 10.1007/s10924-019-01586-w – volume: 236 issue: 116096 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0550 article-title: Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing publication-title: Carbohydr. Polym. – volume: 112 issue: 110923 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0470 article-title: Antibacterial polypeptide/heparin composite hydrogels carrying growth factor for wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 229 issue: 115394 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0560 article-title: Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy publication-title: Carbohydr. Polym. – volume: 21 start-page: 1841 issue: 5 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0655 article-title: Injectable Antimicrobial Conductive Hydrogels for Wound Disinfection and Infectious Wound Healing publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01732 – volume: 22 issue: e00109 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0585 article-title: Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment publication-title: Sustain. Mater. Technol. – volume: 14 start-page: 1218 issue: 4 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0105 article-title: Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b01104 – volume: 147 issue: 1239–47 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0295 article-title: Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing publication-title: Int. J. Biol. Macromol. – volume: 132 issue: 109673 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0010 article-title: Antibiofilm poly(carboxybetaine methacrylate) hydrogels for chronic wounds dressings publication-title: Eur. Polym. J. – start-page: 469 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0285 publication-title: Carbon Nanotubes – volume: 34 start-page: 6377 issue: 27 year: 2013 ident: 10.1016/j.eurpolymj.2021.110268_b0275 article-title: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.005 – volume: 119 issue: 402–12 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0085 article-title: Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing publication-title: Int. J. Biol. Macromol. – volume: 3 start-page: 3326 issue: 5 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0015 article-title: Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00252 – volume: 12 start-page: 31255 issue: 28 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0595 article-title: PDA/Cu Bioactive Hydrogel with “Hot Ions Effect” for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08890 – volume: 148 issue: 833–42 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0175 article-title: Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications publication-title: Int. J. Biol. Macromol. – volume: 149 issue: 651–63 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0235 article-title: Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications publication-title: Int. J. Biol. Macromol. – volume: 489 issue: 107949 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0050 article-title: Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications publication-title: Carbohydr. Res. – volume: 379 issue: 122238 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0480 article-title: Engineering a multifunctional N-halamine-based antibacterial hydrogel using a super-convenient strategy for infected skin defect therapy publication-title: Chem. Eng. J. – volume: 155 issue: 625–35 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0355 article-title: Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing publication-title: Int. J. Biol. Macromol. – volume: 98 issue: 1133–44 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0620 article-title: Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 5 start-page: 768 issue: 4 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0115 article-title: Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2020.05.008 – volume: 227 issue: 115360 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0135 article-title: Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage- ZnO nanocomposite by borax crosslinking publication-title: Carbohydr. Polym. – volume: 12 start-page: 25 issue: 1 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0030 article-title: An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration publication-title: NPG Asia Mater. doi: 10.1038/s41427-020-0206-y – volume: 146 issue: 1050–9 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0535 article-title: In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities publication-title: Int. J. Biol. Macromol. – volume: 113 issue: 110978 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0070 article-title: A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 378 issue: 122043 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0660 article-title: Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing publication-title: Chem. Eng. J. – volume: 226 issue: 115302 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0340 article-title: Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration publication-title: Carbohydr. Polym. – volume: 159 issue: 194–203 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0260 article-title: Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings publication-title: Int. J. Biol. Macromol. – volume: 374 issue: 596–604 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0650 article-title: Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection publication-title: Chem. Eng. J. – volume: 565 issue: 174–86 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0195 article-title: Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles' shape and surface modification publication-title: Int. J. Pharm. – volume: 145 issue: 950–64 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0035 article-title: Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for improved antibacterial effects publication-title: Int. J. Biol. Macromol. – volume: 65 issue: 252–67 year: 2015 ident: 10.1016/j.eurpolymj.2021.110268_b0095 article-title: Biomedical applications of hydrogels: A review of patents and commercial products publication-title: Eur. Polym. J. – volume: 16 issue: 8 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0140 article-title: Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Self-Assembly publication-title: Small doi: 10.1002/smll.201907309 – volume: 102 issue: 457–67 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0345 article-title: Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing publication-title: Int. J. Biol. Macromol. – volume: 155 issue: 751–65 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0150 article-title: Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing publication-title: Int. J. Biol. Macromol. – volume: 17 issue: 36–44 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0640 article-title: Functionalization of polyvinyl alcohol composite film wrapped in a-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing publication-title: Appl. Mater. Today – volume: 111 issue: 110743 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0160 article-title: Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 324 issue: 204–17 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0155 article-title: Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing publication-title: J. Control. Release – volume: 324 issue: 354–65 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0450 article-title: Triclosan-based supramolecular hydrogels as nanoantibiotics for enhanced antibacterial activity publication-title: J. Control Release – volume: 556 issue: 514–28 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0625 article-title: Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin publication-title: J. Colloid Interface Sci. – volume: 202 issue: 111676 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0540 article-title: Fabrication of pH-responsive TA-keratin bio-composited hydrogels encapsulated with photoluminescent GO quantum dots for improved bacterial inhibition and healing efficacy in wound care management: In vivo wound evaluations publication-title: J. Photochem. Photobiol., B – volume: 177 issue: 370–6 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0525 article-title: In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application publication-title: Colloids Surf. B Biointerfaces – volume: 549 start-page: 31 issue: 1–2 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0605 article-title: Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.07.055 – volume: 55 issue: 42–9 year: 2015 ident: 10.1016/j.eurpolymj.2021.110268_b0200 article-title: In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 10 start-page: 13304 issue: 16 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0270 article-title: Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18927 – volume: 19 issue: 8 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0025 article-title: Development of Gelatin-Alginate Hydrogels for Burn Wound Treatment publication-title: Macromol. Biosci. doi: 10.1002/mabi.201900123 – volume: 107 issue: 110219 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0505 article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 194 issue: 111191 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0350 article-title: The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing publication-title: Colloids Surf. B Biointerfaces – volume: 134 issue: 390–7 year: 2015 ident: 10.1016/j.eurpolymj.2021.110268_b0365 article-title: Carboxymethyl chitosan/clay nanocomposites and their copper complexes: Fabrication and property publication-title: Carbohydr. Polym. – volume: 157 issue: 522–9 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0045 article-title: Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings publication-title: Int. J. Biol. Macromol. – volume: 227 issue: 115349 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0310 article-title: An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers publication-title: Carbohydr. Polym. – volume: 122 issue: 34–47 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0415 article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing publication-title: Biomaterials – volume: 134 issue: 91–9 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0100 article-title: A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties publication-title: Int. J. Biol. Macromol. – volume: 310 issue: 113263 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0405 article-title: Silver chloride nanoparticles embedded in self-healing hydrogels with biocompatible and antibacterial properties publication-title: J. Mol. Liq. – volume: 185 issue: 110627 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0330 article-title: Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria publication-title: Colloids Surf. B Biointerfaces – volume: 197 issue: 108139 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0380 article-title: Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing publication-title: Compos. Part B: Eng. – volume: 11 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0400 article-title: An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0103-9 – volume: 10 start-page: 33523 issue: 39 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0395 article-title: Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10064 – volume: 180 issue: 237–44 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0645 article-title: Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing publication-title: Colloids Surf. B Biointerfaces – volume: 70 start-page: 287 issue: Pt 1 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0280 article-title: Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2016.08.086 – volume: 104 issue: 105702 year: 2020 ident: 10.1016/j.eurpolymj.2021.110268_b0180 article-title: Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing publication-title: Food Hydrocolloids – volume: 11 start-page: 9010 issue: 9 year: 2017 ident: 10.1016/j.eurpolymj.2021.110268_b0220 article-title: Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures publication-title: ACS Nano doi: 10.1021/acsnano.7b03513 – volume: 372 issue: 216–25 year: 2019 ident: 10.1016/j.eurpolymj.2021.110268_b0435 article-title: Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method publication-title: Chem. Eng. J. – volume: 5 start-page: 1700527 issue: 5 year: 2018 ident: 10.1016/j.eurpolymj.2021.110268_b0125 article-title: Antibacterial Hydrogels publication-title: Adv. Sci. (Weinh) doi: 10.1002/advs.201700527 |
SSID | ssj0007363 |
Score | 2.6484737 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore,... Antimicrobial hydrogels have been proposed to be interesting materials used for wound healing due to their unique properties. Therefore, numerous scientists... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110268 |
SubjectTerms | Antibacterial agents Antibacterial hydrogels Antibiotics Antimicrobial agents Bonding agents Chemical activity Chemical bonds Fabrication Hydrogels Light-assisted antibacterial Medical dressings Nanoparticles Natural polymers Wound healing |
Title | The fabrication of antibacterial hydrogels for wound healing |
URI | https://dx.doi.org/10.1016/j.eurpolymj.2021.110268 https://www.proquest.com/docview/2503463725 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QPOjF-Iwokh68VtjudkuNF0IkqJGTJNw23UcVgpQgxnDxtzvTbjEYEw4e22b6-GY6j53ZGUKusIUZt2nip7plfDABxk-MMr5miiWBaAuaYkb3aSD6Q_4wCkcV0i33wmBZpdP9hU7PtbU703RoNufjMe7xpdivCkIYVLr5ZnLOI5Ty66-fMo-IuWlqFDMAYbRR42XhY7Lp6m0CgWJAsSQ-wJ6rf1uoX7o6N0C9A7LvPEevU7zcIanY2RHZ7ZYD247JLbDcSxO1cMtwXpZ6gNtYFQ2ZgfZ1ZRbZCzzLA1fV-8SJSh56imC-Tsiwd_fc7ftuOIKvISRb-rGNw7ZKW1rHwnAdMcUDhWu8iYmpSSw1bQpXRRxy8GFwHG_cFom1oTJgtkzETkl1ls3sGfEipTTmP2OtgW82UEILo5imOoAAltIaESUgUrvO4TjAYirLErGJXCMpEUlZIFkjrTXhvGiesZ3kpkRcbsiBBBW_nbhe8ki6X_Fdgo_HuGBREJ7_594XZA-P8vKzsE6qy8WHvQR_ZKkaucA1yE7n_rE_-Aazl-C4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IHvBi_Iwo6g5eJ3TdOma8GCJBBU6QcGvWjykEGUGM4eLf7ntbh8GYcPC65nXbr-37aF_fj5BrLGHmmyR2E9XQLpgA7cZaalcxyWKPNzlN8ES31-edof80CkYl0iruwmBapdX9uU7PtLV9Urdo1ufjMd7xpVivCkIYVLp4mXzHh-WLNAY3Xz95HiGzdGoUjwCCcCPJy8DfpNPV2wQiRY9iTryHRVf_NlG_lHVmgdr7ZM-6js59_nUHpGRmh6TSKhjbjsgdjLmTxHJh9-GcNHEAuLHMKzKD7OtKL9IXeJcDvqrziZRKDrqKYL-OybD9MGh1XMuO4CqIyZZuZKKgKZOGUhHXvgqZ9D2Jm7yxjqiODdVNCq08CnxwYpCPN2ry2JhAarBbOmQnpDxLZ-aUOKGUCg9AI6Vg4IwnueJaMkWVBxEspVXCC0CEsqXDkcFiKoocsYlYIykQSZEjWSWNteA8r56xXeS2QFxsTAQBOn67cK0YI2HX4rsAJ4_5nIVecPafvq9IpTPodUX3sf98TnaxJctFC2qkvFx8mAtwTpbyMpt83-5i4kY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fabrication+of+antibacterial+hydrogels+for+wound+healing&rft.jtitle=European+polymer+journal&rft.au=Zhang%2C+Xiumei&rft.au=Qin%2C+Miao&rft.au=Xu%2C+Mengjie&rft.au=Miao%2C+Fenyan&rft.date=2021-03-05&rft.pub=Elsevier+Ltd&rft.issn=0014-3057&rft.eissn=1873-1945&rft.volume=146&rft_id=info:doi/10.1016%2Fj.eurpolymj.2021.110268&rft.externalDocID=S0014305721000021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon |