Intermediate-sized molecular sieving of styrene from larger and smaller analogues

Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hinder...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 18; no. 9; pp. 994 - 998
Main Authors Zhou, Dong-Dong, Chen, Pin, Wang, Chao, Wang, Sha-Sha, Du, Yunfei, Yan, Hui, Ye, Zi-Ming, He, Chun-Ting, Huang, Rui-Kang, Mo, Zong-Wen, Huang, Ning-Yu, Zhang, Jie-Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal–organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption–desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties. Molecular sieving separates larger from smaller molecules, but all molecules smaller than the pore adsorb, hindering selectivity. Here, a MOF is reported with both molecular sieving and gate-opening, separating intermediate-sized molecules from larger and smaller analogues.
AbstractList Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal–organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption–desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties. Molecular sieving separates larger from smaller molecules, but all molecules smaller than the pore adsorb, hindering selectivity. Here, a MOF is reported with both molecular sieving and gate-opening, separating intermediate-sized molecules from larger and smaller analogues.
Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal-organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption-desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal-organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption-desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.
Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal–organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption–desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.
Author Zhou, Dong-Dong
Zhang, Jie-Peng
Ye, Zi-Ming
Wang, Chao
Huang, Rui-Kang
Yan, Hui
Huang, Ning-Yu
Chen, Pin
Du, Yunfei
He, Chun-Ting
Wang, Sha-Sha
Mo, Zong-Wen
Author_xml – sequence: 1
  givenname: Dong-Dong
  orcidid: 0000-0003-1105-8702
  surname: Zhou
  fullname: Zhou, Dong-Dong
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 2
  givenname: Pin
  surname: Chen
  fullname: Chen, Pin
  organization: National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University
– sequence: 3
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 4
  givenname: Sha-Sha
  surname: Wang
  fullname: Wang, Sha-Sha
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 5
  givenname: Yunfei
  surname: Du
  fullname: Du, Yunfei
  organization: National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University
– sequence: 6
  givenname: Hui
  surname: Yan
  fullname: Yan, Hui
  organization: National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University
– sequence: 7
  givenname: Zi-Ming
  surname: Ye
  fullname: Ye, Zi-Ming
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 8
  givenname: Chun-Ting
  surname: He
  fullname: He, Chun-Ting
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 9
  givenname: Rui-Kang
  surname: Huang
  fullname: Huang, Rui-Kang
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 10
  givenname: Zong-Wen
  surname: Mo
  fullname: Mo, Zong-Wen
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 11
  givenname: Ning-Yu
  surname: Huang
  fullname: Huang, Ning-Yu
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
– sequence: 12
  givenname: Jie-Peng
  orcidid: 0000-0002-2614-2774
  surname: Zhang
  fullname: Zhang, Jie-Peng
  email: zhangjp7@mail.sysu.edu.cn
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31308517$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMo6qo_wIsUvHip5qNtmqOIXyCIoOeQppMlkiaatIL76826q4KgpxmY550Z3neGNn3wgNAhwacEs_YsVaRuWImJKHFFebnYQLuk4k1ZNQ3eXPeEULqDZik9Y0xJXTfbaIcRhtua8F30cOtHiAP0Vo1QJruAvhiCAz05FYtk4c36eRFMkcb3CB4KE8NQ5NkcYqF8X6RBOffZKxfmE6R9tGWUS3Cwrnvo6ery8eKmvLu_vr04vyt1hcVYtqJnjNOG9tBiwzVtWiJo1xPaaGxUrymGuhMdZkLUtO2pYLwDo7gxnFGm2R46We19ieE13x3lYJMG55SHMCVJad3ybFAlMnr8C30OU8wPLymeIVFzkqmjNTV12RD5Eu2g4rv8MisDZAXoGFKKYL4RguUyELkKROZA5DIQucga_kuj7ahGG_wYlXX_KulKmfIVn-3-efpv0QcE5p8K
CitedBy_id crossref_primary_10_1002_anie_202309925
crossref_primary_10_1002_anie_202011300
crossref_primary_10_1126_science_abn8418
crossref_primary_10_1021_acs_chemmater_3c01920
crossref_primary_10_1021_acsami_1c10061
crossref_primary_10_1002_adma_202311140
crossref_primary_10_1002_ange_202015257
crossref_primary_10_1021_jacs_3c13480
crossref_primary_10_1002_anie_202016673
crossref_primary_10_1002_ange_202106784
crossref_primary_10_1039_D0SC05147K
crossref_primary_10_1021_acs_jpcc_2c03051
crossref_primary_10_1039_D3QM00430A
crossref_primary_10_1002_ange_202006414
crossref_primary_10_1002_ange_202414503
crossref_primary_10_1039_D2TA04835C
crossref_primary_10_1038_s41586_021_03627_8
crossref_primary_10_1002_anie_202303374
crossref_primary_10_1021_accountsmr_4c00336
crossref_primary_10_1021_acs_iecr_4c04219
crossref_primary_10_3390_molecules26227048
crossref_primary_10_1016_j_ccr_2020_213479
crossref_primary_10_1016_j_enchem_2021_100067
crossref_primary_10_1007_s11426_024_2377_9
crossref_primary_10_1016_j_gce_2025_01_004
crossref_primary_10_1039_D3GC01114C
crossref_primary_10_1002_smll_202408742
crossref_primary_10_1016_j_compchemeng_2023_108288
crossref_primary_10_1007_s13399_023_04693_w
crossref_primary_10_1021_acsmaterialslett_4c01434
crossref_primary_10_1016_j_ccr_2022_214714
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1021_jacs_0c13019
crossref_primary_10_1038_s41467_023_39470_w
crossref_primary_10_1039_D0QI00642D
crossref_primary_10_1002_adfm_202206670
crossref_primary_10_1039_C9CS00756C
crossref_primary_10_1039_D1TB01596F
crossref_primary_10_1016_j_jhazmat_2022_129208
crossref_primary_10_1016_j_ccr_2023_215402
crossref_primary_10_1021_acs_inorgchem_2c01130
crossref_primary_10_1016_j_cej_2024_150833
crossref_primary_10_1021_acsami_0c13022
crossref_primary_10_1007_s11426_022_1304_1
crossref_primary_10_1021_cbe_3c00099
crossref_primary_10_1016_j_enchem_2021_100057
crossref_primary_10_1021_acs_jpcc_0c00130
crossref_primary_10_1039_D2QI00465H
crossref_primary_10_1021_acsanm_3c01331
crossref_primary_10_1002_ange_202110820
crossref_primary_10_1039_C9TA10264G
crossref_primary_10_1002_smm2_1016
crossref_primary_10_1016_j_trechm_2023_11_001
crossref_primary_10_1016_j_xcrp_2023_101750
crossref_primary_10_1021_acsami_9b15311
crossref_primary_10_1186_s13321_020_0411_2
crossref_primary_10_1021_acsami_0c10702
crossref_primary_10_1021_jacs_4c01539
crossref_primary_10_1016_j_cclet_2021_05_010
crossref_primary_10_1038_s41563_019_0437_x
crossref_primary_10_1038_s41467_020_19209_7
crossref_primary_10_1039_D2CS00442A
crossref_primary_10_1002_advs_202003243
crossref_primary_10_1016_j_cej_2022_134844
crossref_primary_10_1021_acs_jcim_2c00876
crossref_primary_10_1002_anie_202106784
crossref_primary_10_1002_ange_202101664
crossref_primary_10_1021_jacs_2c04025
crossref_primary_10_1021_acs_inorgchem_0c02878
crossref_primary_10_1038_s41467_022_31274_8
crossref_primary_10_1039_D4SC06624C
crossref_primary_10_1021_acs_nanolett_4c03881
crossref_primary_10_1021_acsnano_1c04575
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1021_acs_iecr_4c02189
crossref_primary_10_1021_jacs_0c09466
crossref_primary_10_1002_anie_202110820
crossref_primary_10_1021_acs_accounts_2c00418
crossref_primary_10_1021_jacs_2c10595
crossref_primary_10_1002_adma_201908275
crossref_primary_10_1016_j_chempr_2019_10_012
crossref_primary_10_1016_j_partic_2025_02_017
crossref_primary_10_1038_s41467_022_32678_2
crossref_primary_10_1002_adma_202002603
crossref_primary_10_1039_D1CC02446A
crossref_primary_10_1007_s11426_024_2062_3
crossref_primary_10_1002_anie_202101664
crossref_primary_10_1002_asia_202101220
crossref_primary_10_1021_acs_accounts_1c00555
crossref_primary_10_1021_acs_iecr_1c02220
crossref_primary_10_1007_s11426_019_9581_0
crossref_primary_10_1002_ange_202309985
crossref_primary_10_1002_anie_202415346
crossref_primary_10_1002_ange_202011300
crossref_primary_10_1016_j_cjsc_2025_100540
crossref_primary_10_1002_ange_202016673
crossref_primary_10_1002_anie_202208756
crossref_primary_10_1002_chem_202100528
crossref_primary_10_1039_D3QM00484H
crossref_primary_10_1016_j_xcrp_2022_100903
crossref_primary_10_1002_anie_202015257
crossref_primary_10_1016_j_jssc_2020_121321
crossref_primary_10_1021_jacs_3c00515
crossref_primary_10_1016_j_ccr_2023_215111
crossref_primary_10_1039_D3MH00697B
crossref_primary_10_1039_D2QI01738E
crossref_primary_10_1038_s44286_023_00004_2
crossref_primary_10_1016_j_chempr_2020_12_025
crossref_primary_10_1016_j_cej_2022_139756
crossref_primary_10_1007_s11705_019_1872_6
crossref_primary_10_1016_j_jiec_2023_01_036
crossref_primary_10_1002_ange_202102810
crossref_primary_10_1002_ange_202303374
crossref_primary_10_1070_RCR5026
crossref_primary_10_1002_anie_202309985
crossref_primary_10_1039_D2TA03563D
crossref_primary_10_1038_s41467_020_20101_7
crossref_primary_10_1038_s41467_022_35674_8
crossref_primary_10_2139_ssrn_4169691
crossref_primary_10_1002_anie_202006414
crossref_primary_10_1002_anie_202414503
crossref_primary_10_1021_acs_cgd_0c00258
crossref_primary_10_20517_cs_2024_16
crossref_primary_10_1016_j_jece_2023_111027
crossref_primary_10_1021_jacs_0c01314
crossref_primary_10_1039_D3MA01085F
crossref_primary_10_1021_jacs_9b10923
crossref_primary_10_1002_ange_202208756
crossref_primary_10_1021_jacs_0c03853
crossref_primary_10_1039_D4CE00318G
crossref_primary_10_1021_acsami_3c08344
crossref_primary_10_1002_anie_202408817
crossref_primary_10_1016_j_scib_2020_12_031
crossref_primary_10_1007_s40820_024_01475_5
crossref_primary_10_1021_acs_inorgchem_0c00022
crossref_primary_10_1016_j_ccr_2022_214628
crossref_primary_10_1002_ange_202309925
crossref_primary_10_1039_D3CS01163A
crossref_primary_10_1002_smll_202202173
crossref_primary_10_1002_anie_202102810
crossref_primary_10_1038_s41598_022_20024_x
crossref_primary_10_1039_D3SC05489F
crossref_primary_10_1002_agt2_565
crossref_primary_10_1136_gutjnl_2023_330045
crossref_primary_10_1021_accountsmr_4c00316
crossref_primary_10_1021_acsami_0c17937
crossref_primary_10_1002_advs_202104234
crossref_primary_10_1016_j_cej_2025_159223
crossref_primary_10_1016_j_ccr_2025_216464
crossref_primary_10_1021_acsami_1c03923
crossref_primary_10_1039_D0DT03013A
crossref_primary_10_1002_chem_202101871
crossref_primary_10_1093_nsr_nwaa094
crossref_primary_10_1021_acsnano_3c03765
crossref_primary_10_1126_science_abj7659
crossref_primary_10_1007_s12274_022_4915_0
crossref_primary_10_1126_sciadv_adj6473
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1016_j_isci_2021_103042
crossref_primary_10_1002_ange_202408817
crossref_primary_10_1002_ange_202415346
crossref_primary_10_1016_j_scib_2024_10_031
crossref_primary_10_1021_acs_chemmater_1c03084
Cites_doi 10.1039/c3dt32302a
10.1002/anie.200705822
10.1038/srep11537
10.1021/jacs.5b08746
10.1039/C7SC03067C
10.1021/ja106142x
10.1021/j100389a010
10.1021/acs.accounts.6b00577
10.1002/anie.201708769
10.1002/chem.201403501
10.1126/science.1082169
10.1002/anie.200700056
10.1016/j.cattod.2011.01.037
10.1039/C4CS00101J
10.1002/jcc.23877
10.1021/ja075408b
10.1038/s41563-018-0206-2
10.1002/anie.201506345
10.1039/c0cc01031f
10.1016/0927-0256(96)00008-0
10.1126/science.aao0092
10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H
10.1002/anie.201402894
10.1021/acs.inorgchem.5b00206
10.1039/c3cc46597g
10.1103/PhysRevB.54.11169
10.1002/adfm.201401125
10.1039/b802426j
10.1038/nature11893
10.1021/acs.cgd.7b00287
10.1021/ja100900c
10.1021/jacs.6b13300
10.1021/ar200083e
10.1021/ct400952t
10.1021/ja907556q
10.1021/acs.accounts.6b00526
10.1039/C7SC00278E
10.1039/C3CC49684H
10.1002/chem.200305413
10.1038/35089052
10.1021/jp980939v
10.1016/S1385-8947(99)00059-5
10.1002/chem.201601724
10.1021/ja2032822
10.1006/jcph.1995.1039
10.1021/ja9621760
10.1002/anie.201404306
10.1021/jz300855a
10.1126/science.aar6833
10.1126/science.aam7232
10.1039/C4CS00076E
10.1038/srep05761
10.1039/C5RA07830J
10.1021/cr200139g
10.1021/ja406844r
10.1021/ja305663k
10.1126/science.aaf6323
10.1093/nsr/nwx127
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright Nature Publishing Group Sep 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: Copyright Nature Publishing Group Sep 2019
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-019-0427-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database (subscription)
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 998
ExternalDocumentID 31308517
10_1038_s41563_019_0427_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c409t-89d337262de80f7c268192bd126c0fadc20e5b9b0399528d2937befa7ff7323c3
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri Jul 11 03:11:23 EDT 2025
Fri Jul 25 08:57:14 EDT 2025
Mon Jul 21 06:06:47 EDT 2025
Tue Jul 01 02:14:00 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Fri Feb 21 02:38:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-89d337262de80f7c268192bd126c0fadc20e5b9b0399528d2937befa7ff7323c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2614-2774
0000-0003-1105-8702
PMID 31308517
PQID 2277419571
PQPubID 27576
PageCount 5
ParticipantIDs proquest_miscellaneous_2258741549
proquest_journals_2277419571
pubmed_primary_31308517
crossref_primary_10_1038_s41563_019_0427_z
crossref_citationtrail_10_1038_s41563_019_0427_z
springer_journals_10_1038_s41563_019_0427_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References GuCDesign and control of gas diffusion process in a nanoporous soft crystalScience20193633873911:CAS:528:DC%2BC1MXhs1anu7c%3D10.1126/science.aar6833
DeVriesLDBarronPMHurleyEPHuCChoeW‘Nanoscale lattice fence’ in a metal–organic framework: interplay between hinged topology and highly anisotropic thermal responseJ. Am. Chem. Soc.201113314848148511:CAS:528:DC%2BC3MXhtFCgsL3K10.1021/ja2032822
YuMNobleRDFalconerJLZeolite membranes: microstructure characterization and permeation nechanismsAcc. Chem. Res.201144119612061:CAS:528:DC%2BC3MXpsFOhtLg%3D10.1021/ar200083e
FranclMMCareyCChirlianLEGangeDMCharges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials?J. Comput. Chem.1996173673831:CAS:528:DyaK28Xns1agsg%3D%3D10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H
JinZA novel microporous MOF with the capability of selective adsorption of xylenesChem. Commun.201046861286141:CAS:528:DC%2BC3cXhtl2ltbvI10.1039/c0cc01031f
BereciartuaPJControl of zeolite framework flexibility and pore topology for separation of ethane and ethyleneScience2017358106810711:CAS:528:DC%2BC2sXhvFahsbzF10.1126/science.aao0092
MukherjeeSAn ultrahydrophobic fluorous metal–organic framework derived recyclable composite as a promising platform to tackle marine oil spillsChem. Eur. J.20162210937109431:CAS:528:DC%2BC28XhtFSqsbvP10.1002/chem.201601724
MoghadamPZAdsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulationChem. Sci.20178398940001:CAS:528:DC%2BC2sXktVKjsLc%3D10.1039/C7SC00278E
KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
MukherjeeSFramework-flexibility driven selective sorption of p-xylene over other isomers by a dynamic metal–organic frameworkSci. Rep.201441:CAS:528:DC%2BC2MXktlSmtrs%3D10.1038/srep05761
KolvenbachRA comparative study of diffusion of benzene/p-xylene mixtures in MFI particles, pellets and grown membranesCatal. Today20111681471571:CAS:528:DC%2BC3MXmvFWrtrc%3D10.1016/j.cattod.2011.01.037
ZhouD-DA flexible porous Cu(ii) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 captureChem. Commun.20134911728117301:CAS:528:DC%2BC3sXhvVWmt7zF10.1039/c3cc46597g
LiuS-YPorous Cu(i) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygenAdv. Funct. Mater.201424586658721:CAS:528:DC%2BC2cXhtFGmurjP10.1002/adfm.201401125
JorgensenWLMaxwellDSTirado-RivesJDevelopment and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquidsJ. Am. Chem. Soc.199611811225112361:CAS:528:DyaK28XmtlOitrs%3D10.1021/ja9621760
HeC-THyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole momentChem. Sci.20178756075651:CAS:528:DC%2BC2sXhsVOhtb7P10.1039/C7SC03067C
Fritz, U. Ullmann’s Encyclopedia of Industrial Chemistry 7th edn (Wiley, 2011).
ZhangZSorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sievingAngew. Chem. Int. Ed.20175616282162871:CAS:528:DC%2BC2sXhslShsr7K10.1002/anie.201708769
ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g
RaoKPDesign of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unitAngew. Chem. Int. Ed.201453822582301:CAS:528:DC%2BC2cXhtVOjur%2FE10.1002/anie.201404306
AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k
LiJRKupplerRJZhouHCSelective gas adsorption and separation in metal–organic frameworksChem. Soc. Rev.200938147715041:CAS:528:DC%2BD1MXkvVamurY%3D10.1039/b802426j
GrzywaMCFA-2 and CFA-3 (coordination framework augsburg university-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3',5,5'-tetraphenyl-bipyrazolate ligandsDalton Trans.201342690969211:CAS:528:DC%2BC3sXnsVCis7k%3D10.1039/c3dt32302a
NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D10.1038/nature11893
EvansJDSumbyCJDoonanCJPost-synthetic metalation of metal–organic frameworksChem. Soc. Rev.201443593359511:CAS:528:DC%2BC2cXht1Slu7nK10.1039/C4CS00076E
IslamogluTPostsynthetic tuning of metal–organic frameworks for targeted applicationsAcc. Chem. Res.2017508058131:CAS:528:DC%2BC2sXit1yisLk%3D10.1021/acs.accounts.6b00577
WangYZhaoDBeyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separationCryst. Growth Des.201717229123081:CAS:528:DC%2BC2sXlvFGit7k%3D10.1021/acs.cgd.7b00287
SchneemannAFlexible metal–organic frameworksChem. Soc. Rev.201443606260961:CAS:528:DC%2BC2cXht1Slu7nI10.1039/C4CS00101J
KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207241:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052
LiRJLiMZhouXPLiDO'KeeffeMA highly stable MOF with a rod SBU and a tetracarboxylate linker: unusual topology and CO2 adsorption behaviour under ambient conditionsChem. Commun.201450404740491:CAS:528:DC%2BC2cXks12gs7k%3D10.1039/C3CC49684H
KrishnaRMethodologies for evaluation of metal–organic frameworks in separation applicationsRSC Adv.2015552269522951:CAS:528:DC%2BC2MXhtVShurbI10.1039/C5RA07830J
Kirk-Othmer. Kirk-Othmer Encyclopedia of Chemical Technology 5th edn (Wiley, 2007).
MukherjeeSExploiting framework flexibility of a metal–organic framework for selective adsorption of styrene over ethylbenzeneInorg. Chem.201554440344081:CAS:528:DC%2BC2MXmsFags70%3D10.1021/acs.inorgchem.5b00206
KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
MohantySMcCormickAVProspects for principles of size and shape selective separations using zeolitesChem. Eng. J.1999741141:CAS:528:DyaK1MXlsFemsbk%3D10.1016/S1385-8947(99)00059-5
ZhangCUnexpected molecular sieving properties of zeolitic imidazolate framework-8J. Phys. Chem. Lett.20123213021341:CAS:528:DC%2BC38XhtV2gt7rN10.1021/jz300855a
Torres-KnoopAKrishnaRDubbeldamDSeparating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8Angew. Chem. Int. Ed.201453777477781:CAS:528:DC%2BC2cXpsVKitrs%3D10.1002/anie.201402894
ZhaiQGBuXZhaoXLiDSFengPPore space partition in metal–organic frameworksAcc. Chem. Res.2017504074171:CAS:528:DC%2BC2sXht1Gis7Y%3D10.1021/acs.accounts.6b00526
PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039
TanakaDKinetic gate-opening process in a flexible porous coordination polymerAngew. Chem. Int. Ed.200847391439181:CAS:528:DC%2BD1cXmsVeru7o%3D10.1002/anie.200705822
VanduyfhuysLQuickFF: a program for a quick and easy derivation of force fields for metal–organic frameworks from ab initio inputJ. Comput. Chem.201536101510271:CAS:528:DC%2BC2MXkvVaitL4%3D10.1002/jcc.23877
LiBAn ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivityAdv. Mater.201729201704210
LaiZMicrostructural optimization of a zeolite membrane for organic vapor separationScience20033004564601:CAS:528:DC%2BD3sXivFymsrk%3D
MayoSLOlafsonBDGoddardWAIIIDREIDING: a generic force field for molecular simulationsJ. Phys. Chem.199094889789091:CAS:528:DyaK3cXmtlyhtL0%3D10.1021/j100389a010
JieKStyrene purification by guest-induced restructuring of pillar[6]areneJ. Am. Chem. Soc.2017139290829111:CAS:528:DC%2BC2sXisVWgsrc%3D10.1021/jacs.6b13300
CadiauAAdilKBhattPMBelmabkhoutYEddaoudiMA metal–organic framework-based splitter for separating propylene from propaneScience20163531371401:CAS:528:DC%2BC28XhtFSisrvL10.1126/science.aaf6323
SunHCOMPASS: an ab initio force-field optimized for condensed-phase applicationss overview with details on alkane and benzene compoundsJ. Phys. Chem. B1998102733873641:CAS:528:DyaK1cXlslart7g%3D10.1021/jp980939v
VerploeghRJNairSShollDSTemperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulationsJ. Am. Chem. Soc.201513715760157711:CAS:528:DC%2BC2MXhvFWmu7vJ10.1021/jacs.5b08746
LiaoP-QHuangN-YZhangW-XZhangJ-PChenX-MControlling guest conformation for efficient purification of butadieneScience2017356119311961:CAS:528:DC%2BC2sXpslCktr0%3D10.1126/science.aam7232
WangJHLiMLiDAn exceptionally stable and water-resistant metal–organic framework with hydrophobic nanospaces for extracting aromatic pollutants from water.Chem. Eur. J.20142012004120081:CAS:528:DC%2BC2cXht1GrurvP10.1002/chem.201403501
LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413
NguyenJGCohenSMMoisture-resistant and superhydrophobic metal–organic frameworks obtained via postsynthetic modification.J. Am. Chem. Soc.2010132456045611:CAS:528:DC%2BC3cXjt1Gjs7c%3D10.1021/ja100900c
AddicoatMAVankovaNAkterIFHeineTExtension of the universal force field to metal–organic frameworksJ. Chem. Theory Comput.2014108808911:CAS:528:DC%2BC2cXpt1yhsw%3D%3D10.1021/ct400952t
HamonLCo-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOFJ. Am. Chem. Soc.200913117490174991:CAS:528:DC%2BD1MXhtl2qu7%2FE10.1021/ja907556q
ZhangJ-PKitagawaSSupramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(i)/Cu(i) 3,3', 5,5'-tetrametyl-4,4'-bipyrazolateJ
D-D Zhou (427_CR30) 2013; 49
A Cadiau (427_CR11) 2016; 353
A Torres-Knoop (427_CR51) 2014; 53
J-M Lin (427_CR52) 2015; 5
H Sun (427_CR54) 1998; 102
P-Q Liao (427_CR38) 2017; 356
KP Rao (427_CR48) 2014; 53
JH Wang (427_CR44) 2014; 20
AH Assen (427_CR13) 2015; 54
MM Francl (427_CR61) 1996; 17
427_CR1
M Grzywa (427_CR43) 2013; 42
427_CR3
HL Jiang (427_CR33) 2013; 135
J-P Zhang (427_CR45) 2012; 112
C Gu (427_CR27) 2019; 363
J-P Zhang (427_CR31) 2008; 130
R-B Lin (427_CR12) 2018; 17
M Maes (427_CR2) 2010; 132
QG Zhai (427_CR19) 2017; 50
S Mukherjee (427_CR23) 2014; 4
L Hamon (427_CR28) 2009; 131
JD Evans (427_CR20) 2014; 43
S Mohanty (427_CR4) 1999; 74
Z Zhang (427_CR14) 2017; 56
MA Addicoat (427_CR57) 2014; 10
B Li (427_CR9) 2017; 29
L Alaerts (427_CR37) 2007; 46
G Kresse (427_CR59) 1996; 6
Z Lai (427_CR16) 2003; 300
K Jie (427_CR39) 2017; 139
S-Y Liu (427_CR42) 2014; 24
R Kolvenbach (427_CR17) 2011; 168
T Islamoglu (427_CR18) 2017; 50
C Zhang (427_CR22) 2012; 3
M Yu (427_CR50) 2011; 44
SL Mayo (427_CR56) 1990; 94
J-P Zhang (427_CR25) 2018; 5
C-T He (427_CR36) 2017; 8
JG Nguyen (427_CR47) 2010; 132
R Krishna (427_CR41) 2015; 5
WL Jorgensen (427_CR55) 1996; 118
S Plimpton (427_CR53) 1995; 117
T Loiseau (427_CR32) 2004; 10
PJ Bereciartua (427_CR8) 2017; 358
D Tanaka (427_CR26) 2008; 47
G Kresse (427_CR60) 1996; 54
RJ Li (427_CR34) 2014; 50
PZ Moghadam (427_CR46) 2017; 8
LD DeVries (427_CR29) 2011; 133
S Mukherjee (427_CR49) 2016; 22
A Schneemann (427_CR24) 2014; 43
RJ Verploegh (427_CR21) 2015; 137
P Nugent (427_CR5) 2013; 495
SM Kuznicki (427_CR7) 2001; 412
S Mukherjee (427_CR40) 2015; 54
Z Jin (427_CR15) 2010; 46
L Vanduyfhuys (427_CR58) 2015; 36
Y Wang (427_CR6) 2017; 17
S Aguado (427_CR10) 2012; 134
JR Li (427_CR35) 2009; 38
References_xml – reference: SunHCOMPASS: an ab initio force-field optimized for condensed-phase applicationss overview with details on alkane and benzene compoundsJ. Phys. Chem. B1998102733873641:CAS:528:DyaK1cXlslart7g%3D10.1021/jp980939v
– reference: LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413
– reference: Fritz, U. Ullmann’s Encyclopedia of Industrial Chemistry 7th edn (Wiley, 2011).
– reference: FranclMMCareyCChirlianLEGangeDMCharges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials?J. Comput. Chem.1996173673831:CAS:528:DyaK28Xns1agsg%3D%3D10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H
– reference: EvansJDSumbyCJDoonanCJPost-synthetic metalation of metal–organic frameworksChem. Soc. Rev.201443593359511:CAS:528:DC%2BC2cXht1Slu7nK10.1039/C4CS00076E
– reference: LinJ-MHeC-TLiaoP-QLinR-BZhangJ-PStructural, energetic, and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystalSci. Rep.201551:CAS:528:DC%2BC2MXhtFyhsbjN10.1038/srep11537
– reference: MukherjeeSExploiting framework flexibility of a metal–organic framework for selective adsorption of styrene over ethylbenzeneInorg. Chem.201554440344081:CAS:528:DC%2BC2MXmsFags70%3D10.1021/acs.inorgchem.5b00206
– reference: BereciartuaPJControl of zeolite framework flexibility and pore topology for separation of ethane and ethyleneScience2017358106810711:CAS:528:DC%2BC2sXhvFahsbzF10.1126/science.aao0092
– reference: ZhaiQGBuXZhaoXLiDSFengPPore space partition in metal–organic frameworksAcc. Chem. Res.2017504074171:CAS:528:DC%2BC2sXht1Gis7Y%3D10.1021/acs.accounts.6b00526
– reference: WangJHLiMLiDAn exceptionally stable and water-resistant metal–organic framework with hydrophobic nanospaces for extracting aromatic pollutants from water.Chem. Eur. J.20142012004120081:CAS:528:DC%2BC2cXht1GrurvP10.1002/chem.201403501
– reference: GuCDesign and control of gas diffusion process in a nanoporous soft crystalScience20193633873911:CAS:528:DC%2BC1MXhs1anu7c%3D10.1126/science.aar6833
– reference: ZhangJ-PKitagawaSSupramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(i)/Cu(i) 3,3', 5,5'-tetrametyl-4,4'-bipyrazolateJ. Am. Chem. Soc.20081309079171:CAS:528:DC%2BD1cXhtlygsA%3D%3D10.1021/ja075408b
– reference: MukherjeeSAn ultrahydrophobic fluorous metal–organic framework derived recyclable composite as a promising platform to tackle marine oil spillsChem. Eur. J.20162210937109431:CAS:528:DC%2BC28XhtFSqsbvP10.1002/chem.201601724
– reference: LaiZMicrostructural optimization of a zeolite membrane for organic vapor separationScience20033004564601:CAS:528:DC%2BD3sXivFymsrk%3D
– reference: ZhangJ-PZhouH-LZhouD-DLiaoP-QChenX-MControlling flexibility of metal–organic frameworksNatl Sci. Rev.2018590791910.1093/nsr/nwx127
– reference: MayoSLOlafsonBDGoddardWAIIIDREIDING: a generic force field for molecular simulationsJ. Phys. Chem.199094889789091:CAS:528:DyaK3cXmtlyhtL0%3D10.1021/j100389a010
– reference: YuMNobleRDFalconerJLZeolite membranes: microstructure characterization and permeation nechanismsAcc. Chem. Res.201144119612061:CAS:528:DC%2BC3MXpsFOhtLg%3D10.1021/ar200083e
– reference: LiaoP-QHuangN-YZhangW-XZhangJ-PChenX-MControlling guest conformation for efficient purification of butadieneScience2017356119311961:CAS:528:DC%2BC2sXpslCktr0%3D10.1126/science.aam7232
– reference: VanduyfhuysLQuickFF: a program for a quick and easy derivation of force fields for metal–organic frameworks from ab initio inputJ. Comput. Chem.201536101510271:CAS:528:DC%2BC2MXkvVaitL4%3D10.1002/jcc.23877
– reference: Torres-KnoopAKrishnaRDubbeldamDSeparating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8Angew. Chem. Int. Ed.201453777477781:CAS:528:DC%2BC2cXpsVKitrs%3D10.1002/anie.201402894
– reference: JieKStyrene purification by guest-induced restructuring of pillar[6]areneJ. Am. Chem. Soc.2017139290829111:CAS:528:DC%2BC2sXisVWgsrc%3D10.1021/jacs.6b13300
– reference: KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207241:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052
– reference: ZhangZSorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sievingAngew. Chem. Int. Ed.20175616282162871:CAS:528:DC%2BC2sXhslShsr7K10.1002/anie.201708769
– reference: TanakaDKinetic gate-opening process in a flexible porous coordination polymerAngew. Chem. Int. Ed.200847391439181:CAS:528:DC%2BD1cXmsVeru7o%3D10.1002/anie.200705822
– reference: JinZA novel microporous MOF with the capability of selective adsorption of xylenesChem. Commun.201046861286141:CAS:528:DC%2BC3cXhtl2ltbvI10.1039/c0cc01031f
– reference: LiuS-YPorous Cu(i) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygenAdv. Funct. Mater.201424586658721:CAS:528:DC%2BC2cXhtFGmurjP10.1002/adfm.201401125
– reference: KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
– reference: HamonLCo-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOFJ. Am. Chem. Soc.200913117490174991:CAS:528:DC%2BD1MXhtl2qu7%2FE10.1021/ja907556q
– reference: SchneemannAFlexible metal–organic frameworksChem. Soc. Rev.201443606260961:CAS:528:DC%2BC2cXht1Slu7nI10.1039/C4CS00101J
– reference: JorgensenWLMaxwellDSTirado-RivesJDevelopment and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquidsJ. Am. Chem. Soc.199611811225112361:CAS:528:DyaK28XmtlOitrs%3D10.1021/ja9621760
– reference: Kirk-Othmer. Kirk-Othmer Encyclopedia of Chemical Technology 5th edn (Wiley, 2007).
– reference: KrishnaRMethodologies for evaluation of metal–organic frameworks in separation applicationsRSC Adv.2015552269522951:CAS:528:DC%2BC2MXhtVShurbI10.1039/C5RA07830J
– reference: WangYZhaoDBeyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separationCryst. Growth Des.201717229123081:CAS:528:DC%2BC2sXlvFGit7k%3D10.1021/acs.cgd.7b00287
– reference: ZhouD-DA flexible porous Cu(ii) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 captureChem. Commun.20134911728117301:CAS:528:DC%2BC3sXhvVWmt7zF10.1039/c3cc46597g
– reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
– reference: CadiauAAdilKBhattPMBelmabkhoutYEddaoudiMA metal–organic framework-based splitter for separating propylene from propaneScience20163531371401:CAS:528:DC%2BC28XhtFSisrvL10.1126/science.aaf6323
– reference: HeC-THyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole momentChem. Sci.20178756075651:CAS:528:DC%2BC2sXhsVOhtb7P10.1039/C7SC03067C
– reference: MaesMSeparation of styrene and ethylbenzene on metal–organic frameworks: analogous structures with different adsorption mechanismsJ. Am. Chem. Soc.201013215277152851:CAS:528:DC%2BC3cXht1Oqtb3N10.1021/ja106142x
– reference: NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D10.1038/nature11893
– reference: KolvenbachRA comparative study of diffusion of benzene/p-xylene mixtures in MFI particles, pellets and grown membranesCatal. Today20111681471571:CAS:528:DC%2BC3MXmvFWrtrc%3D10.1016/j.cattod.2011.01.037
– reference: JiangHLAn exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescenceJ. Am. Chem. Soc.201313513934139381:CAS:528:DC%2BC3sXhtlChtLzI10.1021/ja406844r
– reference: AddicoatMAVankovaNAkterIFHeineTExtension of the universal force field to metal–organic frameworksJ. Chem. Theory Comput.2014108808911:CAS:528:DC%2BC2cXpt1yhsw%3D%3D10.1021/ct400952t
– reference: AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k
– reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039
– reference: AlaertsLSelective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(iv) terephthalate MIL-47Angew. Chem. Int. Ed.200746429342971:CAS:528:DC%2BD2sXmslGhtL8%3D10.1002/anie.200700056
– reference: LiBAn ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivityAdv. Mater.201729201704210
– reference: AssenAHUltra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffinsAngew. Chem. Int. Ed.20155414353143581:CAS:528:DC%2BC2MXhsF2ktLbP10.1002/anie.201506345
– reference: VerploeghRJNairSShollDSTemperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulationsJ. Am. Chem. Soc.201513715760157711:CAS:528:DC%2BC2MXhvFWmu7vJ10.1021/jacs.5b08746
– reference: MukherjeeSFramework-flexibility driven selective sorption of p-xylene over other isomers by a dynamic metal–organic frameworkSci. Rep.201441:CAS:528:DC%2BC2MXktlSmtrs%3D10.1038/srep05761
– reference: DeVriesLDBarronPMHurleyEPHuCChoeW‘Nanoscale lattice fence’ in a metal–organic framework: interplay between hinged topology and highly anisotropic thermal responseJ. Am. Chem. Soc.201113314848148511:CAS:528:DC%2BC3MXhtFCgsL3K10.1021/ja2032822
– reference: RaoKPDesign of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unitAngew. Chem. Int. Ed.201453822582301:CAS:528:DC%2BC2cXhtVOjur%2FE10.1002/anie.201404306
– reference: GrzywaMCFA-2 and CFA-3 (coordination framework augsburg university-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3',5,5'-tetraphenyl-bipyrazolate ligandsDalton Trans.201342690969211:CAS:528:DC%2BC3sXnsVCis7k%3D10.1039/c3dt32302a
– reference: LiRJLiMZhouXPLiDO'KeeffeMA highly stable MOF with a rod SBU and a tetracarboxylate linker: unusual topology and CO2 adsorption behaviour under ambient conditionsChem. Commun.201450404740491:CAS:528:DC%2BC2cXks12gs7k%3D10.1039/C3CC49684H
– reference: NguyenJGCohenSMMoisture-resistant and superhydrophobic metal–organic frameworks obtained via postsynthetic modification.J. Am. Chem. Soc.2010132456045611:CAS:528:DC%2BC3cXjt1Gjs7c%3D10.1021/ja100900c
– reference: MohantySMcCormickAVProspects for principles of size and shape selective separations using zeolitesChem. Eng. J.1999741141:CAS:528:DyaK1MXlsFemsbk%3D10.1016/S1385-8947(99)00059-5
– reference: ZhangCUnexpected molecular sieving properties of zeolitic imidazolate framework-8J. Phys. Chem. Lett.20123213021341:CAS:528:DC%2BC38XhtV2gt7rN10.1021/jz300855a
– reference: ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g
– reference: LiJRKupplerRJZhouHCSelective gas adsorption and separation in metal–organic frameworksChem. Soc. Rev.200938147715041:CAS:528:DC%2BD1MXkvVamurY%3D10.1039/b802426j
– reference: LinR-BMolecular sieving of ethylene from ethane using a rigid metal–organic frameworkNat. Mater.201817112811331:CAS:528:DC%2BC1cXitFers73M10.1038/s41563-018-0206-2
– reference: IslamogluTPostsynthetic tuning of metal–organic frameworks for targeted applicationsAcc. Chem. Res.2017508058131:CAS:528:DC%2BC2sXit1yisLk%3D10.1021/acs.accounts.6b00577
– reference: MoghadamPZAdsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulationChem. Sci.20178398940001:CAS:528:DC%2BC2sXktVKjsLc%3D10.1039/C7SC00278E
– volume: 42
  start-page: 6909
  year: 2013
  ident: 427_CR43
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt32302a
– volume: 47
  start-page: 3914
  year: 2008
  ident: 427_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705822
– volume: 5
  year: 2015
  ident: 427_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/srep11537
– volume: 137
  start-page: 15760
  year: 2015
  ident: 427_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08746
– volume: 8
  start-page: 7560
  year: 2017
  ident: 427_CR36
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03067C
– volume: 132
  start-page: 15277
  year: 2010
  ident: 427_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106142x
– volume: 94
  start-page: 8897
  year: 1990
  ident: 427_CR56
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100389a010
– volume: 50
  start-page: 805
  year: 2017
  ident: 427_CR18
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00577
– volume: 56
  start-page: 16282
  year: 2017
  ident: 427_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708769
– volume: 20
  start-page: 12004
  year: 2014
  ident: 427_CR44
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201403501
– volume: 300
  start-page: 456
  year: 2003
  ident: 427_CR16
  publication-title: Science
  doi: 10.1126/science.1082169
– volume: 46
  start-page: 4293
  year: 2007
  ident: 427_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200700056
– volume: 168
  start-page: 147
  year: 2011
  ident: 427_CR17
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.01.037
– volume: 43
  start-page: 6062
  year: 2014
  ident: 427_CR24
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00101J
– volume: 36
  start-page: 1015
  year: 2015
  ident: 427_CR58
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23877
– volume: 130
  start-page: 907
  year: 2008
  ident: 427_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075408b
– volume: 17
  start-page: 1128
  year: 2018
  ident: 427_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0206-2
– volume: 54
  start-page: 14353
  year: 2015
  ident: 427_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506345
– volume: 46
  start-page: 8612
  year: 2010
  ident: 427_CR15
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01031f
– volume: 6
  start-page: 15
  year: 1996
  ident: 427_CR59
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 358
  start-page: 1068
  year: 2017
  ident: 427_CR8
  publication-title: Science
  doi: 10.1126/science.aao0092
– volume: 29
  start-page: 201704210
  year: 2017
  ident: 427_CR9
  publication-title: Adv. Mater.
– volume: 17
  start-page: 367
  year: 1996
  ident: 427_CR61
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H
– volume: 53
  start-page: 7774
  year: 2014
  ident: 427_CR51
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402894
– volume: 54
  start-page: 4403
  year: 2015
  ident: 427_CR40
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00206
– volume: 49
  start-page: 11728
  year: 2013
  ident: 427_CR30
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc46597g
– volume: 54
  start-page: 11169
  year: 1996
  ident: 427_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 24
  start-page: 5866
  year: 2014
  ident: 427_CR42
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401125
– volume: 38
  start-page: 1477
  year: 2009
  ident: 427_CR35
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 495
  start-page: 80
  year: 2013
  ident: 427_CR5
  publication-title: Nature
  doi: 10.1038/nature11893
– ident: 427_CR3
– volume: 17
  start-page: 2291
  year: 2017
  ident: 427_CR6
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b00287
– volume: 132
  start-page: 4560
  year: 2010
  ident: 427_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100900c
– volume: 139
  start-page: 2908
  year: 2017
  ident: 427_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13300
– volume: 44
  start-page: 1196
  year: 2011
  ident: 427_CR50
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200083e
– volume: 10
  start-page: 880
  year: 2014
  ident: 427_CR57
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400952t
– volume: 131
  start-page: 17490
  year: 2009
  ident: 427_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907556q
– volume: 50
  start-page: 407
  year: 2017
  ident: 427_CR19
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00526
– volume: 8
  start-page: 3989
  year: 2017
  ident: 427_CR46
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00278E
– volume: 50
  start-page: 4047
  year: 2014
  ident: 427_CR34
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49684H
– volume: 10
  start-page: 1373
  year: 2004
  ident: 427_CR32
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200305413
– volume: 412
  start-page: 720
  year: 2001
  ident: 427_CR7
  publication-title: Nature
  doi: 10.1038/35089052
– volume: 102
  start-page: 7338
  year: 1998
  ident: 427_CR54
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980939v
– volume: 74
  start-page: 1
  year: 1999
  ident: 427_CR4
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(99)00059-5
– volume: 22
  start-page: 10937
  year: 2016
  ident: 427_CR49
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201601724
– volume: 133
  start-page: 14848
  year: 2011
  ident: 427_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2032822
– volume: 117
  start-page: 1
  year: 1995
  ident: 427_CR53
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 118
  start-page: 11225
  year: 1996
  ident: 427_CR55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9621760
– volume: 53
  start-page: 8225
  year: 2014
  ident: 427_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201404306
– volume: 3
  start-page: 2130
  year: 2012
  ident: 427_CR22
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300855a
– volume: 363
  start-page: 387
  year: 2019
  ident: 427_CR27
  publication-title: Science
  doi: 10.1126/science.aar6833
– volume: 356
  start-page: 1193
  year: 2017
  ident: 427_CR38
  publication-title: Science
  doi: 10.1126/science.aam7232
– volume: 43
  start-page: 5933
  year: 2014
  ident: 427_CR20
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00076E
– volume: 4
  year: 2014
  ident: 427_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/srep05761
– volume: 5
  start-page: 52269
  year: 2015
  ident: 427_CR41
  publication-title: RSC Adv.
  doi: 10.1039/C5RA07830J
– volume: 112
  start-page: 1001
  year: 2012
  ident: 427_CR45
  publication-title: Chem. Rev.
  doi: 10.1021/cr200139g
– ident: 427_CR1
– volume: 135
  start-page: 13934
  year: 2013
  ident: 427_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406844r
– volume: 134
  start-page: 14635
  year: 2012
  ident: 427_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305663k
– volume: 353
  start-page: 137
  year: 2016
  ident: 427_CR11
  publication-title: Science
  doi: 10.1126/science.aaf6323
– volume: 5
  start-page: 907
  year: 2018
  ident: 427_CR25
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwx127
SSID ssj0021556
Score 2.6264381
Snippet Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 994
SubjectTerms 119/118
639/301/299/1013
639/638/298/921
Adsorption
Apertures
Benzene
Biomaterials
Chemistry and Materials Science
Computer simulation
Condensed Matter Physics
Ethylbenzene
Flexibility
Hydrocarbons
Hydrophobicity
Materials Science
Metal-organic frameworks
Nanotechnology
Optical and Electronic Materials
Organic chemistry
Regeneration
Selectivity
Styrene
Styrenes
Toluene
Title Intermediate-sized molecular sieving of styrene from larger and smaller analogues
URI https://link.springer.com/article/10.1038/s41563-019-0427-z
https://www.ncbi.nlm.nih.gov/pubmed/31308517
https://www.proquest.com/docview/2277419571
https://www.proquest.com/docview/2258741549
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9sw8OiSl-6htF23ul9osKcOUVuyLfmpNKVZGSxso4W8GVmWIJA4bZ285NdXJ9tJR1hfbINlS9yddN93AN8cl1OGFxnNtFQ01iamSsqIRu7si-JIa-GjCX-N0vvH-Oc4GbcGt7oNq-zORH9Ql3ONNvIrxpygEmWJiK6fnil2jULvattC4wP0sXQZUrUYbxQuxyub7CKRUidXsM6ryeVVjYoLRhKha4AJuvqXL20Jm1uOUs9_hvuw1wqO5KbB9AHsmOoQPr4pJ_gJ_njzns8FWRhaT1amJLOu_S2pJwaNB2RuSY2m58oQzC0hU4wFfyGqKkk9w84q-NyYdOojeBzePdze07ZlAtVOUVtQmZWcC5ay0sjQCs1SLHhWlBFLdWhVqVlokiIrQsxoZbJ0zF4UxiphreCMa_4ZetW8MsdAwljZxIEb40-dDm2ykHNTWF9KVElbBBB2AMt1W08c21pMc-_X5jJvYJw7GOcI43wVwOX6k6emmMZ7g886LOTtvqrzDRUE8HX92u0IdHOoysyXOCaRKCfFWQBfGuytZ-OOZTsZUwTwvUPn5uf_XcrJ-0s5hV3mCQkjz86gt3hZmnMnqiyKC0-P7iqHPy6gfzMcDEbuPrgb_f77CkRV5yg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmnFDASXEBWEzuJnUNVIWDZ0oeE1Eq9GcexpUpttjRbIfZH8Rs742y2oIreeouUxIlmxp5v3gBvUctZL-uKV05bnjufc6t1xjM8-7I8c07FbMK9_XJ8mH87Ko6W4M9QC0NplcOZGA_qZuLIR74hBAKVrCpUtnX2k9PUKIquDiM0erHY8b9_ocnWbW5_Rv6-E2L05eDTmM-nCnCHtsyU66qRUolSNF6nQTlRUk-wuslE6dJgGydSX9RVnVLRp9AN6kNV-2BVCEoK6SSuewfu5hI1OVWmj74uDDzUzX01kyo54hgxRFGl3ujIUKLMJQpFCMVn_-rBa-D2WmA26rvRKqzMgSr72EvWQ1jy7SN48Ff7wsfwPboTY-3J1PPueOYbdjqM22XdsSdnBZsE1pGru_WMalnYCeWenzPbNqw7pUkudN27kLoncHgrxHwKy-2k9c-BpbkNBbKX8l3RZvdVKqWvQ2xdanWoE0gHghk3719OYzROTIyjS216GhuksSEam1kC7xevnPXNO256eH3ggpnv485cSV0Cbxa3cQdSWMW2fnJBzxSacFleJfCs597iaxIhAmJalcCHgZ1Xi__3V9Zu_pXXcG98sLdrdrf3d17AfRGFirLe1mF5en7hXyJMmtavomwy-HHbm-ES8iIfnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EoJDxZuUAkaCC8jaxE5i54AQ0K5aCquCqNSb6zi2VKnNlmYrxH4aX8dMHltQRW-9RYrjWPPwvGcAXqKUs16WBS-ctjx1PuVW64QnePclaeKcarMJv0zz7f3000F2sAK_h1oYSqsc7sT2oq5mjnzkYyFQUUmKTCXj0KdF7G1O3p3-4DRBiiKtwziNjkR2_a-faL41b3c2EdevhJhsff-4zfsJA9yhXTPnuqikVCIXlddxUE7k1B-srBKRuzjYyonYZ2VRxlQAKnSFslGVPlgVgpJCOon73oBVRVbRCFY_bE33vi3NPZTUXW2TyjlqNWKIqUo9bshsojwmCkwIxRf_SsVLqu6lMG0r_SZ3YK1XW9n7js7uwoqv78Htv5oZ3oevrXOxrUSZe94cLXzFTobhu6w58uS6YLPAGnJ8155RZQs7pkz0M2brijUnNNeFnjuHUvMA9q8FnA9hVM9q_xhYnNqQIbIp-xUteF_EUvoytI1MrQ5lBPEAMOP6buY0VOPYtFF1qU0HY4MwNgRjs4jg9fKT066Vx1WLNwYsmJ6rG3NBgxG8WL5GfqQgi6397JzWZJq0tLSI4FGHveXfJCoMqOGqCN4M6LzY_L9HWb_6KM_hJjKC-bwz3X0Ct0RLU5QCtwGj-dm5f4o607x81hMng8Pr5oc_VEQlMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermediate-sized+molecular+sieving+of+styrene+from+larger+and+smaller+analogues&rft.jtitle=Nature+materials&rft.au=Zhou%2C+Dong-Dong&rft.au=Chen%2C+Pin&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Sha-Sha&rft.date=2019-09-01&rft.issn=1476-1122&rft.volume=18&rft.issue=9&rft.spage=994&rft_id=info:doi/10.1038%2Fs41563-019-0427-z&rft_id=info%3Apmid%2F31308517&rft.externalDocID=31308517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon