Cascaded one-shot deformable convolutional neural networks: Developing a deep learning model for respiratory motion estimation in ultrasound sequences

•COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network subsampling.•COSD-CNN is robust to target appearance changes across ultrasound images.•COSD-CNN achieves state-of-the-art performance on the CLUST benchmark d...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 65; p. 101793
Main Authors Liu, Fei, Liu, Dan, Tian, Jie, Xie, Xiaoyan, Yang, Xin, Wang, Kun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2020.101793

Cover

Loading…
Abstract •COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network subsampling.•COSD-CNN is robust to target appearance changes across ultrasound images.•COSD-CNN achieves state-of-the-art performance on the CLUST benchmark dataset. Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice. [Display omitted]
AbstractList Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice.Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice.
Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice.
•COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network subsampling.•COSD-CNN is robust to target appearance changes across ultrasound images.•COSD-CNN achieves state-of-the-art performance on the CLUST benchmark dataset. Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice. [Display omitted]
ArticleNumber 101793
Author Yang, Xin
Xie, Xiaoyan
Liu, Fei
Tian, Jie
Wang, Kun
Liu, Dan
Author_xml – sequence: 1
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
  organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  organization: Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
– sequence: 3
  givenname: Jie
  surname: Tian
  fullname: Tian, Jie
  organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Xiaoyan
  surname: Xie
  fullname: Xie, Xiaoyan
  organization: Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
– sequence: 5
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 6
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  email: kun.wang@ia.ac.cn
  organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNqFkc1u1DAUhS1UJNrCE7CxxIZNBv9NEiOxQMNPkSqxgbXl2DfgwbGD7UzVF-F5cTKIRRew8vXVd47lc67QRYgBEHpOyY4S2r467iawTu8YYdumk_wRuqS8pU0vGL_4O9P9E3SV85EQ0glBLtGvg85GW7C4Ojb5eyzYwhjTpAcP2MRwin4pLgbtcYAlbUe5i-lHfo3fwQl8nF34hnWVwYw96BTW-xQteFyNcII8u6RLTPd1u1phyMVNehtdwIsvSee4BIsz_FwgGMhP0eNR-wzP_pzX6OuH918ON83t54-fDm9vGyOILI0cLG_7UQy816M0QAG6ETpqCRukHAkZrO6ssGAkdJZXZhBUMEqH3owt6_k1enn2nVOsT-eiJpcNeK8DxCUrJli3Z1RSUdEXD9BjXFLNZaVa1nac8H2l-JkyKeacYFRzqn9N94oStXaljmrrSq1dqXNXVSUfqIwrW0A1Guf_o31z1kLN6eQgqWzcGqJ1CUxRNrp_6n8D3Aa3Ow
CitedBy_id crossref_primary_10_1002_mp_17183
crossref_primary_10_1016_j_compbiomed_2025_109671
crossref_primary_10_1002_mp_15321
crossref_primary_10_1109_TIP_2023_3333195
crossref_primary_10_1088_1361_6560_ac4fa1
crossref_primary_10_3390_s23062876
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_1038_s41598_025_92380_3
crossref_primary_10_1002_mp_16339
crossref_primary_10_1111_exsy_13074
crossref_primary_10_1016_j_ijrobp_2022_03_032
crossref_primary_10_1088_1361_6501_acb5b3
crossref_primary_10_1109_TIM_2023_3295023
crossref_primary_10_1007_s10489_022_03617_x
crossref_primary_10_1109_ACCESS_2025_3543214
crossref_primary_10_1038_s41598_023_30930_3
crossref_primary_10_1109_TBME_2023_3262422
crossref_primary_10_1109_TUFFC_2021_3095299
crossref_primary_10_1007_s00066_024_02277_9
crossref_primary_10_1515_bmt_2022_0489
crossref_primary_10_1016_j_media_2021_102260
crossref_primary_10_1002_mp_15806
crossref_primary_10_1088_1361_6560_ac7e17
crossref_primary_10_1016_j_media_2024_103138
crossref_primary_10_1109_TSM_2020_3020985
crossref_primary_10_1007_s11042_022_12100_1
crossref_primary_10_1088_1361_6560_ac9032
Cites_doi 10.1016/j.media.2017.06.014
10.1007/s11548-017-1559-8
10.1109/TPAMI.2017.2699184
10.1109/TMI.2019.2913311
10.1016/j.neuroimage.2006.01.015
10.1088/0031-9155/60/14/5571
10.1007/s11548-018-1780-0
10.1002/mp.12574
10.1016/j.media.2016.09.004
10.1109/TMI.2013.2262055
10.1007/s10147-017-1123-0
10.1109/TBME.2018.2837387
10.1016/j.ijrobp.2015.09.024
10.1002/mp.13152
10.1002/mp.13510
10.1016/j.media.2019.07.005
10.1088/1361-6560/ab33db
10.1016/S0360-3016(03)00076-2
10.1016/j.media.2019.101534
10.1007/s00261-018-1517-0
10.1016/j.media.2019.101548
10.1016/j.ins.2018.08.053
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Oct 2020
Copyright © 2020. Published by Elsevier B.V.
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Oct 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2020.101793
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 10_1016_j_media_2020_101793
S1361841520301572
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c409t-9bd368f4b38af9ce1ee7fe71d02b99f00bda7d4dec9e7d3af9b414211b8cf6283
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Sep 05 13:13:18 EDT 2025
Sat Jul 26 03:24:52 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Tue Jul 01 02:49:29 EDT 2025
Fri Feb 23 02:50:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ultrasound sequence
Cascaded Siamese network
Respiratory motion estimation
One-shot deformable convolution
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9bd368f4b38af9ce1ee7fe71d02b99f00bda7d4dec9e7d3af9b414211b8cf6283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1361841520301572
PQID 2462673035
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2427521914
proquest_journals_2462673035
crossref_primary_10_1016_j_media_2020_101793
crossref_citationtrail_10_1016_j_media_2020_101793
elsevier_sciencedirect_doi_10_1016_j_media_2020_101793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Medical image analysis
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Shirato, Harada, Harabayashi, Hida, Endo, Kitamura, Onimaru, Yamazaki, Kurauchi, Shimizu (bib0043) 2003; 56
Vinyals, Blundell, Lilliicrap, Kavukcuoglu, Wierstra (bib0045) 2016
Brattain, Telfer, Dhyani, Grajo, Samir (bib0005) 2018; 43
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0050) 2006; 31
Makhinya, Goksel (bib0031) 2015
Ozkan, Tanner, Kastelic, Mattausch, Makhinya, Goksel (bib0036) 2017; 12
Cifor, Risser, Chung, Anderson, Schnabel (bib0009) 2013; 32
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0007) 2018; 40
O'Shea, Bamber, Harris (bib0035) 2014
Bertinetto, Valmadre, Henriques, Vedaldi, Torr (bib0004) 2016
Rangamani, Xiong, Nair, Tran, Chin (bib0038) 2016
Banerjee, Klink, Vast, Niessen, Moelker, Walsum (bib0002) 2015
Ioffe, Szegedy (bib0020) 2015
Mirzaei, Asif, Fortin, Rivaza (bib0033) 2018
Nouri, Rothberg (bib0034) 2015
Shepard, Wang, Tkf, Bednarz (bib0041) 2017; 44
Cao, Bednarz, Smith, Foo, Patwardhan (bib0006) 2015
Zhang, Zhou, Lin, Jian (bib0051) 2017
Huang, Su, Chen, Cao, Song, Kazanzides, Iordachita, Lediju Bell, Wong, Li, Ding (bib0018) 2019; 64
Ozkan, Tanner, Kastelic, Mattausch, Makhinya, Goksel (bib0037) 2017; 12
Meng, Sinclair, Zimmer, Hou, Rajchl, Toussaint, Oktay, Schlemper, Gomez, Housden, Matthew, Rueckert, Schnabel, Kainz (bib0032) 2019; 38
Kondo (bib0024) 2015
Li, Wu, Wang, Zhang, Yan (bib0027) 2018
Konig, Kipshagen, Ruhaak (bib0025) 2014
Lin, Li, Ni, Liao, Wen, Du, Chen, Wang, Lei (bib0028) 2019; 58
Adam, Sam, Soumith, Gregory, Edward, Zachary, Zeming, Alban, Luca, Adam (bib0001) 2017
Bertinetto, Henriques, Valmadre, Torr, Vedaldi (bib0003) 2016
De Luca, Banerjee, Hallack, Kondo, Makhinya, Nouri, Royer, Cifor, Dardenne, Goksel, Gooding, Klink, Krupa, Le Bras, Marchal, Moelker, Niessen, Papiez, Rothberg, Schnabel, van Walsum, Harris, Lediju Bell, Tanner (bib0012) 2018; 45
Gao, Wu, Liu, Luo, Zhang, Gong, Li (bib0013) 2019; 58
Jeungyoon, Euisuk, Tai-Kyong (bib55) 2019
Luca, De, Benz, Kondo, Konig, Lübke, Rothlübbers, Somphone, Allaire, Bell, Chung, Cifor, Grozea, Gunther, Jenne, Kipshagen, Kowarschik, Navab, Ruhaak, Schwaab, Tanner (bib0030) 2015; 60
Shi, Tomasi (bib0042) 1994
Takao, Miyamoto, Matsuura, Onimaru, Katoh, Inoue, Sutherland, Suzuki, Shirato, Shimizu (bib0044) 2016; 94
Williamson, Cheung, Roberts, Chauhan, Surgery (bib0047) 2018; 13
Karimi, Zeng, Mathur, Avinash, Mahdavi, Spadinger, Abolmaesumi, Salcudean (bib0022) 2019; 57
Wilms, Ha, Handels, Heinrich (bib0049) 2016
Ha, Wilms, Handels, Mattias (bib0015) 2019; 66
Wang, Zhou, Liu, Liu, Gu, Zang, Dong, Gevaert, Tian (bib0046) 2017; 40
Iwata, Ishikura, Murai, Iwabuchi, Inoue, Tatewaki, Ohta, Yokota, Shibamoto (bib0021) 2017; 22
Zhang, Peng, Wang (bib0052) 2019
Hallack, Papiez, Cifor, Gooding, Schnabel (bib0016) 2015
Kondo (bib0023) 2014
Cristani, Dall'Alba, Carletti, Fiorini (bib0010) 2016
Chen, Papandreou, Schroff, Adam (bib0008) 2017; 05587
Gomariz, Li, Ozkan, Tanner, Goksel (bib0014) 2019
Shen, Shi, Sun, Huang, Wu (bib0040) 2018
Howard, A.G., Zhu, M., Bo, C., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobile nets: efficient convolutional neural networks for mobile vision applications.
Williamson, Cheung, Roberts, Chauhan, Surgery (bib0048) 2018; 13
Royer, Krupa, Dardenne, Le Bras, Marchand, Marchal (bib0039) 2017; 35
Dai, Qi, Xiong, Yi, Zhang, Han, Wei (bib0011) 2017
Huang, Yu, Lu, Liu, Xing, Yin, Kovalchuk, Xing, Li (bib0019) 2019; 46
Krizhevsky, Sutskever, Hinton (bib0026) 2012
Zhao, Xiao, Fu, Wu, Xu, Dai (bib0053) 2019; 470
Zhao, Shen, Li, Jin, Wang (bib0054) 2017
Zhang (10.1016/j.media.2020.101793_bib0051) 2017
Shen (10.1016/j.media.2020.101793_bib0040) 2018
Nouri (10.1016/j.media.2020.101793_bib0034) 2015
Ozkan (10.1016/j.media.2020.101793_bib0036) 2017; 12
Cao (10.1016/j.media.2020.101793_bib0006) 2015
Wilms (10.1016/j.media.2020.101793_bib0049) 2016
Brattain (10.1016/j.media.2020.101793_bib0005) 2018; 43
Chen (10.1016/j.media.2020.101793_bib0007) 2018; 40
Wang (10.1016/j.media.2020.101793_bib0046) 2017; 40
Shepard (10.1016/j.media.2020.101793_bib0041) 2017; 44
Iwata (10.1016/j.media.2020.101793_bib0021) 2017; 22
Bertinetto (10.1016/j.media.2020.101793_bib0004) 2016
Huang (10.1016/j.media.2020.101793_bib0018) 2019; 64
Meng (10.1016/j.media.2020.101793_bib0032) 2019; 38
Li (10.1016/j.media.2020.101793_bib0027) 2018
Gao (10.1016/j.media.2020.101793_bib0013) 2019; 58
Shirato (10.1016/j.media.2020.101793_bib0043) 2003; 56
Karimi (10.1016/j.media.2020.101793_bib0022) 2019; 57
Adam (10.1016/j.media.2020.101793_bib0001) 2017
O'Shea (10.1016/j.media.2020.101793_bib0035) 2014
Takao (10.1016/j.media.2020.101793_bib0044) 2016; 94
Ozkan (10.1016/j.media.2020.101793_bib0037) 2017; 12
Ha (10.1016/j.media.2020.101793_bib0015) 2019; 66
Bertinetto (10.1016/j.media.2020.101793_bib0003) 2016
Krizhevsky (10.1016/j.media.2020.101793_bib0026) 2012
Mirzaei (10.1016/j.media.2020.101793_bib0033) 2018
Luca (10.1016/j.media.2020.101793_bib0030) 2015; 60
Jeungyoon (10.1016/j.media.2020.101793_bib55) 2019
Yushkevich (10.1016/j.media.2020.101793_bib0050) 2006; 31
Williamson (10.1016/j.media.2020.101793_bib0047) 2018; 13
Zhao (10.1016/j.media.2020.101793_bib0053) 2019; 470
Rangamani (10.1016/j.media.2020.101793_bib0038) 2016
Gomariz (10.1016/j.media.2020.101793_bib0014) 2019
Hallack (10.1016/j.media.2020.101793_bib0016) 2015
Shi (10.1016/j.media.2020.101793_bib0042) 1994
10.1016/j.media.2020.101793_bib0017
Kondo (10.1016/j.media.2020.101793_bib0023) 2014
Konig (10.1016/j.media.2020.101793_bib0025) 2014
Cristani (10.1016/j.media.2020.101793_bib0010) 2016
De Luca (10.1016/j.media.2020.101793_bib0012) 2018; 45
Zhao (10.1016/j.media.2020.101793_bib0054) 2017
Kondo (10.1016/j.media.2020.101793_bib0024) 2015
Vinyals (10.1016/j.media.2020.101793_bib0045) 2016
Lin (10.1016/j.media.2020.101793_bib0028) 2019; 58
Dai (10.1016/j.media.2020.101793_bib0011) 2017
Zhang (10.1016/j.media.2020.101793_bib0052) 2019
Ioffe (10.1016/j.media.2020.101793_bib0020) 2015
Cifor (10.1016/j.media.2020.101793_bib0009) 2013; 32
Williamson (10.1016/j.media.2020.101793_bib0048) 2018; 13
Makhinya (10.1016/j.media.2020.101793_bib0031) 2015
Banerjee (10.1016/j.media.2020.101793_bib0002) 2015
Chen (10.1016/j.media.2020.101793_bib0008) 2017; 05587
Huang (10.1016/j.media.2020.101793_bib0019) 2019; 46
Royer (10.1016/j.media.2020.101793_bib0039) 2017; 35
References_xml – start-page: 440
  year: 2018
  end-page: 451
  ident: bib0040
  article-title: An online learning approach for robust motion tracking in liver ultrasound sequence
  publication-title: Chinese Conference on Pattern Recognition and Computer Vision
– start-page: 764
  year: 2017
  end-page: 773
  ident: bib0011
  article-title: Deformable convolutional networks
  publication-title: IEEE International Conference on Computer Vision
– volume: 57
  start-page: 186
  year: 2019
  end-page: 196
  ident: bib0022
  article-title: Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images
  publication-title: Med. Image Anal.
– start-page: 5
  year: 2015
  end-page: 12
  ident: bib0034
  article-title: Liver ultrasound tracking using a learned distance metric
  publication-title: Proc. MICCAI workshop: Chanllenge on Liver Ultrasound Tracking
– reference: Howard, A.G., Zhu, M., Bo, C., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobile nets: efficient convolutional neural networks for mobile vision applications.
– volume: 32
  start-page: 1647
  year: 2013
  end-page: 1656
  ident: bib0009
  article-title: Hybrid feature-based diffeomorphic registration for tumor tracking in 2-D liver ultrasound images
  publication-title: IEEE Trans. Med. Image.
– start-page: 850
  year: 2016
  end-page: 865
  ident: bib0004
  article-title: Fully-convolutional siamese networks for object tracking
  publication-title: European Conference on Computer Vision
– start-page: 522
  year: 2016
  end-page: 531
  ident: bib0010
  article-title: A Robust particle filtering approach with spatially-dependent template selection for medical ultrasound tracking applications
  publication-title: International Conference on Computer Vision Theory and Applications
– start-page: 523
  year: 2016
  end-page: 531
  ident: bib0003
  article-title: Learning feed-forward one-shot learners
  publication-title: Neural Information Processing Systems (NeurIPS)
– year: 2018
  ident: bib0027
  article-title: SiamRPN++: evolution of siamese visual tracking with very deep networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 58
  year: 2019
  ident: bib0013
  article-title: Learning the implicit strain reconstruction in ultrasound elastography using privileged information
  publication-title: Med. Image Anal.
– start-page: 6848
  year: 2017
  end-page: 6856
  ident: bib0051
  article-title: Shuffle net: an extremely efficient convolutional neural network for mobile devices
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bib0001
  article-title: Automatic differentiation in PyTorch
  publication-title: Conf. Neural Inf. Process. Syst.
– volume: 45
  start-page: 4986
  year: 2018
  end-page: 5003
  ident: bib0012
  article-title: Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins
  publication-title: Med. Phys.
– start-page: 29
  year: 2014
  end-page: 36
  ident: bib0025
  article-title: A non-linear image registration sheme for real-time liver ultrasound tracking using normalized gradient fields
  publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking
– start-page: 57
  year: 2017
  end-page: 61
  ident: bib0054
  article-title: A new motion estimation method for long-term ultrasound free respiration sequences based on multi-scale blobness enhancement filter and level set method
  publication-title: IEEE International Conference on Signal Processing
– start-page: 20
  year: 2015
  end-page: 27
  ident: bib0031
  article-title: Motion tracking in 2D ultrasound using vessel models and robust optic-flow
  publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking
– year: 2016
  ident: bib0038
  article-title: Landmark detection and tracking in ultrasound using a CNN-RNN framework
  publication-title: Conference on Neural Information Processing Systems 3D Deep Learning Workshop
– volume: 40
  start-page: 172
  year: 2017
  end-page: 183
  ident: bib0046
  article-title: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation
  publication-title: Med. Image Anal.
– volume: 470
  start-page: 78
  year: 2019
  end-page: 93
  ident: bib0053
  article-title: Augmenting cascaded correlation filters with spatial–temporal saliency for visual tracking
  publication-title: Inf. Sci.
– start-page: 1757
  year: 2019
  end-page: 1760
  ident: bib0014
  article-title: Siamese networks with location prior for landmark tracking in liver ultrasound sequences
  publication-title: IEEE International Symposium on Biomedical Imaging
– volume: 43
  start-page: 786
  year: 2018
  end-page: 799
  ident: bib0005
  article-title: Machine learning for medical ultrasound: status, methods, and future opportunities
  publication-title: Abdom. Radiol.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0007
  article-title: Deep lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 44
  start-page: 5889
  year: 2017
  end-page: 5900
  ident: bib0041
  article-title: A block matching based approach with multiple simultaneous templates for the real-time 2D ultrasound tracking of liver vessels
  publication-title: Med. Phys.
– volume: 58
  year: 2019
  ident: bib0028
  article-title: Multi-task learning for quality assessment of fetal head ultrasound images
  publication-title: Med. Image Anal.
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0020
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: 60
  start-page: 5571
  year: 2015
  end-page: 5599
  ident: bib0030
  article-title: The 2014 liver ultrasound tracking benchmark
  publication-title: Phys. Med. Biol.
– volume: 66
  start-page: 302
  year: 2019
  end-page: 310
  ident: bib0015
  article-title: Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 13
  year: 2015
  end-page: 19
  ident: bib0024
  article-title: Liver ultrasound tracking using kernelized correlation filter with adaptive window size selection
  publication-title: Proc. MICCAI Workshop: Chanllenge on Liver Ultrasound Tracking
– volume: 38
  start-page: 2755
  year: 2019
  end-page: 2767
  ident: bib0032
  article-title: Weakly supervised estimation of shadow confidence maps in fetal ultrasound imaging
  publication-title: IEEE Trans. Med. Image.
– volume: 12
  start-page: 941
  year: 2017
  end-page: 950
  ident: bib0036
  article-title: Robust motion tracking in liver from 2D ultrasound images using supporters
  publication-title: Int. J. Comput. Assist. Radiol.
– year: 2018
  ident: bib0033
  article-title: Spatio-temporal normalized cross-correlation for estimation of the displacement field in ultrasound elastography
  publication-title: Ultrasonics.
– start-page: 5
  year: 2014
  end-page: 12
  ident: bib0035
  article-title: Liver feature motion estimation in long high frame rate 2D ultrasound sequences
  publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking
– volume: 56
  start-page: 240
  year: 2003
  end-page: 247
  ident: bib0043
  article-title: Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 13
  start-page: 1605
  year: 2018
  end-page: 1615
  ident: bib0048
  article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 35
  start-page: 582
  year: 2017
  end-page: 598
  ident: bib0039
  article-title: Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation
  publication-title: Med. Image Anal.
– start-page: 28
  year: 2015
  end-page: 35
  ident: bib0016
  article-title: Robust liver ultrasound tracking using dense distinctive image features
  publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking
– volume: 12
  start-page: 941
  year: 2017
  end-page: 950
  ident: bib0037
  article-title: Robust motion tracking in liver from 2D ultrasound images using supporters
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– year: 2019
  ident: bib55
  article-title: Combination of RCNN and KCF for landmark tracking in 2D ultrasound sequence of liver
  publication-title: IEEE Eng Med Biol Soc
– volume: 46
  start-page: 2275
  year: 2019
  end-page: 2285
  ident: bib0019
  article-title: Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking
  publication-title: Med. Phys.
– volume: 64
  year: 2019
  ident: bib0018
  article-title: 2D ultrasound imaging based intra-fraction respiratory motion tracking for abdominal radiation therapy using machine learning
  publication-title: Phys. Med. Biol.
– start-page: 43
  year: 2015
  end-page: 50
  ident: bib0002
  article-title: A combined tracking and registration approach for tracking anatomicl landmarks in 4D ultrasound of the liver
  publication-title: Proc. MICCAI workshop: Chanllenge on Liver Ultrasound Trackin
– year: 2015
  ident: bib0006
  article-title: Respiration induced fiducial motion tracking in ultrasound using an extended SFA approach
  publication-title: Soc. Photo-Opt. Instrum. Eng.
– volume: 13
  start-page: 1605
  year: 2018
  end-page: 1615
  ident: bib0047
  article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach
  publication-title: Int. J. Comput. Assist. Radiol.
– start-page: 593
  year: 1994
  end-page: 600
  ident: bib0042
  article-title: Good features to track
  publication-title: IEEE Conference on Computer Vision & Pattern Recognition
– start-page: 3630
  year: 2016
  end-page: 3638
  ident: bib0045
  article-title: Matching networks for one shot learning
  publication-title: Neural Information Processing Systems (NeurIPS)
– start-page: 4591
  year: 2019
  end-page: 4600
  ident: bib0052
  article-title: Deeper and wider siamese networks for real-time visual tracking
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 94
  start-page: 172
  year: 2016
  end-page: 180
  ident: bib0044
  article-title: Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– start-page: 13
  year: 2014
  end-page: 20
  ident: bib0023
  article-title: Liver ultrasound tracking using long-term and short-term template matching
  publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking
– volume: 05587
  start-page: 02017
  year: 2017
  ident: bib0008
  article-title: Rethinking atrous convolution for semantic image segmentation, computer vision and pattern recognition, pp
  publication-title: arXiv Preprint arXiv:1706
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib0050
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: NeuroImage
– start-page: 89
  year: 2016
  end-page: 97
  ident: bib0049
  article-title: Model-based regularisation for respiratory motion estimation with sparse features in image-guided interventions
  publication-title: Medical Image Computing and Computer Assisted Intervention
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0026
  article-title: Image net classification with deep convolutional neural networks
  publication-title: International Conference on Neural Information Processing Systems
– volume: 22
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib0021
  article-title: A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using cyber knife based on the Monte Carlo algorithm for lung tumors
  publication-title: Int. J. Clin. Oncol.
– volume: 40
  start-page: 172
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0046
  article-title: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.06.014
– start-page: 764
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0011
  article-title: Deformable convolutional networks
– year: 2018
  ident: 10.1016/j.media.2020.101793_bib0033
  article-title: Spatio-temporal normalized cross-correlation for estimation of the displacement field in ultrasound elastography
  publication-title: Ultrasonics.
– volume: 12
  start-page: 941
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0036
  article-title: Robust motion tracking in liver from 2D ultrasound images using supporters
  publication-title: Int. J. Comput. Assist. Radiol.
  doi: 10.1007/s11548-017-1559-8
– start-page: 6848
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0051
  article-title: Shuffle net: an extremely efficient convolutional neural network for mobile devices
– start-page: 43
  year: 2015
  ident: 10.1016/j.media.2020.101793_bib0002
  article-title: A combined tracking and registration approach for tracking anatomicl landmarks in 4D ultrasound of the liver
– volume: 40
  start-page: 834
  year: 2018
  ident: 10.1016/j.media.2020.101793_bib0007
  article-title: Deep lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 38
  start-page: 2755
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0032
  article-title: Weakly supervised estimation of shadow confidence maps in fetal ultrasound imaging
  publication-title: IEEE Trans. Med. Image.
  doi: 10.1109/TMI.2019.2913311
– volume: 31
  start-page: 1116
  year: 2006
  ident: 10.1016/j.media.2020.101793_bib0050
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: 10.1016/j.media.2020.101793_bib0017
– volume: 12
  start-page: 941
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0037
  article-title: Robust motion tracking in liver from 2D ultrasound images using supporters
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-017-1559-8
– volume: 60
  start-page: 5571
  year: 2015
  ident: 10.1016/j.media.2020.101793_bib0030
  article-title: The 2014 liver ultrasound tracking benchmark
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/14/5571
– year: 2015
  ident: 10.1016/j.media.2020.101793_bib0006
  article-title: Respiration induced fiducial motion tracking in ultrasound using an extended SFA approach
  publication-title: Soc. Photo-Opt. Instrum. Eng.
– start-page: 1097
  year: 2012
  ident: 10.1016/j.media.2020.101793_bib0026
  article-title: Image net classification with deep convolutional neural networks
– year: 2016
  ident: 10.1016/j.media.2020.101793_bib0038
  article-title: Landmark detection and tracking in ultrasound using a CNN-RNN framework
– volume: 13
  start-page: 1605
  year: 2018
  ident: 10.1016/j.media.2020.101793_bib0048
  article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1780-0
– start-page: 522
  year: 2016
  ident: 10.1016/j.media.2020.101793_bib0010
  article-title: A Robust particle filtering approach with spatially-dependent template selection for medical ultrasound tracking applications
– volume: 05587
  start-page: 02017
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0008
  article-title: Rethinking atrous convolution for semantic image segmentation, computer vision and pattern recognition, pp
  publication-title: arXiv Preprint arXiv:1706
– volume: 44
  start-page: 5889
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0041
  article-title: A block matching based approach with multiple simultaneous templates for the real-time 2D ultrasound tracking of liver vessels
  publication-title: Med. Phys.
  doi: 10.1002/mp.12574
– start-page: 593
  year: 1994
  ident: 10.1016/j.media.2020.101793_bib0042
  article-title: Good features to track
– start-page: 89
  year: 2016
  ident: 10.1016/j.media.2020.101793_bib0049
  article-title: Model-based regularisation for respiratory motion estimation with sparse features in image-guided interventions
– start-page: 13
  year: 2014
  ident: 10.1016/j.media.2020.101793_bib0023
  article-title: Liver ultrasound tracking using long-term and short-term template matching
– volume: 35
  start-page: 582
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0039
  article-title: Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.09.004
– volume: 32
  start-page: 1647
  year: 2013
  ident: 10.1016/j.media.2020.101793_bib0009
  article-title: Hybrid feature-based diffeomorphic registration for tumor tracking in 2-D liver ultrasound images
  publication-title: IEEE Trans. Med. Image.
  doi: 10.1109/TMI.2013.2262055
– volume: 22
  start-page: 1
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0021
  article-title: A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using cyber knife based on the Monte Carlo algorithm for lung tumors
  publication-title: Int. J. Clin. Oncol.
  doi: 10.1007/s10147-017-1123-0
– start-page: 5
  year: 2015
  ident: 10.1016/j.media.2020.101793_bib0034
  article-title: Liver ultrasound tracking using a learned distance metric
  publication-title: Proc. MICCAI workshop: Chanllenge on Liver Ultrasound Tracking
– volume: 66
  start-page: 302
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0015
  article-title: Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2837387
– volume: 94
  start-page: 172
  year: 2016
  ident: 10.1016/j.media.2020.101793_bib0044
  article-title: Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2015.09.024
– year: 2017
  ident: 10.1016/j.media.2020.101793_bib0001
  article-title: Automatic differentiation in PyTorch
  publication-title: Conf. Neural Inf. Process. Syst.
– start-page: 28
  year: 2015
  ident: 10.1016/j.media.2020.101793_bib0016
  article-title: Robust liver ultrasound tracking using dense distinctive image features
– volume: 45
  start-page: 4986
  year: 2018
  ident: 10.1016/j.media.2020.101793_bib0012
  article-title: Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins
  publication-title: Med. Phys.
  doi: 10.1002/mp.13152
– volume: 13
  start-page: 1605
  year: 2018
  ident: 10.1016/j.media.2020.101793_bib0047
  article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach
  publication-title: Int. J. Comput. Assist. Radiol.
  doi: 10.1007/s11548-018-1780-0
– start-page: 29
  year: 2014
  ident: 10.1016/j.media.2020.101793_bib0025
  article-title: A non-linear image registration sheme for real-time liver ultrasound tracking using normalized gradient fields
– start-page: 440
  year: 2018
  ident: 10.1016/j.media.2020.101793_bib0040
  article-title: An online learning approach for robust motion tracking in liver ultrasound sequence
– volume: 46
  start-page: 2275
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0019
  article-title: Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking
  publication-title: Med. Phys.
  doi: 10.1002/mp.13510
– volume: 57
  start-page: 186
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0022
  article-title: Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.07.005
– start-page: 850
  year: 2016
  ident: 10.1016/j.media.2020.101793_bib0004
  article-title: Fully-convolutional siamese networks for object tracking
– volume: 64
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0018
  article-title: 2D ultrasound imaging based intra-fraction respiratory motion tracking for abdominal radiation therapy using machine learning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab33db
– start-page: 4591
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0052
  article-title: Deeper and wider siamese networks for real-time visual tracking
– start-page: 1757
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0014
  article-title: Siamese networks with location prior for landmark tracking in liver ultrasound sequences
– start-page: 3630
  year: 2016
  ident: 10.1016/j.media.2020.101793_bib0045
  article-title: Matching networks for one shot learning
– start-page: 13
  year: 2015
  ident: 10.1016/j.media.2020.101793_bib0024
  article-title: Liver ultrasound tracking using kernelized correlation filter with adaptive window size selection
– start-page: 5
  year: 2014
  ident: 10.1016/j.media.2020.101793_bib0035
  article-title: Liver feature motion estimation in long high frame rate 2D ultrasound sequences
– start-page: 20
  year: 2015
  ident: 10.1016/j.media.2020.101793_bib0031
  article-title: Motion tracking in 2D ultrasound using vessel models and robust optic-flow
– volume: 56
  start-page: 240
  year: 2003
  ident: 10.1016/j.media.2020.101793_bib0043
  article-title: Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(03)00076-2
– start-page: 523
  year: 2016
  ident: 10.1016/j.media.2020.101793_bib0003
  article-title: Learning feed-forward one-shot learners
– start-page: 57
  year: 2017
  ident: 10.1016/j.media.2020.101793_bib0054
  article-title: A new motion estimation method for long-term ultrasound free respiration sequences based on multi-scale blobness enhancement filter and level set method
– volume: 58
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0013
  article-title: Learning the implicit strain reconstruction in ultrasound elastography using privileged information
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101534
– year: 2018
  ident: 10.1016/j.media.2020.101793_bib0027
  article-title: SiamRPN++: evolution of siamese visual tracking with very deep networks
– volume: 43
  start-page: 786
  year: 2018
  ident: 10.1016/j.media.2020.101793_bib0005
  article-title: Machine learning for medical ultrasound: status, methods, and future opportunities
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-018-1517-0
– volume: 58
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0028
  article-title: Multi-task learning for quality assessment of fetal head ultrasound images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101548
– volume: 470
  start-page: 78
  year: 2019
  ident: 10.1016/j.media.2020.101793_bib0053
  article-title: Augmenting cascaded correlation filters with spatial–temporal saliency for visual tracking
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.08.053
– year: 2019
  ident: 10.1016/j.media.2020.101793_bib55
  article-title: Combination of RCNN and KCF for landmark tracking in 2D ultrasound sequence of liver
  publication-title: IEEE Eng Med Biol Soc
– start-page: 448
  year: 2015
  ident: 10.1016/j.media.2020.101793_bib0020
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
SSID ssj0007440
Score 2.4930851
Snippet •COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network...
Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101793
SubjectTerms Artificial neural networks
Cascaded Siamese network
Convolution
Datasets
Deep learning
Formability
Image quality
Medical imaging
Motion simulation
Neural networks
One-shot deformable convolution
Radiation
Radiation therapy
Respiratory motion estimation
Robustness
Signal to noise ratio
Tracking
Ultrasonic imaging
Ultrasound
Ultrasound sequence
Title Cascaded one-shot deformable convolutional neural networks: Developing a deep learning model for respiratory motion estimation in ultrasound sequences
URI https://dx.doi.org/10.1016/j.media.2020.101793
https://www.proquest.com/docview/2462673035
https://www.proquest.com/docview/2427521914
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiE4ICgglpbKSBwJm8TOJua2LJTl0V6gqDfLz7JolV1tstf-DH4vM7azBSR64BQlsfPw2POQv_mGkBeTsnFIDJZ5W2FKjm2yBgKhTNRgXIyvvFGY4Hx6Npmf848X1cUemQ25MAirTLo_6vSgrdOVcRrN8XqxGH8pGBYrAfuDXn1Vox7mvEb-_FdX1zAPJMCLuVdFhq0H5qGA8QrZGRAklpFvSLB_Wae_9HQwPif3yb3kNdJp_LAHZM-1B-Tub1yCB-T2adolf0h-zlSHsHdLV63Luu-rnloXnFO9dBRx5mm-wSORzzIcAhq8e03f7rKoqIJubk1TYYlLGqrmUHgQ3Vxv0NNYB4giW0dMg6SLlm6X_UZ1WLKJ7sDaj8j5ybuvs3mW6i9kBqK-PhPasknjuWaN8sK4wrnau7qweamF8Hmuraott84IV1sGbTQvOESUujEeJgF7TPZb-NEnhJYQ11kB0YgWhnuTK3S7PBMsd0zpqhmRchh3aRI5OdbIWMoBhfZDBmFJFJaMwhqRl7tO68jNcXPzySBQ-ccUk2A9bu54NIhfphXeyZJDKAjqkVUj8nx3G9Ymbrio1q222KaswT0SBX_6v-8-JHfwLMIHj8h-v9m6Z-AG9fo4zPNjcmv64dP8DI7v33z-Nv0FBOUL1A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIvE4ICigLi1gJI6ETWJnE3NDC9UC3V5opd4sP2GrVXa1yV75GfzeztjOFpDogVOkxM7DM5mH_M03hLyZlI1DYrDM2wpLcmyTNZAIZaIG52J85Y3CAuf52WR2wb9cVpd7ZDrUwiCsMtn-aNODtU5nxmk1x-vFYvytYNisBPwPRvVVDXb4Dq9Yjar97ucNzgMZ8GLxVZHh8IF6KIC8QnkGZIllJBwS7F_u6S9DHbzPySPyMIWN9EN8s8dkz7UH5MFvZIIH5O48bZM_Ib-mqkPcu6Wr1mXdj1VPrQvRqV46ikDzpHBwSyS0DIcAB-_e04-7MiqqYJpb09RZ4jsNbXMo3IhubnboaWwERJGuI9ZB0kVLt8t-ozrs2UR3aO2n5OLk0_l0lqUGDJmBtK_PhLZs0niuWaO8MK5wrvauLmxeaiF8nmurasutM8LVlsEYzQsOKaVujActYM_IfgsfekhoCYmdFZCOaGG4N7nCuMszwXLHlK6aESmHdZcmsZNjk4ylHGBoVzIIS6KwZBTWiLzdTVpHco7bh08Ggco_dEyC-7h94vEgfpl-8U6WHHJBsI-sGpHXu8vwc-KOi2rdaotjyhriI1Hw5__77Ffk3ux8fipPP599PSL38UrEEh6T_X6zdS8gJur1y6Dz17znC9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+one-shot+deformable+convolutional+neural+networks%3A+Developing+a+deep+learning+model+for+respiratory+motion+estimation+in+ultrasound+sequences&rft.jtitle=Medical+image+analysis&rft.au=Liu%2C+Fei&rft.au=Liu%2C+Dan&rft.au=Tian%2C+Jie&rft.au=Xie%2C+Xiaoyan&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=65&rft_id=info:doi/10.1016%2Fj.media.2020.101793&rft.externalDocID=S1361841520301572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon