Distributed Planning of Collaborative Locomotion: A Physics-Based and Data-Driven Approach
This work aims to provide a computationally effective and distributed trajectory planner at the intersection of physics-based and data-driven techniques for the collaborative locomotion of holonomically constrained quadrupedal robots that can account for and attenuate interaction forces between subs...
Saved in:
Published in | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2023.3332820 |
Cover
Loading…
Abstract | This work aims to provide a computationally effective and distributed trajectory planner at the intersection of physics-based and data-driven techniques for the collaborative locomotion of holonomically constrained quadrupedal robots that can account for and attenuate interaction forces between subsystems. More specifically, this work lays the foundation for using an interconnected single rigid body model in a predictive control framework such that interaction forces can be utilized at the planning layer, wherein these forces are parameterized via a behavioral systems approach. Furthermore, the proposed trajectory planner is distributed such that each agent can locally plan for its own trajectory subject to coupling dynamics, resulting in a much more computationally efficient method for real-time planning. The optimal trajectory obtained by the planner is then provided to a full-order nonlinear whole-body controller for tracking at the low level. The efficacy and robustness of the proposed approach are verified both in simulation and on hardware subject to various disturbances, payloads, and uneven terrains. |
---|---|
AbstractList | This work aims to provide a computationally effective and distributed trajectory planner at the intersection of physics-based and data-driven techniques for the collaborative locomotion of holonomically constrained quadrupedal robots that can account for and attenuate interaction forces between subsystems. More specifically, this work lays the foundation for using an interconnected single rigid body model in a predictive control framework such that interaction forces can be utilized at the planning layer, wherein these forces are parameterized via a behavioral systems approach. Furthermore, the proposed trajectory planner is distributed such that each agent can locally plan for its own trajectory subject to coupling dynamics, resulting in a much more computationally efficient method for real-time planning. The optimal trajectory obtained by the planner is then provided to a full-order nonlinear whole-body controller for tracking at the low level. The efficacy and robustness of the proposed approach are verified both in simulation and on hardware subject to various disturbances, payloads, and uneven terrains. |
Author | Fawcett, Randall T. Hamed, Kaveh Akbari Ames, Aaron D. |
Author_xml | – sequence: 1 givenname: Randall T. orcidid: 0000-0002-7704-2706 surname: Fawcett fullname: Fawcett, Randall T. organization: Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA – sequence: 2 givenname: Aaron D. orcidid: 0000-0003-0848-3177 surname: Ames fullname: Ames, Aaron D. organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA – sequence: 3 givenname: Kaveh Akbari orcidid: 0000-0001-9597-1691 surname: Hamed fullname: Hamed, Kaveh Akbari organization: Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA |
BookMark | eNp9kV9rFDEUxYNUsNZ-An0Y8HnW_JtM4ts6W2thwUL1xZdwk8m0WabJmmQL_fZmOxWKD-Yl4XJ-h3Nz3qKTEIND6D3BK0Kw-rQehoubmxXFlK0YY1RS_AqdUiJUyzomTl6836DznHe4HllHXX-Kfm18LsmbQ3Fjcz1DCD7cNnFqhjjPYGKC4h9cs4023sfiY_jcrJvru8fsbW6_QK4UhLHZQIF2k6o0NOv9PkWwd-_Q6wnm7M6f7zP08-vFj-Fbu_1-eTWst63lWJVWArZqYoCpNJzTyfRScuigF6OqQUdqObejkASwcUraznHqDJWuUxPnk2Jn6GrxHSPs9D75e0iPOoLXT4OYbjWk4u3stBCjk7bvCGGUWyylMISAmbA0IIlj1evj4lVX-H1wuehdPKRQ42sqFWW96EhfVWpR2RRzTm7S1hc4_k5J4GdNsD42o5dm9LEZ_dxMZdk_7N_E_6c-LJR3zr0gGJGECvYH-OWa1A |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1115_1_4066632 |
Cites_doi | 10.1049/iet-cta.2017.0351 10.1109/IROS.2017.8202223 10.1109/ICHR.2006.321385 10.1109/ACC.2014.6858777 10.1109/CDC40024.2019.9029522 10.1109/ICRA48891.2023.10160914 10.1109/ACCESS.2020.2980446 10.1109/LCSYS.2020.3000748 10.1109/ICRA.2014.6907857 10.1016/j.sysconle.2004.09.003 10.1109/TAC.2020.3000182 10.1109/ROBOT.2003.1241826 10.1016/j.automatica.2005.12.008 10.1201/9781420053739 10.1109/TAC.2009.2031208 10.1016/j.ins.2012.07.014 10.1515/9781400835355 10.1109/IROS.2018.8593885 10.1242/jeb.202.23.3325 10.15607/RSS.2013.IX.011 10.1109/LRA.2019.2926664 10.1016/0005-1098(86)90066-X 10.1016/j.ifacol.2020.12.113 10.1007/s10514-016-9573-1 10.1109/ICRA.2016.7487477 10.1109/IROS55552.2023.10341508 10.1109/LRA.2020.3001471 10.1109/TAC.2021.3097706 10.1109/TAC.2020.2966717 10.1126/scirobotics.abc5986 10.1109/IROS45743.2020.9341541 10.1137/1.9780898718263 10.1515/9781400831470 10.1126/scirobotics.abk2822 10.1201/9781315136370 10.1109/TRO.2021.3072021 10.1109/LCSYS.2021.3087339 10.1109/LRA.2022.3176105 10.1109/MED.2007.4433724 10.1109/IROS.2011.6094435 10.1109/ICARCV50220.2020.9305426 10.1109/ICRA48506.2021.9561515 10.1109/LCSYS.2021.3133198 10.1115/1.4052917 10.1115/1.4049555 10.1109/ICRA48506.2021.9561510 10.1109/LRA.2018.2792536 10.1016/j.ifacol.2021.08.588 10.1109/CASE49439.2021.9551481 10.1109/IROS.2018.8594448 10.1007/springerreference_117570 10.1109/tro.2023.3319896 10.1007/978-3-642-83006-8 10.23919/ECC51009.2020.9143608 10.1109/TRO.2020.3046415 10.23919/ECC.2019.8795639 10.1109/LRA.2022.3184007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3332820 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_66de8c7511324c0886b11abf08ba81e3 10_1109_ACCESS_2023_3332820 10318126 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1924526; 1924617; 2024772 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-8a0c9f3a028b442fb7884a5a76d9000d2c44cd681a0be98c5e42eb28e59f44f93 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Mon Jun 30 12:13:49 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Tue Jul 01 04:14:08 EDT 2025 Wed Aug 27 02:37:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-8a0c9f3a028b442fb7884a5a76d9000d2c44cd681a0be98c5e42eb28e59f44f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9597-1691 0000-0002-7704-2706 0000-0003-0848-3177 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10318126 |
PQID | 2892376517 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_66de8c7511324c0886b11abf08ba81e3 crossref_citationtrail_10_1109_ACCESS_2023_3332820 ieee_primary_10318126 crossref_primary_10_1109_ACCESS_2023_3332820 proquest_journals_2892376517 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 (ref58) 2023 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 Vukobratovic (ref27) 1990 ref29 |
References_xml | – ident: ref13 doi: 10.1049/iet-cta.2017.0351 – ident: ref23 doi: 10.1109/IROS.2017.8202223 – ident: ref24 doi: 10.1109/ICHR.2006.321385 – ident: ref17 doi: 10.1109/ACC.2014.6858777 – ident: ref39 doi: 10.1109/CDC40024.2019.9029522 – ident: ref19 doi: 10.1109/ICRA48891.2023.10160914 – ident: ref31 doi: 10.1109/ACCESS.2020.2980446 – ident: ref8 doi: 10.1109/LCSYS.2020.3000748 – ident: ref10 doi: 10.1109/ICRA.2014.6907857 – ident: ref34 doi: 10.1016/j.sysconle.2004.09.003 – ident: ref37 doi: 10.1109/TAC.2020.3000182 – ident: ref22 doi: 10.1109/ROBOT.2003.1241826 – ident: ref3 doi: 10.1016/j.automatica.2005.12.008 – ident: ref54 doi: 10.1201/9781420053739 – ident: ref15 doi: 10.1109/TAC.2009.2031208 – ident: ref33 doi: 10.1016/j.ins.2012.07.014 – volume-title: Distributed Planning of Collaborative Locomotion: A Physics-Based and Data-Driven Approach year: 2023 ident: ref58 – ident: ref5 doi: 10.1515/9781400835355 – ident: ref29 doi: 10.1109/IROS.2018.8593885 – ident: ref1 doi: 10.1242/jeb.202.23.3325 – ident: ref9 doi: 10.15607/RSS.2013.IX.011 – ident: ref57 doi: 10.1109/LRA.2019.2926664 – ident: ref35 doi: 10.1016/0005-1098(86)90066-X – ident: ref42 doi: 10.1016/j.ifacol.2020.12.113 – ident: ref52 doi: 10.1007/s10514-016-9573-1 – ident: ref11 doi: 10.1109/ICRA.2016.7487477 – ident: ref20 doi: 10.1109/IROS55552.2023.10341508 – ident: ref26 doi: 10.1109/LRA.2020.3001471 – ident: ref40 doi: 10.1109/TAC.2021.3097706 – ident: ref41 doi: 10.1109/TAC.2020.2966717 – ident: ref46 doi: 10.1126/scirobotics.abc5986 – ident: ref18 doi: 10.1109/IROS45743.2020.9341541 – ident: ref36 doi: 10.1137/1.9780898718263 – ident: ref4 doi: 10.1515/9781400831470 – ident: ref47 doi: 10.1126/scirobotics.abk2822 – ident: ref7 doi: 10.1201/9781315136370 – ident: ref6 doi: 10.1109/TRO.2021.3072021 – ident: ref14 doi: 10.1109/LCSYS.2021.3087339 – ident: ref48 doi: 10.1109/LRA.2022.3176105 – ident: ref12 doi: 10.1109/MED.2007.4433724 – ident: ref25 doi: 10.1109/IROS.2011.6094435 – ident: ref16 doi: 10.1109/ICARCV50220.2020.9305426 – ident: ref49 doi: 10.1109/ICRA48506.2021.9561515 – ident: ref53 doi: 10.1109/LCSYS.2021.3133198 – ident: ref21 doi: 10.1115/1.4052917 – ident: ref28 doi: 10.1115/1.4049555 – ident: ref30 doi: 10.1109/ICRA48506.2021.9561510 – ident: ref56 doi: 10.1109/LRA.2018.2792536 – ident: ref45 doi: 10.1016/j.ifacol.2021.08.588 – ident: ref50 doi: 10.1109/CASE49439.2021.9551481 – ident: ref51 doi: 10.1109/IROS.2018.8594448 – ident: ref55 doi: 10.1007/springerreference_117570 – ident: ref2 doi: 10.1109/tro.2023.3319896 – volume-title: Dynamics of Biped Locomotion year: 1990 ident: ref27 doi: 10.1007/978-3-642-83006-8 – ident: ref44 doi: 10.23919/ECC51009.2020.9143608 – ident: ref32 doi: 10.1109/TRO.2020.3046415 – ident: ref38 doi: 10.23919/ECC.2019.8795639 – ident: ref43 doi: 10.1109/LRA.2022.3184007 |
SSID | ssj0000816957 |
Score | 2.285101 |
Snippet | This work aims to provide a computationally effective and distributed trajectory planner at the intersection of physics-based and data-driven techniques for... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Collaboration Computational modeling Legged locomotion Legged Robots Locomotion Motion control Multi-Contact Whole-Body Motion Planning and Control Nonlinear control Optimization and Optimal Control Payloads Planning Predictive control Quadrupedal robots Reduced order systems Rigid structures Robot dynamics Robots Subsystems Tracking control Trajectory Trajectory optimization Trajectory planning |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxHlJQ-MpHXiR2K2PkAVAiaQEIvl54RaVAq_n7PjQhESLKyRI8d3Z9990fn7EDqrSuaZILCRAiEAUAwvIClUhYbcaT0PwaWLwrd3YvLArh_544rUV-wJa-mBW8P1hXC-sTWPiujMwp4Qpiy1CaQxuil94vmEnLcCptIZ3JRC8jrTDJVE9gejEayoF9XCe5RSQBrkWypKjP1ZYuXHuZySzdU22spVIh60X7eD1vx0F22ucAfuoadxpLyNalXe4aX0EJ4FPPry7LvHNzM7a5V6LvAAp35P-1oMIXc5rKcOj_VCF-N5PPPwIPOLd9DD1eX9aFJkoYTCAjxbFI0mVgaqoVYwjFXBAK5lmutauKgJ6irLmHWiKTUxXjaWe1YBom48l4GxIOk-Wp_Opv4AYWq4oV5S8KBjvqqlrUVwLGjqqAejdVG1tJmymUU8ilk8q4QmiFStoVU0tMqG7qLzz5deWhKN34cPozM-h0YG7PQA4kLluFB_xUUXdaIrV-ajsZgRXXS89K3K2_VVAeqM3UG8rA__Y-4jtBHX0_6pOUbri_mbP4HaZWFOU5h-ALYN5qE priority: 102 providerName: Directory of Open Access Journals |
Title | Distributed Planning of Collaborative Locomotion: A Physics-Based and Data-Driven Approach |
URI | https://ieeexplore.ieee.org/document/10318126 https://www.proquest.com/docview/2892376517 https://doaj.org/article/66de8c7511324c0886b11abf08ba81e3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZoT3CgLEUMXeQDR5I68ZK4t-kMVYWgJypVXCwvzxfQBLUZDvz6PjueoRSBuEWRrTj5nv2W2N9HyNu2ESAUw4kUGcMExckKnUJbWfSdHmSMIR8U_nSpLq7Eh2t5XQ6r57MwAJA3n0GdLvO__DD4dSqVnSRJAnRIaofsYOY2HdbaFlSSgoSWXWEWapg-mS8W-BJ1EgivOeeYXLDfvE8m6S-qKn8sxdm_nO-Ry83Ipm0lX-v16Gr_8wFp438P_Rl5WiJNOp9M4zl5BKsX5Mk9_sGX5Msy0eYmxSsIdCNfRIdIF7-s4wfQj4MfJrWfUzqnec-ov63O0P8FaleBLu1oq-VNWjfpvHCU75Or8_efFxdVEVuoPKZ4Y9Vb5nXkFuMNJ0QbHX5hYaXtVEi6oqH1Qvig-sYyB7r3EkSLWXkPUkchouavyO5qWMFrQrmTjoPmaAVBQNtp36kYRLQ8cEAUZqTdgGB8YSJPghjfTM5ImDYTciYhZwpyM_Ju2-n7RMTx7-ZnCd1t08SinW8gKqZMSqNUgN53GHNiWOlxvVWuaayLrHe2b4DPyH5C8t7zJhBn5HBjLKZM-VuDmWvaYSSb7s1fuh2Qx2mIUwHnkOyON2s4wpBmdMe5FHCcDfoOvrrx5A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADzyIWCvjAkaRJ_EjMbbtLtcB2T61UcbH8GF9AG9Rme-ivZ-x4lwICcYuiWHH0jT0zzsz3EfK2qTlwWeFCClWFCYoVBTqFpjDoOx2IEHxqFD5ZycUZ_3QuznOzeuqFAYBUfAZlvEz_8n3vNvGo7DBKEqBDkrfJHXT8oh7btXZHKlFDQok2cwvVlTqczmb4GWWUCC8ZY5heVL_4n0TTn3VV_tiMk4c5fkhW27mNhSVfy81gS3f9G23jf0_-EXmQY006HY3jMbkF6yfk_g0GwqfkyzwS50bNK_B0K2BE-0BnP-3jCuiyd_2o9_OeTmmqGnWXxRF6QE_N2tO5GUwxv4g7J51mlvJ9cnb84XS2KLLcQuEwyRuKzlROBWYw4rCcN8FidsyNMK30UVnUN45z52VXm8qC6pwA3mBe3oFQgfOg2DOyt-7X8JxQZoVloBjagefQtMq1MngeDPMMEIUJabYgaJe5yKMkxjedcpJK6RE5HZHTGbkJebcb9H2k4vj340cR3d2jkUc73UBUdF6WWkoPnWsx6sTA0uGOK21dGxuqzpquBjYh-xHJG-8bQZyQg62x6LzoLzXmrrHGSNTti78Me0PuLk5Plnr5cfX5JbkXpzse5xyQveFiA68wwBns62TWPwDNBfQ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Planning+of+Collaborative+Locomotion%3A+A+Physics-Based+and+Data-Driven+Approach&rft.jtitle=IEEE+access&rft.au=Fawcett%2C+Randall+T.&rft.au=Ames%2C+Aaron+D.&rft.au=Hamed%2C+Kaveh+Akbari&rft.date=2023-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=128369&rft.epage=128382&rft_id=info:doi/10.1109%2FACCESS.2023.3332820&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3332820 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |