Robust Online Correlation Method for Identification of a Nonparametric Model of Type 1 Diabetes
The paper presents an online version of the identification method for estimating the impulse responses in the case of a two-input single-output linear empirical model of type 1 diabetes that allows us to adapt the model parameters due to the intra-subject time variability in real time. The method bu...
Saved in:
Published in | IEEE access Vol. 12; pp. 35899 - 35923 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3373068 |
Cover
Abstract | The paper presents an online version of the identification method for estimating the impulse responses in the case of a two-input single-output linear empirical model of type 1 diabetes that allows us to adapt the model parameters due to the intra-subject time variability in real time. The method builds on and augments our original research by providing important enhancements concerning the online parameter estimation, recursive formulation of essential equations, improved regularization, and new effective approaches to numerically solve the estimation problem. Recursive equations are derived to update the covariance matrix of the sample cross-correlation function, as well as the inverse of this covariance matrix, where the customized Sherman-Morrison formula was considered. To efficiently update the parameter estimate at each sample while avoiding direct calculation of the Hessian matrix inverse, two alternative strategies are proposed to be applied instead. The first is based on the numeric minimization by the conjugate gradient method, whereas the second takes advantage of the Schulz method to approximate the inverse Hessian matrix. As a result, all steps of the identification algorithm were designed so that only basic linear operations are required. Features to robustify the estimate were also involved, as the optimal regularization strategies based on the inverse of the covariance matrix of the actual parameter distribution and the inter-sample parameter drift were applied. In the end of the paper, a series of simulation-based experiments was carried out to assess the effectiveness of the proposed method and to demonstrate all of its aspects and important characteristics. The documented results showed that the method can yield valid estimates of impulse responses and also effectively adapt parameters in real time under the influence of time-varying physiology. |
---|---|
AbstractList | The paper presents an online version of the identification method for estimating the impulse responses in the case of a two-input single-output linear empirical model of type 1 diabetes that allows us to adapt the model parameters due to the intra-subject time variability in real time. The method builds on and augments our original research by providing important enhancements concerning the online parameter estimation, recursive formulation of essential equations, improved regularization, and new effective approaches to numerically solve the estimation problem. Recursive equations are derived to update the covariance matrix of the sample cross-correlation function, as well as the inverse of this covariance matrix, where the customized Sherman-Morrison formula was considered. To efficiently update the parameter estimate at each sample while avoiding direct calculation of the Hessian matrix inverse, two alternative strategies are proposed to be applied instead. The first is based on the numeric minimization by the conjugate gradient method, whereas the second takes advantage of the Schulz method to approximate the inverse Hessian matrix. As a result, all steps of the identification algorithm were designed so that only basic linear operations are required. Features to robustify the estimate were also involved, as the optimal regularization strategies based on the inverse of the covariance matrix of the actual parameter distribution and the inter-sample parameter drift were applied. In the end of the paper, a series of simulation-based experiments was carried out to assess the effectiveness of the proposed method and to demonstrate all of its aspects and important characteristics. The documented results showed that the method can yield valid estimates of impulse responses and also effectively adapt parameters in real time under the influence of time-varying physiology. |
Author | Dodek, Martin Miklovicova, Eva |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0002-4118-4673 surname: Dodek fullname: Dodek, Martin email: martin.dodek@stuba.sk organization: Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia – sequence: 2 givenname: Eva orcidid: 0000-0002-4040-4697 surname: Miklovicova fullname: Miklovicova, Eva organization: Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia |
BookMark | eNqFUU1P3DAQtRCVCpRf0B4scd7FiRN_HFGAshIUiY-zNbHH1KsQL473wL-vlyCEuHQuM5o37z3L75Dsj3FEQn5WbFlVTJ-edd3F_f2yZnWz5FxyJtQeOagroRe85WL_0_ydHE_TmpVSZdXKA2LuYr-dMr0dhzAi7WJKOEAOcaQ3mP9GR31MdOVwzMEHOyPRU6B_4riBBM-YU7D0JjocdsDD6wZpRc8D9Jhx-kG-eRgmPH7vR-Tx8uKhu1pc3_5edWfXC9swnRdaSa-ZUt6LVvHKSpTOeVBeC6dkhRx7q6UC1rsGHYByDEUtoUBKWyv4EVnNui7C2mxSeIb0aiIE87aI6clAysEOaCzzjtVW-l4W89IAmat5LzxvwCIrWiez1ibFly1O2azjNo3l-abWreBKMq3KFZ-vbIrTlNB_uFbM7IIxczBmF4x5D6aw9BeWDfntV3OCMPyH-2vmBkT85Na0SnPF_wEpxJ62 |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_imu_2024_101594 crossref_primary_10_1016_j_bbe_2024_05_003 |
Cites_doi | 10.1016/j.conengprac.2016.01.003 10.1080/00207179.2014.897004 10.12700/APH.19.7.2022.7.7 10.3182/20060402-4-BR-2902.00503 10.2307/2003604 10.1007/978-0-387-21606-5 10.1093/comjnl/7.2.149 10.3934/naco.2019047 10.1177/1932296819880864 10.15866/ireaco.v14i6.21283 10.3390/asi3030031 10.1002/047134608X.W1046 10.1090/psapm/006/0084178 10.1016/j.ifacol.2017.08.271 10.4093/dmj.2021.0177 10.1109/ICCC54292.2022.9805903 10.1017/CBO9780511813610 10.1109/TBME.2007.893506 10.1109/ACCESS.2022.3212435 10.1002/aic.11699 10.3182/20110828-6-IT-1002.03770 10.24425/acs.2022.141714 10.1088/0967-3334/27/11/001 10.1016/c2018-0-00515-0 10.1016/j.jprocont.2018.02.003 10.1007/978-3-642-17798-9 10.1016/j.automatica.2012.05.076 10.1214/aoms/1177729893 10.1016/j.jprocont.2019.03.007 10.1109/IEMBS.2006.260810 10.1002/zamm.19330130111 10.1177/193229680700100603 10.1016/j.bspc.2023.104773 10.3182/20110828-6-IT-1002.03036 10.1007/978-3-319-25913-0 10.1017/S0004972700015884 10.1088/0967-3334/25/4/010 10.1177/1932296814532906 10.15866/iremos.v9i5.10171 10.1109/CDC.2011.6161344 10.1016/j.eswa.2023.121994 10.1109/ACC.2008.4586802 10.1016/j.automatica.2012.05.026 10.3390/math8010002 10.1109/ACC.2010.5531630 10.1109/CDC.2013.6760839 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3373068 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 35923 |
ExternalDocumentID | oai_doaj_org_article_c0fd02c7fb7c407fbae0d23b6f34ace0 10_1109_ACCESS_2024_3373068 10458938 |
Genre | orig-research |
GrantInformation_xml | – fundername: call for doctoral students and young researchers of Slovak University of Technology in Bratislava to start a research career (Impulsive Control of Biosystems) grantid: 23-03-01-B – fundername: call for doctoral students and young researchers – fundername: Plán obnovy a odolnosti Slovenskej republiky (POO SR) grantid: 09I03-03-V05 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-987f9088ff65831c7e7ddfa8f96d871e3ebc978a0bd4edaa8d0e627a71e89cc63 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:07:20 EDT 2025 Sun Jun 29 16:16:17 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 04:14:25 EDT 2025 Wed Aug 27 02:11:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-987f9088ff65831c7e7ddfa8f96d871e3ebc978a0bd4edaa8d0e627a71e89cc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4040-4697 0000-0002-4118-4673 |
OpenAccessLink | https://doaj.org/article/c0fd02c7fb7c407fbae0d23b6f34ace0 |
PQID | 2956387098 |
PQPubID | 4845423 |
PageCount | 25 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3373068 ieee_primary_10458938 doaj_primary_oai_doaj_org_article_c0fd02c7fb7c407fbae0d23b6f34ace0 proquest_journals_2956387098 crossref_citationtrail_10_1109_ACCESS_2024_3373068 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 Sánchez-Peña (ref7) 2019 Amemiya (ref34) 1985 ref17 Pishro-Nik (ref39) 2014 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref49 ref8 ref9 ref4 ref3 Poliak (ref43) 1987 ref6 ref5 ref40 ref37 ref36 ref30 ref32 ref2 ref1 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Box (ref33) 2015 ref29 Jenkins (ref31) 1969 Davidson (ref35) 2004 Riesz (ref47) 2012 |
References_xml | – ident: ref15 doi: 10.1016/j.conengprac.2016.01.003 – ident: ref21 doi: 10.1080/00207179.2014.897004 – ident: ref4 doi: 10.12700/APH.19.7.2022.7.7 – ident: ref12 doi: 10.3182/20060402-4-BR-2902.00503 – volume-title: Econometric Theory and Methods year: 2004 ident: ref35 – ident: ref50 doi: 10.2307/2003604 – ident: ref36 doi: 10.1007/978-0-387-21606-5 – ident: ref42 doi: 10.1093/comjnl/7.2.149 – ident: ref44 doi: 10.3934/naco.2019047 – ident: ref26 doi: 10.1177/1932296819880864 – ident: ref9 doi: 10.15866/ireaco.v14i6.21283 – ident: ref3 doi: 10.3390/asi3030031 – ident: ref11 doi: 10.1002/047134608X.W1046 – ident: ref41 doi: 10.1090/psapm/006/0084178 – ident: ref23 doi: 10.1016/j.ifacol.2017.08.271 – ident: ref5 doi: 10.4093/dmj.2021.0177 – ident: ref8 doi: 10.1109/ICCC54292.2022.9805903 – ident: ref32 doi: 10.1017/CBO9780511813610 – ident: ref51 doi: 10.1109/TBME.2007.893506 – ident: ref10 doi: 10.1109/ACCESS.2022.3212435 – ident: ref13 doi: 10.1002/aic.11699 – ident: ref22 doi: 10.3182/20110828-6-IT-1002.03770 – ident: ref2 doi: 10.24425/acs.2022.141714 – ident: ref18 doi: 10.1088/0967-3334/27/11/001 – volume-title: Functional Analysis year: 2012 ident: ref47 – ident: ref29 doi: 10.1016/c2018-0-00515-0 – ident: ref24 doi: 10.1016/j.jprocont.2018.02.003 – ident: ref49 doi: 10.1007/978-3-642-17798-9 – ident: ref16 doi: 10.1016/j.automatica.2012.05.076 – ident: ref40 doi: 10.1214/aoms/1177729893 – ident: ref25 doi: 10.1016/j.jprocont.2019.03.007 – volume-title: Time Series Analysis: Forecasting and Control year: 2015 ident: ref33 – ident: ref52 doi: 10.1109/IEMBS.2006.260810 – ident: ref46 doi: 10.1002/zamm.19330130111 – ident: ref53 doi: 10.1177/193229680700100603 – ident: ref1 doi: 10.1016/j.bspc.2023.104773 – volume-title: Artificial Pancreas: Current Situation and Future Directions year: 2019 ident: ref7 – ident: ref6 doi: 10.3182/20110828-6-IT-1002.03036 – ident: ref30 doi: 10.1007/978-3-319-25913-0 – ident: ref48 doi: 10.1017/S0004972700015884 – ident: ref28 doi: 10.1088/0967-3334/25/4/010 – volume-title: Spectral Analysis and Its Applications year: 1969 ident: ref31 – volume-title: Advanced Econometrics year: 1985 ident: ref34 – volume-title: Introduction to Probability, Statistics, and Random Processes year: 2014 ident: ref39 – ident: ref54 doi: 10.1177/1932296814532906 – ident: ref14 doi: 10.15866/iremos.v9i5.10171 – ident: ref20 doi: 10.1109/CDC.2011.6161344 – ident: ref27 doi: 10.1016/j.eswa.2023.121994 – ident: ref19 doi: 10.1109/ACC.2008.4586802 – ident: ref38 doi: 10.1016/j.automatica.2012.05.026 – ident: ref45 doi: 10.3390/math8010002 – ident: ref17 doi: 10.1109/ACC.2010.5531630 – volume-title: Introduction to Optimization year: 1987 ident: ref43 – ident: ref37 doi: 10.1109/CDC.2013.6760839 |
SSID | ssj0000816957 |
Score | 2.3129137 |
Snippet | The paper presents an online version of the identification method for estimating the impulse responses in the case of a two-input single-output linear... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35899 |
SubjectTerms | Adaptation models Algorithms Conjugate gradient method Correlation correlation function Covariance matrix Cross correlation Diabetes diabetes mellitus Estimation generalized least squares method Gradient methods Hessian matrices Identification methods Impulse testing Insulin Least mean squares methods Mathematical models nonparametric model Nonparametric statistics online parameter estimate Optimization Parameter estimation Real time Regularization robust identification Robust stability Robustness (mathematics) Schulz method System identification |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuAABYpYaCsfOJIlsZ3YPrarVhVS94BaqTfLzwtlg9jshV_PjO1drUBUXJIotpVJZmzPTGa-IeQjY7oDTVc3lmnZCAcHJZ1q4tA52fdOtAnznW-Xw829-PLQP9Rk9ZwLE2PMwWdxjpf5X34Y_QZdZTDDRQ_7qzokhyBnJVlr51DBChK6lxVZqGv154vFAl4CbEAm5pyDKCOe6t7uk0H6a1WVv5bivL9cvyTLLWUlrOTbfDO5uf_1B2jjf5N-TF5UTZNeFNF4RQ7i6jV5voc_-IaYr6PbrCda8EbpAit1lNg4epsrS1NQaWnJ5U3VuUfHRC1djisEDf-O9bg8xYJqj9iAVi3taA2zWZ-Q--uru8VNUysuNB7svKnRSiYMfEoJFBPeeRllCMmqpIcAllXk0XkwO23rgojBWhXaODBpoUlp7wf-lhytxlV8R2gnfHKa-y5oAUZjr8MgHGhTME6nqNoZYVtOGF_hyLEqxqPJZkmrTWGfQfaZyr4Z-bQb9KOgcTzd_RJZvOuKUNr5BrDG1JlpPEhjy7xMTsJHgJONbWDcDYkL6yMQeoLs3Hte4eSMnG4lxtR5vzYMzE0OS6BW7_8x7AN5hiQWL84pOZp-buIZ6DWTO8_y_Bsw9_RY priority: 102 providerName: IEEE |
Title | Robust Online Correlation Method for Identification of a Nonparametric Model of Type 1 Diabetes |
URI | https://ieeexplore.ieee.org/document/10458938 https://www.proquest.com/docview/2956387098 https://doaj.org/article/c0fd02c7fb7c407fbae0d23b6f34ace0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5ipYX4xPNFCktXs0l2k5R6eByCFqJgF_Ks9E68u__v5KEsCNrYbLFJdjeT2WS-MPk-hM4pVS1EuqoxVImGW7hIYWUT-taKrrOcxHTe-f6hnz7zu5fuZSD1lXLCCj1wMdyVg8qEOhGtcAA-ojWBeMpsHxk3LmS0ThQZgKk8B8u2V52oNEMtUVfX4zH0CAAh5ZeMgV8nctXBUpQZ-6vEyo95OS82k220VaNEfF2-bgethdku2hxwB-4h_Ti3q8USF65QPE4qGyWvDd9nVWgM4Sgu53Bj3ZjD84gNfpjPEuH3W9LScjiJob2mgoRIcYtrisxiHz1Pbp_G06aqJTRgF7VslBQxJS3FCEEFa50IwvtoZFS9B1QUWLAOIKMh1vPgjZGehJ4KA0VSOdezA7Q-m8_CIcItd9Eq5lqvONi8U77nFiIhaKdikGSE6JfhtKtU4knR4lVnSEGULtbWydq6WnuELr4bvRcmjd-r36QR-a6aaLDzDXAOXZ1D_-UcI7SfxnPwPt5BgAYPP_kaYF3_2YWmABUZTF9KHv3Hu4_RRupP2a45QevLj1U4hQBmac-yr57ls4afX7bs_w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIAD5VHE0gI-cCRL4jixfWxXrRbo7gG1Um-Wn5eWDWKzF349M7Z3tQKBuCRRbCuTzNgz48x8Q8h7xlQDlq6qDFOi4hYOUlhZhb6xoussryPmOy-W_fyaf77pbkqyesqFCSGk4LMwxcv0L98PboNbZTDDeQf6Vd4nD0Dx8y6na-22VLCGhOpEwRZqavXxdDaD1wAvkPFp24IwI6Lqnv5JMP2lrsofi3HSMBeHZLmlLQeW3E43o526n7_BNv438U_Jk2Jr0tMsHM_IvbB6Th7vIRC-IPrrYDfrkWbEUTrDWh05Oo4uUm1pCkYtzdm8sWzv0SFSQ5fDCmHDv2FFLkexpNodNqBfSxtaAm3WR-T64vxqNq9KzYXKgac3VkqKiKFPMYJp0jZOBOF9NDKq3oNvFdpgHTiepraeB2-M9HXomTDQJJVzffuSHKyGVXhFaMNdtKp1jVcc3MZO-Z5bsKdgnIpB1hPCtpzQrgCSY12MO50ck1rpzD6N7NOFfRPyYTfoe8bj-Hf3M2TxriuCaacbwBpd5qZ2II81cyJaAR8BTibUnrW2jy03LgChR8jOvedlTk7IyVZidJn5a83A4WxhEVTy9V-GvSMP51eLS335afnlmDxCcvOezgk5GH9swhuwckb7Nsn2Lx0v96U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Online+Correlation+Method+for+Identification+of+a+Nonparametric+Model+of+Type+1+Diabetes&rft.jtitle=IEEE+access&rft.au=Dodek%2C+Martin&rft.au=Miklovi%C4%8Dov%C3%A1%2C+Eva&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=35899&rft.epage=35923&rft_id=info:doi/10.1109%2FACCESS.2024.3373068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3373068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |