Cascaded one-shot deformable convolutional neural networks: Developing a deep learning model for respiratory motion estimation in ultrasound sequences
•COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network subsampling.•COSD-CNN is robust to target appearance changes across ultrasound images.•COSD-CNN achieves state-of-the-art performance on the CLUST benchmark d...
Saved in:
Published in | Medical image analysis Vol. 65; p. 101793 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2020.101793 |
Cover
Loading…
Abstract | •COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network subsampling.•COSD-CNN is robust to target appearance changes across ultrasound images.•COSD-CNN achieves state-of-the-art performance on the CLUST benchmark dataset.
Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice.
[Display omitted] |
---|---|
AbstractList | Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice.Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice. Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice. •COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network subsampling.•COSD-CNN is robust to target appearance changes across ultrasound images.•COSD-CNN achieves state-of-the-art performance on the CLUST benchmark dataset. Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise ratio and the artifacts in ultrasound images make it difficult to track targets accurately and robustly. In this study, we propose a novel deep learning model, called a Cascaded One-shot Deformable Convolutional Neural Network (COSD-CNN), to track landmarks in real time in long ultrasound sequences. Specifically, we design a cascaded Siamese network structure to improve the tracking performance of CNN-based methods. We propose a one-shot deformable convolution module to enhance the robustness of the COSD-CNN to appearance variation in a meta-learning manner. Moreover, we design a simple and efficient unsupervised strategy to facilitate the network's training with a limited number of medical images, in which many corner points are selected from raw ultrasound images to learn network features with high generalizability. The proposed COSD-CNN has been extensively evaluated on the public Challenge on Liver UltraSound Tracking (CLUST) 2D dataset and on our own ultrasound image dataset from the First Affiliated Hospital of Sun Yat-sen University (FSYSU). Experiment results show that the proposed model can track a target through an ultrasound sequence with high accuracy and robustness. Our method achieves new state-of-the-art performance on the CLUST 2D benchmark set, indicating its strong potential for application in clinical practice. [Display omitted] |
ArticleNumber | 101793 |
Author | Yang, Xin Xie, Xiaoyan Liu, Fei Tian, Jie Wang, Kun Liu, Dan |
Author_xml | – sequence: 1 givenname: Fei surname: Liu fullname: Liu, Fei organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Dan surname: Liu fullname: Liu, Dan organization: Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China – sequence: 3 givenname: Jie surname: Tian fullname: Tian, Jie organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Xiaoyan surname: Xie fullname: Xie, Xiaoyan organization: Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China – sequence: 5 givenname: Xin surname: Yang fullname: Yang, Xin organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China – sequence: 6 givenname: Kun surname: Wang fullname: Wang, Kun email: kun.wang@ia.ac.cn organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNqFkc1u1DAUhS1UJNrCE7CxxIZNBv9NEiOxQMNPkSqxgbXl2DfgwbGD7UzVF-F5cTKIRRew8vXVd47lc67QRYgBEHpOyY4S2r467iawTu8YYdumk_wRuqS8pU0vGL_4O9P9E3SV85EQ0glBLtGvg85GW7C4Ojb5eyzYwhjTpAcP2MRwin4pLgbtcYAlbUe5i-lHfo3fwQl8nF34hnWVwYw96BTW-xQteFyNcII8u6RLTPd1u1phyMVNehtdwIsvSee4BIsz_FwgGMhP0eNR-wzP_pzX6OuH918ON83t54-fDm9vGyOILI0cLG_7UQy816M0QAG6ETpqCRukHAkZrO6ssGAkdJZXZhBUMEqH3owt6_k1enn2nVOsT-eiJpcNeK8DxCUrJli3Z1RSUdEXD9BjXFLNZaVa1nac8H2l-JkyKeacYFRzqn9N94oStXaljmrrSq1dqXNXVSUfqIwrW0A1Guf_o31z1kLN6eQgqWzcGqJ1CUxRNrp_6n8D3Aa3Ow |
CitedBy_id | crossref_primary_10_1002_mp_17183 crossref_primary_10_1016_j_compbiomed_2025_109671 crossref_primary_10_1002_mp_15321 crossref_primary_10_1109_TIP_2023_3333195 crossref_primary_10_1088_1361_6560_ac4fa1 crossref_primary_10_3390_s23062876 crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_1038_s41598_025_92380_3 crossref_primary_10_1002_mp_16339 crossref_primary_10_1111_exsy_13074 crossref_primary_10_1016_j_ijrobp_2022_03_032 crossref_primary_10_1088_1361_6501_acb5b3 crossref_primary_10_1109_TIM_2023_3295023 crossref_primary_10_1007_s10489_022_03617_x crossref_primary_10_1109_ACCESS_2025_3543214 crossref_primary_10_1038_s41598_023_30930_3 crossref_primary_10_1109_TBME_2023_3262422 crossref_primary_10_1109_TUFFC_2021_3095299 crossref_primary_10_1007_s00066_024_02277_9 crossref_primary_10_1515_bmt_2022_0489 crossref_primary_10_1016_j_media_2021_102260 crossref_primary_10_1002_mp_15806 crossref_primary_10_1088_1361_6560_ac7e17 crossref_primary_10_1016_j_media_2024_103138 crossref_primary_10_1109_TSM_2020_3020985 crossref_primary_10_1007_s11042_022_12100_1 crossref_primary_10_1088_1361_6560_ac9032 |
Cites_doi | 10.1016/j.media.2017.06.014 10.1007/s11548-017-1559-8 10.1109/TPAMI.2017.2699184 10.1109/TMI.2019.2913311 10.1016/j.neuroimage.2006.01.015 10.1088/0031-9155/60/14/5571 10.1007/s11548-018-1780-0 10.1002/mp.12574 10.1016/j.media.2016.09.004 10.1109/TMI.2013.2262055 10.1007/s10147-017-1123-0 10.1109/TBME.2018.2837387 10.1016/j.ijrobp.2015.09.024 10.1002/mp.13152 10.1002/mp.13510 10.1016/j.media.2019.07.005 10.1088/1361-6560/ab33db 10.1016/S0360-3016(03)00076-2 10.1016/j.media.2019.101534 10.1007/s00261-018-1517-0 10.1016/j.media.2019.101548 10.1016/j.ins.2018.08.053 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Oct 2020 Copyright © 2020. Published by Elsevier B.V. |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Oct 2020 – notice: Copyright © 2020. Published by Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2020.101793 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 10_1016_j_media_2020_101793 S1361841520301572 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c409t-9bd368f4b38af9ce1ee7fe71d02b99f00bda7d4dec9e7d3af9b414211b8cf6283 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Sep 05 13:13:18 EDT 2025 Sat Jul 26 03:24:52 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Tue Jul 01 02:49:29 EDT 2025 Fri Feb 23 02:50:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ultrasound sequence Cascaded Siamese network Respiratory motion estimation One-shot deformable convolution |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-9bd368f4b38af9ce1ee7fe71d02b99f00bda7d4dec9e7d3af9b414211b8cf6283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1361841520301572 |
PQID | 2462673035 |
PQPubID | 2045428 |
ParticipantIDs | proquest_miscellaneous_2427521914 proquest_journals_2462673035 crossref_primary_10_1016_j_media_2020_101793 crossref_citationtrail_10_1016_j_media_2020_101793 elsevier_sciencedirect_doi_10_1016_j_media_2020_101793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Shirato, Harada, Harabayashi, Hida, Endo, Kitamura, Onimaru, Yamazaki, Kurauchi, Shimizu (bib0043) 2003; 56 Vinyals, Blundell, Lilliicrap, Kavukcuoglu, Wierstra (bib0045) 2016 Brattain, Telfer, Dhyani, Grajo, Samir (bib0005) 2018; 43 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0050) 2006; 31 Makhinya, Goksel (bib0031) 2015 Ozkan, Tanner, Kastelic, Mattausch, Makhinya, Goksel (bib0036) 2017; 12 Cifor, Risser, Chung, Anderson, Schnabel (bib0009) 2013; 32 Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0007) 2018; 40 O'Shea, Bamber, Harris (bib0035) 2014 Bertinetto, Valmadre, Henriques, Vedaldi, Torr (bib0004) 2016 Rangamani, Xiong, Nair, Tran, Chin (bib0038) 2016 Banerjee, Klink, Vast, Niessen, Moelker, Walsum (bib0002) 2015 Ioffe, Szegedy (bib0020) 2015 Mirzaei, Asif, Fortin, Rivaza (bib0033) 2018 Nouri, Rothberg (bib0034) 2015 Shepard, Wang, Tkf, Bednarz (bib0041) 2017; 44 Cao, Bednarz, Smith, Foo, Patwardhan (bib0006) 2015 Zhang, Zhou, Lin, Jian (bib0051) 2017 Huang, Su, Chen, Cao, Song, Kazanzides, Iordachita, Lediju Bell, Wong, Li, Ding (bib0018) 2019; 64 Ozkan, Tanner, Kastelic, Mattausch, Makhinya, Goksel (bib0037) 2017; 12 Meng, Sinclair, Zimmer, Hou, Rajchl, Toussaint, Oktay, Schlemper, Gomez, Housden, Matthew, Rueckert, Schnabel, Kainz (bib0032) 2019; 38 Kondo (bib0024) 2015 Li, Wu, Wang, Zhang, Yan (bib0027) 2018 Konig, Kipshagen, Ruhaak (bib0025) 2014 Lin, Li, Ni, Liao, Wen, Du, Chen, Wang, Lei (bib0028) 2019; 58 Adam, Sam, Soumith, Gregory, Edward, Zachary, Zeming, Alban, Luca, Adam (bib0001) 2017 Bertinetto, Henriques, Valmadre, Torr, Vedaldi (bib0003) 2016 De Luca, Banerjee, Hallack, Kondo, Makhinya, Nouri, Royer, Cifor, Dardenne, Goksel, Gooding, Klink, Krupa, Le Bras, Marchal, Moelker, Niessen, Papiez, Rothberg, Schnabel, van Walsum, Harris, Lediju Bell, Tanner (bib0012) 2018; 45 Gao, Wu, Liu, Luo, Zhang, Gong, Li (bib0013) 2019; 58 Jeungyoon, Euisuk, Tai-Kyong (bib55) 2019 Luca, De, Benz, Kondo, Konig, Lübke, Rothlübbers, Somphone, Allaire, Bell, Chung, Cifor, Grozea, Gunther, Jenne, Kipshagen, Kowarschik, Navab, Ruhaak, Schwaab, Tanner (bib0030) 2015; 60 Shi, Tomasi (bib0042) 1994 Takao, Miyamoto, Matsuura, Onimaru, Katoh, Inoue, Sutherland, Suzuki, Shirato, Shimizu (bib0044) 2016; 94 Williamson, Cheung, Roberts, Chauhan, Surgery (bib0047) 2018; 13 Karimi, Zeng, Mathur, Avinash, Mahdavi, Spadinger, Abolmaesumi, Salcudean (bib0022) 2019; 57 Wilms, Ha, Handels, Heinrich (bib0049) 2016 Ha, Wilms, Handels, Mattias (bib0015) 2019; 66 Wang, Zhou, Liu, Liu, Gu, Zang, Dong, Gevaert, Tian (bib0046) 2017; 40 Iwata, Ishikura, Murai, Iwabuchi, Inoue, Tatewaki, Ohta, Yokota, Shibamoto (bib0021) 2017; 22 Zhang, Peng, Wang (bib0052) 2019 Hallack, Papiez, Cifor, Gooding, Schnabel (bib0016) 2015 Kondo (bib0023) 2014 Cristani, Dall'Alba, Carletti, Fiorini (bib0010) 2016 Chen, Papandreou, Schroff, Adam (bib0008) 2017; 05587 Gomariz, Li, Ozkan, Tanner, Goksel (bib0014) 2019 Shen, Shi, Sun, Huang, Wu (bib0040) 2018 Howard, A.G., Zhu, M., Bo, C., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobile nets: efficient convolutional neural networks for mobile vision applications. Williamson, Cheung, Roberts, Chauhan, Surgery (bib0048) 2018; 13 Royer, Krupa, Dardenne, Le Bras, Marchand, Marchal (bib0039) 2017; 35 Dai, Qi, Xiong, Yi, Zhang, Han, Wei (bib0011) 2017 Huang, Yu, Lu, Liu, Xing, Yin, Kovalchuk, Xing, Li (bib0019) 2019; 46 Krizhevsky, Sutskever, Hinton (bib0026) 2012 Zhao, Xiao, Fu, Wu, Xu, Dai (bib0053) 2019; 470 Zhao, Shen, Li, Jin, Wang (bib0054) 2017 Zhang (10.1016/j.media.2020.101793_bib0051) 2017 Shen (10.1016/j.media.2020.101793_bib0040) 2018 Nouri (10.1016/j.media.2020.101793_bib0034) 2015 Ozkan (10.1016/j.media.2020.101793_bib0036) 2017; 12 Cao (10.1016/j.media.2020.101793_bib0006) 2015 Wilms (10.1016/j.media.2020.101793_bib0049) 2016 Brattain (10.1016/j.media.2020.101793_bib0005) 2018; 43 Chen (10.1016/j.media.2020.101793_bib0007) 2018; 40 Wang (10.1016/j.media.2020.101793_bib0046) 2017; 40 Shepard (10.1016/j.media.2020.101793_bib0041) 2017; 44 Iwata (10.1016/j.media.2020.101793_bib0021) 2017; 22 Bertinetto (10.1016/j.media.2020.101793_bib0004) 2016 Huang (10.1016/j.media.2020.101793_bib0018) 2019; 64 Meng (10.1016/j.media.2020.101793_bib0032) 2019; 38 Li (10.1016/j.media.2020.101793_bib0027) 2018 Gao (10.1016/j.media.2020.101793_bib0013) 2019; 58 Shirato (10.1016/j.media.2020.101793_bib0043) 2003; 56 Karimi (10.1016/j.media.2020.101793_bib0022) 2019; 57 Adam (10.1016/j.media.2020.101793_bib0001) 2017 O'Shea (10.1016/j.media.2020.101793_bib0035) 2014 Takao (10.1016/j.media.2020.101793_bib0044) 2016; 94 Ozkan (10.1016/j.media.2020.101793_bib0037) 2017; 12 Ha (10.1016/j.media.2020.101793_bib0015) 2019; 66 Bertinetto (10.1016/j.media.2020.101793_bib0003) 2016 Krizhevsky (10.1016/j.media.2020.101793_bib0026) 2012 Mirzaei (10.1016/j.media.2020.101793_bib0033) 2018 Luca (10.1016/j.media.2020.101793_bib0030) 2015; 60 Jeungyoon (10.1016/j.media.2020.101793_bib55) 2019 Yushkevich (10.1016/j.media.2020.101793_bib0050) 2006; 31 Williamson (10.1016/j.media.2020.101793_bib0047) 2018; 13 Zhao (10.1016/j.media.2020.101793_bib0053) 2019; 470 Rangamani (10.1016/j.media.2020.101793_bib0038) 2016 Gomariz (10.1016/j.media.2020.101793_bib0014) 2019 Hallack (10.1016/j.media.2020.101793_bib0016) 2015 Shi (10.1016/j.media.2020.101793_bib0042) 1994 10.1016/j.media.2020.101793_bib0017 Kondo (10.1016/j.media.2020.101793_bib0023) 2014 Konig (10.1016/j.media.2020.101793_bib0025) 2014 Cristani (10.1016/j.media.2020.101793_bib0010) 2016 De Luca (10.1016/j.media.2020.101793_bib0012) 2018; 45 Zhao (10.1016/j.media.2020.101793_bib0054) 2017 Kondo (10.1016/j.media.2020.101793_bib0024) 2015 Vinyals (10.1016/j.media.2020.101793_bib0045) 2016 Lin (10.1016/j.media.2020.101793_bib0028) 2019; 58 Dai (10.1016/j.media.2020.101793_bib0011) 2017 Zhang (10.1016/j.media.2020.101793_bib0052) 2019 Ioffe (10.1016/j.media.2020.101793_bib0020) 2015 Cifor (10.1016/j.media.2020.101793_bib0009) 2013; 32 Williamson (10.1016/j.media.2020.101793_bib0048) 2018; 13 Makhinya (10.1016/j.media.2020.101793_bib0031) 2015 Banerjee (10.1016/j.media.2020.101793_bib0002) 2015 Chen (10.1016/j.media.2020.101793_bib0008) 2017; 05587 Huang (10.1016/j.media.2020.101793_bib0019) 2019; 46 Royer (10.1016/j.media.2020.101793_bib0039) 2017; 35 |
References_xml | – start-page: 440 year: 2018 end-page: 451 ident: bib0040 article-title: An online learning approach for robust motion tracking in liver ultrasound sequence publication-title: Chinese Conference on Pattern Recognition and Computer Vision – start-page: 764 year: 2017 end-page: 773 ident: bib0011 article-title: Deformable convolutional networks publication-title: IEEE International Conference on Computer Vision – volume: 57 start-page: 186 year: 2019 end-page: 196 ident: bib0022 article-title: Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images publication-title: Med. Image Anal. – start-page: 5 year: 2015 end-page: 12 ident: bib0034 article-title: Liver ultrasound tracking using a learned distance metric publication-title: Proc. MICCAI workshop: Chanllenge on Liver Ultrasound Tracking – reference: Howard, A.G., Zhu, M., Bo, C., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H., 2017. Mobile nets: efficient convolutional neural networks for mobile vision applications. – volume: 32 start-page: 1647 year: 2013 end-page: 1656 ident: bib0009 article-title: Hybrid feature-based diffeomorphic registration for tumor tracking in 2-D liver ultrasound images publication-title: IEEE Trans. Med. Image. – start-page: 850 year: 2016 end-page: 865 ident: bib0004 article-title: Fully-convolutional siamese networks for object tracking publication-title: European Conference on Computer Vision – start-page: 522 year: 2016 end-page: 531 ident: bib0010 article-title: A Robust particle filtering approach with spatially-dependent template selection for medical ultrasound tracking applications publication-title: International Conference on Computer Vision Theory and Applications – start-page: 523 year: 2016 end-page: 531 ident: bib0003 article-title: Learning feed-forward one-shot learners publication-title: Neural Information Processing Systems (NeurIPS) – year: 2018 ident: bib0027 article-title: SiamRPN++: evolution of siamese visual tracking with very deep networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 58 year: 2019 ident: bib0013 article-title: Learning the implicit strain reconstruction in ultrasound elastography using privileged information publication-title: Med. Image Anal. – start-page: 6848 year: 2017 end-page: 6856 ident: bib0051 article-title: Shuffle net: an extremely efficient convolutional neural network for mobile devices publication-title: IEEE Conference on Computer Vision and Pattern Recognition – year: 2017 ident: bib0001 article-title: Automatic differentiation in PyTorch publication-title: Conf. Neural Inf. Process. Syst. – volume: 45 start-page: 4986 year: 2018 end-page: 5003 ident: bib0012 article-title: Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins publication-title: Med. Phys. – start-page: 29 year: 2014 end-page: 36 ident: bib0025 article-title: A non-linear image registration sheme for real-time liver ultrasound tracking using normalized gradient fields publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking – start-page: 57 year: 2017 end-page: 61 ident: bib0054 article-title: A new motion estimation method for long-term ultrasound free respiration sequences based on multi-scale blobness enhancement filter and level set method publication-title: IEEE International Conference on Signal Processing – start-page: 20 year: 2015 end-page: 27 ident: bib0031 article-title: Motion tracking in 2D ultrasound using vessel models and robust optic-flow publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking – year: 2016 ident: bib0038 article-title: Landmark detection and tracking in ultrasound using a CNN-RNN framework publication-title: Conference on Neural Information Processing Systems 3D Deep Learning Workshop – volume: 40 start-page: 172 year: 2017 end-page: 183 ident: bib0046 article-title: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation publication-title: Med. Image Anal. – volume: 470 start-page: 78 year: 2019 end-page: 93 ident: bib0053 article-title: Augmenting cascaded correlation filters with spatial–temporal saliency for visual tracking publication-title: Inf. Sci. – start-page: 1757 year: 2019 end-page: 1760 ident: bib0014 article-title: Siamese networks with location prior for landmark tracking in liver ultrasound sequences publication-title: IEEE International Symposium on Biomedical Imaging – volume: 43 start-page: 786 year: 2018 end-page: 799 ident: bib0005 article-title: Machine learning for medical ultrasound: status, methods, and future opportunities publication-title: Abdom. Radiol. – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: bib0007 article-title: Deep lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 44 start-page: 5889 year: 2017 end-page: 5900 ident: bib0041 article-title: A block matching based approach with multiple simultaneous templates for the real-time 2D ultrasound tracking of liver vessels publication-title: Med. Phys. – volume: 58 year: 2019 ident: bib0028 article-title: Multi-task learning for quality assessment of fetal head ultrasound images publication-title: Med. Image Anal. – start-page: 448 year: 2015 end-page: 456 ident: bib0020 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: International Conference on Machine Learning – volume: 60 start-page: 5571 year: 2015 end-page: 5599 ident: bib0030 article-title: The 2014 liver ultrasound tracking benchmark publication-title: Phys. Med. Biol. – volume: 66 start-page: 302 year: 2019 end-page: 310 ident: bib0015 article-title: Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions publication-title: IEEE Trans. Biomed. Eng. – start-page: 13 year: 2015 end-page: 19 ident: bib0024 article-title: Liver ultrasound tracking using kernelized correlation filter with adaptive window size selection publication-title: Proc. MICCAI Workshop: Chanllenge on Liver Ultrasound Tracking – volume: 38 start-page: 2755 year: 2019 end-page: 2767 ident: bib0032 article-title: Weakly supervised estimation of shadow confidence maps in fetal ultrasound imaging publication-title: IEEE Trans. Med. Image. – volume: 12 start-page: 941 year: 2017 end-page: 950 ident: bib0036 article-title: Robust motion tracking in liver from 2D ultrasound images using supporters publication-title: Int. J. Comput. Assist. Radiol. – year: 2018 ident: bib0033 article-title: Spatio-temporal normalized cross-correlation for estimation of the displacement field in ultrasound elastography publication-title: Ultrasonics. – start-page: 5 year: 2014 end-page: 12 ident: bib0035 article-title: Liver feature motion estimation in long high frame rate 2D ultrasound sequences publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking – volume: 56 start-page: 240 year: 2003 end-page: 247 ident: bib0043 article-title: Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 13 start-page: 1605 year: 2018 end-page: 1615 ident: bib0048 article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 35 start-page: 582 year: 2017 end-page: 598 ident: bib0039 article-title: Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation publication-title: Med. Image Anal. – start-page: 28 year: 2015 end-page: 35 ident: bib0016 article-title: Robust liver ultrasound tracking using dense distinctive image features publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking – volume: 12 start-page: 941 year: 2017 end-page: 950 ident: bib0037 article-title: Robust motion tracking in liver from 2D ultrasound images using supporters publication-title: Int. J. Comput. Assist. Radiol. Surg. – year: 2019 ident: bib55 article-title: Combination of RCNN and KCF for landmark tracking in 2D ultrasound sequence of liver publication-title: IEEE Eng Med Biol Soc – volume: 46 start-page: 2275 year: 2019 end-page: 2285 ident: bib0019 article-title: Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking publication-title: Med. Phys. – volume: 64 year: 2019 ident: bib0018 article-title: 2D ultrasound imaging based intra-fraction respiratory motion tracking for abdominal radiation therapy using machine learning publication-title: Phys. Med. Biol. – start-page: 43 year: 2015 end-page: 50 ident: bib0002 article-title: A combined tracking and registration approach for tracking anatomicl landmarks in 4D ultrasound of the liver publication-title: Proc. MICCAI workshop: Chanllenge on Liver Ultrasound Trackin – year: 2015 ident: bib0006 article-title: Respiration induced fiducial motion tracking in ultrasound using an extended SFA approach publication-title: Soc. Photo-Opt. Instrum. Eng. – volume: 13 start-page: 1605 year: 2018 end-page: 1615 ident: bib0047 article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach publication-title: Int. J. Comput. Assist. Radiol. – start-page: 593 year: 1994 end-page: 600 ident: bib0042 article-title: Good features to track publication-title: IEEE Conference on Computer Vision & Pattern Recognition – start-page: 3630 year: 2016 end-page: 3638 ident: bib0045 article-title: Matching networks for one shot learning publication-title: Neural Information Processing Systems (NeurIPS) – start-page: 4591 year: 2019 end-page: 4600 ident: bib0052 article-title: Deeper and wider siamese networks for real-time visual tracking publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 94 start-page: 172 year: 2016 end-page: 180 ident: bib0044 article-title: Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system publication-title: Int. J. Radiat. Oncol. Biol. Phys. – start-page: 13 year: 2014 end-page: 20 ident: bib0023 article-title: Liver ultrasound tracking using long-term and short-term template matching publication-title: Proc. MICCAI workshop: Challenge on Liver Ultrasound Tracking – volume: 05587 start-page: 02017 year: 2017 ident: bib0008 article-title: Rethinking atrous convolution for semantic image segmentation, computer vision and pattern recognition, pp publication-title: arXiv Preprint arXiv:1706 – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bib0050 article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: NeuroImage – start-page: 89 year: 2016 end-page: 97 ident: bib0049 article-title: Model-based regularisation for respiratory motion estimation with sparse features in image-guided interventions publication-title: Medical Image Computing and Computer Assisted Intervention – start-page: 1097 year: 2012 end-page: 1105 ident: bib0026 article-title: Image net classification with deep convolutional neural networks publication-title: International Conference on Neural Information Processing Systems – volume: 22 start-page: 1 year: 2017 end-page: 9 ident: bib0021 article-title: A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using cyber knife based on the Monte Carlo algorithm for lung tumors publication-title: Int. J. Clin. Oncol. – volume: 40 start-page: 172 year: 2017 ident: 10.1016/j.media.2020.101793_bib0046 article-title: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.06.014 – start-page: 764 year: 2017 ident: 10.1016/j.media.2020.101793_bib0011 article-title: Deformable convolutional networks – year: 2018 ident: 10.1016/j.media.2020.101793_bib0033 article-title: Spatio-temporal normalized cross-correlation for estimation of the displacement field in ultrasound elastography publication-title: Ultrasonics. – volume: 12 start-page: 941 year: 2017 ident: 10.1016/j.media.2020.101793_bib0036 article-title: Robust motion tracking in liver from 2D ultrasound images using supporters publication-title: Int. J. Comput. Assist. Radiol. doi: 10.1007/s11548-017-1559-8 – start-page: 6848 year: 2017 ident: 10.1016/j.media.2020.101793_bib0051 article-title: Shuffle net: an extremely efficient convolutional neural network for mobile devices – start-page: 43 year: 2015 ident: 10.1016/j.media.2020.101793_bib0002 article-title: A combined tracking and registration approach for tracking anatomicl landmarks in 4D ultrasound of the liver – volume: 40 start-page: 834 year: 2018 ident: 10.1016/j.media.2020.101793_bib0007 article-title: Deep lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: 38 start-page: 2755 year: 2019 ident: 10.1016/j.media.2020.101793_bib0032 article-title: Weakly supervised estimation of shadow confidence maps in fetal ultrasound imaging publication-title: IEEE Trans. Med. Image. doi: 10.1109/TMI.2019.2913311 – volume: 31 start-page: 1116 year: 2006 ident: 10.1016/j.media.2020.101793_bib0050 article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – ident: 10.1016/j.media.2020.101793_bib0017 – volume: 12 start-page: 941 year: 2017 ident: 10.1016/j.media.2020.101793_bib0037 article-title: Robust motion tracking in liver from 2D ultrasound images using supporters publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-017-1559-8 – volume: 60 start-page: 5571 year: 2015 ident: 10.1016/j.media.2020.101793_bib0030 article-title: The 2014 liver ultrasound tracking benchmark publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/14/5571 – year: 2015 ident: 10.1016/j.media.2020.101793_bib0006 article-title: Respiration induced fiducial motion tracking in ultrasound using an extended SFA approach publication-title: Soc. Photo-Opt. Instrum. Eng. – start-page: 1097 year: 2012 ident: 10.1016/j.media.2020.101793_bib0026 article-title: Image net classification with deep convolutional neural networks – year: 2016 ident: 10.1016/j.media.2020.101793_bib0038 article-title: Landmark detection and tracking in ultrasound using a CNN-RNN framework – volume: 13 start-page: 1605 year: 2018 ident: 10.1016/j.media.2020.101793_bib0048 article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-018-1780-0 – start-page: 522 year: 2016 ident: 10.1016/j.media.2020.101793_bib0010 article-title: A Robust particle filtering approach with spatially-dependent template selection for medical ultrasound tracking applications – volume: 05587 start-page: 02017 year: 2017 ident: 10.1016/j.media.2020.101793_bib0008 article-title: Rethinking atrous convolution for semantic image segmentation, computer vision and pattern recognition, pp publication-title: arXiv Preprint arXiv:1706 – volume: 44 start-page: 5889 year: 2017 ident: 10.1016/j.media.2020.101793_bib0041 article-title: A block matching based approach with multiple simultaneous templates for the real-time 2D ultrasound tracking of liver vessels publication-title: Med. Phys. doi: 10.1002/mp.12574 – start-page: 593 year: 1994 ident: 10.1016/j.media.2020.101793_bib0042 article-title: Good features to track – start-page: 89 year: 2016 ident: 10.1016/j.media.2020.101793_bib0049 article-title: Model-based regularisation for respiratory motion estimation with sparse features in image-guided interventions – start-page: 13 year: 2014 ident: 10.1016/j.media.2020.101793_bib0023 article-title: Liver ultrasound tracking using long-term and short-term template matching – volume: 35 start-page: 582 year: 2017 ident: 10.1016/j.media.2020.101793_bib0039 article-title: Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.09.004 – volume: 32 start-page: 1647 year: 2013 ident: 10.1016/j.media.2020.101793_bib0009 article-title: Hybrid feature-based diffeomorphic registration for tumor tracking in 2-D liver ultrasound images publication-title: IEEE Trans. Med. Image. doi: 10.1109/TMI.2013.2262055 – volume: 22 start-page: 1 year: 2017 ident: 10.1016/j.media.2020.101793_bib0021 article-title: A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using cyber knife based on the Monte Carlo algorithm for lung tumors publication-title: Int. J. Clin. Oncol. doi: 10.1007/s10147-017-1123-0 – start-page: 5 year: 2015 ident: 10.1016/j.media.2020.101793_bib0034 article-title: Liver ultrasound tracking using a learned distance metric publication-title: Proc. MICCAI workshop: Chanllenge on Liver Ultrasound Tracking – volume: 66 start-page: 302 year: 2019 ident: 10.1016/j.media.2020.101793_bib0015 article-title: Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2837387 – volume: 94 start-page: 172 year: 2016 ident: 10.1016/j.media.2020.101793_bib0044 article-title: Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2015.09.024 – year: 2017 ident: 10.1016/j.media.2020.101793_bib0001 article-title: Automatic differentiation in PyTorch publication-title: Conf. Neural Inf. Process. Syst. – start-page: 28 year: 2015 ident: 10.1016/j.media.2020.101793_bib0016 article-title: Robust liver ultrasound tracking using dense distinctive image features – volume: 45 start-page: 4986 year: 2018 ident: 10.1016/j.media.2020.101793_bib0012 article-title: Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins publication-title: Med. Phys. doi: 10.1002/mp.13152 – volume: 13 start-page: 1605 year: 2018 ident: 10.1016/j.media.2020.101793_bib0047 article-title: Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach publication-title: Int. J. Comput. Assist. Radiol. doi: 10.1007/s11548-018-1780-0 – start-page: 29 year: 2014 ident: 10.1016/j.media.2020.101793_bib0025 article-title: A non-linear image registration sheme for real-time liver ultrasound tracking using normalized gradient fields – start-page: 440 year: 2018 ident: 10.1016/j.media.2020.101793_bib0040 article-title: An online learning approach for robust motion tracking in liver ultrasound sequence – volume: 46 start-page: 2275 year: 2019 ident: 10.1016/j.media.2020.101793_bib0019 article-title: Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking publication-title: Med. Phys. doi: 10.1002/mp.13510 – volume: 57 start-page: 186 year: 2019 ident: 10.1016/j.media.2020.101793_bib0022 article-title: Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.07.005 – start-page: 850 year: 2016 ident: 10.1016/j.media.2020.101793_bib0004 article-title: Fully-convolutional siamese networks for object tracking – volume: 64 year: 2019 ident: 10.1016/j.media.2020.101793_bib0018 article-title: 2D ultrasound imaging based intra-fraction respiratory motion tracking for abdominal radiation therapy using machine learning publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab33db – start-page: 4591 year: 2019 ident: 10.1016/j.media.2020.101793_bib0052 article-title: Deeper and wider siamese networks for real-time visual tracking – start-page: 1757 year: 2019 ident: 10.1016/j.media.2020.101793_bib0014 article-title: Siamese networks with location prior for landmark tracking in liver ultrasound sequences – start-page: 3630 year: 2016 ident: 10.1016/j.media.2020.101793_bib0045 article-title: Matching networks for one shot learning – start-page: 13 year: 2015 ident: 10.1016/j.media.2020.101793_bib0024 article-title: Liver ultrasound tracking using kernelized correlation filter with adaptive window size selection – start-page: 5 year: 2014 ident: 10.1016/j.media.2020.101793_bib0035 article-title: Liver feature motion estimation in long high frame rate 2D ultrasound sequences – start-page: 20 year: 2015 ident: 10.1016/j.media.2020.101793_bib0031 article-title: Motion tracking in 2D ultrasound using vessel models and robust optic-flow – volume: 56 start-page: 240 year: 2003 ident: 10.1016/j.media.2020.101793_bib0043 article-title: Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/S0360-3016(03)00076-2 – start-page: 523 year: 2016 ident: 10.1016/j.media.2020.101793_bib0003 article-title: Learning feed-forward one-shot learners – start-page: 57 year: 2017 ident: 10.1016/j.media.2020.101793_bib0054 article-title: A new motion estimation method for long-term ultrasound free respiration sequences based on multi-scale blobness enhancement filter and level set method – volume: 58 year: 2019 ident: 10.1016/j.media.2020.101793_bib0013 article-title: Learning the implicit strain reconstruction in ultrasound elastography using privileged information publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101534 – year: 2018 ident: 10.1016/j.media.2020.101793_bib0027 article-title: SiamRPN++: evolution of siamese visual tracking with very deep networks – volume: 43 start-page: 786 year: 2018 ident: 10.1016/j.media.2020.101793_bib0005 article-title: Machine learning for medical ultrasound: status, methods, and future opportunities publication-title: Abdom. Radiol. doi: 10.1007/s00261-018-1517-0 – volume: 58 year: 2019 ident: 10.1016/j.media.2020.101793_bib0028 article-title: Multi-task learning for quality assessment of fetal head ultrasound images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101548 – volume: 470 start-page: 78 year: 2019 ident: 10.1016/j.media.2020.101793_bib0053 article-title: Augmenting cascaded correlation filters with spatial–temporal saliency for visual tracking publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.08.053 – year: 2019 ident: 10.1016/j.media.2020.101793_bib55 article-title: Combination of RCNN and KCF for landmark tracking in 2D ultrasound sequence of liver publication-title: IEEE Eng Med Biol Soc – start-page: 448 year: 2015 ident: 10.1016/j.media.2020.101793_bib0020 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift |
SSID | ssj0007440 |
Score | 2.4930851 |
Snippet | •COSD-CNN is a cascaded Siamese network with one-shot deformable convolution module.•COSD-CNN alleviates performance degradation from network... Improving the quality of image-guided radiation therapy requires the tracking of respiratory motion in ultrasound sequences. However, the low signal-to-noise... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101793 |
SubjectTerms | Artificial neural networks Cascaded Siamese network Convolution Datasets Deep learning Formability Image quality Medical imaging Motion simulation Neural networks One-shot deformable convolution Radiation Radiation therapy Respiratory motion estimation Robustness Signal to noise ratio Tracking Ultrasonic imaging Ultrasound Ultrasound sequence |
Title | Cascaded one-shot deformable convolutional neural networks: Developing a deep learning model for respiratory motion estimation in ultrasound sequences |
URI | https://dx.doi.org/10.1016/j.media.2020.101793 https://www.proquest.com/docview/2462673035 https://www.proquest.com/docview/2427521914 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiE4ICgglpbKSBwJm8TOJua2LJTl0V6gqDfLz7JolV1tstf-DH4vM7azBSR64BQlsfPw2POQv_mGkBeTsnFIDJZ5W2FKjm2yBgKhTNRgXIyvvFGY4Hx6Npmf848X1cUemQ25MAirTLo_6vSgrdOVcRrN8XqxGH8pGBYrAfuDXn1Vox7mvEb-_FdX1zAPJMCLuVdFhq0H5qGA8QrZGRAklpFvSLB_Wae_9HQwPif3yb3kNdJp_LAHZM-1B-Tub1yCB-T2adolf0h-zlSHsHdLV63Luu-rnloXnFO9dBRx5mm-wSORzzIcAhq8e03f7rKoqIJubk1TYYlLGqrmUHgQ3Vxv0NNYB4giW0dMg6SLlm6X_UZ1WLKJ7sDaj8j5ybuvs3mW6i9kBqK-PhPasknjuWaN8sK4wrnau7qweamF8Hmuraott84IV1sGbTQvOESUujEeJgF7TPZb-NEnhJYQ11kB0YgWhnuTK3S7PBMsd0zpqhmRchh3aRI5OdbIWMoBhfZDBmFJFJaMwhqRl7tO68jNcXPzySBQ-ccUk2A9bu54NIhfphXeyZJDKAjqkVUj8nx3G9Ymbrio1q222KaswT0SBX_6v-8-JHfwLMIHj8h-v9m6Z-AG9fo4zPNjcmv64dP8DI7v33z-Nv0FBOUL1A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIvE4ICigLi1gJI6ETWJnE3NDC9UC3V5opd4sP2GrVXa1yV75GfzeztjOFpDogVOkxM7DM5mH_M03hLyZlI1DYrDM2wpLcmyTNZAIZaIG52J85Y3CAuf52WR2wb9cVpd7ZDrUwiCsMtn-aNODtU5nxmk1x-vFYvytYNisBPwPRvVVDXb4Dq9Yjar97ucNzgMZ8GLxVZHh8IF6KIC8QnkGZIllJBwS7F_u6S9DHbzPySPyMIWN9EN8s8dkz7UH5MFvZIIH5O48bZM_Ib-mqkPcu6Wr1mXdj1VPrQvRqV46ikDzpHBwSyS0DIcAB-_e04-7MiqqYJpb09RZ4jsNbXMo3IhubnboaWwERJGuI9ZB0kVLt8t-ozrs2UR3aO2n5OLk0_l0lqUGDJmBtK_PhLZs0niuWaO8MK5wrvauLmxeaiF8nmurasutM8LVlsEYzQsOKaVujActYM_IfgsfekhoCYmdFZCOaGG4N7nCuMszwXLHlK6aESmHdZcmsZNjk4ylHGBoVzIIS6KwZBTWiLzdTVpHco7bh08Ggco_dEyC-7h94vEgfpl-8U6WHHJBsI-sGpHXu8vwc-KOi2rdaotjyhriI1Hw5__77Ffk3ux8fipPP599PSL38UrEEh6T_X6zdS8gJur1y6Dz17znC9s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cascaded+one-shot+deformable+convolutional+neural+networks%3A+Developing+a+deep+learning+model+for+respiratory+motion+estimation+in+ultrasound+sequences&rft.jtitle=Medical+image+analysis&rft.au=Liu%2C+Fei&rft.au=Liu%2C+Dan&rft.au=Tian%2C+Jie&rft.au=Xie%2C+Xiaoyan&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=65&rft_id=info:doi/10.1016%2Fj.media.2020.101793&rft.externalDocID=S1361841520301572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |