New insights into intermediate-temperature solid oxide fuel cells with oxygen-ion conducting electrolyte act as a catalyst for NO decomposition

Nitrogen oxides (NOx) can cause many environmental problems, such as acid rain, smog, and ozone depletion. So many methods are used for removing it. At present, more and more reports are focused on NOx decomposition, Ceramic membrane, electrochemical deNOx and SOFC. In addition Perovskites oxides ha...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 158-159; pp. 418 - 425
Main Authors Bu, Yun-Fei, Ding, Dong, Gan, Lu, Xiong, Xun-Hui, Cai, Wei, Tan, Wen-Yi, Zhong, Qin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen oxides (NOx) can cause many environmental problems, such as acid rain, smog, and ozone depletion. So many methods are used for removing it. At present, more and more reports are focused on NOx decomposition, Ceramic membrane, electrochemical deNOx and SOFC. In addition Perovskites oxides have been extensively investigated as suitable materials for them. Direct decomposition of NO requires high temperature. The influence of oxygen and carbon dioxide are obstacles for the remove of NO for the ceramic membrane reactor. For SOFC, the reported paper is less, and the focus is on the traditional cathode materials, which has good performance on the reduction of oxygen, but to NO activity generally is not high. So we use perovskite materials as a point of intersection to those different ways. It not only requires high activity for NO decomposition, but also can be used as the SOFC electrodes. The feasibility is confirmed through a series of characterization, which brings new insights into solid oxide fuel cells with oxygen-ion conducting electrolyte act as a catalyst for NO decomposition. •LBMM–SDC as a catalyst for NO decomposition is evaluated as a cathode for SOFCs.•The electrical performance the cell was improved with the addition of oxygen.•The electrochemical system based on IT-SOFC can be used for NO decomposition under 600°C. The environmental problems and supply of clean and economical energy is grand global challenges. Direct decomposition of nitrogen oxides (NOx) is the most ideal and effective approach for NOx removal by catalysis, which has the great potential to alleviate the air pollution. On the other hand, solid oxide fuel cells (SOFCs) are one of the cleanest, most efficient chemical-to-electrical energy conversion systems. Here we reported a new electrochemical system to combine the traditional catalyst for direct decomposition of NOx with an electric generation process through a SOFC. By nano-sized La0.4Ba0.6Mn0.8Mg0.2O3–δ (LBMM), an effective catalyst widely used for NOx decomposition, adopting an anode-support SOFC configuration, which consisted with the conventional NiO-samarium doped ceria (SDC) anode, and thin film SDC electrolyte, we demonstrated that complete decomposition of NOx and a peak power density of 25mWcm−2 at 600°C when Ar containing 5% NO and 5% O2 was fed to the cathode and 10% H2 was used the fuel. The effect of the ratio between NO and O2 was found to be critical for the NO conversion and SOFC performance. The dependence of temperature and gas composition on NO conversion was also investigated.
AbstractList Nitrogen oxides (NOx) can cause many environmental problems, such as acid rain, smog, and ozone depletion. So many methods are used for removing it. At present, more and more reports are focused on NOx decomposition, Ceramic membrane, electrochemical deNOx and SOFC. In addition Perovskites oxides have been extensively investigated as suitable materials for them. Direct decomposition of NO requires high temperature. The influence of oxygen and carbon dioxide are obstacles for the remove of NO for the ceramic membrane reactor. For SOFC, the reported paper is less, and the focus is on the traditional cathode materials, which has good performance on the reduction of oxygen, but to NO activity generally is not high. So we use perovskite materials as a point of intersection to those different ways. It not only requires high activity for NO decomposition, but also can be used as the SOFC electrodes. The feasibility is confirmed through a series of characterization, which brings new insights into solid oxide fuel cells with oxygen-ion conducting electrolyte act as a catalyst for NO decomposition. •LBMM–SDC as a catalyst for NO decomposition is evaluated as a cathode for SOFCs.•The electrical performance the cell was improved with the addition of oxygen.•The electrochemical system based on IT-SOFC can be used for NO decomposition under 600°C. The environmental problems and supply of clean and economical energy is grand global challenges. Direct decomposition of nitrogen oxides (NOx) is the most ideal and effective approach for NOx removal by catalysis, which has the great potential to alleviate the air pollution. On the other hand, solid oxide fuel cells (SOFCs) are one of the cleanest, most efficient chemical-to-electrical energy conversion systems. Here we reported a new electrochemical system to combine the traditional catalyst for direct decomposition of NOx with an electric generation process through a SOFC. By nano-sized La0.4Ba0.6Mn0.8Mg0.2O3–δ (LBMM), an effective catalyst widely used for NOx decomposition, adopting an anode-support SOFC configuration, which consisted with the conventional NiO-samarium doped ceria (SDC) anode, and thin film SDC electrolyte, we demonstrated that complete decomposition of NOx and a peak power density of 25mWcm−2 at 600°C when Ar containing 5% NO and 5% O2 was fed to the cathode and 10% H2 was used the fuel. The effect of the ratio between NO and O2 was found to be critical for the NO conversion and SOFC performance. The dependence of temperature and gas composition on NO conversion was also investigated.
The environmental problems and supply of clean and economical energy is grand global challenges. Direct decomposition of nitrogen oxides (NO sub(x)) is the most ideal and effective approach for NO sub(x) removal by catalysis, which has the great potential to alleviate the air pollution. On the other hand, solid oxide fuel cells (SOFCs) are one of the cleanest, most efficient chemical-to-electrical energy conversion systems. Here we reported a new electrochemical system to combine the traditional catalyst for direct decomposition of NO sub(x) with an electric generation process through a SOFC. By nano-sized La sub(0.4)Ba sub(0.6)Mn sub(0.8)Mg sub(0.2)O sub(3- delta ) (LBMM), an effective catalyst widely used for NO sub(x) decomposition, adopting an anode-support SOFC configuration, which consisted with the conventional NiO-samarium doped ceria (SDC) anode, and thin film SDC electrolyte, we demonstrated that complete decomposition of NO sub(x) and a peak power density of 25 mW cm super(-2) at 600 degree C when Ar containing 5% NO and 5% O sub(2) was fed to the cathode and 10% H sub(2) was used the fuel. The effect of the ratio between NO and O sub(2) was found to be critical for the NO conversion and SOFC performance. The dependence of temperature and gas composition on NO conversion was also investigated.
Author Gan, Lu
Zhong, Qin
Ding, Dong
Tan, Wen-Yi
Bu, Yun-Fei
Xiong, Xun-Hui
Cai, Wei
Author_xml – sequence: 1
  givenname: Yun-Fei
  surname: Bu
  fullname: Bu, Yun-Fei
  email: jpu441@yahoo.com
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
– sequence: 2
  givenname: Dong
  surname: Ding
  fullname: Ding, Dong
  organization: Materials Science and Engineering, Georgia Institute of Technology, J. Erskine Love Bldg. 771 Ferst Drive, Atlanta, GA 30332-0245, USA
– sequence: 3
  givenname: Lu
  surname: Gan
  fullname: Gan, Lu
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
– sequence: 4
  givenname: Xun-Hui
  surname: Xiong
  fullname: Xiong, Xun-Hui
  organization: Materials Science and Engineering, Georgia Institute of Technology, J. Erskine Love Bldg. 771 Ferst Drive, Atlanta, GA 30332-0245, USA
– sequence: 5
  givenname: Wei
  surname: Cai
  fullname: Cai, Wei
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
– sequence: 6
  givenname: Wen-Yi
  surname: Tan
  fullname: Tan, Wen-Yi
  organization: Department of Environment Engineering, Nanjing Institute of Technology, Nanjing 211167, PR China
– sequence: 7
  givenname: Qin
  surname: Zhong
  fullname: Zhong, Qin
  email: Zq304@mail.njust.edu.cn
  organization: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
BookMark eNqFUU1v1DAQtVCR2Jb-Aw4-csnWX7ETDkioglKpai_0bHnt8darxA62Q9lfwV8m0XLqgUqjmZH13sz4vXN0FlMEhD5QsqWEyqvD1kzW1N2WESq2ZA36Bm1op3jDu46foQ3pmWw4V_wdOi_lQAhhnHUb9OcennGIJeyfalmamtYEeQQXTIWmwjhBNnXOgEsagsPpd3CA_QwDtjAMBT-H-rS8HvcQm5Aitim62dYQ9xgGsDWn4VgBG1uxKdjg5VIzHEvFPmV8_4Ad2DROqYS6sN-jt94MBS7_1Qv0-O3rj-vvzd3Dze31l7vGCtLXpvPW7lqrHPVSKFA7Zb2zUggHvRPAQBoj_K7lomeCKNmqTknbgvfM-14Bv0AfT3OnnH7OUKoeQ1n_YyKkuWgqFW05WwR9HdpKJhUnvF2g4gS1OZWSwesph9Hko6ZEr1bpgz5ZpVerNFlj3fDpBc2GalY5ajZheI38-USGRa5fAbIuNkC0i4F5UV-7FP4_4C99urgJ
CitedBy_id crossref_primary_10_1021_acs_chemmater_2c02861
crossref_primary_10_1016_j_apcatb_2019_117868
crossref_primary_10_1002_er_4184
crossref_primary_10_1016_j_jallcom_2018_11_042
crossref_primary_10_1016_j_ceramint_2022_10_095
crossref_primary_10_1016_j_fuel_2022_124872
crossref_primary_10_1016_j_electacta_2018_12_171
crossref_primary_10_1016_j_ijhydene_2017_04_216
crossref_primary_10_1016_j_ceramint_2019_10_079
crossref_primary_10_1051_e3sconf_202340601024
crossref_primary_10_1016_j_cej_2018_10_073
crossref_primary_10_1016_j_cej_2019_122188
crossref_primary_10_1016_j_jcis_2022_08_023
crossref_primary_10_1016_j_jhazmat_2021_126640
crossref_primary_10_1021_acs_jpcc_0c06369
crossref_primary_10_1016_j_apcatb_2020_119553
crossref_primary_10_1016_j_jes_2016_09_014
crossref_primary_10_1021_acs_energyfuels_3c02729
crossref_primary_10_1016_j_apcatb_2019_118533
crossref_primary_10_1016_j_jallcom_2015_09_136
crossref_primary_10_1021_acsaem_1c01041
crossref_primary_10_1016_j_jallcom_2014_12_186
crossref_primary_10_1002_cctc_201801960
crossref_primary_10_1016_j_apsusc_2021_150032
crossref_primary_10_1021_acsanm_7b00320
Cites_doi 10.1016/j.apcatb.2004.02.017
10.1039/b912269a
10.1021/ja961629y
10.1016/j.cattod.2010.03.026
10.1016/j.catcom.2005.12.026
10.1021/jp203188k
10.1149/1.3464775
10.1016/j.apcata.2012.08.011
10.1149/1.2134364
10.1016/j.apcatb.2011.08.039
10.1016/j.molcata.2005.02.015
10.1016/j.apcata.2010.11.042
10.1016/S0169-4332(97)00311-5
10.1016/j.apcatb.2004.09.020
10.1016/j.jhazmat.2008.08.058
10.1021/jp9076596
10.1016/S0021-9517(03)00265-3
10.1016/j.apcatb.2010.09.002
10.1016/j.jcat.2010.11.007
10.1016/j.apcatb.2010.02.020
10.1016/j.apcatb.2011.03.022
10.1016/j.apcatb.2009.05.015
10.1021/ie300555f
10.1016/j.apcata.2012.02.047
10.1016/j.catcom.2012.03.026
10.1021/jp912163k
10.1016/j.cej.2010.09.022
10.1007/s10562-011-0724-x
10.1016/j.apcatb.2009.08.008
10.1002/anie.200804582
10.1016/j.apcatb.2007.02.020
10.1016/j.ssi.2004.12.006
10.1016/j.cattod.2010.10.063
10.1016/j.apsusc.2012.12.169
10.1149/1.3496042
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7ST
7TG
7TV
C1K
KL.
SOI
7SP
7SR
7SU
7TB
7U5
8BQ
8FD
FR3
H8D
JG9
KR7
L7M
DOI 10.1016/j.apcatb.2014.04.041
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Aerospace Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
METADEX
Aerospace Database
Engineered Materials Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
Meteorological & Geoastrophysical Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 425
ExternalDocumentID 10_1016_j_apcatb_2014_04_041
S0926337314002677
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7ST
7TG
7TV
C1K
KL.
SOI
7SP
7SR
7SU
7TB
7U5
8BQ
8FD
EFKBS
FR3
H8D
JG9
KR7
L7M
ID FETCH-LOGICAL-c409t-8fccb5c7d1f647e7b7cfdc644de9d4e2e6aa4fb53492407657876c5eff2ff97e3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Mon Jul 21 10:26:12 EDT 2025
Thu Jul 10 23:32:01 EDT 2025
Thu Apr 24 23:03:56 EDT 2025
Tue Jul 01 03:10:22 EDT 2025
Sat Mar 02 16:01:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Perovskite
Solid oxide fuel cells
Cathode composite
Impedance
NO decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-8fccb5c7d1f647e7b7cfdc644de9d4e2e6aa4fb53492407657876c5eff2ff97e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1562673035
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1671532201
proquest_miscellaneous_1562673035
crossref_primary_10_1016_j_apcatb_2014_04_041
crossref_citationtrail_10_1016_j_apcatb_2014_04_041
elsevier_sciencedirect_doi_10_1016_j_apcatb_2014_04_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pietrzyk, Podolska, Sojka (bib0180) 2011; 115
Kammer (bib0060) 2005; 58
Inagaki, Imai, Yoshikawa, Tryba (bib0040) 2004; 51
Zhu, Xiao, Li, Yang, Wei (bib0105) 2006; 7
Jing, Li, Yang, Hao (bib0195) 2009; 91
Nguyen, Salim, Hinode (bib0190) 2010; 96
Zhang, Zhang, Cai, Zhong (bib0035) 2013; 268
Zhu, Xiao, Li, Yang, Wu (bib0095) 2005; 234
Huang, Hsiao (bib0125) 2010; 165
Kammer, Skou (bib0120) 2005; 176
Imanaka, Masui (bib0150) 2012; 1
Yamashita, Ichihashi, Zhang, Matsumura, Souma, Tatsumi, Anpo (bib0045) 1997; 121
Zhu, Yang, Xu, Wei (bib0080) 2009; 113
Hansen (bib0020) 2010; 100
Ishihara, Ando, Sada, Takiishi, Yamada, Nishiguchi, Takita (bib0090) 2003; 220
Huang, Wu, Chiang, Yu (bib0130) 2012; 445
Jiang, Huang, Chow, Yang (bib0050) 2009; 164
Pancharatnam (bib0115) 1975; 122
Jiang, Xing, Czuprat, Wang, Schirrmeister, Schiestel, Caro (bib0145) 2009; 21
Imanaka, Masui (bib0110) 2012; 431
Hong, Iwamoto, Hosokawa, Wada, Kanai, Inoue (bib0100) 2011; 277
Iwakuni, Shinmyou, Yano, Matsumoto, Ishihara (bib0085) 2007; 74
Lopez-Suarez, Illan-Gomez, Bueno-Lopez, Anderson (bib0010) 2011; 104
Liu, He (bib0185) 2010; 114
Hansen (bib0055) 2010; 157
Xian, Zhang, Li, Zou, Meng, Zou, Guo, Tsubaki (bib0015) 2010; 158
Hong, Ueda, Iwamoto, Hosokawa, Wada, Inoue (bib0070) 2012; 142
Peralta, Sanchez, Ulla, Querini (bib0065) 2011; 393
Márquez-Alvarez, Rodríguez-Ramos, Guerrero-Ruiz, Haller, Fernández-García (bib0025) 1997; 119
Zhang, Liu, Zhong, Yao (bib0030) 2012; 25
Zhu, Thomas (bib0075) 2009; 92
Wang, Ge, Zhan, Li, Qiao, Ling (bib0175) 2012; 51
Hong, Iwamoto, Inoue (bib0005) 2011; 164
Huang, Wu, Hsu, Wu (bib0135) 2011; 110
Jiang, Wang, Liang, Werth, Schiestel, Caro (bib0140) 2009; 48
Werchmeister, Hansen, Mogensen (bib0155) 2010; 157
Huang (10.1016/j.apcatb.2014.04.041_bib0125) 2010; 165
Lopez-Suarez (10.1016/j.apcatb.2014.04.041_bib0010) 2011; 104
Imanaka (10.1016/j.apcatb.2014.04.041_bib0110) 2012; 431
Iwakuni (10.1016/j.apcatb.2014.04.041_bib0085) 2007; 74
Werchmeister (10.1016/j.apcatb.2014.04.041_bib0155) 2010; 157
Yamashita (10.1016/j.apcatb.2014.04.041_bib0045) 1997; 121
Imanaka (10.1016/j.apcatb.2014.04.041_bib0150) 2012; 1
Pietrzyk (10.1016/j.apcatb.2014.04.041_bib0180) 2011; 115
Zhu (10.1016/j.apcatb.2014.04.041_bib0075) 2009; 92
Jiang (10.1016/j.apcatb.2014.04.041_bib0145) 2009; 21
Nguyen (10.1016/j.apcatb.2014.04.041_bib0190) 2010; 96
Zhang (10.1016/j.apcatb.2014.04.041_bib0035) 2013; 268
Jiang (10.1016/j.apcatb.2014.04.041_bib0140) 2009; 48
Huang (10.1016/j.apcatb.2014.04.041_bib0130) 2012; 445
Jing (10.1016/j.apcatb.2014.04.041_bib0195) 2009; 91
Wang (10.1016/j.apcatb.2014.04.041_bib0175) 2012; 51
Márquez-Alvarez (10.1016/j.apcatb.2014.04.041_bib0025) 1997; 119
Xian (10.1016/j.apcatb.2014.04.041_bib0015) 2010; 158
Hansen (10.1016/j.apcatb.2014.04.041_bib0020) 2010; 100
Hansen (10.1016/j.apcatb.2014.04.041_bib0055) 2010; 157
Zhu (10.1016/j.apcatb.2014.04.041_bib0105) 2006; 7
Kammer (10.1016/j.apcatb.2014.04.041_bib0120) 2005; 176
Ishihara (10.1016/j.apcatb.2014.04.041_bib0090) 2003; 220
Hong (10.1016/j.apcatb.2014.04.041_bib0070) 2012; 142
Kammer (10.1016/j.apcatb.2014.04.041_bib0060) 2005; 58
Zhang (10.1016/j.apcatb.2014.04.041_bib0030) 2012; 25
Hong (10.1016/j.apcatb.2014.04.041_bib0005) 2011; 164
Pancharatnam (10.1016/j.apcatb.2014.04.041_bib0115) 1975; 122
Zhu (10.1016/j.apcatb.2014.04.041_bib0080) 2009; 113
Jiang (10.1016/j.apcatb.2014.04.041_bib0050) 2009; 164
Hong (10.1016/j.apcatb.2014.04.041_bib0100) 2011; 277
Peralta (10.1016/j.apcatb.2014.04.041_bib0065) 2011; 393
Liu (10.1016/j.apcatb.2014.04.041_bib0185) 2010; 114
Zhu (10.1016/j.apcatb.2014.04.041_bib0095) 2005; 234
Huang (10.1016/j.apcatb.2014.04.041_bib0135) 2011; 110
Inagaki (10.1016/j.apcatb.2014.04.041_bib0040) 2004; 51
References_xml – volume: 92
  start-page: 225
  year: 2009
  ident: bib0075
  publication-title: Appl. Catal., B: Environ.
– volume: 74
  start-page: 299
  year: 2007
  ident: bib0085
  publication-title: Appl. Catal., B: Environ.
– volume: 277
  start-page: 208
  year: 2011
  ident: bib0100
  publication-title: J. Catal.
– volume: 51
  start-page: 247
  year: 2004
  ident: bib0040
  publication-title: Appl. Catal., B: Environ.
– volume: 91
  start-page: 123
  year: 2009
  ident: bib0195
  publication-title: Appl. Catal., B: Environ.
– volume: 115
  start-page: 13008
  year: 2011
  ident: bib0180
  publication-title: J. Phys. Chem. C
– volume: 121
  start-page: 305
  year: 1997
  ident: bib0045
  publication-title: Appl. Surf. Sci.
– volume: 51
  start-page: 11667
  year: 2012
  ident: bib0175
  publication-title: Ind. Eng. Chem. Res.
– volume: 113
  start-page: 16838
  year: 2009
  ident: bib0080
  publication-title: J. Phys. Chem. C
– volume: 234
  start-page: 99
  year: 2005
  ident: bib0095
  publication-title: J. Mol. Catal. A: Chem.
– volume: 176
  start-page: 915
  year: 2005
  ident: bib0120
  publication-title: Solid State Ionics
– volume: 58
  start-page: 33
  year: 2005
  end-page: 39
  ident: bib0060
  publication-title: Appl. Catal., B: Environ.
– volume: 220
  start-page: 104
  year: 2003
  ident: bib0090
  publication-title: J. Catal.
– volume: 110
  start-page: 164
  year: 2011
  ident: bib0135
  publication-title: Appl. Catal., B: Environ.
– volume: 7
  start-page: 432
  year: 2006
  ident: bib0105
  publication-title: Catal. Commun.
– volume: 25
  start-page: 7
  year: 2012
  ident: bib0030
  publication-title: Catal. Commun.
– volume: 100
  start-page: 427
  year: 2010
  ident: bib0020
  publication-title: Appl. Catal., B: Environ.
– volume: 114
  start-page: 16929
  year: 2010
  ident: bib0185
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 2983
  year: 2009
  ident: bib0140
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 431
  year: 2012
  ident: bib0150
  publication-title: Appl. Catal., A: Gen.
– volume: 165
  start-page: 234
  year: 2010
  ident: bib0125
  publication-title: Chem. Eng. J.
– volume: 119
  start-page: 2905
  year: 1997
  ident: bib0025
  publication-title: J. Am. Chem. Soc.
– volume: 164
  start-page: 432
  year: 2009
  ident: bib0050
  publication-title: J. Hazard. Mater.
– volume: 157
  start-page: P79
  year: 2010
  ident: bib0055
  publication-title: J. Electrochem. Soc.
– volume: 122
  start-page: 869
  year: 1975
  ident: bib0115
  publication-title: J. Electrochem. Soc.
– volume: 157
  start-page: P107
  year: 2010
  ident: bib0155
  publication-title: J. Electrochem. Soc.
– volume: 431
  start-page: 1
  year: 2012
  ident: bib0110
  publication-title: Appl. Catal., A: Gen.
– volume: 96
  start-page: 299
  year: 2010
  ident: bib0190
  publication-title: Appl. Catal., B: Environ.
– volume: 158
  start-page: 215
  year: 2010
  ident: bib0015
  publication-title: Catal. Today
– volume: 393
  start-page: 184
  year: 2011
  ident: bib0065
  publication-title: Appl. Catal., A: Gen.
– volume: 164
  start-page: 489
  year: 2011
  ident: bib0005
  publication-title: Catal. Today
– volume: 268
  start-page: 535
  year: 2013
  ident: bib0035
  publication-title: Appl. Surf. Sci.
– volume: 104
  start-page: 261
  year: 2011
  ident: bib0010
  publication-title: Appl. Catal., B: Environ.
– volume: 142
  start-page: 32
  year: 2012
  ident: bib0070
  publication-title: Catal. Lett.
– volume: 21
  start-page: 6738
  year: 2009
  ident: bib0145
  publication-title: Chem. Commun.
– volume: 445
  start-page: 153
  year: 2012
  ident: bib0130
  publication-title: Appl. Catal., A: Gen.
– volume: 51
  start-page: 247
  year: 2004
  ident: 10.1016/j.apcatb.2014.04.041_bib0040
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2004.02.017
– volume: 21
  start-page: 6738
  year: 2009
  ident: 10.1016/j.apcatb.2014.04.041_bib0145
  publication-title: Chem. Commun.
  doi: 10.1039/b912269a
– volume: 119
  start-page: 2905
  year: 1997
  ident: 10.1016/j.apcatb.2014.04.041_bib0025
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja961629y
– volume: 158
  start-page: 215
  year: 2010
  ident: 10.1016/j.apcatb.2014.04.041_bib0015
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2010.03.026
– volume: 7
  start-page: 432
  year: 2006
  ident: 10.1016/j.apcatb.2014.04.041_bib0105
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2005.12.026
– volume: 115
  start-page: 13008
  year: 2011
  ident: 10.1016/j.apcatb.2014.04.041_bib0180
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp203188k
– volume: 157
  start-page: P79
  year: 2010
  ident: 10.1016/j.apcatb.2014.04.041_bib0055
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3464775
– volume: 445
  start-page: 153
  year: 2012
  ident: 10.1016/j.apcatb.2014.04.041_bib0130
  publication-title: Appl. Catal., A: Gen.
  doi: 10.1016/j.apcata.2012.08.011
– volume: 122
  start-page: 869
  year: 1975
  ident: 10.1016/j.apcatb.2014.04.041_bib0115
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2134364
– volume: 110
  start-page: 164
  year: 2011
  ident: 10.1016/j.apcatb.2014.04.041_bib0135
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2011.08.039
– volume: 234
  start-page: 99
  year: 2005
  ident: 10.1016/j.apcatb.2014.04.041_bib0095
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2005.02.015
– volume: 393
  start-page: 184
  year: 2011
  ident: 10.1016/j.apcatb.2014.04.041_bib0065
  publication-title: Appl. Catal., A: Gen.
  doi: 10.1016/j.apcata.2010.11.042
– volume: 121
  start-page: 305
  year: 1997
  ident: 10.1016/j.apcatb.2014.04.041_bib0045
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(97)00311-5
– volume: 58
  start-page: 33
  year: 2005
  ident: 10.1016/j.apcatb.2014.04.041_bib0060
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2004.09.020
– volume: 164
  start-page: 432
  year: 2009
  ident: 10.1016/j.apcatb.2014.04.041_bib0050
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.08.058
– volume: 113
  start-page: 16838
  year: 2009
  ident: 10.1016/j.apcatb.2014.04.041_bib0080
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9076596
– volume: 220
  start-page: 104
  year: 2003
  ident: 10.1016/j.apcatb.2014.04.041_bib0090
  publication-title: J. Catal.
  doi: 10.1016/S0021-9517(03)00265-3
– volume: 100
  start-page: 427
  year: 2010
  ident: 10.1016/j.apcatb.2014.04.041_bib0020
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2010.09.002
– volume: 277
  start-page: 208
  year: 2011
  ident: 10.1016/j.apcatb.2014.04.041_bib0100
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.11.007
– volume: 96
  start-page: 299
  year: 2010
  ident: 10.1016/j.apcatb.2014.04.041_bib0190
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2010.02.020
– volume: 104
  start-page: 261
  year: 2011
  ident: 10.1016/j.apcatb.2014.04.041_bib0010
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2011.03.022
– volume: 91
  start-page: 123
  year: 2009
  ident: 10.1016/j.apcatb.2014.04.041_bib0195
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2009.05.015
– volume: 1
  start-page: 431
  year: 2012
  ident: 10.1016/j.apcatb.2014.04.041_bib0150
  publication-title: Appl. Catal., A: Gen.
– volume: 51
  start-page: 11667
  year: 2012
  ident: 10.1016/j.apcatb.2014.04.041_bib0175
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300555f
– volume: 431
  start-page: 1
  year: 2012
  ident: 10.1016/j.apcatb.2014.04.041_bib0110
  publication-title: Appl. Catal., A: Gen.
  doi: 10.1016/j.apcata.2012.02.047
– volume: 25
  start-page: 7
  year: 2012
  ident: 10.1016/j.apcatb.2014.04.041_bib0030
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2012.03.026
– volume: 114
  start-page: 16929
  year: 2010
  ident: 10.1016/j.apcatb.2014.04.041_bib0185
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp912163k
– volume: 165
  start-page: 234
  year: 2010
  ident: 10.1016/j.apcatb.2014.04.041_bib0125
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.09.022
– volume: 142
  start-page: 32
  year: 2012
  ident: 10.1016/j.apcatb.2014.04.041_bib0070
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-011-0724-x
– volume: 92
  start-page: 225
  year: 2009
  ident: 10.1016/j.apcatb.2014.04.041_bib0075
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2009.08.008
– volume: 48
  start-page: 2983
  year: 2009
  ident: 10.1016/j.apcatb.2014.04.041_bib0140
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804582
– volume: 74
  start-page: 299
  year: 2007
  ident: 10.1016/j.apcatb.2014.04.041_bib0085
  publication-title: Appl. Catal., B: Environ.
  doi: 10.1016/j.apcatb.2007.02.020
– volume: 176
  start-page: 915
  year: 2005
  ident: 10.1016/j.apcatb.2014.04.041_bib0120
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.12.006
– volume: 164
  start-page: 489
  year: 2011
  ident: 10.1016/j.apcatb.2014.04.041_bib0005
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2010.10.063
– volume: 268
  start-page: 535
  year: 2013
  ident: 10.1016/j.apcatb.2014.04.041_bib0035
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.12.169
– volume: 157
  start-page: P107
  year: 2010
  ident: 10.1016/j.apcatb.2014.04.041_bib0155
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3496042
SSID ssj0002328
Score 2.271367
Snippet Nitrogen oxides (NOx) can cause many environmental problems, such as acid rain, smog, and ozone depletion. So many methods are used for removing it. At...
The environmental problems and supply of clean and economical energy is grand global challenges. Direct decomposition of nitrogen oxides (NO sub(x)) is the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 418
SubjectTerms Anode effect
Catalysis
Catalysts
Cathode composite
Clean energy
Decomposition
Density
Electrolytes
Impedance
NO decomposition
Perovskite
Solid oxide fuel cells
Title New insights into intermediate-temperature solid oxide fuel cells with oxygen-ion conducting electrolyte act as a catalyst for NO decomposition
URI https://dx.doi.org/10.1016/j.apcatb.2014.04.041
https://www.proquest.com/docview/1562673035
https://www.proquest.com/docview/1671532201
Volume 158-159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhOaQ9hHTb0LRNUKBXdW1ZluxjWBK2Ld0e2kBuQtYDXBbvEnuhe8lfyF_OjC03baANFIyxhWQLz3hefDNDyPs0lU5xl7OisBJDN4KVoAlZyr1LipC4wmAc8stCzq_Ep-v8eofMxlwYhFVG2T_I9F5ax5Fp_JrTdV1PvyUll1mmMnARsI0SZpQLoZDLP9w-wDzAYuilMUxmOHtMn-sxXmZtTVchwEv0BU9F-jf19EhQ99rn8pAcRLORng87e0F2fDMh-7OxW9uEPP-tsOCEHF085K_BsvgDty_JHQg1WjctuuQtXHQrPIF07jt2eIaVqmKZZQpcWTu6-lk7T8PGLykG-VuKkVsY3QLnMSAqBYcaa8bCe2nsqbPcdp4a21HTUkP7ANG27SiYx3TxlTqPMPaIFXtFri4vvs_mLPZkYBY8wY4Vwdoqt8qlQQrlVaVscBaMKudLJzz30hgRqhyLHoKvKFEgSJv7EHgIpfLZEdltVo1_TWhegDXkuM-5SYXjwpSlCElqs1BlhQvumGQjKbSNBcuxb8ZSj8i0H3ogoEYC6gSP9JiwX6vWQ8GOJ-arkcr6D8bToFOeWHk2MoUGYiMNTONXm1aDTwwMCcZB_o85UoGy4fC8N_-9g7fkGd4N2MJ3ZLe72fgTsJG66rT_CU7J3vnHz_PFPXxMFQU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qfag-iJ4Wa6uu4Ot6yWazmzzK0XJqez7YQt-WzX5A5MgdJge9l_4L_sudSTatCloQQgib2SRkZueL384Q8j5NpVPc5aworMTUjWAlWEKWcu-SIiSuMJiHPFvI-YX4fJlf7pDZuBcGYZVR9w86vdfWcWQa_-Z0XdfTb0nJZZapDEIEbKOkHpCHApYvtjH4cH2H8wCXoVfHQM2QfNw_14O8zNqarkKEl-grnor0b_bpD03dm5-Tp-RJ9Bvpx-HTnpEd30zI3mxs1zYhj3-pLDgh-8d3G9hgWlzB7XPyE7QarZsWY_IWLroVnkA99y07PMNSVbHOMgWxrB1dXdXO07DxS4pZ_pZi6hZGtyB6DLhKIaLGorHwXhqb6iy3nafGdtS01NA-Q7RtOwr-MV18pc4jjj2CxV6Qi5Pj89mcxaYMzEIo2LEiWFvlVrk0SKG8qpQNzoJX5XzphOdeGiNClWPVQwgWJWoEaXMfAg-hVD7bJ7vNqvEvCc0LcIcc9zk3qXBcmLIUIUltFqqscMEdkGxkhbaxYjk2zljqEZr2XQ8M1MhAneCRHhB2O2s9VOy4h16NXNa_SZ4Go3LPzHejUGhgNvLANH61aTUExSCR4B3k_6CRCqwNh-e9-u8veEv25udnp_r00-LLIXmEdwag4RHZ7X5s_GtwmLrqTb8gbgCkGhaT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+intermediate-temperature+solid+oxide+fuel+cells+with+oxygen-ion+conducting+electrolyte+act+as+a+catalyst+for+NO+decomposition&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Bu%2C+Yun-Fei&rft.au=Ding%2C+Dong&rft.au=Gan%2C+Lu&rft.au=Xiong%2C+Xun-Hui&rft.date=2014-10-01&rft.issn=0926-3373&rft.volume=158-159&rft.spage=418&rft.epage=425&rft_id=info:doi/10.1016%2Fj.apcatb.2014.04.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2014_04_041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon