Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2
[Display omitted] •Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional group narrowed the band gap and shifted down the VB energy level.•Nitride vacancies extended the spectral absorption.•Reduced g-C3N4 showed a h...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 232; pp. 19 - 25 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional group narrowed the band gap and shifted down the VB energy level.•Nitride vacancies extended the spectral absorption.•Reduced g-C3N4 showed a high photocatalytic activity for the production of H2O2.
Reduced g-C3N4 material was prepared by a thermal treatment of g-C3N4 in presence of NaBH4 under N2 atmosphere. The prepared catalyst material was characterized by using elemental analyzer, FTIR and XPS and the analysis showed that the reduction treatment created nitrogen vacancies followed by a formation of functional group CN owing to a break-up reaction in the pyridine nitride of a s-triazine-C3N4. The findings of UV–vis DRS and DFT calculation revealed that the formed functional group CN results in a narrowed energy band gap owing to positive shift in the conduction band as well as valence band. The downshift observed in the valence band level made the catalyst material with a feature of visible light-driven water oxidation capacity, that was confirmed by the electron and hole sacrifice and OH trapping-EPR techniques. The intermediate energy level within the band gap of g-C3N4 originated from the vacancies caused an extended absorption, especially to the visible region. The analysis of PL emission spectrum confirmed that the reduction treatment could facilitate the spatial separation of photo-excited electron and hole, and enhance the charge transfer as well. RDE studies showed that the selective production of H2O2 by two-electron reduction of O2 was a predominant reaction step using the reduced g-C3N4. The reduced g-C3N4 prepared at 370 °C exhibited an efficient visible light driven catalytic performance on H2O2 production (170 μmol/L h−1) from pure H2O and O2 at ambient atmosphere in the absence of organic electron donors. The solar-to-H2O2 chemical conversion efficiency and apparent quantum yield approached to ∼0.26%, ∼4.3%, respectively. In addition, the experimental results obtained on recycling of the prepared g-C3N4 evidenced the photocatalytic stability of the material. |
---|---|
AbstractList | [Display omitted]
•Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional group narrowed the band gap and shifted down the VB energy level.•Nitride vacancies extended the spectral absorption.•Reduced g-C3N4 showed a high photocatalytic activity for the production of H2O2.
Reduced g-C3N4 material was prepared by a thermal treatment of g-C3N4 in presence of NaBH4 under N2 atmosphere. The prepared catalyst material was characterized by using elemental analyzer, FTIR and XPS and the analysis showed that the reduction treatment created nitrogen vacancies followed by a formation of functional group CN owing to a break-up reaction in the pyridine nitride of a s-triazine-C3N4. The findings of UV–vis DRS and DFT calculation revealed that the formed functional group CN results in a narrowed energy band gap owing to positive shift in the conduction band as well as valence band. The downshift observed in the valence band level made the catalyst material with a feature of visible light-driven water oxidation capacity, that was confirmed by the electron and hole sacrifice and OH trapping-EPR techniques. The intermediate energy level within the band gap of g-C3N4 originated from the vacancies caused an extended absorption, especially to the visible region. The analysis of PL emission spectrum confirmed that the reduction treatment could facilitate the spatial separation of photo-excited electron and hole, and enhance the charge transfer as well. RDE studies showed that the selective production of H2O2 by two-electron reduction of O2 was a predominant reaction step using the reduced g-C3N4. The reduced g-C3N4 prepared at 370 °C exhibited an efficient visible light driven catalytic performance on H2O2 production (170 μmol/L h−1) from pure H2O and O2 at ambient atmosphere in the absence of organic electron donors. The solar-to-H2O2 chemical conversion efficiency and apparent quantum yield approached to ∼0.26%, ∼4.3%, respectively. In addition, the experimental results obtained on recycling of the prepared g-C3N4 evidenced the photocatalytic stability of the material. |
Author | Pan, Honghui Gong, Jianyu Murugananthan, Muthu Zhu, Zedong Zhang, Yanrong |
Author_xml | – sequence: 1 givenname: Zedong surname: Zhu fullname: Zhu, Zedong organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 2 givenname: Honghui surname: Pan fullname: Pan, Honghui organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 3 givenname: Muthu surname: Murugananthan fullname: Murugananthan, Muthu organization: Department of Chemistry, PSG College of Technology, Peelamedu, Coimbatore 641004, India – sequence: 4 givenname: Jianyu surname: Gong fullname: Gong, Jianyu organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 5 givenname: Yanrong surname: Zhang fullname: Zhang, Yanrong email: yanrong_zhang@hust.edu.cn organization: Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wNT8zE_GhSBFrSB2oy4Nd5KbNmU6KZlQ6Ns7ta5cKBy4i8t34HwTMupCh4RcczbjjJc3mxnsDKRmJhhXMyaHFGdkzFUlM6mUHJExq0WZSVnJCzLp-w1jTEihxuTzw_e-aZG2frVOmY1-jx3drUMKQyO0h-QNtO2BgknDi66yuXzN6RYSRg8tdSFS7NbQGbR0hR1GSD50NDi6EEtxSc4dtD1e_dwpeX98eJsvspfl0_P8_iUzOatTpsAyFAxQ8qZU1lhX55arouJQlNLUubJgkTnWFEVlHW9A1I3jzhSmql1t5JTkp14TQ99HdHoX_RbiQXOmj470Rp8c6aMjzeSQYsBuf2HGp-8BKYJv_4PvTjAOw_Yeo-6Nx6MIH9EkbYP_u-ALAAiIqQ |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2018_12_033 crossref_primary_10_1021_acs_langmuir_4c03264 crossref_primary_10_1016_j_apcatb_2021_120757 crossref_primary_10_1016_j_biortech_2020_123708 crossref_primary_10_1016_j_seppur_2024_128829 crossref_primary_10_1007_s11244_020_01317_9 crossref_primary_10_1016_j_jcat_2022_08_019 crossref_primary_10_1016_j_apcatb_2021_120516 crossref_primary_10_1016_j_catcom_2019_105860 crossref_primary_10_1007_s11356_023_29201_5 crossref_primary_10_1016_j_flatc_2022_100412 crossref_primary_10_1016_j_seppur_2024_128386 crossref_primary_10_1016_j_jpcs_2022_111109 crossref_primary_10_1016_j_nanoen_2022_107906 crossref_primary_10_1016_j_microc_2023_108588 crossref_primary_10_1016_j_ccr_2022_214846 crossref_primary_10_1021_acsaem_2c04124 crossref_primary_10_1021_acs_energyfuels_2c00138 crossref_primary_10_1016_S1872_2067_24_60195_6 crossref_primary_10_1007_s10854_024_12841_9 crossref_primary_10_1038_s41467_020_20823_8 crossref_primary_10_1016_j_jhazmat_2019_03_114 crossref_primary_10_1016_j_cej_2021_129107 crossref_primary_10_1039_D1NJ04682A crossref_primary_10_1016_j_ijhydene_2019_05_001 crossref_primary_10_1002_smll_202401566 crossref_primary_10_1039_D0NR03178J crossref_primary_10_1016_j_apsusc_2024_160304 crossref_primary_10_1039_D4CC01402B crossref_primary_10_1002_ange_201911609 crossref_primary_10_1016_j_seppur_2021_119609 crossref_primary_10_1016_j_apsusc_2020_146584 crossref_primary_10_14356_kona_2023004 crossref_primary_10_1016_j_diamond_2018_11_025 crossref_primary_10_1016_j_jallcom_2024_178326 crossref_primary_10_1021_jacs_4c07170 crossref_primary_10_1039_C8TA08385A crossref_primary_10_1021_acsabm_9b01240 crossref_primary_10_1016_j_cattod_2022_05_007 crossref_primary_10_1016_j_seppur_2022_122740 crossref_primary_10_1016_j_chemosphere_2019_124927 crossref_primary_10_1016_j_cattod_2018_12_026 crossref_primary_10_1016_j_carbon_2022_06_035 crossref_primary_10_1016_j_jallcom_2022_168500 crossref_primary_10_1016_j_seppur_2022_122185 crossref_primary_10_1021_acs_jpcc_3c04523 crossref_primary_10_1021_acssuschemeng_8b04338 crossref_primary_10_1016_j_seppur_2024_129456 crossref_primary_10_1021_acsanm_2c04829 crossref_primary_10_1149_1945_7111_ac707a crossref_primary_10_1007_s10853_019_04082_7 crossref_primary_10_1039_D4NJ04011B crossref_primary_10_1016_j_jece_2024_114093 crossref_primary_10_1016_j_colsurfa_2020_124552 crossref_primary_10_1016_j_jhazmat_2020_124191 crossref_primary_10_1002_aesr_202300090 crossref_primary_10_1021_acs_est_1c02499 crossref_primary_10_1039_D0CC07397K crossref_primary_10_1039_D0NH00046A crossref_primary_10_1016_j_jhazmat_2020_123310 crossref_primary_10_1039_D0CP03824E crossref_primary_10_1016_j_envres_2022_113390 crossref_primary_10_1016_j_jelechem_2021_115170 crossref_primary_10_1016_j_cej_2022_136501 crossref_primary_10_1002_smll_202301007 crossref_primary_10_1016_j_molstruc_2023_137390 crossref_primary_10_1016_j_apcatb_2021_120790 crossref_primary_10_1016_j_jphotochem_2024_116043 crossref_primary_10_1016_j_apcatb_2023_122933 crossref_primary_10_1016_j_cej_2022_138489 crossref_primary_10_1016_j_envpol_2019_04_010 crossref_primary_10_1016_j_envres_2021_110785 crossref_primary_10_3390_catal14070421 crossref_primary_10_1016_j_seppur_2024_127701 crossref_primary_10_1021_acsnano_2c05993 crossref_primary_10_1039_C8TA12076E crossref_primary_10_1016_j_cej_2021_129935 crossref_primary_10_1002_anie_202502943 crossref_primary_10_1016_j_ijhydene_2021_05_197 crossref_primary_10_1039_D2CY01801B crossref_primary_10_1016_j_apcatb_2020_119289 crossref_primary_10_1149_2_0111812jss crossref_primary_10_1016_j_seppur_2021_118424 crossref_primary_10_1149_1945_7111_abad6f crossref_primary_10_1016_j_cej_2022_135664 crossref_primary_10_1016_j_jece_2023_109405 crossref_primary_10_1002_smll_202303813 crossref_primary_10_1007_s11581_022_04690_5 crossref_primary_10_1002_solr_202000594 crossref_primary_10_1016_j_apcata_2021_118230 crossref_primary_10_3390_catal9070623 crossref_primary_10_1016_j_cej_2025_159758 crossref_primary_10_1002_cptc_202200299 crossref_primary_10_1002_ange_202210856 crossref_primary_10_1016_j_chemosphere_2020_127423 crossref_primary_10_1002_advs_202105346 crossref_primary_10_1016_j_cej_2024_150665 crossref_primary_10_1021_acscatal_1c05324 crossref_primary_10_1016_j_jwpe_2023_104347 crossref_primary_10_1039_C9NR05057D crossref_primary_10_1039_C8CP06855K crossref_primary_10_1016_j_jmst_2024_12_060 crossref_primary_10_1002_aenm_202401768 crossref_primary_10_1016_j_cej_2018_09_208 crossref_primary_10_1016_j_cclet_2022_06_044 crossref_primary_10_1021_acsaem_2c01683 crossref_primary_10_1002_adfm_202111125 crossref_primary_10_1016_j_cclet_2024_110125 crossref_primary_10_1016_j_jpcs_2022_110588 crossref_primary_10_3390_molecules27206965 crossref_primary_10_1016_j_efmat_2022_05_003 crossref_primary_10_1016_j_jece_2024_113640 crossref_primary_10_3390_catal8100445 crossref_primary_10_1016_j_chemosphere_2024_143389 crossref_primary_10_1038_s41598_024_72980_1 crossref_primary_10_1016_j_jcis_2023_06_186 crossref_primary_10_1016_j_apcatb_2019_118205 crossref_primary_10_1016_j_ccr_2021_214277 crossref_primary_10_1016_j_apcatb_2020_119061 crossref_primary_10_1021_acs_langmuir_1c02360 crossref_primary_10_1002_sus2_83 crossref_primary_10_1039_D0EN00801J crossref_primary_10_1016_j_cclet_2024_110457 crossref_primary_10_1002_solr_202000132 crossref_primary_10_1007_s40820_022_00794_9 crossref_primary_10_1016_j_ceramint_2021_09_215 crossref_primary_10_1016_j_apcatb_2019_03_040 crossref_primary_10_1016_j_jcat_2022_06_042 crossref_primary_10_1039_D0TA07794A crossref_primary_10_1016_j_apsusc_2022_152872 crossref_primary_10_1016_j_mtchem_2024_102439 crossref_primary_10_1038_s41467_023_40991_7 crossref_primary_10_1016_j_ceramint_2023_01_205 crossref_primary_10_1021_acs_langmuir_4c05287 crossref_primary_10_1016_j_cej_2020_128368 crossref_primary_10_2139_ssrn_4110639 crossref_primary_10_1016_j_jece_2023_111121 crossref_primary_10_1016_j_jece_2023_111122 crossref_primary_10_1016_j_cej_2023_142038 crossref_primary_10_1016_j_cej_2023_147609 crossref_primary_10_1016_j_jcat_2018_08_003 crossref_primary_10_1016_j_apcatb_2022_121298 crossref_primary_10_1016_j_mtchem_2021_100605 crossref_primary_10_1016_j_jallcom_2023_173322 crossref_primary_10_1016_j_apcatb_2019_02_031 crossref_primary_10_1016_j_cej_2024_156843 crossref_primary_10_1016_j_apcatb_2023_123075 crossref_primary_10_1016_j_cattod_2023_114400 crossref_primary_10_1016_j_jece_2024_112291 crossref_primary_10_1016_j_jece_2024_112290 crossref_primary_10_1039_D0NR00226G crossref_primary_10_1016_j_cej_2021_130615 crossref_primary_10_1002_adma_202110266 crossref_primary_10_1039_C9TA00339H crossref_primary_10_1016_j_mssp_2023_107978 crossref_primary_10_1016_j_ese_2022_100170 crossref_primary_10_1016_j_molstruc_2022_134205 crossref_primary_10_1016_j_cej_2024_151950 crossref_primary_10_1016_j_chemosphere_2019_03_042 crossref_primary_10_1021_acscatal_1c03103 crossref_primary_10_1002_ange_202502943 crossref_primary_10_1016_j_chemosphere_2020_127343 crossref_primary_10_1007_s10854_019_02173_4 crossref_primary_10_1016_j_jcis_2021_12_006 crossref_primary_10_1039_D1SE01115D crossref_primary_10_3390_nano13071188 crossref_primary_10_1021_acscatal_2c00815 crossref_primary_10_1021_acsapm_2c02057 crossref_primary_10_1016_j_jallcom_2023_170623 crossref_primary_10_1016_j_jhazmat_2023_131046 crossref_primary_10_1021_acsnano_5c02303 crossref_primary_10_1002_aenm_202104052 crossref_primary_10_1016_j_matre_2024_100267 crossref_primary_10_1039_D2TA08722G crossref_primary_10_1021_acs_iecr_2c03673 crossref_primary_10_1088_2053_1583_ac953a crossref_primary_10_1016_j_renene_2022_09_050 crossref_primary_10_1007_s11595_024_2999_y crossref_primary_10_1016_j_jcat_2019_06_015 crossref_primary_10_1007_s10971_024_06633_0 crossref_primary_10_1016_j_gee_2023_02_012 crossref_primary_10_1016_j_cattod_2018_11_067 crossref_primary_10_1016_j_inoche_2025_114164 crossref_primary_10_1039_D0CS00458H crossref_primary_10_1021_acscatal_2c05931 crossref_primary_10_1002_adfm_202405741 crossref_primary_10_1016_j_jece_2024_113396 crossref_primary_10_1016_j_cej_2020_127729 crossref_primary_10_1007_s40820_023_01052_2 crossref_primary_10_12677_HJCET_2021_115040 crossref_primary_10_1016_j_apcatb_2020_119557 crossref_primary_10_1038_s42004_020_00421_x crossref_primary_10_1016_j_apcatb_2019_02_041 crossref_primary_10_1016_j_jcis_2021_04_111 crossref_primary_10_1016_j_apcata_2022_118782 crossref_primary_10_1002_anie_202210856 crossref_primary_10_1016_j_matt_2022_05_011 crossref_primary_10_1016_j_apcatb_2023_122770 crossref_primary_10_1016_j_apcatb_2021_120035 crossref_primary_10_1016_j_carbon_2019_09_050 crossref_primary_10_1016_j_jssc_2022_123057 crossref_primary_10_1021_acsanm_3c05030 crossref_primary_10_1016_j_jece_2023_110594 crossref_primary_10_1016_j_nanoen_2023_109160 crossref_primary_10_1016_j_apsusc_2024_159463 crossref_primary_10_1016_j_cjche_2024_02_013 crossref_primary_10_1021_acs_energyfuels_3c00717 crossref_primary_10_1007_s10562_024_04831_7 crossref_primary_10_1093_chemle_upae175 crossref_primary_10_1039_D2TA01170K crossref_primary_10_1016_j_apcatb_2023_122862 crossref_primary_10_1016_j_seppur_2020_116924 crossref_primary_10_1016_j_apcatb_2022_121372 crossref_primary_10_1021_acssuschemeng_3c03772 crossref_primary_10_1007_s12598_024_02752_3 crossref_primary_10_1016_j_diamond_2018_04_027 crossref_primary_10_1016_j_envres_2021_111002 crossref_primary_10_1021_acs_energyfuels_3c04885 crossref_primary_10_1016_j_gee_2023_01_003 crossref_primary_10_3390_catal9120990 crossref_primary_10_1016_j_surfin_2024_104825 crossref_primary_10_1016_j_jcis_2023_11_081 crossref_primary_10_1016_j_colsurfa_2021_126758 crossref_primary_10_1016_j_jece_2024_114425 crossref_primary_10_1002_adfm_202501108 crossref_primary_10_1016_j_apcatb_2022_121485 crossref_primary_10_1016_j_apsusc_2021_149796 crossref_primary_10_1039_D2EW00504B crossref_primary_10_1016_j_cej_2021_131972 crossref_primary_10_1021_acsami_2c12038 crossref_primary_10_1016_j_apsusc_2022_153586 crossref_primary_10_1016_j_cej_2020_128030 crossref_primary_10_1016_j_ceja_2021_100142 crossref_primary_10_1039_D4QI01706D crossref_primary_10_1039_C8RA06778C crossref_primary_10_1016_j_jece_2024_115301 crossref_primary_10_1016_j_apcatb_2018_10_045 crossref_primary_10_1021_acssuschemeng_2c04512 crossref_primary_10_1039_D0TA08649E crossref_primary_10_3390_molecules26133844 crossref_primary_10_1016_j_cej_2024_153192 crossref_primary_10_1016_j_apcatb_2020_119225 crossref_primary_10_1016_j_seppur_2024_129930 crossref_primary_10_1016_j_envres_2020_109339 crossref_primary_10_1039_D0TA03974H crossref_primary_10_1039_D3NJ05134J crossref_primary_10_3390_app11167222 crossref_primary_10_1016_j_jes_2019_04_009 crossref_primary_10_1039_D2CC02861A crossref_primary_10_1016_j_jallcom_2025_179008 crossref_primary_10_1039_D2QI00227B crossref_primary_10_1016_j_jclepro_2022_131144 crossref_primary_10_1016_j_jcis_2022_07_077 crossref_primary_10_1016_j_cej_2019_01_172 crossref_primary_10_1016_j_cej_2023_146488 crossref_primary_10_1016_j_apcatb_2019_118054 crossref_primary_10_1002_anie_201911609 crossref_primary_10_1016_j_seppur_2020_116576 crossref_primary_10_1039_D1TA05752A crossref_primary_10_1007_s11244_024_01936_6 crossref_primary_10_1016_j_jhazmat_2021_127979 crossref_primary_10_1016_j_cej_2022_140649 crossref_primary_10_1016_j_apsusc_2021_151089 crossref_primary_10_1002_smll_202006851 crossref_primary_10_1039_D0TC01479F crossref_primary_10_1016_j_apsusc_2023_158637 crossref_primary_10_1016_j_ijhydene_2022_03_106 |
Cites_doi | 10.1002/adma.201204453 10.1002/adfm.201200922 10.1021/acscatal.5b01155 10.1021/acs.jpcc.7b06587 10.1002/adma.201305299 10.1021/ja103798k 10.1063/1.1940137 10.1021/acscatal.5b00408 10.1002/anie.201407938 10.1021/ja903923s 10.1021/acscatal.6b02367 10.1021/es9707926 10.1038/nmat2317 10.1021/jacs.6b11878 10.1016/j.nanoen.2017.04.017 10.1021/jacs.6b05806 10.1021/acs.est.6b02833 10.1016/j.ijhydene.2014.02.052 10.1016/j.apcatb.2017.11.061 10.1016/j.apcatb.2017.02.025 10.1021/jacs.6b07272 10.1038/ncomms11470 10.1021/cs4000624 10.1002/anie.201101182 10.1021/cs401208c 10.1021/acscatal.6b03334 10.1002/chem.200601759 10.1002/adma.201501939 10.1021/cs502002u 10.1016/j.apcatb.2017.01.061 10.1021/acssuschemeng.7b00575 10.1002/adma.201404057 10.1002/adma.200401756 10.1002/adma.201601567 10.1126/science.aaa3145 10.1021/jp301676n 10.1021/es5046309 10.1021/acsami.7b01871 10.1002/anie.201611127 10.1002/adfm.201602779 10.1016/j.apcatb.2011.08.014 10.1016/j.apcatb.2016.03.004 10.1002/adma.201500033 10.1039/c2cc35862j |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2018.03.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 25 |
ExternalDocumentID | 10_1016_j_apcatb_2018_03_035 S0926337318302340 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c409t-8ad0e20ae31b68dcdf94d18571a563c948dade0f0b557df1ba29bf1fc5c79f9c3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 03:10:47 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Sat Mar 02 16:00:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reduced g-C3N4 Hydrogen peroxide Nitrogen vacancies DFT Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-8ad0e20ae31b68dcdf94d18571a563c948dade0f0b557df1ba29bf1fc5c79f9c3 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2018_03_035 crossref_citationtrail_10_1016_j_apcatb_2018_03_035 elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_03_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-15 |
PublicationDateYYYYMMDD | 2018-09-15 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tan, Chen, Sun, Fan, Kwok, Zhang, Chua (bib0200) 2005; 98 Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib0075) 2015; 347 Niu, Yin, Yang, Liu, Cheng (bib0115) 2014; 26 Ge, Han (bib0050) 2011; 108–109 Li, Dong, Hailili, Yang, Li, Wang, Zeng, Wang (bib0095) 2016; 190 Kofuji, Isobe, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0090) 2016; 138 Li, Ouyang, Xu, Wang, Bi, Zhang, Ye (bib0105) 2016; 138 Liu, Niu, Sun, Smith, Chen, Lu, Cheng (bib0130) 2010; 13 Chu, Wang, Guo, Feng, Wang, Luo, Fan, Zou (bib0070) 2013; 3 Zhang, Zang, Wang (bib0165) 2015; 5 He, Zhang, Teng, Fan (bib0035) 2015; 49 Moon, Fujitsuka, Kim, Majima, Wang, Choi (bib0145) 2017; 7 Cheng, Yuan, Liao, Zhang (bib0120) 2016; 50 Zhao, Wu, Wu, Oikawa, Hidaka, Serpone (bib0210) 1998; 32 Chu, Wang, Feng, Wang, Zou (bib0140) 2014; 39 Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (bib0085) 2017; 139 Liu, Zhao, Zhou, Liu, Pang, Zhang, Hao, Meng, Li, Kako, Ye (bib0110) 2016; 26 Tan, She, Yu, Xu, Ren, Xia (bib0045) 2017; 207 Singh, Buttry (bib0190) 2012; 116 Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0065) 2016; 6 Zhou, Zou, Zhang, Sun, Islam, Gong, Zhang, Yang (bib0125) 2017; 9 Cao, Low, Yu, Jaroniec (bib0040) 2015; 27 Yang, Gong, Zhang, Zhan, Ma, Fang, Vajtai, Wang, Ajayan (bib0030) 2013; 25 Shiraishi, Kanazawa, Sugano, Tsukamoto, Sakamoto, Ichikawa, Hirai (bib0025) 2014; 4 Niu, Zhang, Liu, Cheng (bib0135) 2012; 22 Bayan, Midya, Gogurla, Singha, Ray (bib0170) 2017; 121 Ye, Zhao, Hu, Liu, Ji, Shen, Ma (bib0100) 2017; 56 Kang, Yang, Yin, Kang, Wang, Liu, Cheng (bib0220) 2016; 28 Shiraishi, Kofuji, Sakamoto, Tanaka, Ichikawa, Hirai (bib0060) 2015; 5 Zhao, Zhao, Zhang, Li, Zhu (bib0185) 2017; 35 Chen, Zhang, Fu, Antonietti, Wang (bib0055) 2009; 131 Mase, Yoneda, Yamada, Fukuzumi (bib0005) 2016; 7 Wang, Wang, Antonietti (bib0080) 2012; 51 Lotsch, Doblinger, Sehnert, Seyfarth, Senker, Oeckler, Schnick (bib0155) 2007; 13 Wang, Ni, Liu, Xu (bib0175) 2018; 225 Kofuji, Ohkita, Shiraishi, Sakamoto, Ichikawa, Tanaka, Hirai (bib0180) 2017; 5 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0015) 2009; 8 Groenewolt, Antonietti (bib0150) 2005; 17 Li, Shen, Hong, Lin, Gao, Chen (bib0195) 2012; 48 Shiraishi, Kanazawa, Kofuji, Sakamoto, Ichikawa, Tanaka, Hirai (bib0010) 2014; 53 Masih, Ma, Rohani (bib0020) 2017; 206 Yeh, Teng, Chen, Teng (bib0205) 2014; 26 Fan, Zhang, Cheng, Wang, Li, Zhou, Shi (bib0215) 2015; 5 Kang, Yang, Yin, Kang, Liu, Cheng (bib0160) 2015; 27 Liu (10.1016/j.apcatb.2018.03.035_bib0130) 2010; 13 Wang (10.1016/j.apcatb.2018.03.035_bib0175) 2018; 225 Shiraishi (10.1016/j.apcatb.2018.03.035_bib0025) 2014; 4 Li (10.1016/j.apcatb.2018.03.035_bib0195) 2012; 48 Cheng (10.1016/j.apcatb.2018.03.035_bib0120) 2016; 50 Kofuji (10.1016/j.apcatb.2018.03.035_bib0065) 2016; 6 Niu (10.1016/j.apcatb.2018.03.035_bib0135) 2012; 22 Zhao (10.1016/j.apcatb.2018.03.035_bib0185) 2017; 35 Fan (10.1016/j.apcatb.2018.03.035_bib0215) 2015; 5 Cao (10.1016/j.apcatb.2018.03.035_bib0040) 2015; 27 Liu (10.1016/j.apcatb.2018.03.035_bib0075) 2015; 347 Ge (10.1016/j.apcatb.2018.03.035_bib0050) 2011; 108–109 Mase (10.1016/j.apcatb.2018.03.035_bib0005) 2016; 7 Groenewolt (10.1016/j.apcatb.2018.03.035_bib0150) 2005; 17 Lotsch (10.1016/j.apcatb.2018.03.035_bib0155) 2007; 13 Li (10.1016/j.apcatb.2018.03.035_bib0105) 2016; 138 Kofuji (10.1016/j.apcatb.2018.03.035_bib0090) 2016; 138 Zhao (10.1016/j.apcatb.2018.03.035_bib0210) 1998; 32 Kang (10.1016/j.apcatb.2018.03.035_bib0160) 2015; 27 Wang (10.1016/j.apcatb.2018.03.035_bib0080) 2012; 51 Tan (10.1016/j.apcatb.2018.03.035_bib0045) 2017; 207 Wang (10.1016/j.apcatb.2018.03.035_bib0015) 2009; 8 Yang (10.1016/j.apcatb.2018.03.035_bib0030) 2013; 25 Kofuji (10.1016/j.apcatb.2018.03.035_bib0180) 2017; 5 Shiraishi (10.1016/j.apcatb.2018.03.035_bib0060) 2015; 5 Masih (10.1016/j.apcatb.2018.03.035_bib0020) 2017; 206 He (10.1016/j.apcatb.2018.03.035_bib0035) 2015; 49 Zhang (10.1016/j.apcatb.2018.03.035_bib0165) 2015; 5 Bayan (10.1016/j.apcatb.2018.03.035_bib0170) 2017; 121 Che (10.1016/j.apcatb.2018.03.035_bib0085) 2017; 139 Li (10.1016/j.apcatb.2018.03.035_bib0095) 2016; 190 Chen (10.1016/j.apcatb.2018.03.035_bib0055) 2009; 131 Singh (10.1016/j.apcatb.2018.03.035_bib0190) 2012; 116 Ye (10.1016/j.apcatb.2018.03.035_bib0100) 2017; 56 Zhou (10.1016/j.apcatb.2018.03.035_bib0125) 2017; 9 Moon (10.1016/j.apcatb.2018.03.035_bib0145) 2017; 7 Niu (10.1016/j.apcatb.2018.03.035_bib0115) 2014; 26 Kang (10.1016/j.apcatb.2018.03.035_bib0220) 2016; 28 Tan (10.1016/j.apcatb.2018.03.035_bib0200) 2005; 98 Yeh (10.1016/j.apcatb.2018.03.035_bib0205) 2014; 26 Chu (10.1016/j.apcatb.2018.03.035_bib0070) 2013; 3 Shiraishi (10.1016/j.apcatb.2018.03.035_bib0010) 2014; 53 Liu (10.1016/j.apcatb.2018.03.035_bib0110) 2016; 26 Chu (10.1016/j.apcatb.2018.03.035_bib0140) 2014; 39 |
References_xml | – volume: 53 start-page: 13454 year: 2014 end-page: 13459 ident: bib0010 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 4572 year: 2015 end-page: 4577 ident: bib0160 publication-title: Adv Mater. – volume: 121 start-page: 19383 year: 2017 end-page: 19391 ident: bib0170 publication-title: The J. Physical Chemistry C. – volume: 56 start-page: 8407 year: 2017 end-page: 8411 ident: bib0100 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 7 start-page: 11470 year: 2016 ident: bib0005 publication-title: Nat Commun. – volume: 49 start-page: 649 year: 2015 end-page: 656 ident: bib0035 publication-title: Environ. Sci. Technol. – volume: 48 start-page: 12017 year: 2012 end-page: 12019 ident: bib0195 publication-title: Chem Commun. – volume: 26 start-page: 6822 year: 2016 end-page: 6829 ident: bib0110 publication-title: Adv. Funct. Mater. – volume: 347 start-page: 970 year: 2015 end-page: 974 ident: bib0075 publication-title: Science – volume: 98 start-page: 013505 year: 2005 ident: bib0200 publication-title: J. Appl. Phys. – volume: 131 start-page: 11658 year: 2009 end-page: 11659 ident: bib0055 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 2150 year: 2015 end-page: 2176 ident: bib0040 publication-title: Adv Mater. – volume: 7 start-page: 2886 year: 2017 end-page: 2895 ident: bib0145 publication-title: ACS Catal. – volume: 26 start-page: 3297 year: 2014 end-page: 3303 ident: bib0205 publication-title: Adv Mater. – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: bib0135 publication-title: Adv. Funct. Mater. – volume: 35 start-page: 405 year: 2017 end-page: 414 ident: bib0185 publication-title: Nano Energy. – volume: 25 start-page: 2452 year: 2013 end-page: 2456 ident: bib0030 publication-title: Adv Mater. – volume: 51 start-page: 68 year: 2012 end-page: 89 ident: bib0080 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 207 start-page: 120 year: 2017 end-page: 133 ident: bib0045 publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 6478 year: 2017 end-page: 6485 ident: bib0180 publication-title: ACS Sustainable Chemistry & Engineering. – volume: 5 start-page: 941 year: 2015 end-page: 947 ident: bib0165 publication-title: ACS Catal. – volume: 138 start-page: 10019 year: 2016 end-page: 10025 ident: bib0090 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 18699 year: 2017 end-page: 18709 ident: bib0125 publication-title: ACS Appl Mater Interfaces. – volume: 138 start-page: 13289 year: 2016 end-page: 13297 ident: bib0105 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 912 year: 2013 end-page: 919 ident: bib0070 publication-title: ACS Catal. – volume: 6 start-page: 7021 year: 2016 end-page: 7029 ident: bib0065 publication-title: ACS Catal. – volume: 13 start-page: 4969 year: 2007 end-page: 4980 ident: bib0155 publication-title: Chemistry – volume: 4 start-page: 774 year: 2014 end-page: 780 ident: bib0025 publication-title: ACS Catal. – volume: 28 start-page: 6471 year: 2016 end-page: 6477 ident: bib0220 publication-title: Adv Mater. – volume: 26 start-page: 8046 year: 2014 end-page: 8052 ident: bib0115 publication-title: Adv Mater. – volume: 50 start-page: 11646 year: 2016 end-page: 11653 ident: bib0120 publication-title: Environ Sci Technol. – volume: 5 start-page: 3058 year: 2015 end-page: 3066 ident: bib0060 publication-title: ACS Catal. – volume: 13 start-page: 11642 year: 2010 end-page: 11648 ident: bib0130 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 2394 year: 1998 end-page: 2400 ident: bib0210 publication-title: Environ. Sci. Technol. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib0015 publication-title: Nat. Mater. – volume: 108–109 start-page: 100 year: 2011 end-page: 107 ident: bib0050 publication-title: Appl. Catal. B Environ. – volume: 225 start-page: 139 year: 2018 end-page: 147 ident: bib0175 publication-title: Appl. Catal. B Environ. – volume: 39 start-page: 13519 year: 2014 end-page: 13526 ident: bib0140 publication-title: Int. J. Hydrogen Energy – volume: 139 start-page: 3021 year: 2017 end-page: 3026 ident: bib0085 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5008 year: 2015 end-page: 5015 ident: bib0215 publication-title: ACS Catal. – volume: 17 start-page: 1789 year: 2005 end-page: 1792 ident: bib0150 publication-title: Adv. Mater. – volume: 190 start-page: 26 year: 2016 end-page: 35 ident: bib0095 publication-title: Appl. Catal. B Environ. – volume: 116 start-page: 10656 year: 2012 end-page: 10663 ident: bib0190 publication-title: The J. Physical Chemistry C. – volume: 206 start-page: 556 year: 2017 end-page: 588 ident: bib0020 publication-title: Appl. Catal. B Environ. – volume: 25 start-page: 2452 year: 2013 ident: 10.1016/j.apcatb.2018.03.035_bib0030 publication-title: Adv Mater. doi: 10.1002/adma.201204453 – volume: 22 start-page: 4763 year: 2012 ident: 10.1016/j.apcatb.2018.03.035_bib0135 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 – volume: 5 start-page: 5008 year: 2015 ident: 10.1016/j.apcatb.2018.03.035_bib0215 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01155 – volume: 121 start-page: 19383 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0170 publication-title: The J. Physical Chemistry C. doi: 10.1021/acs.jpcc.7b06587 – volume: 26 start-page: 3297 year: 2014 ident: 10.1016/j.apcatb.2018.03.035_bib0205 publication-title: Adv Mater. doi: 10.1002/adma.201305299 – volume: 13 start-page: 11642 year: 2010 ident: 10.1016/j.apcatb.2018.03.035_bib0130 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103798k – volume: 98 start-page: 013505 year: 2005 ident: 10.1016/j.apcatb.2018.03.035_bib0200 publication-title: J. Appl. Phys. doi: 10.1063/1.1940137 – volume: 5 start-page: 3058 year: 2015 ident: 10.1016/j.apcatb.2018.03.035_bib0060 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00408 – volume: 53 start-page: 13454 year: 2014 ident: 10.1016/j.apcatb.2018.03.035_bib0010 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407938 – volume: 131 start-page: 11658 year: 2009 ident: 10.1016/j.apcatb.2018.03.035_bib0055 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903923s – volume: 6 start-page: 7021 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0065 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02367 – volume: 32 start-page: 2394 year: 1998 ident: 10.1016/j.apcatb.2018.03.035_bib0210 publication-title: Environ. Sci. Technol. doi: 10.1021/es9707926 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcatb.2018.03.035_bib0015 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 139 start-page: 3021 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0085 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11878 – volume: 35 start-page: 405 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0185 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2017.04.017 – volume: 138 start-page: 10019 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0090 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05806 – volume: 50 start-page: 11646 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0120 publication-title: Environ Sci Technol. doi: 10.1021/acs.est.6b02833 – volume: 39 start-page: 13519 year: 2014 ident: 10.1016/j.apcatb.2018.03.035_bib0140 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.052 – volume: 225 start-page: 139 year: 2018 ident: 10.1016/j.apcatb.2018.03.035_bib0175 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.11.061 – volume: 207 start-page: 120 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0045 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.02.025 – volume: 138 start-page: 13289 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0105 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07272 – volume: 7 start-page: 11470 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0005 publication-title: Nat Commun. doi: 10.1038/ncomms11470 – volume: 3 start-page: 912 year: 2013 ident: 10.1016/j.apcatb.2018.03.035_bib0070 publication-title: ACS Catal. doi: 10.1021/cs4000624 – volume: 51 start-page: 68 year: 2012 ident: 10.1016/j.apcatb.2018.03.035_bib0080 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201101182 – volume: 4 start-page: 774 year: 2014 ident: 10.1016/j.apcatb.2018.03.035_bib0025 publication-title: ACS Catal. doi: 10.1021/cs401208c – volume: 7 start-page: 2886 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0145 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03334 – volume: 13 start-page: 4969 year: 2007 ident: 10.1016/j.apcatb.2018.03.035_bib0155 publication-title: Chemistry doi: 10.1002/chem.200601759 – volume: 27 start-page: 4572 year: 2015 ident: 10.1016/j.apcatb.2018.03.035_bib0160 publication-title: Adv Mater. doi: 10.1002/adma.201501939 – volume: 5 start-page: 941 year: 2015 ident: 10.1016/j.apcatb.2018.03.035_bib0165 publication-title: ACS Catal. doi: 10.1021/cs502002u – volume: 206 start-page: 556 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0020 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.01.061 – volume: 5 start-page: 6478 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0180 publication-title: ACS Sustainable Chemistry & Engineering. doi: 10.1021/acssuschemeng.7b00575 – volume: 26 start-page: 8046 year: 2014 ident: 10.1016/j.apcatb.2018.03.035_bib0115 publication-title: Adv Mater. doi: 10.1002/adma.201404057 – volume: 17 start-page: 1789 year: 2005 ident: 10.1016/j.apcatb.2018.03.035_bib0150 publication-title: Adv. Mater. doi: 10.1002/adma.200401756 – volume: 28 start-page: 6471 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0220 publication-title: Adv Mater. doi: 10.1002/adma.201601567 – volume: 347 start-page: 970 year: 2015 ident: 10.1016/j.apcatb.2018.03.035_bib0075 publication-title: Science doi: 10.1126/science.aaa3145 – volume: 116 start-page: 10656 year: 2012 ident: 10.1016/j.apcatb.2018.03.035_bib0190 publication-title: The J. Physical Chemistry C. doi: 10.1021/jp301676n – volume: 49 start-page: 649 year: 2015 ident: 10.1016/j.apcatb.2018.03.035_bib0035 publication-title: Environ. Sci. Technol. doi: 10.1021/es5046309 – volume: 9 start-page: 18699 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0125 publication-title: ACS Appl Mater Interfaces. doi: 10.1021/acsami.7b01871 – volume: 56 start-page: 8407 year: 2017 ident: 10.1016/j.apcatb.2018.03.035_bib0100 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201611127 – volume: 26 start-page: 6822 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0110 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602779 – volume: 108–109 start-page: 100 year: 2011 ident: 10.1016/j.apcatb.2018.03.035_bib0050 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.08.014 – volume: 190 start-page: 26 year: 2016 ident: 10.1016/j.apcatb.2018.03.035_bib0095 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.004 – volume: 27 start-page: 2150 year: 2015 ident: 10.1016/j.apcatb.2018.03.035_bib0040 publication-title: Adv Mater. doi: 10.1002/adma.201500033 – volume: 48 start-page: 12017 year: 2012 ident: 10.1016/j.apcatb.2018.03.035_bib0195 publication-title: Chem Commun. doi: 10.1039/c2cc35862j |
SSID | ssj0002328 |
Score | 2.6487153 |
Snippet | [Display omitted]
•Reduced g-C3N4 was synthesized via direct heating with NaBH4.•Defects were successfully introduced into the reduced g-C3N4.•CN functional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 19 |
SubjectTerms | DFT Hydrogen peroxide Nitrogen vacancies Photocatalysis Reduced g-C3N4 |
Title | Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2 |
URI | https://dx.doi.org/10.1016/j.apcatb.2018.03.035 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFVcX-TgNW7TJE1zXJaVVWE9-MCTJa_qyrK7aD148bebZFsfIArSXloyUDLT-SbhyzcAR4aTzEhOceLBDDNCLNYeabC0Ik2cMB51I9timA2u2dktv12AXnMWJtAq69w_z-kxW9dvOvVsdmajUecykWlGqQhB6YGHhXU7YyJE-fHbJ83DVwwxG_vBOIxujs9FjpeaGVXpQPDKo9RpbPr2Azx9gZyTdVira0XUnX_OBiy4SQuWe02LthasflETbMF2__PQmjer_9rnTbi7GfnAHzs0jqoh9ilkODR7mFbTuHvzGvezx69IxeSH7nGPDhnytWwMT-TrWuQmD5ErgO6jTnVwJ5qWaJBepFtwfdK_6g1w3VcBG7-aq3CubOLSRDlKdJZbY0vJbNCEIopn1EiWW2VdUiaac2FLolUqdUlKw42QpTR0GxYn04nbAeSovzThluaMMaclc0Jpj3FWSZmKvA20mc7C1KLjoffFuGjYZY_F3AlFcEKRUH_zNuAPq9lcdOOP8aLxVPEteAqPC79a7v7bcg9WwlOgjhC-D4vV04s78PVJpQ9jAB7CUvf0fDB8B9HC5V4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UB7QLAtKs_60Ku1cWwn8XG1WhQe3R4KFadGfgUWrXZXEA78e8behIdUFQklp8QjRZ7JfGPr8zcAP6xkmVWS0wTBjArGHDWINFS5PE18bhF1I9tikpWX4vRKXq3BqDsLE2iVbe5f5fSYrdsng3Y2B8vpdPA7UWnGeR6CEoFH4Lp9PahTyR6sD0_OyslzQsaiISZkHE-DQXeCLtK89NLqxgSOVxHVTmPft38g1CvUOd6CzbZcJMPVF23Dmp_3YWPUdWnrw-dXgoJ92Bm_nFtDs_bHvf8Cf_9MMfZnnsyicIi7C0mOLG8WzSJu4DzGLe3ZI9Ex_5FrOuITQbCcjRFKsLQlfn4T6QLkOkpVB4-SRU3K9Ff6FS6PxxejkratFajFBV1DC-0Snybac2aywllXK-GCLBTTMuNWicJp55M6MVLmrmZGp8rUrLbS5qpWlu9Ab76Y-29APMfLMOl4IYTwRgmfa4Mw57RSaV7sAu-ms7Kt7nhofzGrOoLZbbVyQhWcUCUcb7kL9NlqudLdeGd83nmqehM_FULDfy33Pmz5HTbKi5_n1fnJ5GwfPoU3gUnC5AH0mrsHf4jlSmOO2nB8ArA26A8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+light-driven+photocatalytically+active+g-C3N4+material+for+enhanced+generation+of+H2O2&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhu%2C+Zedong&rft.au=Pan%2C+Honghui&rft.au=Murugananthan%2C+Muthu&rft.au=Gong%2C+Jianyu&rft.date=2018-09-15&rft.issn=0926-3373&rft.volume=232&rft.spage=19&rft.epage=25&rft_id=info:doi/10.1016%2Fj.apcatb.2018.03.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2018_03_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |