Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2

[Display omitted] •Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional group narrowed the band gap and shifted down the VB energy level.•Nitride vacancies extended the spectral absorption.•Reduced g-C3N4 showed a h...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 232; pp. 19 - 25
Main Authors Zhu, Zedong, Pan, Honghui, Murugananthan, Muthu, Gong, Jianyu, Zhang, Yanrong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional group narrowed the band gap and shifted down the VB energy level.•Nitride vacancies extended the spectral absorption.•Reduced g-C3N4 showed a high photocatalytic activity for the production of H2O2. Reduced g-C3N4 material was prepared by a thermal treatment of g-C3N4 in presence of NaBH4 under N2 atmosphere. The prepared catalyst material was characterized by using elemental analyzer, FTIR and XPS and the analysis showed that the reduction treatment created nitrogen vacancies followed by a formation of functional group CN owing to a break-up reaction in the pyridine nitride of a s-triazine-C3N4. The findings of UV–vis DRS and DFT calculation revealed that the formed functional group CN results in a narrowed energy band gap owing to positive shift in the conduction band as well as valence band. The downshift observed in the valence band level made the catalyst material with a feature of visible light-driven water oxidation capacity, that was confirmed by the electron and hole sacrifice and OH trapping-EPR techniques. The intermediate energy level within the band gap of g-C3N4 originated from the vacancies caused an extended absorption, especially to the visible region. The analysis of PL emission spectrum confirmed that the reduction treatment could facilitate the spatial separation of photo-excited electron and hole, and enhance the charge transfer as well. RDE studies showed that the selective production of H2O2 by two-electron reduction of O2 was a predominant reaction step using the reduced g-C3N4. The reduced g-C3N4 prepared at 370 °C exhibited an efficient visible light driven catalytic performance on H2O2 production (170 μmol/L h−1) from pure H2O and O2 at ambient atmosphere in the absence of organic electron donors. The solar-to-H2O2 chemical conversion efficiency and apparent quantum yield approached to ∼0.26%, ∼4.3%, respectively. In addition, the experimental results obtained on recycling of the prepared g-C3N4 evidenced the photocatalytic stability of the material.
AbstractList [Display omitted] •Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional group narrowed the band gap and shifted down the VB energy level.•Nitride vacancies extended the spectral absorption.•Reduced g-C3N4 showed a high photocatalytic activity for the production of H2O2. Reduced g-C3N4 material was prepared by a thermal treatment of g-C3N4 in presence of NaBH4 under N2 atmosphere. The prepared catalyst material was characterized by using elemental analyzer, FTIR and XPS and the analysis showed that the reduction treatment created nitrogen vacancies followed by a formation of functional group CN owing to a break-up reaction in the pyridine nitride of a s-triazine-C3N4. The findings of UV–vis DRS and DFT calculation revealed that the formed functional group CN results in a narrowed energy band gap owing to positive shift in the conduction band as well as valence band. The downshift observed in the valence band level made the catalyst material with a feature of visible light-driven water oxidation capacity, that was confirmed by the electron and hole sacrifice and OH trapping-EPR techniques. The intermediate energy level within the band gap of g-C3N4 originated from the vacancies caused an extended absorption, especially to the visible region. The analysis of PL emission spectrum confirmed that the reduction treatment could facilitate the spatial separation of photo-excited electron and hole, and enhance the charge transfer as well. RDE studies showed that the selective production of H2O2 by two-electron reduction of O2 was a predominant reaction step using the reduced g-C3N4. The reduced g-C3N4 prepared at 370 °C exhibited an efficient visible light driven catalytic performance on H2O2 production (170 μmol/L h−1) from pure H2O and O2 at ambient atmosphere in the absence of organic electron donors. The solar-to-H2O2 chemical conversion efficiency and apparent quantum yield approached to ∼0.26%, ∼4.3%, respectively. In addition, the experimental results obtained on recycling of the prepared g-C3N4 evidenced the photocatalytic stability of the material.
Author Pan, Honghui
Gong, Jianyu
Murugananthan, Muthu
Zhu, Zedong
Zhang, Yanrong
Author_xml – sequence: 1
  givenname: Zedong
  surname: Zhu
  fullname: Zhu, Zedong
  organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
– sequence: 2
  givenname: Honghui
  surname: Pan
  fullname: Pan, Honghui
  organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
– sequence: 3
  givenname: Muthu
  surname: Murugananthan
  fullname: Murugananthan, Muthu
  organization: Department of Chemistry, PSG College of Technology, Peelamedu, Coimbatore 641004, India
– sequence: 4
  givenname: Jianyu
  surname: Gong
  fullname: Gong, Jianyu
  organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
– sequence: 5
  givenname: Yanrong
  surname: Zhang
  fullname: Zhang, Yanrong
  email: yanrong_zhang@hust.edu.cn
  organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNT8zE_GhSBFrSB2oy4Nd5KbNmU6KZlQ6Ns7ta5cKBy4i8t34HwTMupCh4RcczbjjJc3mxnsDKRmJhhXMyaHFGdkzFUlM6mUHJExq0WZSVnJCzLp-w1jTEihxuTzw_e-aZG2frVOmY1-jx3drUMKQyO0h-QNtO2BgknDi66yuXzN6RYSRg8tdSFS7NbQGbR0hR1GSD50NDi6EEtxSc4dtD1e_dwpeX98eJsvspfl0_P8_iUzOatTpsAyFAxQ8qZU1lhX55arouJQlNLUubJgkTnWFEVlHW9A1I3jzhSmql1t5JTkp14TQ99HdHoX_RbiQXOmj470Rp8c6aMjzeSQYsBuf2HGp-8BKYJv_4PvTjAOw_Yeo-6Nx6MIH9EkbYP_u-ALAAiIqQ
CitedBy_id crossref_primary_10_1016_j_apsusc_2018_12_033
crossref_primary_10_1021_acs_langmuir_4c03264
crossref_primary_10_1016_j_apcatb_2021_120757
crossref_primary_10_1016_j_biortech_2020_123708
crossref_primary_10_1016_j_seppur_2024_128829
crossref_primary_10_1007_s11244_020_01317_9
crossref_primary_10_1016_j_jcat_2022_08_019
crossref_primary_10_1016_j_apcatb_2021_120516
crossref_primary_10_1016_j_catcom_2019_105860
crossref_primary_10_1007_s11356_023_29201_5
crossref_primary_10_1016_j_flatc_2022_100412
crossref_primary_10_1016_j_seppur_2024_128386
crossref_primary_10_1016_j_jpcs_2022_111109
crossref_primary_10_1016_j_nanoen_2022_107906
crossref_primary_10_1016_j_microc_2023_108588
crossref_primary_10_1016_j_ccr_2022_214846
crossref_primary_10_1021_acsaem_2c04124
crossref_primary_10_1021_acs_energyfuels_2c00138
crossref_primary_10_1016_S1872_2067_24_60195_6
crossref_primary_10_1007_s10854_024_12841_9
crossref_primary_10_1038_s41467_020_20823_8
crossref_primary_10_1016_j_jhazmat_2019_03_114
crossref_primary_10_1016_j_cej_2021_129107
crossref_primary_10_1039_D1NJ04682A
crossref_primary_10_1016_j_ijhydene_2019_05_001
crossref_primary_10_1002_smll_202401566
crossref_primary_10_1039_D0NR03178J
crossref_primary_10_1016_j_apsusc_2024_160304
crossref_primary_10_1039_D4CC01402B
crossref_primary_10_1002_ange_201911609
crossref_primary_10_1016_j_seppur_2021_119609
crossref_primary_10_1016_j_apsusc_2020_146584
crossref_primary_10_14356_kona_2023004
crossref_primary_10_1016_j_diamond_2018_11_025
crossref_primary_10_1016_j_jallcom_2024_178326
crossref_primary_10_1021_jacs_4c07170
crossref_primary_10_1039_C8TA08385A
crossref_primary_10_1021_acsabm_9b01240
crossref_primary_10_1016_j_cattod_2022_05_007
crossref_primary_10_1016_j_seppur_2022_122740
crossref_primary_10_1016_j_chemosphere_2019_124927
crossref_primary_10_1016_j_cattod_2018_12_026
crossref_primary_10_1016_j_carbon_2022_06_035
crossref_primary_10_1016_j_jallcom_2022_168500
crossref_primary_10_1016_j_seppur_2022_122185
crossref_primary_10_1021_acs_jpcc_3c04523
crossref_primary_10_1021_acssuschemeng_8b04338
crossref_primary_10_1016_j_seppur_2024_129456
crossref_primary_10_1021_acsanm_2c04829
crossref_primary_10_1149_1945_7111_ac707a
crossref_primary_10_1007_s10853_019_04082_7
crossref_primary_10_1039_D4NJ04011B
crossref_primary_10_1016_j_jece_2024_114093
crossref_primary_10_1016_j_colsurfa_2020_124552
crossref_primary_10_1016_j_jhazmat_2020_124191
crossref_primary_10_1002_aesr_202300090
crossref_primary_10_1021_acs_est_1c02499
crossref_primary_10_1039_D0CC07397K
crossref_primary_10_1039_D0NH00046A
crossref_primary_10_1016_j_jhazmat_2020_123310
crossref_primary_10_1039_D0CP03824E
crossref_primary_10_1016_j_envres_2022_113390
crossref_primary_10_1016_j_jelechem_2021_115170
crossref_primary_10_1016_j_cej_2022_136501
crossref_primary_10_1002_smll_202301007
crossref_primary_10_1016_j_molstruc_2023_137390
crossref_primary_10_1016_j_apcatb_2021_120790
crossref_primary_10_1016_j_jphotochem_2024_116043
crossref_primary_10_1016_j_apcatb_2023_122933
crossref_primary_10_1016_j_cej_2022_138489
crossref_primary_10_1016_j_envpol_2019_04_010
crossref_primary_10_1016_j_envres_2021_110785
crossref_primary_10_3390_catal14070421
crossref_primary_10_1016_j_seppur_2024_127701
crossref_primary_10_1021_acsnano_2c05993
crossref_primary_10_1039_C8TA12076E
crossref_primary_10_1016_j_cej_2021_129935
crossref_primary_10_1002_anie_202502943
crossref_primary_10_1016_j_ijhydene_2021_05_197
crossref_primary_10_1039_D2CY01801B
crossref_primary_10_1016_j_apcatb_2020_119289
crossref_primary_10_1149_2_0111812jss
crossref_primary_10_1016_j_seppur_2021_118424
crossref_primary_10_1149_1945_7111_abad6f
crossref_primary_10_1016_j_cej_2022_135664
crossref_primary_10_1016_j_jece_2023_109405
crossref_primary_10_1002_smll_202303813
crossref_primary_10_1007_s11581_022_04690_5
crossref_primary_10_1002_solr_202000594
crossref_primary_10_1016_j_apcata_2021_118230
crossref_primary_10_3390_catal9070623
crossref_primary_10_1016_j_cej_2025_159758
crossref_primary_10_1002_cptc_202200299
crossref_primary_10_1002_ange_202210856
crossref_primary_10_1016_j_chemosphere_2020_127423
crossref_primary_10_1002_advs_202105346
crossref_primary_10_1016_j_cej_2024_150665
crossref_primary_10_1021_acscatal_1c05324
crossref_primary_10_1016_j_jwpe_2023_104347
crossref_primary_10_1039_C9NR05057D
crossref_primary_10_1039_C8CP06855K
crossref_primary_10_1016_j_jmst_2024_12_060
crossref_primary_10_1002_aenm_202401768
crossref_primary_10_1016_j_cej_2018_09_208
crossref_primary_10_1016_j_cclet_2022_06_044
crossref_primary_10_1021_acsaem_2c01683
crossref_primary_10_1002_adfm_202111125
crossref_primary_10_1016_j_cclet_2024_110125
crossref_primary_10_1016_j_jpcs_2022_110588
crossref_primary_10_3390_molecules27206965
crossref_primary_10_1016_j_efmat_2022_05_003
crossref_primary_10_1016_j_jece_2024_113640
crossref_primary_10_3390_catal8100445
crossref_primary_10_1016_j_chemosphere_2024_143389
crossref_primary_10_1038_s41598_024_72980_1
crossref_primary_10_1016_j_jcis_2023_06_186
crossref_primary_10_1016_j_apcatb_2019_118205
crossref_primary_10_1016_j_ccr_2021_214277
crossref_primary_10_1016_j_apcatb_2020_119061
crossref_primary_10_1021_acs_langmuir_1c02360
crossref_primary_10_1002_sus2_83
crossref_primary_10_1039_D0EN00801J
crossref_primary_10_1016_j_cclet_2024_110457
crossref_primary_10_1002_solr_202000132
crossref_primary_10_1007_s40820_022_00794_9
crossref_primary_10_1016_j_ceramint_2021_09_215
crossref_primary_10_1016_j_apcatb_2019_03_040
crossref_primary_10_1016_j_jcat_2022_06_042
crossref_primary_10_1039_D0TA07794A
crossref_primary_10_1016_j_apsusc_2022_152872
crossref_primary_10_1016_j_mtchem_2024_102439
crossref_primary_10_1038_s41467_023_40991_7
crossref_primary_10_1016_j_ceramint_2023_01_205
crossref_primary_10_1021_acs_langmuir_4c05287
crossref_primary_10_1016_j_cej_2020_128368
crossref_primary_10_2139_ssrn_4110639
crossref_primary_10_1016_j_jece_2023_111121
crossref_primary_10_1016_j_jece_2023_111122
crossref_primary_10_1016_j_cej_2023_142038
crossref_primary_10_1016_j_cej_2023_147609
crossref_primary_10_1016_j_jcat_2018_08_003
crossref_primary_10_1016_j_apcatb_2022_121298
crossref_primary_10_1016_j_mtchem_2021_100605
crossref_primary_10_1016_j_jallcom_2023_173322
crossref_primary_10_1016_j_apcatb_2019_02_031
crossref_primary_10_1016_j_cej_2024_156843
crossref_primary_10_1016_j_apcatb_2023_123075
crossref_primary_10_1016_j_cattod_2023_114400
crossref_primary_10_1016_j_jece_2024_112291
crossref_primary_10_1016_j_jece_2024_112290
crossref_primary_10_1039_D0NR00226G
crossref_primary_10_1016_j_cej_2021_130615
crossref_primary_10_1002_adma_202110266
crossref_primary_10_1039_C9TA00339H
crossref_primary_10_1016_j_mssp_2023_107978
crossref_primary_10_1016_j_ese_2022_100170
crossref_primary_10_1016_j_molstruc_2022_134205
crossref_primary_10_1016_j_cej_2024_151950
crossref_primary_10_1016_j_chemosphere_2019_03_042
crossref_primary_10_1021_acscatal_1c03103
crossref_primary_10_1002_ange_202502943
crossref_primary_10_1016_j_chemosphere_2020_127343
crossref_primary_10_1007_s10854_019_02173_4
crossref_primary_10_1016_j_jcis_2021_12_006
crossref_primary_10_1039_D1SE01115D
crossref_primary_10_3390_nano13071188
crossref_primary_10_1021_acscatal_2c00815
crossref_primary_10_1021_acsapm_2c02057
crossref_primary_10_1016_j_jallcom_2023_170623
crossref_primary_10_1016_j_jhazmat_2023_131046
crossref_primary_10_1021_acsnano_5c02303
crossref_primary_10_1002_aenm_202104052
crossref_primary_10_1016_j_matre_2024_100267
crossref_primary_10_1039_D2TA08722G
crossref_primary_10_1021_acs_iecr_2c03673
crossref_primary_10_1088_2053_1583_ac953a
crossref_primary_10_1016_j_renene_2022_09_050
crossref_primary_10_1007_s11595_024_2999_y
crossref_primary_10_1016_j_jcat_2019_06_015
crossref_primary_10_1007_s10971_024_06633_0
crossref_primary_10_1016_j_gee_2023_02_012
crossref_primary_10_1016_j_cattod_2018_11_067
crossref_primary_10_1016_j_inoche_2025_114164
crossref_primary_10_1039_D0CS00458H
crossref_primary_10_1021_acscatal_2c05931
crossref_primary_10_1002_adfm_202405741
crossref_primary_10_1016_j_jece_2024_113396
crossref_primary_10_1016_j_cej_2020_127729
crossref_primary_10_1007_s40820_023_01052_2
crossref_primary_10_12677_HJCET_2021_115040
crossref_primary_10_1016_j_apcatb_2020_119557
crossref_primary_10_1038_s42004_020_00421_x
crossref_primary_10_1016_j_apcatb_2019_02_041
crossref_primary_10_1016_j_jcis_2021_04_111
crossref_primary_10_1016_j_apcata_2022_118782
crossref_primary_10_1002_anie_202210856
crossref_primary_10_1016_j_matt_2022_05_011
crossref_primary_10_1016_j_apcatb_2023_122770
crossref_primary_10_1016_j_apcatb_2021_120035
crossref_primary_10_1016_j_carbon_2019_09_050
crossref_primary_10_1016_j_jssc_2022_123057
crossref_primary_10_1021_acsanm_3c05030
crossref_primary_10_1016_j_jece_2023_110594
crossref_primary_10_1016_j_nanoen_2023_109160
crossref_primary_10_1016_j_apsusc_2024_159463
crossref_primary_10_1016_j_cjche_2024_02_013
crossref_primary_10_1021_acs_energyfuels_3c00717
crossref_primary_10_1007_s10562_024_04831_7
crossref_primary_10_1093_chemle_upae175
crossref_primary_10_1039_D2TA01170K
crossref_primary_10_1016_j_apcatb_2023_122862
crossref_primary_10_1016_j_seppur_2020_116924
crossref_primary_10_1016_j_apcatb_2022_121372
crossref_primary_10_1021_acssuschemeng_3c03772
crossref_primary_10_1007_s12598_024_02752_3
crossref_primary_10_1016_j_diamond_2018_04_027
crossref_primary_10_1016_j_envres_2021_111002
crossref_primary_10_1021_acs_energyfuels_3c04885
crossref_primary_10_1016_j_gee_2023_01_003
crossref_primary_10_3390_catal9120990
crossref_primary_10_1016_j_surfin_2024_104825
crossref_primary_10_1016_j_jcis_2023_11_081
crossref_primary_10_1016_j_colsurfa_2021_126758
crossref_primary_10_1016_j_jece_2024_114425
crossref_primary_10_1002_adfm_202501108
crossref_primary_10_1016_j_apcatb_2022_121485
crossref_primary_10_1016_j_apsusc_2021_149796
crossref_primary_10_1039_D2EW00504B
crossref_primary_10_1016_j_cej_2021_131972
crossref_primary_10_1021_acsami_2c12038
crossref_primary_10_1016_j_apsusc_2022_153586
crossref_primary_10_1016_j_cej_2020_128030
crossref_primary_10_1016_j_ceja_2021_100142
crossref_primary_10_1039_D4QI01706D
crossref_primary_10_1039_C8RA06778C
crossref_primary_10_1016_j_jece_2024_115301
crossref_primary_10_1016_j_apcatb_2018_10_045
crossref_primary_10_1021_acssuschemeng_2c04512
crossref_primary_10_1039_D0TA08649E
crossref_primary_10_3390_molecules26133844
crossref_primary_10_1016_j_cej_2024_153192
crossref_primary_10_1016_j_apcatb_2020_119225
crossref_primary_10_1016_j_seppur_2024_129930
crossref_primary_10_1016_j_envres_2020_109339
crossref_primary_10_1039_D0TA03974H
crossref_primary_10_1039_D3NJ05134J
crossref_primary_10_3390_app11167222
crossref_primary_10_1016_j_jes_2019_04_009
crossref_primary_10_1039_D2CC02861A
crossref_primary_10_1016_j_jallcom_2025_179008
crossref_primary_10_1039_D2QI00227B
crossref_primary_10_1016_j_jclepro_2022_131144
crossref_primary_10_1016_j_jcis_2022_07_077
crossref_primary_10_1016_j_cej_2019_01_172
crossref_primary_10_1016_j_cej_2023_146488
crossref_primary_10_1016_j_apcatb_2019_118054
crossref_primary_10_1002_anie_201911609
crossref_primary_10_1016_j_seppur_2020_116576
crossref_primary_10_1039_D1TA05752A
crossref_primary_10_1007_s11244_024_01936_6
crossref_primary_10_1016_j_jhazmat_2021_127979
crossref_primary_10_1016_j_cej_2022_140649
crossref_primary_10_1016_j_apsusc_2021_151089
crossref_primary_10_1002_smll_202006851
crossref_primary_10_1039_D0TC01479F
crossref_primary_10_1016_j_apsusc_2023_158637
crossref_primary_10_1016_j_ijhydene_2022_03_106
Cites_doi 10.1002/adma.201204453
10.1002/adfm.201200922
10.1021/acscatal.5b01155
10.1021/acs.jpcc.7b06587
10.1002/adma.201305299
10.1021/ja103798k
10.1063/1.1940137
10.1021/acscatal.5b00408
10.1002/anie.201407938
10.1021/ja903923s
10.1021/acscatal.6b02367
10.1021/es9707926
10.1038/nmat2317
10.1021/jacs.6b11878
10.1016/j.nanoen.2017.04.017
10.1021/jacs.6b05806
10.1021/acs.est.6b02833
10.1016/j.ijhydene.2014.02.052
10.1016/j.apcatb.2017.11.061
10.1016/j.apcatb.2017.02.025
10.1021/jacs.6b07272
10.1038/ncomms11470
10.1021/cs4000624
10.1002/anie.201101182
10.1021/cs401208c
10.1021/acscatal.6b03334
10.1002/chem.200601759
10.1002/adma.201501939
10.1021/cs502002u
10.1016/j.apcatb.2017.01.061
10.1021/acssuschemeng.7b00575
10.1002/adma.201404057
10.1002/adma.200401756
10.1002/adma.201601567
10.1126/science.aaa3145
10.1021/jp301676n
10.1021/es5046309
10.1021/acsami.7b01871
10.1002/anie.201611127
10.1002/adfm.201602779
10.1016/j.apcatb.2011.08.014
10.1016/j.apcatb.2016.03.004
10.1002/adma.201500033
10.1039/c2cc35862j
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2018.03.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 25
ExternalDocumentID 10_1016_j_apcatb_2018_03_035
S0926337318302340
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c409t-8ad0e20ae31b68dcdf94d18571a563c948dade0f0b557df1ba29bf1fc5c79f9c3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 03:10:47 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Sat Mar 02 16:00:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reduced g-C3N4
Hydrogen peroxide
Nitrogen vacancies
DFT
Photocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-8ad0e20ae31b68dcdf94d18571a563c948dade0f0b557df1ba29bf1fc5c79f9c3
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_apcatb_2018_03_035
crossref_citationtrail_10_1016_j_apcatb_2018_03_035
elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_03_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-15
PublicationDateYYYYMMDD 2018-09-15
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tan, Chen, Sun, Fan, Kwok, Zhang, Chua (bib0200) 2005; 98
Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib0075) 2015; 347
Niu, Yin, Yang, Liu, Cheng (bib0115) 2014; 26
Ge, Han (bib0050) 2011; 108–109
Li, Dong, Hailili, Yang, Li, Wang, Zeng, Wang (bib0095) 2016; 190
Kofuji, Isobe, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0090) 2016; 138
Li, Ouyang, Xu, Wang, Bi, Zhang, Ye (bib0105) 2016; 138
Liu, Niu, Sun, Smith, Chen, Lu, Cheng (bib0130) 2010; 13
Chu, Wang, Guo, Feng, Wang, Luo, Fan, Zou (bib0070) 2013; 3
Zhang, Zang, Wang (bib0165) 2015; 5
He, Zhang, Teng, Fan (bib0035) 2015; 49
Moon, Fujitsuka, Kim, Majima, Wang, Choi (bib0145) 2017; 7
Cheng, Yuan, Liao, Zhang (bib0120) 2016; 50
Zhao, Wu, Wu, Oikawa, Hidaka, Serpone (bib0210) 1998; 32
Chu, Wang, Feng, Wang, Zou (bib0140) 2014; 39
Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (bib0085) 2017; 139
Liu, Zhao, Zhou, Liu, Pang, Zhang, Hao, Meng, Li, Kako, Ye (bib0110) 2016; 26
Tan, She, Yu, Xu, Ren, Xia (bib0045) 2017; 207
Singh, Buttry (bib0190) 2012; 116
Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0065) 2016; 6
Zhou, Zou, Zhang, Sun, Islam, Gong, Zhang, Yang (bib0125) 2017; 9
Cao, Low, Yu, Jaroniec (bib0040) 2015; 27
Yang, Gong, Zhang, Zhan, Ma, Fang, Vajtai, Wang, Ajayan (bib0030) 2013; 25
Shiraishi, Kanazawa, Sugano, Tsukamoto, Sakamoto, Ichikawa, Hirai (bib0025) 2014; 4
Niu, Zhang, Liu, Cheng (bib0135) 2012; 22
Bayan, Midya, Gogurla, Singha, Ray (bib0170) 2017; 121
Ye, Zhao, Hu, Liu, Ji, Shen, Ma (bib0100) 2017; 56
Kang, Yang, Yin, Kang, Wang, Liu, Cheng (bib0220) 2016; 28
Shiraishi, Kofuji, Sakamoto, Tanaka, Ichikawa, Hirai (bib0060) 2015; 5
Zhao, Zhao, Zhang, Li, Zhu (bib0185) 2017; 35
Chen, Zhang, Fu, Antonietti, Wang (bib0055) 2009; 131
Mase, Yoneda, Yamada, Fukuzumi (bib0005) 2016; 7
Wang, Wang, Antonietti (bib0080) 2012; 51
Lotsch, Doblinger, Sehnert, Seyfarth, Senker, Oeckler, Schnick (bib0155) 2007; 13
Wang, Ni, Liu, Xu (bib0175) 2018; 225
Kofuji, Ohkita, Shiraishi, Sakamoto, Ichikawa, Tanaka, Hirai (bib0180) 2017; 5
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0015) 2009; 8
Groenewolt, Antonietti (bib0150) 2005; 17
Li, Shen, Hong, Lin, Gao, Chen (bib0195) 2012; 48
Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib0010) 2014; 53
Masih, Ma, Rohani (bib0020) 2017; 206
Yeh, Teng, Chen, Teng (bib0205) 2014; 26
Fan, Zhang, Cheng, Wang, Li, Zhou, Shi (bib0215) 2015; 5
Kang, Yang, Yin, Kang, Liu, Cheng (bib0160) 2015; 27
Liu (10.1016/j.apcatb.2018.03.035_bib0130) 2010; 13
Wang (10.1016/j.apcatb.2018.03.035_bib0175) 2018; 225
Shiraishi (10.1016/j.apcatb.2018.03.035_bib0025) 2014; 4
Li (10.1016/j.apcatb.2018.03.035_bib0195) 2012; 48
Cheng (10.1016/j.apcatb.2018.03.035_bib0120) 2016; 50
Kofuji (10.1016/j.apcatb.2018.03.035_bib0065) 2016; 6
Niu (10.1016/j.apcatb.2018.03.035_bib0135) 2012; 22
Zhao (10.1016/j.apcatb.2018.03.035_bib0185) 2017; 35
Fan (10.1016/j.apcatb.2018.03.035_bib0215) 2015; 5
Cao (10.1016/j.apcatb.2018.03.035_bib0040) 2015; 27
Liu (10.1016/j.apcatb.2018.03.035_bib0075) 2015; 347
Ge (10.1016/j.apcatb.2018.03.035_bib0050) 2011; 108–109
Mase (10.1016/j.apcatb.2018.03.035_bib0005) 2016; 7
Groenewolt (10.1016/j.apcatb.2018.03.035_bib0150) 2005; 17
Lotsch (10.1016/j.apcatb.2018.03.035_bib0155) 2007; 13
Li (10.1016/j.apcatb.2018.03.035_bib0105) 2016; 138
Kofuji (10.1016/j.apcatb.2018.03.035_bib0090) 2016; 138
Zhao (10.1016/j.apcatb.2018.03.035_bib0210) 1998; 32
Kang (10.1016/j.apcatb.2018.03.035_bib0160) 2015; 27
Wang (10.1016/j.apcatb.2018.03.035_bib0080) 2012; 51
Tan (10.1016/j.apcatb.2018.03.035_bib0045) 2017; 207
Wang (10.1016/j.apcatb.2018.03.035_bib0015) 2009; 8
Yang (10.1016/j.apcatb.2018.03.035_bib0030) 2013; 25
Kofuji (10.1016/j.apcatb.2018.03.035_bib0180) 2017; 5
Shiraishi (10.1016/j.apcatb.2018.03.035_bib0060) 2015; 5
Masih (10.1016/j.apcatb.2018.03.035_bib0020) 2017; 206
He (10.1016/j.apcatb.2018.03.035_bib0035) 2015; 49
Zhang (10.1016/j.apcatb.2018.03.035_bib0165) 2015; 5
Bayan (10.1016/j.apcatb.2018.03.035_bib0170) 2017; 121
Che (10.1016/j.apcatb.2018.03.035_bib0085) 2017; 139
Li (10.1016/j.apcatb.2018.03.035_bib0095) 2016; 190
Chen (10.1016/j.apcatb.2018.03.035_bib0055) 2009; 131
Singh (10.1016/j.apcatb.2018.03.035_bib0190) 2012; 116
Ye (10.1016/j.apcatb.2018.03.035_bib0100) 2017; 56
Zhou (10.1016/j.apcatb.2018.03.035_bib0125) 2017; 9
Moon (10.1016/j.apcatb.2018.03.035_bib0145) 2017; 7
Niu (10.1016/j.apcatb.2018.03.035_bib0115) 2014; 26
Kang (10.1016/j.apcatb.2018.03.035_bib0220) 2016; 28
Tan (10.1016/j.apcatb.2018.03.035_bib0200) 2005; 98
Yeh (10.1016/j.apcatb.2018.03.035_bib0205) 2014; 26
Chu (10.1016/j.apcatb.2018.03.035_bib0070) 2013; 3
Shiraishi (10.1016/j.apcatb.2018.03.035_bib0010) 2014; 53
Liu (10.1016/j.apcatb.2018.03.035_bib0110) 2016; 26
Chu (10.1016/j.apcatb.2018.03.035_bib0140) 2014; 39
References_xml – volume: 53
  start-page: 13454
  year: 2014
  end-page: 13459
  ident: bib0010
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 4572
  year: 2015
  end-page: 4577
  ident: bib0160
  publication-title: Adv Mater.
– volume: 121
  start-page: 19383
  year: 2017
  end-page: 19391
  ident: bib0170
  publication-title: The J. Physical Chemistry C.
– volume: 56
  start-page: 8407
  year: 2017
  end-page: 8411
  ident: bib0100
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 7
  start-page: 11470
  year: 2016
  ident: bib0005
  publication-title: Nat Commun.
– volume: 49
  start-page: 649
  year: 2015
  end-page: 656
  ident: bib0035
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 12017
  year: 2012
  end-page: 12019
  ident: bib0195
  publication-title: Chem Commun.
– volume: 26
  start-page: 6822
  year: 2016
  end-page: 6829
  ident: bib0110
  publication-title: Adv. Funct. Mater.
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  ident: bib0075
  publication-title: Science
– volume: 98
  start-page: 013505
  year: 2005
  ident: bib0200
  publication-title: J. Appl. Phys.
– volume: 131
  start-page: 11658
  year: 2009
  end-page: 11659
  ident: bib0055
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 2150
  year: 2015
  end-page: 2176
  ident: bib0040
  publication-title: Adv Mater.
– volume: 7
  start-page: 2886
  year: 2017
  end-page: 2895
  ident: bib0145
  publication-title: ACS Catal.
– volume: 26
  start-page: 3297
  year: 2014
  end-page: 3303
  ident: bib0205
  publication-title: Adv Mater.
– volume: 22
  start-page: 4763
  year: 2012
  end-page: 4770
  ident: bib0135
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 405
  year: 2017
  end-page: 414
  ident: bib0185
  publication-title: Nano Energy.
– volume: 25
  start-page: 2452
  year: 2013
  end-page: 2456
  ident: bib0030
  publication-title: Adv Mater.
– volume: 51
  start-page: 68
  year: 2012
  end-page: 89
  ident: bib0080
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 207
  start-page: 120
  year: 2017
  end-page: 133
  ident: bib0045
  publication-title: Appl. Catal. B Environ.
– volume: 5
  start-page: 6478
  year: 2017
  end-page: 6485
  ident: bib0180
  publication-title: ACS Sustainable Chemistry & Engineering.
– volume: 5
  start-page: 941
  year: 2015
  end-page: 947
  ident: bib0165
  publication-title: ACS Catal.
– volume: 138
  start-page: 10019
  year: 2016
  end-page: 10025
  ident: bib0090
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 18699
  year: 2017
  end-page: 18709
  ident: bib0125
  publication-title: ACS Appl Mater Interfaces.
– volume: 138
  start-page: 13289
  year: 2016
  end-page: 13297
  ident: bib0105
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 912
  year: 2013
  end-page: 919
  ident: bib0070
  publication-title: ACS Catal.
– volume: 6
  start-page: 7021
  year: 2016
  end-page: 7029
  ident: bib0065
  publication-title: ACS Catal.
– volume: 13
  start-page: 4969
  year: 2007
  end-page: 4980
  ident: bib0155
  publication-title: Chemistry
– volume: 4
  start-page: 774
  year: 2014
  end-page: 780
  ident: bib0025
  publication-title: ACS Catal.
– volume: 28
  start-page: 6471
  year: 2016
  end-page: 6477
  ident: bib0220
  publication-title: Adv Mater.
– volume: 26
  start-page: 8046
  year: 2014
  end-page: 8052
  ident: bib0115
  publication-title: Adv Mater.
– volume: 50
  start-page: 11646
  year: 2016
  end-page: 11653
  ident: bib0120
  publication-title: Environ Sci Technol.
– volume: 5
  start-page: 3058
  year: 2015
  end-page: 3066
  ident: bib0060
  publication-title: ACS Catal.
– volume: 13
  start-page: 11642
  year: 2010
  end-page: 11648
  ident: bib0130
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 2394
  year: 1998
  end-page: 2400
  ident: bib0210
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib0015
  publication-title: Nat. Mater.
– volume: 108–109
  start-page: 100
  year: 2011
  end-page: 107
  ident: bib0050
  publication-title: Appl. Catal. B Environ.
– volume: 225
  start-page: 139
  year: 2018
  end-page: 147
  ident: bib0175
  publication-title: Appl. Catal. B Environ.
– volume: 39
  start-page: 13519
  year: 2014
  end-page: 13526
  ident: bib0140
  publication-title: Int. J. Hydrogen Energy
– volume: 139
  start-page: 3021
  year: 2017
  end-page: 3026
  ident: bib0085
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 5008
  year: 2015
  end-page: 5015
  ident: bib0215
  publication-title: ACS Catal.
– volume: 17
  start-page: 1789
  year: 2005
  end-page: 1792
  ident: bib0150
  publication-title: Adv. Mater.
– volume: 190
  start-page: 26
  year: 2016
  end-page: 35
  ident: bib0095
  publication-title: Appl. Catal. B Environ.
– volume: 116
  start-page: 10656
  year: 2012
  end-page: 10663
  ident: bib0190
  publication-title: The J. Physical Chemistry C.
– volume: 206
  start-page: 556
  year: 2017
  end-page: 588
  ident: bib0020
  publication-title: Appl. Catal. B Environ.
– volume: 25
  start-page: 2452
  year: 2013
  ident: 10.1016/j.apcatb.2018.03.035_bib0030
  publication-title: Adv Mater.
  doi: 10.1002/adma.201204453
– volume: 22
  start-page: 4763
  year: 2012
  ident: 10.1016/j.apcatb.2018.03.035_bib0135
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200922
– volume: 5
  start-page: 5008
  year: 2015
  ident: 10.1016/j.apcatb.2018.03.035_bib0215
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01155
– volume: 121
  start-page: 19383
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0170
  publication-title: The J. Physical Chemistry C.
  doi: 10.1021/acs.jpcc.7b06587
– volume: 26
  start-page: 3297
  year: 2014
  ident: 10.1016/j.apcatb.2018.03.035_bib0205
  publication-title: Adv Mater.
  doi: 10.1002/adma.201305299
– volume: 13
  start-page: 11642
  year: 2010
  ident: 10.1016/j.apcatb.2018.03.035_bib0130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103798k
– volume: 98
  start-page: 013505
  year: 2005
  ident: 10.1016/j.apcatb.2018.03.035_bib0200
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1940137
– volume: 5
  start-page: 3058
  year: 2015
  ident: 10.1016/j.apcatb.2018.03.035_bib0060
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00408
– volume: 53
  start-page: 13454
  year: 2014
  ident: 10.1016/j.apcatb.2018.03.035_bib0010
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407938
– volume: 131
  start-page: 11658
  year: 2009
  ident: 10.1016/j.apcatb.2018.03.035_bib0055
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903923s
– volume: 6
  start-page: 7021
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0065
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02367
– volume: 32
  start-page: 2394
  year: 1998
  ident: 10.1016/j.apcatb.2018.03.035_bib0210
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9707926
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.apcatb.2018.03.035_bib0015
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 139
  start-page: 3021
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0085
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11878
– volume: 35
  start-page: 405
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0185
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2017.04.017
– volume: 138
  start-page: 10019
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0090
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05806
– volume: 50
  start-page: 11646
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0120
  publication-title: Environ Sci Technol.
  doi: 10.1021/acs.est.6b02833
– volume: 39
  start-page: 13519
  year: 2014
  ident: 10.1016/j.apcatb.2018.03.035_bib0140
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.052
– volume: 225
  start-page: 139
  year: 2018
  ident: 10.1016/j.apcatb.2018.03.035_bib0175
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.11.061
– volume: 207
  start-page: 120
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0045
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.02.025
– volume: 138
  start-page: 13289
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0105
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07272
– volume: 7
  start-page: 11470
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0005
  publication-title: Nat Commun.
  doi: 10.1038/ncomms11470
– volume: 3
  start-page: 912
  year: 2013
  ident: 10.1016/j.apcatb.2018.03.035_bib0070
  publication-title: ACS Catal.
  doi: 10.1021/cs4000624
– volume: 51
  start-page: 68
  year: 2012
  ident: 10.1016/j.apcatb.2018.03.035_bib0080
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201101182
– volume: 4
  start-page: 774
  year: 2014
  ident: 10.1016/j.apcatb.2018.03.035_bib0025
  publication-title: ACS Catal.
  doi: 10.1021/cs401208c
– volume: 7
  start-page: 2886
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0145
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03334
– volume: 13
  start-page: 4969
  year: 2007
  ident: 10.1016/j.apcatb.2018.03.035_bib0155
  publication-title: Chemistry
  doi: 10.1002/chem.200601759
– volume: 27
  start-page: 4572
  year: 2015
  ident: 10.1016/j.apcatb.2018.03.035_bib0160
  publication-title: Adv Mater.
  doi: 10.1002/adma.201501939
– volume: 5
  start-page: 941
  year: 2015
  ident: 10.1016/j.apcatb.2018.03.035_bib0165
  publication-title: ACS Catal.
  doi: 10.1021/cs502002u
– volume: 206
  start-page: 556
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0020
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.01.061
– volume: 5
  start-page: 6478
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0180
  publication-title: ACS Sustainable Chemistry & Engineering.
  doi: 10.1021/acssuschemeng.7b00575
– volume: 26
  start-page: 8046
  year: 2014
  ident: 10.1016/j.apcatb.2018.03.035_bib0115
  publication-title: Adv Mater.
  doi: 10.1002/adma.201404057
– volume: 17
  start-page: 1789
  year: 2005
  ident: 10.1016/j.apcatb.2018.03.035_bib0150
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401756
– volume: 28
  start-page: 6471
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0220
  publication-title: Adv Mater.
  doi: 10.1002/adma.201601567
– volume: 347
  start-page: 970
  year: 2015
  ident: 10.1016/j.apcatb.2018.03.035_bib0075
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 116
  start-page: 10656
  year: 2012
  ident: 10.1016/j.apcatb.2018.03.035_bib0190
  publication-title: The J. Physical Chemistry C.
  doi: 10.1021/jp301676n
– volume: 49
  start-page: 649
  year: 2015
  ident: 10.1016/j.apcatb.2018.03.035_bib0035
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5046309
– volume: 9
  start-page: 18699
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0125
  publication-title: ACS Appl Mater Interfaces.
  doi: 10.1021/acsami.7b01871
– volume: 56
  start-page: 8407
  year: 2017
  ident: 10.1016/j.apcatb.2018.03.035_bib0100
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201611127
– volume: 26
  start-page: 6822
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0110
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602779
– volume: 108–109
  start-page: 100
  year: 2011
  ident: 10.1016/j.apcatb.2018.03.035_bib0050
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2011.08.014
– volume: 190
  start-page: 26
  year: 2016
  ident: 10.1016/j.apcatb.2018.03.035_bib0095
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.03.004
– volume: 27
  start-page: 2150
  year: 2015
  ident: 10.1016/j.apcatb.2018.03.035_bib0040
  publication-title: Adv Mater.
  doi: 10.1002/adma.201500033
– volume: 48
  start-page: 12017
  year: 2012
  ident: 10.1016/j.apcatb.2018.03.035_bib0195
  publication-title: Chem Commun.
  doi: 10.1039/c2cc35862j
SSID ssj0002328
Score 2.6487153
Snippet [Display omitted] •Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms DFT
Hydrogen peroxide
Nitrogen vacancies
Photocatalysis
Reduced g-C3N4
Title Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2
URI https://dx.doi.org/10.1016/j.apcatb.2018.03.035
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFVcX-TgNW7TJE1zXJaVVWE9-MCTJa_qyrK7aD148bebZFsfIArSXloyUDLT-SbhyzcAR4aTzEhOceLBDDNCLNYeabC0Ik2cMB51I9timA2u2dktv12AXnMWJtAq69w_z-kxW9dvOvVsdmajUecykWlGqQhB6YGHhXU7YyJE-fHbJ83DVwwxG_vBOIxujs9FjpeaGVXpQPDKo9RpbPr2Azx9gZyTdVira0XUnX_OBiy4SQuWe02LthasflETbMF2__PQmjer_9rnTbi7GfnAHzs0jqoh9ilkODR7mFbTuHvzGvezx69IxeSH7nGPDhnytWwMT-TrWuQmD5ErgO6jTnVwJ5qWaJBepFtwfdK_6g1w3VcBG7-aq3CubOLSRDlKdJZbY0vJbNCEIopn1EiWW2VdUiaac2FLolUqdUlKw42QpTR0GxYn04nbAeSovzThluaMMaclc0Jpj3FWSZmKvA20mc7C1KLjoffFuGjYZY_F3AlFcEKRUH_zNuAPq9lcdOOP8aLxVPEteAqPC79a7v7bcg9WwlOgjhC-D4vV04s78PVJpQ9jAB7CUvf0fDB8B9HC5V4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UB7QLAtKs_60Ku1cWwn8XG1WhQe3R4KFadGfgUWrXZXEA78e8behIdUFQklp8QjRZ7JfGPr8zcAP6xkmVWS0wTBjArGHDWINFS5PE18bhF1I9tikpWX4vRKXq3BqDsLE2iVbe5f5fSYrdsng3Y2B8vpdPA7UWnGeR6CEoFH4Lp9PahTyR6sD0_OyslzQsaiISZkHE-DQXeCLtK89NLqxgSOVxHVTmPft38g1CvUOd6CzbZcJMPVF23Dmp_3YWPUdWnrw-dXgoJ92Bm_nFtDs_bHvf8Cf_9MMfZnnsyicIi7C0mOLG8WzSJu4DzGLe3ZI9Ex_5FrOuITQbCcjRFKsLQlfn4T6QLkOkpVB4-SRU3K9Ff6FS6PxxejkratFajFBV1DC-0Snybac2aywllXK-GCLBTTMuNWicJp55M6MVLmrmZGp8rUrLbS5qpWlu9Ab76Y-29APMfLMOl4IYTwRgmfa4Mw57RSaV7sAu-ms7Kt7nhofzGrOoLZbbVyQhWcUCUcb7kL9NlqudLdeGd83nmqehM_FULDfy33Pmz5HTbKi5_n1fnJ5GwfPoU3gUnC5AH0mrsHf4jlSmOO2nB8ArA26A8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+light-driven+photocatalytically+active+g-C3N4+material+for+enhanced+generation+of+H2O2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhu%2C+Zedong&rft.au=Pan%2C+Honghui&rft.au=Murugananthan%2C+Muthu&rft.au=Gong%2C+Jianyu&rft.date=2018-09-15&rft.issn=0926-3373&rft.volume=232&rft.spage=19&rft.epage=25&rft_id=info:doi/10.1016%2Fj.apcatb.2018.03.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2018_03_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon