Intermediate-sized molecular sieving of styrene from larger and smaller analogues
Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hinder...
Saved in:
Published in | Nature materials Vol. 18; no. 9; pp. 994 - 998 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal–organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption–desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.
Molecular sieving separates larger from smaller molecules, but all molecules smaller than the pore adsorb, hindering selectivity. Here, a MOF is reported with both molecular sieving and gate-opening, separating intermediate-sized molecules from larger and smaller analogues. |
---|---|
AbstractList | Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal–organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption–desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.
Molecular sieving separates larger from smaller molecules, but all molecules smaller than the pore adsorb, hindering selectivity. Here, a MOF is reported with both molecular sieving and gate-opening, separating intermediate-sized molecules from larger and smaller analogues. Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal-organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption-desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal-organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption-desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties. Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal–organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption–desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties. |
Author | Zhou, Dong-Dong Zhang, Jie-Peng Ye, Zi-Ming Wang, Chao Huang, Rui-Kang Yan, Hui Huang, Ning-Yu Chen, Pin Du, Yunfei He, Chun-Ting Wang, Sha-Sha Mo, Zong-Wen |
Author_xml | – sequence: 1 givenname: Dong-Dong orcidid: 0000-0003-1105-8702 surname: Zhou fullname: Zhou, Dong-Dong organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 2 givenname: Pin surname: Chen fullname: Chen, Pin organization: National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University – sequence: 3 givenname: Chao surname: Wang fullname: Wang, Chao organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 4 givenname: Sha-Sha surname: Wang fullname: Wang, Sha-Sha organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 5 givenname: Yunfei surname: Du fullname: Du, Yunfei organization: National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University – sequence: 6 givenname: Hui surname: Yan fullname: Yan, Hui organization: National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University – sequence: 7 givenname: Zi-Ming surname: Ye fullname: Ye, Zi-Ming organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 8 givenname: Chun-Ting surname: He fullname: He, Chun-Ting organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 9 givenname: Rui-Kang surname: Huang fullname: Huang, Rui-Kang organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 10 givenname: Zong-Wen surname: Mo fullname: Mo, Zong-Wen organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 11 givenname: Ning-Yu surname: Huang fullname: Huang, Ning-Yu organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University – sequence: 12 givenname: Jie-Peng orcidid: 0000-0002-2614-2774 surname: Zhang fullname: Zhang, Jie-Peng email: zhangjp7@mail.sysu.edu.cn organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31308517$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAQhoMo6qo_wIsUvHip5qNtmqOIXyCIoOeQppMlkiaatIL76826q4KgpxmY550Z3neGNn3wgNAhwacEs_YsVaRuWImJKHFFebnYQLuk4k1ZNQ3eXPeEULqDZik9Y0xJXTfbaIcRhtua8F30cOtHiAP0Vo1QJruAvhiCAz05FYtk4c36eRFMkcb3CB4KE8NQ5NkcYqF8X6RBOffZKxfmE6R9tGWUS3Cwrnvo6ery8eKmvLu_vr04vyt1hcVYtqJnjNOG9tBiwzVtWiJo1xPaaGxUrymGuhMdZkLUtO2pYLwDo7gxnFGm2R46We19ieE13x3lYJMG55SHMCVJad3ybFAlMnr8C30OU8wPLymeIVFzkqmjNTV12RD5Eu2g4rv8MisDZAXoGFKKYL4RguUyELkKROZA5DIQucga_kuj7ahGG_wYlXX_KulKmfIVn-3-efpv0QcE5p8K |
CitedBy_id | crossref_primary_10_1002_anie_202309925 crossref_primary_10_1002_anie_202011300 crossref_primary_10_1126_science_abn8418 crossref_primary_10_1021_acs_chemmater_3c01920 crossref_primary_10_1021_acsami_1c10061 crossref_primary_10_1002_adma_202311140 crossref_primary_10_1002_ange_202015257 crossref_primary_10_1021_jacs_3c13480 crossref_primary_10_1002_anie_202016673 crossref_primary_10_1002_ange_202106784 crossref_primary_10_1039_D0SC05147K crossref_primary_10_1021_acs_jpcc_2c03051 crossref_primary_10_1039_D3QM00430A crossref_primary_10_1002_ange_202006414 crossref_primary_10_1002_ange_202414503 crossref_primary_10_1039_D2TA04835C crossref_primary_10_1038_s41586_021_03627_8 crossref_primary_10_1002_anie_202303374 crossref_primary_10_1021_accountsmr_4c00336 crossref_primary_10_1021_acs_iecr_4c04219 crossref_primary_10_3390_molecules26227048 crossref_primary_10_1016_j_ccr_2020_213479 crossref_primary_10_1016_j_enchem_2021_100067 crossref_primary_10_1007_s11426_024_2377_9 crossref_primary_10_1016_j_gce_2025_01_004 crossref_primary_10_1039_D3GC01114C crossref_primary_10_1002_smll_202408742 crossref_primary_10_1016_j_compchemeng_2023_108288 crossref_primary_10_1007_s13399_023_04693_w crossref_primary_10_1021_acsmaterialslett_4c01434 crossref_primary_10_1016_j_ccr_2022_214714 crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1021_jacs_0c13019 crossref_primary_10_1038_s41467_023_39470_w crossref_primary_10_1039_D0QI00642D crossref_primary_10_1002_adfm_202206670 crossref_primary_10_1039_C9CS00756C crossref_primary_10_1039_D1TB01596F crossref_primary_10_1016_j_jhazmat_2022_129208 crossref_primary_10_1016_j_ccr_2023_215402 crossref_primary_10_1021_acs_inorgchem_2c01130 crossref_primary_10_1016_j_cej_2024_150833 crossref_primary_10_1021_acsami_0c13022 crossref_primary_10_1007_s11426_022_1304_1 crossref_primary_10_1021_cbe_3c00099 crossref_primary_10_1016_j_enchem_2021_100057 crossref_primary_10_1021_acs_jpcc_0c00130 crossref_primary_10_1039_D2QI00465H crossref_primary_10_1021_acsanm_3c01331 crossref_primary_10_1002_ange_202110820 crossref_primary_10_1039_C9TA10264G crossref_primary_10_1002_smm2_1016 crossref_primary_10_1016_j_trechm_2023_11_001 crossref_primary_10_1016_j_xcrp_2023_101750 crossref_primary_10_1021_acsami_9b15311 crossref_primary_10_1186_s13321_020_0411_2 crossref_primary_10_1021_acsami_0c10702 crossref_primary_10_1021_jacs_4c01539 crossref_primary_10_1016_j_cclet_2021_05_010 crossref_primary_10_1038_s41563_019_0437_x crossref_primary_10_1038_s41467_020_19209_7 crossref_primary_10_1039_D2CS00442A crossref_primary_10_1002_advs_202003243 crossref_primary_10_1016_j_cej_2022_134844 crossref_primary_10_1021_acs_jcim_2c00876 crossref_primary_10_1002_anie_202106784 crossref_primary_10_1002_ange_202101664 crossref_primary_10_1021_jacs_2c04025 crossref_primary_10_1021_acs_inorgchem_0c02878 crossref_primary_10_1038_s41467_022_31274_8 crossref_primary_10_1039_D4SC06624C crossref_primary_10_1021_acs_nanolett_4c03881 crossref_primary_10_1021_acsnano_1c04575 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1021_acs_iecr_4c02189 crossref_primary_10_1021_jacs_0c09466 crossref_primary_10_1002_anie_202110820 crossref_primary_10_1021_acs_accounts_2c00418 crossref_primary_10_1021_jacs_2c10595 crossref_primary_10_1002_adma_201908275 crossref_primary_10_1016_j_chempr_2019_10_012 crossref_primary_10_1016_j_partic_2025_02_017 crossref_primary_10_1038_s41467_022_32678_2 crossref_primary_10_1002_adma_202002603 crossref_primary_10_1039_D1CC02446A crossref_primary_10_1007_s11426_024_2062_3 crossref_primary_10_1002_anie_202101664 crossref_primary_10_1002_asia_202101220 crossref_primary_10_1021_acs_accounts_1c00555 crossref_primary_10_1021_acs_iecr_1c02220 crossref_primary_10_1007_s11426_019_9581_0 crossref_primary_10_1002_ange_202309985 crossref_primary_10_1002_anie_202415346 crossref_primary_10_1002_ange_202011300 crossref_primary_10_1016_j_cjsc_2025_100540 crossref_primary_10_1002_ange_202016673 crossref_primary_10_1002_anie_202208756 crossref_primary_10_1002_chem_202100528 crossref_primary_10_1039_D3QM00484H crossref_primary_10_1016_j_xcrp_2022_100903 crossref_primary_10_1002_anie_202015257 crossref_primary_10_1016_j_jssc_2020_121321 crossref_primary_10_1021_jacs_3c00515 crossref_primary_10_1016_j_ccr_2023_215111 crossref_primary_10_1039_D3MH00697B crossref_primary_10_1039_D2QI01738E crossref_primary_10_1038_s44286_023_00004_2 crossref_primary_10_1016_j_chempr_2020_12_025 crossref_primary_10_1016_j_cej_2022_139756 crossref_primary_10_1007_s11705_019_1872_6 crossref_primary_10_1016_j_jiec_2023_01_036 crossref_primary_10_1002_ange_202102810 crossref_primary_10_1002_ange_202303374 crossref_primary_10_1070_RCR5026 crossref_primary_10_1002_anie_202309985 crossref_primary_10_1039_D2TA03563D crossref_primary_10_1038_s41467_020_20101_7 crossref_primary_10_1038_s41467_022_35674_8 crossref_primary_10_2139_ssrn_4169691 crossref_primary_10_1002_anie_202006414 crossref_primary_10_1002_anie_202414503 crossref_primary_10_1021_acs_cgd_0c00258 crossref_primary_10_20517_cs_2024_16 crossref_primary_10_1016_j_jece_2023_111027 crossref_primary_10_1021_jacs_0c01314 crossref_primary_10_1039_D3MA01085F crossref_primary_10_1021_jacs_9b10923 crossref_primary_10_1002_ange_202208756 crossref_primary_10_1021_jacs_0c03853 crossref_primary_10_1039_D4CE00318G crossref_primary_10_1021_acsami_3c08344 crossref_primary_10_1002_anie_202408817 crossref_primary_10_1016_j_scib_2020_12_031 crossref_primary_10_1007_s40820_024_01475_5 crossref_primary_10_1021_acs_inorgchem_0c00022 crossref_primary_10_1016_j_ccr_2022_214628 crossref_primary_10_1002_ange_202309925 crossref_primary_10_1039_D3CS01163A crossref_primary_10_1002_smll_202202173 crossref_primary_10_1002_anie_202102810 crossref_primary_10_1038_s41598_022_20024_x crossref_primary_10_1039_D3SC05489F crossref_primary_10_1002_agt2_565 crossref_primary_10_1136_gutjnl_2023_330045 crossref_primary_10_1021_accountsmr_4c00316 crossref_primary_10_1021_acsami_0c17937 crossref_primary_10_1002_advs_202104234 crossref_primary_10_1016_j_cej_2025_159223 crossref_primary_10_1016_j_ccr_2025_216464 crossref_primary_10_1021_acsami_1c03923 crossref_primary_10_1039_D0DT03013A crossref_primary_10_1002_chem_202101871 crossref_primary_10_1093_nsr_nwaa094 crossref_primary_10_1021_acsnano_3c03765 crossref_primary_10_1126_science_abj7659 crossref_primary_10_1007_s12274_022_4915_0 crossref_primary_10_1126_sciadv_adj6473 crossref_primary_10_1039_D3SC06076D crossref_primary_10_1016_j_isci_2021_103042 crossref_primary_10_1002_ange_202408817 crossref_primary_10_1002_ange_202415346 crossref_primary_10_1016_j_scib_2024_10_031 crossref_primary_10_1021_acs_chemmater_1c03084 |
Cites_doi | 10.1039/c3dt32302a 10.1002/anie.200705822 10.1038/srep11537 10.1021/jacs.5b08746 10.1039/C7SC03067C 10.1021/ja106142x 10.1021/j100389a010 10.1021/acs.accounts.6b00577 10.1002/anie.201708769 10.1002/chem.201403501 10.1126/science.1082169 10.1002/anie.200700056 10.1016/j.cattod.2011.01.037 10.1039/C4CS00101J 10.1002/jcc.23877 10.1021/ja075408b 10.1038/s41563-018-0206-2 10.1002/anie.201506345 10.1039/c0cc01031f 10.1016/0927-0256(96)00008-0 10.1126/science.aao0092 10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H 10.1002/anie.201402894 10.1021/acs.inorgchem.5b00206 10.1039/c3cc46597g 10.1103/PhysRevB.54.11169 10.1002/adfm.201401125 10.1039/b802426j 10.1038/nature11893 10.1021/acs.cgd.7b00287 10.1021/ja100900c 10.1021/jacs.6b13300 10.1021/ar200083e 10.1021/ct400952t 10.1021/ja907556q 10.1021/acs.accounts.6b00526 10.1039/C7SC00278E 10.1039/C3CC49684H 10.1002/chem.200305413 10.1038/35089052 10.1021/jp980939v 10.1016/S1385-8947(99)00059-5 10.1002/chem.201601724 10.1021/ja2032822 10.1006/jcph.1995.1039 10.1021/ja9621760 10.1002/anie.201404306 10.1021/jz300855a 10.1126/science.aar6833 10.1126/science.aam7232 10.1039/C4CS00076E 10.1038/srep05761 10.1039/C5RA07830J 10.1021/cr200139g 10.1021/ja406844r 10.1021/ja305663k 10.1126/science.aaf6323 10.1093/nsr/nwx127 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Sep 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Sep 2019 |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-019-0427-z |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Proquest Medical Database Science Database (subscription) Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 998 |
ExternalDocumentID | 31308517 10_1038_s41563_019_0427_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c409t-89d337262de80f7c268192bd126c0fadc20e5b9b0399528d2937befa7ff7323c3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri Jul 11 03:11:23 EDT 2025 Fri Jul 25 08:57:14 EDT 2025 Mon Jul 21 06:06:47 EDT 2025 Tue Jul 01 02:14:00 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Fri Feb 21 02:38:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-89d337262de80f7c268192bd126c0fadc20e5b9b0399528d2937befa7ff7323c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2614-2774 0000-0003-1105-8702 |
PMID | 31308517 |
PQID | 2277419571 |
PQPubID | 27576 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2258741549 proquest_journals_2277419571 pubmed_primary_31308517 crossref_primary_10_1038_s41563_019_0427_z crossref_citationtrail_10_1038_s41563_019_0427_z springer_journals_10_1038_s41563_019_0427_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | GuCDesign and control of gas diffusion process in a nanoporous soft crystalScience20193633873911:CAS:528:DC%2BC1MXhs1anu7c%3D10.1126/science.aar6833 DeVriesLDBarronPMHurleyEPHuCChoeW‘Nanoscale lattice fence’ in a metal–organic framework: interplay between hinged topology and highly anisotropic thermal responseJ. Am. Chem. Soc.201113314848148511:CAS:528:DC%2BC3MXhtFCgsL3K10.1021/ja2032822 YuMNobleRDFalconerJLZeolite membranes: microstructure characterization and permeation nechanismsAcc. Chem. Res.201144119612061:CAS:528:DC%2BC3MXpsFOhtLg%3D10.1021/ar200083e FranclMMCareyCChirlianLEGangeDMCharges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials?J. Comput. Chem.1996173673831:CAS:528:DyaK28Xns1agsg%3D%3D10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H JinZA novel microporous MOF with the capability of selective adsorption of xylenesChem. Commun.201046861286141:CAS:528:DC%2BC3cXhtl2ltbvI10.1039/c0cc01031f BereciartuaPJControl of zeolite framework flexibility and pore topology for separation of ethane and ethyleneScience2017358106810711:CAS:528:DC%2BC2sXhvFahsbzF10.1126/science.aao0092 MukherjeeSAn ultrahydrophobic fluorous metal–organic framework derived recyclable composite as a promising platform to tackle marine oil spillsChem. Eur. J.20162210937109431:CAS:528:DC%2BC28XhtFSqsbvP10.1002/chem.201601724 MoghadamPZAdsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulationChem. Sci.20178398940001:CAS:528:DC%2BC2sXktVKjsLc%3D10.1039/C7SC00278E KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 MukherjeeSFramework-flexibility driven selective sorption of p-xylene over other isomers by a dynamic metal–organic frameworkSci. Rep.201441:CAS:528:DC%2BC2MXktlSmtrs%3D10.1038/srep05761 KolvenbachRA comparative study of diffusion of benzene/p-xylene mixtures in MFI particles, pellets and grown membranesCatal. Today20111681471571:CAS:528:DC%2BC3MXmvFWrtrc%3D10.1016/j.cattod.2011.01.037 ZhouD-DA flexible porous Cu(ii) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 captureChem. Commun.20134911728117301:CAS:528:DC%2BC3sXhvVWmt7zF10.1039/c3cc46597g LiuS-YPorous Cu(i) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygenAdv. Funct. Mater.201424586658721:CAS:528:DC%2BC2cXhtFGmurjP10.1002/adfm.201401125 JorgensenWLMaxwellDSTirado-RivesJDevelopment and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquidsJ. Am. Chem. Soc.199611811225112361:CAS:528:DyaK28XmtlOitrs%3D10.1021/ja9621760 HeC-THyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole momentChem. Sci.20178756075651:CAS:528:DC%2BC2sXhsVOhtb7P10.1039/C7SC03067C Fritz, U. Ullmann’s Encyclopedia of Industrial Chemistry 7th edn (Wiley, 2011). ZhangZSorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sievingAngew. Chem. Int. Ed.20175616282162871:CAS:528:DC%2BC2sXhslShsr7K10.1002/anie.201708769 ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g RaoKPDesign of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unitAngew. Chem. Int. Ed.201453822582301:CAS:528:DC%2BC2cXhtVOjur%2FE10.1002/anie.201404306 AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k LiJRKupplerRJZhouHCSelective gas adsorption and separation in metal–organic frameworksChem. Soc. Rev.200938147715041:CAS:528:DC%2BD1MXkvVamurY%3D10.1039/b802426j GrzywaMCFA-2 and CFA-3 (coordination framework augsburg university-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3',5,5'-tetraphenyl-bipyrazolate ligandsDalton Trans.201342690969211:CAS:528:DC%2BC3sXnsVCis7k%3D10.1039/c3dt32302a NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D10.1038/nature11893 EvansJDSumbyCJDoonanCJPost-synthetic metalation of metal–organic frameworksChem. Soc. Rev.201443593359511:CAS:528:DC%2BC2cXht1Slu7nK10.1039/C4CS00076E IslamogluTPostsynthetic tuning of metal–organic frameworks for targeted applicationsAcc. Chem. Res.2017508058131:CAS:528:DC%2BC2sXit1yisLk%3D10.1021/acs.accounts.6b00577 WangYZhaoDBeyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separationCryst. Growth Des.201717229123081:CAS:528:DC%2BC2sXlvFGit7k%3D10.1021/acs.cgd.7b00287 SchneemannAFlexible metal–organic frameworksChem. Soc. Rev.201443606260961:CAS:528:DC%2BC2cXht1Slu7nI10.1039/C4CS00101J KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207241:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052 LiRJLiMZhouXPLiDO'KeeffeMA highly stable MOF with a rod SBU and a tetracarboxylate linker: unusual topology and CO2 adsorption behaviour under ambient conditionsChem. Commun.201450404740491:CAS:528:DC%2BC2cXks12gs7k%3D10.1039/C3CC49684H KrishnaRMethodologies for evaluation of metal–organic frameworks in separation applicationsRSC Adv.2015552269522951:CAS:528:DC%2BC2MXhtVShurbI10.1039/C5RA07830J Kirk-Othmer. Kirk-Othmer Encyclopedia of Chemical Technology 5th edn (Wiley, 2007). MukherjeeSExploiting framework flexibility of a metal–organic framework for selective adsorption of styrene over ethylbenzeneInorg. Chem.201554440344081:CAS:528:DC%2BC2MXmsFags70%3D10.1021/acs.inorgchem.5b00206 KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 MohantySMcCormickAVProspects for principles of size and shape selective separations using zeolitesChem. Eng. J.1999741141:CAS:528:DyaK1MXlsFemsbk%3D10.1016/S1385-8947(99)00059-5 ZhangCUnexpected molecular sieving properties of zeolitic imidazolate framework-8J. Phys. Chem. Lett.20123213021341:CAS:528:DC%2BC38XhtV2gt7rN10.1021/jz300855a Torres-KnoopAKrishnaRDubbeldamDSeparating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8Angew. Chem. Int. Ed.201453777477781:CAS:528:DC%2BC2cXpsVKitrs%3D10.1002/anie.201402894 ZhaiQGBuXZhaoXLiDSFengPPore space partition in metal–organic frameworksAcc. Chem. Res.2017504074171:CAS:528:DC%2BC2sXht1Gis7Y%3D10.1021/acs.accounts.6b00526 PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039 TanakaDKinetic gate-opening process in a flexible porous coordination polymerAngew. Chem. Int. Ed.200847391439181:CAS:528:DC%2BD1cXmsVeru7o%3D10.1002/anie.200705822 VanduyfhuysLQuickFF: a program for a quick and easy derivation of force fields for metal–organic frameworks from ab initio inputJ. Comput. Chem.201536101510271:CAS:528:DC%2BC2MXkvVaitL4%3D10.1002/jcc.23877 LiBAn ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivityAdv. Mater.201729201704210 LaiZMicrostructural optimization of a zeolite membrane for organic vapor separationScience20033004564601:CAS:528:DC%2BD3sXivFymsrk%3D MayoSLOlafsonBDGoddardWAIIIDREIDING: a generic force field for molecular simulationsJ. Phys. Chem.199094889789091:CAS:528:DyaK3cXmtlyhtL0%3D10.1021/j100389a010 JieKStyrene purification by guest-induced restructuring of pillar[6]areneJ. Am. Chem. Soc.2017139290829111:CAS:528:DC%2BC2sXisVWgsrc%3D10.1021/jacs.6b13300 CadiauAAdilKBhattPMBelmabkhoutYEddaoudiMA metal–organic framework-based splitter for separating propylene from propaneScience20163531371401:CAS:528:DC%2BC28XhtFSisrvL10.1126/science.aaf6323 SunHCOMPASS: an ab initio force-field optimized for condensed-phase applicationss overview with details on alkane and benzene compoundsJ. Phys. Chem. B1998102733873641:CAS:528:DyaK1cXlslart7g%3D10.1021/jp980939v VerploeghRJNairSShollDSTemperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulationsJ. Am. Chem. Soc.201513715760157711:CAS:528:DC%2BC2MXhvFWmu7vJ10.1021/jacs.5b08746 LiaoP-QHuangN-YZhangW-XZhangJ-PChenX-MControlling guest conformation for efficient purification of butadieneScience2017356119311961:CAS:528:DC%2BC2sXpslCktr0%3D10.1126/science.aam7232 WangJHLiMLiDAn exceptionally stable and water-resistant metal–organic framework with hydrophobic nanospaces for extracting aromatic pollutants from water.Chem. Eur. J.20142012004120081:CAS:528:DC%2BC2cXht1GrurvP10.1002/chem.201403501 LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413 NguyenJGCohenSMMoisture-resistant and superhydrophobic metal–organic frameworks obtained via postsynthetic modification.J. Am. Chem. Soc.2010132456045611:CAS:528:DC%2BC3cXjt1Gjs7c%3D10.1021/ja100900c AddicoatMAVankovaNAkterIFHeineTExtension of the universal force field to metal–organic frameworksJ. Chem. Theory Comput.2014108808911:CAS:528:DC%2BC2cXpt1yhsw%3D%3D10.1021/ct400952t HamonLCo-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOFJ. Am. Chem. Soc.200913117490174991:CAS:528:DC%2BD1MXhtl2qu7%2FE10.1021/ja907556q ZhangJ-PKitagawaSSupramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(i)/Cu(i) 3,3', 5,5'-tetrametyl-4,4'-bipyrazolateJ D-D Zhou (427_CR30) 2013; 49 A Cadiau (427_CR11) 2016; 353 A Torres-Knoop (427_CR51) 2014; 53 J-M Lin (427_CR52) 2015; 5 H Sun (427_CR54) 1998; 102 P-Q Liao (427_CR38) 2017; 356 KP Rao (427_CR48) 2014; 53 JH Wang (427_CR44) 2014; 20 AH Assen (427_CR13) 2015; 54 MM Francl (427_CR61) 1996; 17 427_CR1 M Grzywa (427_CR43) 2013; 42 427_CR3 HL Jiang (427_CR33) 2013; 135 J-P Zhang (427_CR45) 2012; 112 C Gu (427_CR27) 2019; 363 J-P Zhang (427_CR31) 2008; 130 R-B Lin (427_CR12) 2018; 17 M Maes (427_CR2) 2010; 132 QG Zhai (427_CR19) 2017; 50 S Mukherjee (427_CR23) 2014; 4 L Hamon (427_CR28) 2009; 131 JD Evans (427_CR20) 2014; 43 S Mohanty (427_CR4) 1999; 74 Z Zhang (427_CR14) 2017; 56 MA Addicoat (427_CR57) 2014; 10 B Li (427_CR9) 2017; 29 L Alaerts (427_CR37) 2007; 46 G Kresse (427_CR59) 1996; 6 Z Lai (427_CR16) 2003; 300 K Jie (427_CR39) 2017; 139 S-Y Liu (427_CR42) 2014; 24 R Kolvenbach (427_CR17) 2011; 168 T Islamoglu (427_CR18) 2017; 50 C Zhang (427_CR22) 2012; 3 M Yu (427_CR50) 2011; 44 SL Mayo (427_CR56) 1990; 94 J-P Zhang (427_CR25) 2018; 5 C-T He (427_CR36) 2017; 8 JG Nguyen (427_CR47) 2010; 132 R Krishna (427_CR41) 2015; 5 WL Jorgensen (427_CR55) 1996; 118 S Plimpton (427_CR53) 1995; 117 T Loiseau (427_CR32) 2004; 10 PJ Bereciartua (427_CR8) 2017; 358 D Tanaka (427_CR26) 2008; 47 G Kresse (427_CR60) 1996; 54 RJ Li (427_CR34) 2014; 50 PZ Moghadam (427_CR46) 2017; 8 LD DeVries (427_CR29) 2011; 133 S Mukherjee (427_CR49) 2016; 22 A Schneemann (427_CR24) 2014; 43 RJ Verploegh (427_CR21) 2015; 137 P Nugent (427_CR5) 2013; 495 SM Kuznicki (427_CR7) 2001; 412 S Mukherjee (427_CR40) 2015; 54 Z Jin (427_CR15) 2010; 46 L Vanduyfhuys (427_CR58) 2015; 36 Y Wang (427_CR6) 2017; 17 S Aguado (427_CR10) 2012; 134 JR Li (427_CR35) 2009; 38 |
References_xml | – reference: SunHCOMPASS: an ab initio force-field optimized for condensed-phase applicationss overview with details on alkane and benzene compoundsJ. Phys. Chem. B1998102733873641:CAS:528:DyaK1cXlslart7g%3D10.1021/jp980939v – reference: LoiseauTA rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydrationChem. Eur. J.200410137313821:CAS:528:DC%2BD2cXivVykt7s%3D10.1002/chem.200305413 – reference: Fritz, U. Ullmann’s Encyclopedia of Industrial Chemistry 7th edn (Wiley, 2011). – reference: FranclMMCareyCChirlianLEGangeDMCharges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials?J. Comput. Chem.1996173673831:CAS:528:DyaK28Xns1agsg%3D%3D10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H – reference: EvansJDSumbyCJDoonanCJPost-synthetic metalation of metal–organic frameworksChem. Soc. Rev.201443593359511:CAS:528:DC%2BC2cXht1Slu7nK10.1039/C4CS00076E – reference: LinJ-MHeC-TLiaoP-QLinR-BZhangJ-PStructural, energetic, and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystalSci. Rep.201551:CAS:528:DC%2BC2MXhtFyhsbjN10.1038/srep11537 – reference: MukherjeeSExploiting framework flexibility of a metal–organic framework for selective adsorption of styrene over ethylbenzeneInorg. Chem.201554440344081:CAS:528:DC%2BC2MXmsFags70%3D10.1021/acs.inorgchem.5b00206 – reference: BereciartuaPJControl of zeolite framework flexibility and pore topology for separation of ethane and ethyleneScience2017358106810711:CAS:528:DC%2BC2sXhvFahsbzF10.1126/science.aao0092 – reference: ZhaiQGBuXZhaoXLiDSFengPPore space partition in metal–organic frameworksAcc. Chem. Res.2017504074171:CAS:528:DC%2BC2sXht1Gis7Y%3D10.1021/acs.accounts.6b00526 – reference: WangJHLiMLiDAn exceptionally stable and water-resistant metal–organic framework with hydrophobic nanospaces for extracting aromatic pollutants from water.Chem. Eur. J.20142012004120081:CAS:528:DC%2BC2cXht1GrurvP10.1002/chem.201403501 – reference: GuCDesign and control of gas diffusion process in a nanoporous soft crystalScience20193633873911:CAS:528:DC%2BC1MXhs1anu7c%3D10.1126/science.aar6833 – reference: ZhangJ-PKitagawaSSupramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(i)/Cu(i) 3,3', 5,5'-tetrametyl-4,4'-bipyrazolateJ. Am. Chem. Soc.20081309079171:CAS:528:DC%2BD1cXhtlygsA%3D%3D10.1021/ja075408b – reference: MukherjeeSAn ultrahydrophobic fluorous metal–organic framework derived recyclable composite as a promising platform to tackle marine oil spillsChem. Eur. J.20162210937109431:CAS:528:DC%2BC28XhtFSqsbvP10.1002/chem.201601724 – reference: LaiZMicrostructural optimization of a zeolite membrane for organic vapor separationScience20033004564601:CAS:528:DC%2BD3sXivFymsrk%3D – reference: ZhangJ-PZhouH-LZhouD-DLiaoP-QChenX-MControlling flexibility of metal–organic frameworksNatl Sci. Rev.2018590791910.1093/nsr/nwx127 – reference: MayoSLOlafsonBDGoddardWAIIIDREIDING: a generic force field for molecular simulationsJ. Phys. Chem.199094889789091:CAS:528:DyaK3cXmtlyhtL0%3D10.1021/j100389a010 – reference: YuMNobleRDFalconerJLZeolite membranes: microstructure characterization and permeation nechanismsAcc. Chem. Res.201144119612061:CAS:528:DC%2BC3MXpsFOhtLg%3D10.1021/ar200083e – reference: LiaoP-QHuangN-YZhangW-XZhangJ-PChenX-MControlling guest conformation for efficient purification of butadieneScience2017356119311961:CAS:528:DC%2BC2sXpslCktr0%3D10.1126/science.aam7232 – reference: VanduyfhuysLQuickFF: a program for a quick and easy derivation of force fields for metal–organic frameworks from ab initio inputJ. Comput. Chem.201536101510271:CAS:528:DC%2BC2MXkvVaitL4%3D10.1002/jcc.23877 – reference: Torres-KnoopAKrishnaRDubbeldamDSeparating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8Angew. Chem. Int. Ed.201453777477781:CAS:528:DC%2BC2cXpsVKitrs%3D10.1002/anie.201402894 – reference: JieKStyrene purification by guest-induced restructuring of pillar[6]areneJ. Am. Chem. Soc.2017139290829111:CAS:528:DC%2BC2sXisVWgsrc%3D10.1021/jacs.6b13300 – reference: KuznickiSMA titanosilicate molecular sieve with adjustable pores for size-selective adsorption of moleculesNature20014127207241:CAS:528:DC%2BD3MXmt1Ort7Y%3D10.1038/35089052 – reference: ZhangZSorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sievingAngew. Chem. Int. Ed.20175616282162871:CAS:528:DC%2BC2sXhslShsr7K10.1002/anie.201708769 – reference: TanakaDKinetic gate-opening process in a flexible porous coordination polymerAngew. Chem. Int. Ed.200847391439181:CAS:528:DC%2BD1cXmsVeru7o%3D10.1002/anie.200705822 – reference: JinZA novel microporous MOF with the capability of selective adsorption of xylenesChem. Commun.201046861286141:CAS:528:DC%2BC3cXhtl2ltbvI10.1039/c0cc01031f – reference: LiuS-YPorous Cu(i) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygenAdv. Funct. Mater.201424586658721:CAS:528:DC%2BC2cXhtFGmurjP10.1002/adfm.201401125 – reference: KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 – reference: HamonLCo-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOFJ. Am. Chem. Soc.200913117490174991:CAS:528:DC%2BD1MXhtl2qu7%2FE10.1021/ja907556q – reference: SchneemannAFlexible metal–organic frameworksChem. Soc. Rev.201443606260961:CAS:528:DC%2BC2cXht1Slu7nI10.1039/C4CS00101J – reference: JorgensenWLMaxwellDSTirado-RivesJDevelopment and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquidsJ. Am. Chem. Soc.199611811225112361:CAS:528:DyaK28XmtlOitrs%3D10.1021/ja9621760 – reference: Kirk-Othmer. Kirk-Othmer Encyclopedia of Chemical Technology 5th edn (Wiley, 2007). – reference: KrishnaRMethodologies for evaluation of metal–organic frameworks in separation applicationsRSC Adv.2015552269522951:CAS:528:DC%2BC2MXhtVShurbI10.1039/C5RA07830J – reference: WangYZhaoDBeyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separationCryst. Growth Des.201717229123081:CAS:528:DC%2BC2sXlvFGit7k%3D10.1021/acs.cgd.7b00287 – reference: ZhouD-DA flexible porous Cu(ii) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 captureChem. Commun.20134911728117301:CAS:528:DC%2BC3sXhvVWmt7zF10.1039/c3cc46597g – reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 – reference: CadiauAAdilKBhattPMBelmabkhoutYEddaoudiMA metal–organic framework-based splitter for separating propylene from propaneScience20163531371401:CAS:528:DC%2BC28XhtFSisrvL10.1126/science.aaf6323 – reference: HeC-THyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole momentChem. Sci.20178756075651:CAS:528:DC%2BC2sXhsVOhtb7P10.1039/C7SC03067C – reference: MaesMSeparation of styrene and ethylbenzene on metal–organic frameworks: analogous structures with different adsorption mechanismsJ. Am. Chem. Soc.201013215277152851:CAS:528:DC%2BC3cXht1Oqtb3N10.1021/ja106142x – reference: NugentPPorous materials with optimal adsorption thermodynamics and kinetics for CO2 separationNature201349580841:CAS:528:DC%2BC3sXjsFCntbg%3D10.1038/nature11893 – reference: KolvenbachRA comparative study of diffusion of benzene/p-xylene mixtures in MFI particles, pellets and grown membranesCatal. Today20111681471571:CAS:528:DC%2BC3MXmvFWrtrc%3D10.1016/j.cattod.2011.01.037 – reference: JiangHLAn exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescenceJ. Am. Chem. Soc.201313513934139381:CAS:528:DC%2BC3sXhtlChtLzI10.1021/ja406844r – reference: AddicoatMAVankovaNAkterIFHeineTExtension of the universal force field to metal–organic frameworksJ. Chem. Theory Comput.2014108808911:CAS:528:DC%2BC2cXpt1yhsw%3D%3D10.1021/ct400952t – reference: AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k – reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comput. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039 – reference: AlaertsLSelective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(iv) terephthalate MIL-47Angew. Chem. Int. Ed.200746429342971:CAS:528:DC%2BD2sXmslGhtL8%3D10.1002/anie.200700056 – reference: LiBAn ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivityAdv. Mater.201729201704210 – reference: AssenAHUltra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffinsAngew. Chem. Int. Ed.20155414353143581:CAS:528:DC%2BC2MXhsF2ktLbP10.1002/anie.201506345 – reference: VerploeghRJNairSShollDSTemperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulationsJ. Am. Chem. Soc.201513715760157711:CAS:528:DC%2BC2MXhvFWmu7vJ10.1021/jacs.5b08746 – reference: MukherjeeSFramework-flexibility driven selective sorption of p-xylene over other isomers by a dynamic metal–organic frameworkSci. Rep.201441:CAS:528:DC%2BC2MXktlSmtrs%3D10.1038/srep05761 – reference: DeVriesLDBarronPMHurleyEPHuCChoeW‘Nanoscale lattice fence’ in a metal–organic framework: interplay between hinged topology and highly anisotropic thermal responseJ. Am. Chem. Soc.201113314848148511:CAS:528:DC%2BC3MXhtFCgsL3K10.1021/ja2032822 – reference: RaoKPDesign of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unitAngew. Chem. Int. Ed.201453822582301:CAS:528:DC%2BC2cXhtVOjur%2FE10.1002/anie.201404306 – reference: GrzywaMCFA-2 and CFA-3 (coordination framework augsburg university-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3',5,5'-tetraphenyl-bipyrazolate ligandsDalton Trans.201342690969211:CAS:528:DC%2BC3sXnsVCis7k%3D10.1039/c3dt32302a – reference: LiRJLiMZhouXPLiDO'KeeffeMA highly stable MOF with a rod SBU and a tetracarboxylate linker: unusual topology and CO2 adsorption behaviour under ambient conditionsChem. Commun.201450404740491:CAS:528:DC%2BC2cXks12gs7k%3D10.1039/C3CC49684H – reference: NguyenJGCohenSMMoisture-resistant and superhydrophobic metal–organic frameworks obtained via postsynthetic modification.J. Am. Chem. Soc.2010132456045611:CAS:528:DC%2BC3cXjt1Gjs7c%3D10.1021/ja100900c – reference: MohantySMcCormickAVProspects for principles of size and shape selective separations using zeolitesChem. Eng. J.1999741141:CAS:528:DyaK1MXlsFemsbk%3D10.1016/S1385-8947(99)00059-5 – reference: ZhangCUnexpected molecular sieving properties of zeolitic imidazolate framework-8J. Phys. Chem. Lett.20123213021341:CAS:528:DC%2BC38XhtV2gt7rN10.1021/jz300855a – reference: ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g – reference: LiJRKupplerRJZhouHCSelective gas adsorption and separation in metal–organic frameworksChem. Soc. Rev.200938147715041:CAS:528:DC%2BD1MXkvVamurY%3D10.1039/b802426j – reference: LinR-BMolecular sieving of ethylene from ethane using a rigid metal–organic frameworkNat. Mater.201817112811331:CAS:528:DC%2BC1cXitFers73M10.1038/s41563-018-0206-2 – reference: IslamogluTPostsynthetic tuning of metal–organic frameworks for targeted applicationsAcc. Chem. Res.2017508058131:CAS:528:DC%2BC2sXit1yisLk%3D10.1021/acs.accounts.6b00577 – reference: MoghadamPZAdsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulationChem. Sci.20178398940001:CAS:528:DC%2BC2sXktVKjsLc%3D10.1039/C7SC00278E – volume: 42 start-page: 6909 year: 2013 ident: 427_CR43 publication-title: Dalton Trans. doi: 10.1039/c3dt32302a – volume: 47 start-page: 3914 year: 2008 ident: 427_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705822 – volume: 5 year: 2015 ident: 427_CR52 publication-title: Sci. Rep. doi: 10.1038/srep11537 – volume: 137 start-page: 15760 year: 2015 ident: 427_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08746 – volume: 8 start-page: 7560 year: 2017 ident: 427_CR36 publication-title: Chem. Sci. doi: 10.1039/C7SC03067C – volume: 132 start-page: 15277 year: 2010 ident: 427_CR2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106142x – volume: 94 start-page: 8897 year: 1990 ident: 427_CR56 publication-title: J. Phys. Chem. doi: 10.1021/j100389a010 – volume: 50 start-page: 805 year: 2017 ident: 427_CR18 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00577 – volume: 56 start-page: 16282 year: 2017 ident: 427_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708769 – volume: 20 start-page: 12004 year: 2014 ident: 427_CR44 publication-title: Chem. Eur. J. doi: 10.1002/chem.201403501 – volume: 300 start-page: 456 year: 2003 ident: 427_CR16 publication-title: Science doi: 10.1126/science.1082169 – volume: 46 start-page: 4293 year: 2007 ident: 427_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200700056 – volume: 168 start-page: 147 year: 2011 ident: 427_CR17 publication-title: Catal. Today doi: 10.1016/j.cattod.2011.01.037 – volume: 43 start-page: 6062 year: 2014 ident: 427_CR24 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00101J – volume: 36 start-page: 1015 year: 2015 ident: 427_CR58 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23877 – volume: 130 start-page: 907 year: 2008 ident: 427_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075408b – volume: 17 start-page: 1128 year: 2018 ident: 427_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0206-2 – volume: 54 start-page: 14353 year: 2015 ident: 427_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506345 – volume: 46 start-page: 8612 year: 2010 ident: 427_CR15 publication-title: Chem. Commun. doi: 10.1039/c0cc01031f – volume: 6 start-page: 15 year: 1996 ident: 427_CR59 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 358 start-page: 1068 year: 2017 ident: 427_CR8 publication-title: Science doi: 10.1126/science.aao0092 – volume: 29 start-page: 201704210 year: 2017 ident: 427_CR9 publication-title: Adv. Mater. – volume: 17 start-page: 367 year: 1996 ident: 427_CR61 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199602)17:3<367::AID-JCC11>3.0.CO;2-H – volume: 53 start-page: 7774 year: 2014 ident: 427_CR51 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402894 – volume: 54 start-page: 4403 year: 2015 ident: 427_CR40 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00206 – volume: 49 start-page: 11728 year: 2013 ident: 427_CR30 publication-title: Chem. Commun. doi: 10.1039/c3cc46597g – volume: 54 start-page: 11169 year: 1996 ident: 427_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 24 start-page: 5866 year: 2014 ident: 427_CR42 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401125 – volume: 38 start-page: 1477 year: 2009 ident: 427_CR35 publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 495 start-page: 80 year: 2013 ident: 427_CR5 publication-title: Nature doi: 10.1038/nature11893 – ident: 427_CR3 – volume: 17 start-page: 2291 year: 2017 ident: 427_CR6 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b00287 – volume: 132 start-page: 4560 year: 2010 ident: 427_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100900c – volume: 139 start-page: 2908 year: 2017 ident: 427_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13300 – volume: 44 start-page: 1196 year: 2011 ident: 427_CR50 publication-title: Acc. Chem. Res. doi: 10.1021/ar200083e – volume: 10 start-page: 880 year: 2014 ident: 427_CR57 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400952t – volume: 131 start-page: 17490 year: 2009 ident: 427_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907556q – volume: 50 start-page: 407 year: 2017 ident: 427_CR19 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00526 – volume: 8 start-page: 3989 year: 2017 ident: 427_CR46 publication-title: Chem. Sci. doi: 10.1039/C7SC00278E – volume: 50 start-page: 4047 year: 2014 ident: 427_CR34 publication-title: Chem. Commun. doi: 10.1039/C3CC49684H – volume: 10 start-page: 1373 year: 2004 ident: 427_CR32 publication-title: Chem. Eur. J. doi: 10.1002/chem.200305413 – volume: 412 start-page: 720 year: 2001 ident: 427_CR7 publication-title: Nature doi: 10.1038/35089052 – volume: 102 start-page: 7338 year: 1998 ident: 427_CR54 publication-title: J. Phys. Chem. B doi: 10.1021/jp980939v – volume: 74 start-page: 1 year: 1999 ident: 427_CR4 publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(99)00059-5 – volume: 22 start-page: 10937 year: 2016 ident: 427_CR49 publication-title: Chem. Eur. J. doi: 10.1002/chem.201601724 – volume: 133 start-page: 14848 year: 2011 ident: 427_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2032822 – volume: 117 start-page: 1 year: 1995 ident: 427_CR53 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 118 start-page: 11225 year: 1996 ident: 427_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 53 start-page: 8225 year: 2014 ident: 427_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404306 – volume: 3 start-page: 2130 year: 2012 ident: 427_CR22 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300855a – volume: 363 start-page: 387 year: 2019 ident: 427_CR27 publication-title: Science doi: 10.1126/science.aar6833 – volume: 356 start-page: 1193 year: 2017 ident: 427_CR38 publication-title: Science doi: 10.1126/science.aam7232 – volume: 43 start-page: 5933 year: 2014 ident: 427_CR20 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00076E – volume: 4 year: 2014 ident: 427_CR23 publication-title: Sci. Rep. doi: 10.1038/srep05761 – volume: 5 start-page: 52269 year: 2015 ident: 427_CR41 publication-title: RSC Adv. doi: 10.1039/C5RA07830J – volume: 112 start-page: 1001 year: 2012 ident: 427_CR45 publication-title: Chem. Rev. doi: 10.1021/cr200139g – ident: 427_CR1 – volume: 135 start-page: 13934 year: 2013 ident: 427_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406844r – volume: 134 start-page: 14635 year: 2012 ident: 427_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305663k – volume: 353 start-page: 137 year: 2016 ident: 427_CR11 publication-title: Science doi: 10.1126/science.aaf6323 – volume: 5 start-page: 907 year: 2018 ident: 427_CR25 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwx127 |
SSID | ssj0021556 |
Score | 2.6264381 |
Snippet | Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 994 |
SubjectTerms | 119/118 639/301/299/1013 639/638/298/921 Adsorption Apertures Benzene Biomaterials Chemistry and Materials Science Computer simulation Condensed Matter Physics Ethylbenzene Flexibility Hydrocarbons Hydrophobicity Materials Science Metal-organic frameworks Nanotechnology Optical and Electronic Materials Organic chemistry Regeneration Selectivity Styrene Styrenes Toluene |
Title | Intermediate-sized molecular sieving of styrene from larger and smaller analogues |
URI | https://link.springer.com/article/10.1038/s41563-019-0427-z https://www.ncbi.nlm.nih.gov/pubmed/31308517 https://www.proquest.com/docview/2277419571 https://www.proquest.com/docview/2258741549 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9sw8OiSl-6htF23ul9osKcOUVuyLfmpNKVZGSxso4W8GVmWIJA4bZ285NdXJ9tJR1hfbINlS9yddN93AN8cl1OGFxnNtFQ01iamSsqIRu7si-JIa-GjCX-N0vvH-Oc4GbcGt7oNq-zORH9Ql3ONNvIrxpygEmWJiK6fnil2jULvattC4wP0sXQZUrUYbxQuxyub7CKRUidXsM6ryeVVjYoLRhKha4AJuvqXL20Jm1uOUs9_hvuw1wqO5KbB9AHsmOoQPr4pJ_gJ_njzns8FWRhaT1amJLOu_S2pJwaNB2RuSY2m58oQzC0hU4wFfyGqKkk9w84q-NyYdOojeBzePdze07ZlAtVOUVtQmZWcC5ay0sjQCs1SLHhWlBFLdWhVqVlokiIrQsxoZbJ0zF4UxiphreCMa_4ZetW8MsdAwljZxIEb40-dDm2ykHNTWF9KVElbBBB2AMt1W08c21pMc-_X5jJvYJw7GOcI43wVwOX6k6emmMZ7g886LOTtvqrzDRUE8HX92u0IdHOoysyXOCaRKCfFWQBfGuytZ-OOZTsZUwTwvUPn5uf_XcrJ-0s5hV3mCQkjz86gt3hZmnMnqiyKC0-P7iqHPy6gfzMcDEbuPrgb_f77CkRV5yg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmnFDASXEBWEzuJnUNVIWDZ0oeE1Eq9GcexpUpttjRbIfZH8Rs742y2oIreeouUxIlmxp5v3gBvUctZL-uKV05bnjufc6t1xjM8-7I8c07FbMK9_XJ8mH87Ko6W4M9QC0NplcOZGA_qZuLIR74hBAKVrCpUtnX2k9PUKIquDiM0erHY8b9_ocnWbW5_Rv6-E2L05eDTmM-nCnCHtsyU66qRUolSNF6nQTlRUk-wuslE6dJgGydSX9RVnVLRp9AN6kNV-2BVCEoK6SSuewfu5hI1OVWmj74uDDzUzX01kyo54hgxRFGl3ujIUKLMJQpFCMVn_-rBa-D2WmA26rvRKqzMgSr72EvWQ1jy7SN48Ff7wsfwPboTY-3J1PPueOYbdjqM22XdsSdnBZsE1pGru_WMalnYCeWenzPbNqw7pUkudN27kLoncHgrxHwKy-2k9c-BpbkNBbKX8l3RZvdVKqWvQ2xdanWoE0gHghk3719OYzROTIyjS216GhuksSEam1kC7xevnPXNO256eH3ggpnv485cSV0Cbxa3cQdSWMW2fnJBzxSacFleJfCs597iaxIhAmJalcCHgZ1Xi__3V9Zu_pXXcG98sLdrdrf3d17AfRGFirLe1mF5en7hXyJMmtavomwy-HHbm-ES8iIfnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EoJDxZuUAkaCC8jaxE5i54AQ0K5aCquCqNSb6zi2VKnNlmYrxH4aX8dMHltQRW-9RYrjWPPwvGcAXqKUs16WBS-ctjx1PuVW64QnePclaeKcarMJv0zz7f3000F2sAK_h1oYSqsc7sT2oq5mjnzkYyFQUUmKTCXj0KdF7G1O3p3-4DRBiiKtwziNjkR2_a-faL41b3c2EdevhJhsff-4zfsJA9yhXTPnuqikVCIXlddxUE7k1B-srBKRuzjYyonYZ2VRxlQAKnSFslGVPlgVgpJCOon73oBVRVbRCFY_bE33vi3NPZTUXW2TyjlqNWKIqUo9bshsojwmCkwIxRf_SsVLqu6lMG0r_SZ3YK1XW9n7js7uwoqv78Htv5oZ3oevrXOxrUSZe94cLXzFTobhu6w58uS6YLPAGnJ8155RZQs7pkz0M2brijUnNNeFnjuHUvMA9q8FnA9hVM9q_xhYnNqQIbIp-xUteF_EUvoytI1MrQ5lBPEAMOP6buY0VOPYtFF1qU0HY4MwNgRjs4jg9fKT066Vx1WLNwYsmJ6rG3NBgxG8WL5GfqQgi6397JzWZJq0tLSI4FGHveXfJCoMqOGqCN4M6LzY_L9HWb_6KM_hJjKC-bwz3X0Ct0RLU5QCtwGj-dm5f4o607x81hMng8Pr5oc_VEQlMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermediate-sized+molecular+sieving+of+styrene+from+larger+and+smaller+analogues&rft.jtitle=Nature+materials&rft.au=Zhou%2C+Dong-Dong&rft.au=Chen%2C+Pin&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Sha-Sha&rft.date=2019-09-01&rft.issn=1476-1122&rft.volume=18&rft.issue=9&rft.spage=994&rft_id=info:doi/10.1038%2Fs41563-019-0427-z&rft_id=info%3Apmid%2F31308517&rft.externalDocID=31308517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |