Multiaxial fatigue of additive manufactured metals: Performance, analysis, and applications
•Multiaxial fatigue of powder bed fusion additive manufactured metals.•Surface finish, defects, and heat treatment effects on multiaxial fatigue of AM metals.•Cyclic deformation and damage mechanism in multiaxial fatigue of AM metals.•Effects of notches and variable amplitude loading in multiaxial f...
Saved in:
Published in | International journal of fatigue Vol. 134; pp. 105479 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Multiaxial fatigue of powder bed fusion additive manufactured metals.•Surface finish, defects, and heat treatment effects on multiaxial fatigue of AM metals.•Cyclic deformation and damage mechanism in multiaxial fatigue of AM metals.•Effects of notches and variable amplitude loading in multiaxial fatigue of AM metals.
Additive manufacturing (AM) has recently gained much interest from researchers and practitioners in a wide range of industries due to the many advantages it offers, as compared to the traditional subtractive manufacturing methods. Some of distinguishing features of AM, as compared to traditional subtractive manufacturing methods, include surface roughness, porosity and lack of fusion defects, residual stresses due to the thermal history of the part during the fabrication process, and anisotropy of the properties. Considering the fact that the state of stress at fatigue critical locations is often multiaxial and many of the distinguishing features of AM metals are directional, the subject of multiaxial fatigue presents an important study area for a better understanding of their fatigue performance. This paper presents an overview of the aforementioned issues using recent data generated with AM Ti-6Al-4V and 17–4 PH specimens made by two different laser-beam powder bed fusion (LB-PBF) machines and subjected to axial, torsion, and combined in-phase as well as out-of-phase axial-torsion loadings. The role of fabrication induced defects, surface roughness, and residual stresses, in addition to post fabrication heat treatment processes are discussed with implications on multiaxial fatigue performance. Important topics to multiaxial fatigue are considered. These include cyclic deformation, damage mechanism and cracking behavior, as well as damage quantification and representation for data correlations and life estimation under different stress states. The effects of some other important issues to multiaxial fatigue performance of AM metals at the component or structure level, such as mechanical notches and variable amplitude loading, are also briefly discussed. |
---|---|
AbstractList | Additive manufacturing (AM) has recently gained much interest from researchers and practitioners in a wide range of industries due to the many advantages it offers, as compared to the traditional subtractive manufacturing methods. Some of distinguishing features of AM, as compared to traditional subtractive manufacturing methods, include surface roughness, porosity and lack of fusion defects, residual stresses due to the thermal history of the part during the fabrication process, and anisotropy of the properties. Considering the fact that the state of stress at fatigue critical locations is often multiaxial and many of the distinguishing features of AM metals are directional, the subject of multiaxial fatigue presents an important study area for a better understanding of their fatigue performance. This paper presents an overview of the aforementioned issues using recent data generated with AM Ti-6Al-4V and 17–4 PH specimens made by two different laser-beam powder bed fusion (LB-PBF) machines and subjected to axial, torsion, and combined in-phase as well as out-of-phase axial-torsion loadings. The role of fabrication induced defects, surface roughness, and residual stresses, in addition to post fabrication heat treatment processes are discussed with implications on multiaxial fatigue performance. Important topics to multiaxial fatigue are considered. These include cyclic deformation, damage mechanism and cracking behavior, as well as damage quantification and representation for data correlations and life estimation under different stress states. The effects of some other important issues to multiaxial fatigue performance of AM metals at the component or structure level, such as mechanical notches and variable amplitude loading, are also briefly discussed. •Multiaxial fatigue of powder bed fusion additive manufactured metals.•Surface finish, defects, and heat treatment effects on multiaxial fatigue of AM metals.•Cyclic deformation and damage mechanism in multiaxial fatigue of AM metals.•Effects of notches and variable amplitude loading in multiaxial fatigue of AM metals. Additive manufacturing (AM) has recently gained much interest from researchers and practitioners in a wide range of industries due to the many advantages it offers, as compared to the traditional subtractive manufacturing methods. Some of distinguishing features of AM, as compared to traditional subtractive manufacturing methods, include surface roughness, porosity and lack of fusion defects, residual stresses due to the thermal history of the part during the fabrication process, and anisotropy of the properties. Considering the fact that the state of stress at fatigue critical locations is often multiaxial and many of the distinguishing features of AM metals are directional, the subject of multiaxial fatigue presents an important study area for a better understanding of their fatigue performance. This paper presents an overview of the aforementioned issues using recent data generated with AM Ti-6Al-4V and 17–4 PH specimens made by two different laser-beam powder bed fusion (LB-PBF) machines and subjected to axial, torsion, and combined in-phase as well as out-of-phase axial-torsion loadings. The role of fabrication induced defects, surface roughness, and residual stresses, in addition to post fabrication heat treatment processes are discussed with implications on multiaxial fatigue performance. Important topics to multiaxial fatigue are considered. These include cyclic deformation, damage mechanism and cracking behavior, as well as damage quantification and representation for data correlations and life estimation under different stress states. The effects of some other important issues to multiaxial fatigue performance of AM metals at the component or structure level, such as mechanical notches and variable amplitude loading, are also briefly discussed. |
ArticleNumber | 105479 |
Author | Fatemi, A. Phan, N. Molaei, R. |
Author_xml | – sequence: 1 givenname: A. surname: Fatemi fullname: Fatemi, A. email: afatemi@memphis.edu organization: Mechanical Engineering, University of Memphis, Memphis, TN, USA – sequence: 2 givenname: R. surname: Molaei fullname: Molaei, R. organization: Mechanical Engineering, University of Memphis, Memphis, TN, USA – sequence: 3 givenname: N. surname: Phan fullname: Phan, N. organization: Structures Division, US Naval Air Systems Command, Patuxent River, MD, USA |
BookMark | eNqNkM1LAzEQxYMoWD_-Bhe8unWS3W02godS_AJFD3ryEGIykSzb3Zpki_3vTW3x4EVPM8y893j8Dshu13dIyAmFMQU6OW_GrrEquvcBxwzY-lqVXOyQEa25yIuyYrtkBLRkOaWs2CcHITQAIIBXI_L6MLTRqU-n2mybkvU2U8a46JaYzVU3WKXj4NFkc4yqDRfZE3rb-_TSeJapTrWr4MJ6M5laLFqnU1DfhSOyZ5Mej7fzkLxcXz3PbvP7x5u72fQ-1yWImNeCF6Y2GpiBwiIFpdBqDhUHqxirFS3qNyZK5HRi0g4TMNUblKYSFRQlLw7J6SZ34fuPAUOUTT_4VCtIVhZCcFHVLKkuNyrt-xA8Wqld_C4avXKtpCDXPGUjf3jKNU-54Zn8_Jd_4d1c-dU_nNONExOEpUMvg3aY4BnnUUdpevdnxhfBM5dY |
CitedBy_id | crossref_primary_10_1017_pds_2021_545 crossref_primary_10_1016_j_ijfatigue_2024_108608 crossref_primary_10_1016_j_ijfatigue_2025_108928 crossref_primary_10_1016_j_pmatsci_2022_101066 crossref_primary_10_1016_j_ijpvp_2022_104633 crossref_primary_10_1016_j_ijfatigue_2021_106468 crossref_primary_10_1111_ffe_14468 crossref_primary_10_1016_j_ijfatigue_2023_108120 crossref_primary_10_1007_s40195_021_01297_z crossref_primary_10_3390_aerospace9110641 crossref_primary_10_1016_j_ijfatigue_2022_107274 crossref_primary_10_1016_j_ijfatigue_2024_108241 crossref_primary_10_1007_s00170_022_10545_0 crossref_primary_10_1016_j_pmatsci_2024_101290 crossref_primary_10_1111_ffe_14312 crossref_primary_10_1016_j_ijfatigue_2021_106637 crossref_primary_10_1016_j_ijfatigue_2020_105646 crossref_primary_10_3390_ma13122680 crossref_primary_10_1016_j_ijfatigue_2024_108319 crossref_primary_10_3390_coatings14010110 crossref_primary_10_1080_10408436_2022_2041396 crossref_primary_10_1016_j_ijfatigue_2021_106674 crossref_primary_10_3390_met13111900 crossref_primary_10_1016_j_matchar_2022_111963 crossref_primary_10_3390_app11073019 crossref_primary_10_1016_j_addma_2020_101338 crossref_primary_10_1016_j_mattod_2022_08_014 crossref_primary_10_1016_j_ijfatigue_2020_105677 crossref_primary_10_1016_j_ijfatigue_2021_106648 crossref_primary_10_1007_s00158_021_02995_z crossref_primary_10_1007_s00170_023_12552_1 crossref_primary_10_3788_LOP240432 crossref_primary_10_1016_j_tafmec_2024_104390 crossref_primary_10_1016_j_ijfatigue_2020_106002 crossref_primary_10_1016_j_ijfatigue_2020_106003 crossref_primary_10_1016_j_pmatsci_2023_101126 crossref_primary_10_1063_5_0235131 crossref_primary_10_3390_ma13112463 crossref_primary_10_1016_j_tafmec_2022_103469 crossref_primary_10_1016_j_ijfatigue_2020_105904 crossref_primary_10_1016_j_msea_2022_143389 crossref_primary_10_1016_j_prostr_2020_10_043 crossref_primary_10_3390_ma13102318 crossref_primary_10_1007_s11661_022_06858_0 crossref_primary_10_3390_ma16051877 crossref_primary_10_1016_j_addma_2020_101805 crossref_primary_10_1007_s11665_020_05223_9 crossref_primary_10_1016_j_ijfatigue_2025_108915 crossref_primary_10_1016_j_ijfatigue_2023_107548 crossref_primary_10_1111_ffe_13449 crossref_primary_10_1016_j_ijfatigue_2021_106412 crossref_primary_10_1016_j_ijfatigue_2024_108258 crossref_primary_10_1016_j_ijfatigue_2023_108076 crossref_primary_10_1016_j_prostr_2022_03_097 crossref_primary_10_1016_j_ijfatigue_2023_108077 crossref_primary_10_3390_ma13245662 |
Cites_doi | 10.1016/j.pmatsci.2017.10.001 10.1016/j.jmatprotec.2011.01.018 10.1016/j.ijfatigue.2012.11.011 10.1007/s11665-013-0658-0 10.1051/matecconf/201930001003 10.1016/j.ijfatigue.2016.01.023 10.1016/j.ijfatigue.2019.03.007 10.1016/j.ijfatigue.2014.01.014 10.1016/j.ijfatigue.2018.10.015 10.1007/s11661-015-2864-x 10.1016/j.ijfatigue.2019.105287 10.1016/j.ijfatigue.2017.09.009 10.1016/j.proeng.2018.02.002 10.1111/j.1460-2695.1988.tb01169.x 10.1111/ffe.13000 10.1016/j.ijfatigue.2020.105646 10.1016/j.ijfatigue.2015.12.011 10.1016/j.rinp.2018.07.008 10.1016/j.ijfatigue.2017.03.042 10.1016/j.ijfatigue.2017.03.044 10.1016/j.prostr.2019.08.243 10.1016/j.msea.2015.10.068 10.1016/j.proeng.2015.12.632 10.1016/j.ijfatigue.2011.01.003 10.1016/j.jmatprotec.2010.08.026 10.1016/j.ijfatigue.2019.05.003 10.1016/j.commatsci.2017.01.040 10.1016/j.ijfatigue.2018.07.035 10.1016/j.ijfatigue.2017.09.008 10.1016/j.tafmec.2019.102260 10.1016/j.proeng.2015.02.021 10.1016/j.ijfatigue.2013.02.002 10.1016/j.matdes.2019.108091 10.1080/17452759.2016.1142215 10.1016/j.ijfatigue.2015.12.003 10.1051/matecconf/201930003005 10.1016/j.ijfatigue.2017.03.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV May 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV May 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2020.105479 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
EndPage | 13 |
ExternalDocumentID | 10_1016_j_ijfatigue_2020_105479 S0142112320300104 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c409t-8973d8dc02d03fe10aaefc70570fa228a138b294e716d138060d5b04d59503473 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Fri Jul 25 06:51:29 EDT 2025 Tue Jul 01 01:54:34 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Fri Feb 23 02:48:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DED LOF EVS FEA HCF Additive manufacturing AM HT FS EBSD HIP LCF Fatigue performance BS Powder Bed Fusion (PBF) Fatigue life predictions TCD LB-PBF PBF PH LDR Multiaxial fatigue |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-8973d8dc02d03fe10aaefc70570fa228a138b294e716d138060d5b04d59503473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2439979582 |
PQPubID | 2045465 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2439979582 crossref_citationtrail_10_1016_j_ijfatigue_2020_105479 crossref_primary_10_1016_j_ijfatigue_2020_105479 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105479 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Do, Li (b0250) 2016; 11 Sanaei, Fatemi, Phan (b0115) 2019; 182 Molaei, Fatemi (b0245) 2018; 213 Leuders, Thöne, Riemer, Niendorf, Tröster, Richard (b0110) 2013; 48 Gates, Fatemi (b0135) 2016; 92 Gates, Fatemi (b0150) 2016; 91 Sterling, Shamsaei, Torries, Thompson (b0130) 2015; 133 Gates, Fatemi (b0210) 2018; 106 Stephens, Fatemi, Stephens, Fuchs (b0230) 2000 Molaei, Fatemi, Phan (b0030) 2018; 117 Smith, Watson, Topper (b0165) 1970; 5 Fatemi, Socie (b0160) 1988; 11 Molaei, Fatemi (b0180) 2020 Fatemi, Molaei, Sharifimehr, Shamsaei, Phan (b0020) 2017 Bannantine, Socie (b0220) 1990 Carrion, Imandoust, Simsiriwong, Shamsaei (b0035) 2018 Pegues, Ahmed, Shao, Shamsaei, Sanaei, Fatemi (b0090) 2019 Fatemi, Molaei (b0240) 2020; 130 Gates, Fatemi (b0010) 2017; 105 Bannantine, Socie (b0225) 1992 Molaei, Fatemi (b0060) 2019; 124 Susmel (b0205) 2009 Shao, Mahtabi, Shamsaei, Thompson (b0125) 2017; 131 Bressan, Razavi, Ogawa, Itoh, Berto (b0065) 2019; 300 Leuders, Vollmer, Brenne, Tröster, Niendorf (b0190) 2015; 46 Gates, Fatemi (b0215) 2015; 101 Fatemi, Socie (b0155) 1989 Fatemi, Molaei, Phan (b0070) 2019; 300 Shamsaei, Fatemi (b0145) 2014; 58 Baufeld, Brandl, Van der Biest (b0260) 2011; 211 Li, Warner, Fatemi, Phan (b0100) 2016; 85 Fatemi, Molaei, Sharifimehr, Shamsaei, Phan (b0015) 2017; 99 Gates, Fatemi (b0195) 2014; 67 Cryderman, Shamsaei, Fatemi (b0170) 2011; 211 Sarkar, Kumar, Nath (b0075) 2019; 25 Rafi, Karthik, Gong, Starr, Stucker (b0255) 2013; 22 Bressan, Ogawa, Itoh, Berto (b0055) 2019; 126 Molaei, Fatemi, Sanaei, Pegues, Shamsaei, Shao (b0095) 2019 Kasprzak, Lass, Miller (b0235) 2017 Fan, Feng (b0265) 2018; 10 Zhang, Fatemi (b0050) 2019; 103 Fatemi, Molaei, Sharifimehr, Phan, Shamsaei (b0025) 2017; 100 Fatemi, Shamsaei (b0005) 2011; 33 R. Molaei, A. Fatemi, “Multiaxial variable amplitude fatigue life analysis of additive manufactured metals including notch effect,” Fourth International Conference on Material and Component Performance under Variable Amplitude Loading, Darmstadt, Germany, Under Preparation, 30 March - 1 April, 2020. Renzo, Sgambitterra, Magarò, Furgiuele, Maletta, Biffi (b0045) 2019; 18 Sanaei, Fatemi (b0275) 2019 R. Molaei, A. Fatemi, and N. Phan, “Multiaxial fatigue of LB-PBF additive manufactured 17-4 PH stainless steel including the effects of surface roughness and HIP treatment,” Under Preparation, 2019. DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski (b0105) 2018; 92 Molaei, Fatemi (b0140) 2018 Sanaei, Fatemi (b0185) 2019 Li, Warner, Pegues, Roach, Shamsaei, Phan (b0120) 2019; 120 Gates, Fatemi (b0175) 2017; 100 Mower, Long (b0270) 2016; 651 Fatemi, Molaei, Simsiriwong, Sanaei, Pegues, Torries (b0085) 2019; 42 DebRoy (10.1016/j.ijfatigue.2020.105479_b0105) 2018; 92 Kasprzak (10.1016/j.ijfatigue.2020.105479_b0235) 2017 Mower (10.1016/j.ijfatigue.2020.105479_b0270) 2016; 651 Fatemi (10.1016/j.ijfatigue.2020.105479_b0025) 2017; 100 Bannantine (10.1016/j.ijfatigue.2020.105479_b0220) 1990 Leuders (10.1016/j.ijfatigue.2020.105479_b0190) 2015; 46 Sanaei (10.1016/j.ijfatigue.2020.105479_b0185) 2019 Li (10.1016/j.ijfatigue.2020.105479_b0120) 2019; 120 Sarkar (10.1016/j.ijfatigue.2020.105479_b0075) 2019; 25 Molaei (10.1016/j.ijfatigue.2020.105479_b0245) 2018; 213 Gates (10.1016/j.ijfatigue.2020.105479_b0135) 2016; 92 Fatemi (10.1016/j.ijfatigue.2020.105479_b0005) 2011; 33 Fatemi (10.1016/j.ijfatigue.2020.105479_b0070) 2019; 300 Pegues (10.1016/j.ijfatigue.2020.105479_b0090) 2019 Fan (10.1016/j.ijfatigue.2020.105479_b0265) 2018; 10 Shao (10.1016/j.ijfatigue.2020.105479_b0125) 2017; 131 Fatemi (10.1016/j.ijfatigue.2020.105479_b0240) 2020; 130 Zhang (10.1016/j.ijfatigue.2020.105479_b0050) 2019; 103 Gates (10.1016/j.ijfatigue.2020.105479_b0195) 2014; 67 Shamsaei (10.1016/j.ijfatigue.2020.105479_b0145) 2014; 58 Molaei (10.1016/j.ijfatigue.2020.105479_b0180) 2020 Gates (10.1016/j.ijfatigue.2020.105479_b0210) 2018; 106 Do (10.1016/j.ijfatigue.2020.105479_b0250) 2016; 11 Fatemi (10.1016/j.ijfatigue.2020.105479_b0020) 2017 Molaei (10.1016/j.ijfatigue.2020.105479_b0140) 2018 Fatemi (10.1016/j.ijfatigue.2020.105479_b0155) 1989 Bressan (10.1016/j.ijfatigue.2020.105479_b0055) 2019; 126 Gates (10.1016/j.ijfatigue.2020.105479_b0150) 2016; 91 Leuders (10.1016/j.ijfatigue.2020.105479_b0110) 2013; 48 Bannantine (10.1016/j.ijfatigue.2020.105479_b0225) 1992 Fatemi (10.1016/j.ijfatigue.2020.105479_b0085) 2019; 42 Molaei (10.1016/j.ijfatigue.2020.105479_b0030) 2018; 117 Molaei (10.1016/j.ijfatigue.2020.105479_b0060) 2019; 124 Fatemi (10.1016/j.ijfatigue.2020.105479_b0015) 2017; 99 Sanaei (10.1016/j.ijfatigue.2020.105479_b0115) 2019; 182 Sanaei (10.1016/j.ijfatigue.2020.105479_b0275) 2019 10.1016/j.ijfatigue.2020.105479_b0080 Rafi (10.1016/j.ijfatigue.2020.105479_b0255) 2013; 22 Gates (10.1016/j.ijfatigue.2020.105479_b0175) 2017; 100 10.1016/j.ijfatigue.2020.105479_b0040 Renzo (10.1016/j.ijfatigue.2020.105479_b0045) 2019; 18 Carrion (10.1016/j.ijfatigue.2020.105479_b0035) 2018 Susmel (10.1016/j.ijfatigue.2020.105479_b0205) 2009 Cryderman (10.1016/j.ijfatigue.2020.105479_b0170) 2011; 211 Fatemi (10.1016/j.ijfatigue.2020.105479_b0160) 1988; 11 Gates (10.1016/j.ijfatigue.2020.105479_b0215) 2015; 101 Bressan (10.1016/j.ijfatigue.2020.105479_b0065) 2019; 300 Smith (10.1016/j.ijfatigue.2020.105479_b0165) 1970; 5 Molaei (10.1016/j.ijfatigue.2020.105479_b0095) 2019 Li (10.1016/j.ijfatigue.2020.105479_b0100) 2016; 85 Baufeld (10.1016/j.ijfatigue.2020.105479_b0260) 2011; 211 Stephens (10.1016/j.ijfatigue.2020.105479_b0230) 2000 Gates (10.1016/j.ijfatigue.2020.105479_b0010) 2017; 105 Sterling (10.1016/j.ijfatigue.2020.105479_b0130) 2015; 133 |
References_xml | – volume: 92 start-page: 442 year: 2016 end-page: 458 ident: b0135 article-title: Friction and roughness induced closure effects on shear-mode crack growth and branching mechanisms publication-title: Int J Fatigue – year: 2019 ident: b0090 article-title: Fatigue of additive manufactured Ti-6Al-4V, part I: The effects of powder feedstock, manufacturing, and post process conditions on the resulting microstructure and defects publication-title: Int J Fatigue – year: 1992 ident: b0225 article-title: A multiaxial fatigue life estimation technique publication-title: Advances in fatigue lifetime predictive techniques – volume: 651 start-page: 198 year: 2016 end-page: 213 ident: b0270 article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials publication-title: Mater Sci Eng, A – volume: 100 start-page: 322 year: 2017 end-page: 336 ident: b0175 article-title: On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis publication-title: Int J Fatigue – volume: 92 start-page: 112 year: 2018 end-page: 224 ident: b0105 article-title: Additive manufacturing of metallic components – process, structure and properties publication-title: Prog Mater Sci – year: 1990 ident: b0220 article-title: A variable amplitude multiaxial fatigue life prediction methods – year: 2017 ident: b0020 article-title: Torsional fatigue behaviour of wrought and selective laser melted Ti-6Al-4V including as-built and machined surface finish effects publication-title: 17th Australian International Aerospace Congress: AIAC 2017 – volume: 101 start-page: 159 year: 2015 end-page: 168 ident: b0215 article-title: Fatigue life of 2024–T3 aluminum under variable amplitude multiaxial loadings: Experimental results and predictions publication-title: Procedia Eng – volume: 103 year: 2019 ident: b0050 article-title: Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling publication-title: Theor Appl Fract Mech – volume: 130 start-page: 105287 year: 2020 ident: b0240 article-title: Novel specimen geometries for fatigue testing of additive manufactured metals under axial, torsion, and combined axial-torsion loadings publication-title: Int J Fatigue – year: 2019 ident: b0185 article-title: Quantitative analysis of the effect of defects on fatigue performance of additive manufactured metals, Part II: Surface roughness publication-title: Materials Science and Engineering: A – volume: 124 start-page: 558 year: 2019 end-page: 570 ident: b0060 article-title: Crack paths in additive manufactured metallic materials subjected to multiaxial cyclic loads including surface roughness, HIP, and notch effects publication-title: Int J Fatigue – year: 2000 ident: b0230 article-title: Metal Fatigue in Engineering – year: 2017 ident: b0235 article-title: Development, test, and evaluation of additively manufactured flight critical aircraft components publication-title: AHS International 73rd Annual Forum & Technology Display – volume: 120 start-page: 342 year: 2019 end-page: 352 ident: b0120 article-title: Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V publication-title: Int J Fatigue – reference: R. Molaei, A. Fatemi, and N. Phan, “Multiaxial fatigue of LB-PBF additive manufactured 17-4 PH stainless steel including the effects of surface roughness and HIP treatment,” Under Preparation, 2019. – volume: 18 start-page: 914 year: 2019 end-page: 920 ident: b0045 article-title: Multiaxial fatigue behavior of additive manufactured Ti-6Al-4V under in-phase stresses publication-title: Procedia Struct Integrity – year: 2019 ident: b0095 article-title: Fatigue of additive manufactured Ti-6Al-4V, part II: The relationship between microstructure, material cyclic properties, and component performance publication-title: Int J Fatigue – volume: 99 start-page: 187 year: 2017 end-page: 201 ident: b0015 article-title: Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect publication-title: Int J Fatigue – volume: 100 start-page: 347 year: 2017 end-page: 366 ident: b0025 article-title: Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect publication-title: Int J Fatigue – volume: 25 start-page: 71 year: 2019 end-page: 83 ident: b0075 article-title: Investigation on the mode of failures and fatigue life of laser-based powder bed fusion produced stainless steel parts under variable amplitude loading conditions publication-title: Addit Manuf – volume: 106 start-page: 56 year: 2018 end-page: 69 ident: b0210 article-title: Multiaxial variable amplitude fatigue life analysis using the critical plane approach, part II: notched specimen experiments and life estimations publication-title: Int J Fatigue – volume: 67 start-page: 2 year: 2014 end-page: 14 ident: b0195 article-title: Notched fatigue behavior and stress analysis under multiaxial states of stress publication-title: Int J Fatigue – volume: 133 start-page: 576 year: 2015 end-page: 589 ident: b0130 article-title: Fatigue behaviour of additively manufactured Ti-6Al-4V publication-title: Procedia Eng – volume: 5 year: 1970 ident: b0165 article-title: A stress-strain parameter for the fatigue of metals publication-title: Journal of Mater. JMSLA – reference: R. Molaei, A. Fatemi, “Multiaxial variable amplitude fatigue life analysis of additive manufactured metals including notch effect,” Fourth International Conference on Material and Component Performance under Variable Amplitude Loading, Darmstadt, Germany, Under Preparation, 30 March - 1 April, 2020. – volume: 33 start-page: 948 year: 2011 end-page: 958 ident: b0005 article-title: Multiaxial fatigue: An overview and some approximation models for life estimation publication-title: Int J Fatigue – volume: 211 start-page: 66 year: 2011 end-page: 77 ident: b0170 article-title: Effects of continuous cast section size on torsion deformation and fatigue of induction hardened 1050 steel shafts publication-title: J Mater Process Technol – start-page: 877 year: 1989 end-page: 890 ident: b0155 article-title: Multiaxial Fatigue: Damage Mechanisms and Life Predictions publication-title: Advances in Fatigue Science and Technology – volume: 300 year: 2019 ident: b0070 article-title: Multiaxial Fatigue of Additive Manufactured Metals publication-title: MATEC Web Conferences – volume: 42 start-page: 991 year: 2019 end-page: 1009 ident: b0085 article-title: Fatigue behavior of additive manufactured materials: An overview of some recent experimental data for Ti-6Al-4V considering various processing and loading direction effects publication-title: Fatigue Fract Eng Mater Struct – volume: 91 start-page: 337 year: 2016 end-page: 351 ident: b0150 article-title: Multiaxial variable amplitude fatigue life analysis including notch effects publication-title: Int J Fatigue – volume: 22 start-page: 3872 year: 2013 end-page: 3883 ident: b0255 article-title: Microstructures and mechanical properties of Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting publication-title: J Mater Eng Perform – volume: 46 start-page: 3816 year: 2015 end-page: 3823 ident: b0190 article-title: Fatigue strength prediction for titanium alloy Ti6Al4V manufactured by selective laser melting publication-title: Metall Mater Trans A – year: 2018 ident: b0140 article-title: Crack paths in additive manufactured Ti-6Al-4V specimens subjected to multiaxial cyclic loads publication-title: 6th International Conference on Crack Paths (CP 2018), Italy – volume: 58 start-page: 126 year: 2014 end-page: 135 ident: b0145 article-title: Small fatigue crack growth under multiaxial stresses publication-title: Int J Fatigue – volume: 213 start-page: 5 year: 2018 end-page: 16 ident: b0245 article-title: Fatigue design with additive manufactured metals: issues to consider and perspective for future research publication-title: Procedia Eng – volume: 11 start-page: 41 year: 2016 end-page: 47 ident: b0250 article-title: The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting publication-title: Virtual Phys. Prototyping – year: 2018 ident: b0035 article-title: Effects of layer orientation on the multiaxial fatigue behavior of additively manufactured Ti-6Al-4V publication-title: 29th Annual International Solid Freeform Fabrication Symposium Proceeding – volume: 85 start-page: 130 year: 2016 end-page: 143 ident: b0100 article-title: Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research publication-title: Int J Fatigue – volume: 182 year: 2019 ident: b0115 article-title: Defect characteristics and analysis of their variability in metal additive manufacturing publication-title: Mater Des – year: 2019 ident: b0275 article-title: Quantitative analysis of the effect of defects on fatigue performance of additive manufactured metals, Part I: Internal defects publication-title: Mater Sci Eng: A – volume: 131 start-page: 209 year: 2017 end-page: 219 ident: b0125 article-title: Solubility of Argon in laser additive manufactured α-titanium under hot isostatic pressing condition publication-title: Comput Mater Sci – volume: 211 start-page: 1146 year: 2011 end-page: 1158 ident: b0260 article-title: Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition publication-title: J Mater Process Technol – year: 2020 ident: b0180 article-title: On the consideration of failure mechanism change with life in multiaxial fatigue damage analysis using Fatemi-Socie critical plane-based damage parameter publication-title: 3rd Workshop on Challenges in Multiaxial Fatigue, Fulda, Germany – volume: 126 start-page: 155 year: 2019 end-page: 164 ident: b0055 article-title: Cyclic plastic behavior of additively manufactured Ti-6Al-4V under uniaxial and multiaxial non-proportional loading publication-title: Int J Fatigue – volume: 300 year: 2019 ident: b0065 article-title: Multiaxial fatigue strength under non-proportional loading of additively manufactured notched components of Ti-6Al-4V publication-title: MATEC Web of Conferences – volume: 105 start-page: 283 year: 2017 end-page: 295 ident: b0010 article-title: Multiaxial variable amplitude fatigue life analysis using the critical plane approach, Part I: Un-notched specimen experiments and life estimations publication-title: Int J Fatigue – volume: 48 start-page: 300 year: 2013 end-page: 307 ident: b0110 article-title: On the mechanical behaviour of titanium alloy Ti-6Al-4V manufactured by selective laser melting: Fatigue resistance and crack growth performance publication-title: Int J Fatigue – volume: 11 start-page: 149 year: 1988 end-page: 165 ident: b0160 article-title: A Critical plane approach to multiaxial fatigue damage including out-of-phase loading publication-title: Fatigue Fract Eng Mater Struct – volume: 117 start-page: 352 year: 2018 end-page: 370 ident: b0030 article-title: Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects publication-title: Int J Fatigue – volume: 10 start-page: 660 year: 2018 end-page: 664 ident: b0265 article-title: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy publication-title: Results Phys – year: 2009 ident: b0205 article-title: Multiaxial notch fatigue – year: 2017 ident: 10.1016/j.ijfatigue.2020.105479_b0020 article-title: Torsional fatigue behaviour of wrought and selective laser melted Ti-6Al-4V including as-built and machined surface finish effects – volume: 92 start-page: 112 year: 2018 ident: 10.1016/j.ijfatigue.2020.105479_b0105 article-title: Additive manufacturing of metallic components – process, structure and properties publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2017.10.001 – volume: 211 start-page: 1146 year: 2011 ident: 10.1016/j.ijfatigue.2020.105479_b0260 article-title: Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2011.01.018 – volume: 48 start-page: 300 year: 2013 ident: 10.1016/j.ijfatigue.2020.105479_b0110 article-title: On the mechanical behaviour of titanium alloy Ti-6Al-4V manufactured by selective laser melting: Fatigue resistance and crack growth performance publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.11.011 – volume: 22 start-page: 3872 year: 2013 ident: 10.1016/j.ijfatigue.2020.105479_b0255 article-title: Microstructures and mechanical properties of Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting publication-title: J Mater Eng Perform doi: 10.1007/s11665-013-0658-0 – volume: 300 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0070 article-title: Multiaxial Fatigue of Additive Manufactured Metals publication-title: MATEC Web Conferences doi: 10.1051/matecconf/201930001003 – volume: 92 start-page: 442 year: 2016 ident: 10.1016/j.ijfatigue.2020.105479_b0135 article-title: Friction and roughness induced closure effects on shear-mode crack growth and branching mechanisms publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.01.023 – volume: 124 start-page: 558 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0060 article-title: Crack paths in additive manufactured metallic materials subjected to multiaxial cyclic loads including surface roughness, HIP, and notch effects publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.03.007 – volume: 67 start-page: 2 year: 2014 ident: 10.1016/j.ijfatigue.2020.105479_b0195 article-title: Notched fatigue behavior and stress analysis under multiaxial states of stress publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2014.01.014 – year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0095 article-title: Fatigue of additive manufactured Ti-6Al-4V, part II: The relationship between microstructure, material cyclic properties, and component performance publication-title: Int J Fatigue – start-page: 877 year: 1989 ident: 10.1016/j.ijfatigue.2020.105479_b0155 article-title: Multiaxial Fatigue: Damage Mechanisms and Life Predictions – year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0185 article-title: Quantitative analysis of the effect of defects on fatigue performance of additive manufactured metals, Part II: Surface roughness – volume: 120 start-page: 342 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0120 article-title: Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.10.015 – year: 2018 ident: 10.1016/j.ijfatigue.2020.105479_b0035 article-title: Effects of layer orientation on the multiaxial fatigue behavior of additively manufactured Ti-6Al-4V – volume: 46 start-page: 3816 year: 2015 ident: 10.1016/j.ijfatigue.2020.105479_b0190 article-title: Fatigue strength prediction for titanium alloy Ti6Al4V manufactured by selective laser melting publication-title: Metall Mater Trans A doi: 10.1007/s11661-015-2864-x – year: 1990 ident: 10.1016/j.ijfatigue.2020.105479_b0220 – volume: 130 start-page: 105287 year: 2020 ident: 10.1016/j.ijfatigue.2020.105479_b0240 article-title: Novel specimen geometries for fatigue testing of additive manufactured metals under axial, torsion, and combined axial-torsion loadings publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105287 – year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0090 article-title: Fatigue of additive manufactured Ti-6Al-4V, part I: The effects of powder feedstock, manufacturing, and post process conditions on the resulting microstructure and defects publication-title: Int J Fatigue – volume: 106 start-page: 56 year: 2018 ident: 10.1016/j.ijfatigue.2020.105479_b0210 article-title: Multiaxial variable amplitude fatigue life analysis using the critical plane approach, part II: notched specimen experiments and life estimations publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.09.009 – year: 2009 ident: 10.1016/j.ijfatigue.2020.105479_b0205 – volume: 213 start-page: 5 year: 2018 ident: 10.1016/j.ijfatigue.2020.105479_b0245 article-title: Fatigue design with additive manufactured metals: issues to consider and perspective for future research publication-title: Procedia Eng doi: 10.1016/j.proeng.2018.02.002 – volume: 5 year: 1970 ident: 10.1016/j.ijfatigue.2020.105479_b0165 article-title: A stress-strain parameter for the fatigue of metals publication-title: Journal of Mater. JMSLA – volume: 11 start-page: 149 year: 1988 ident: 10.1016/j.ijfatigue.2020.105479_b0160 article-title: A Critical plane approach to multiaxial fatigue damage including out-of-phase loading publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/j.1460-2695.1988.tb01169.x – year: 2000 ident: 10.1016/j.ijfatigue.2020.105479_b0230 – volume: 42 start-page: 991 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0085 article-title: Fatigue behavior of additive manufactured materials: An overview of some recent experimental data for Ti-6Al-4V considering various processing and loading direction effects publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.13000 – year: 1992 ident: 10.1016/j.ijfatigue.2020.105479_b0225 article-title: A multiaxial fatigue life estimation technique – ident: 10.1016/j.ijfatigue.2020.105479_b0040 doi: 10.1016/j.ijfatigue.2020.105646 – volume: 91 start-page: 337 year: 2016 ident: 10.1016/j.ijfatigue.2020.105479_b0150 article-title: Multiaxial variable amplitude fatigue life analysis including notch effects publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.12.011 – volume: 10 start-page: 660 year: 2018 ident: 10.1016/j.ijfatigue.2020.105479_b0265 article-title: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy publication-title: Results Phys doi: 10.1016/j.rinp.2018.07.008 – volume: 100 start-page: 322 year: 2017 ident: 10.1016/j.ijfatigue.2020.105479_b0175 article-title: On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.03.042 – volume: 100 start-page: 347 year: 2017 ident: 10.1016/j.ijfatigue.2020.105479_b0025 article-title: Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.03.044 – volume: 18 start-page: 914 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0045 article-title: Multiaxial fatigue behavior of additive manufactured Ti-6Al-4V under in-phase stresses publication-title: Procedia Struct Integrity doi: 10.1016/j.prostr.2019.08.243 – year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0275 article-title: Quantitative analysis of the effect of defects on fatigue performance of additive manufactured metals, Part I: Internal defects publication-title: Mater Sci Eng: A – volume: 651 start-page: 198 year: 2016 ident: 10.1016/j.ijfatigue.2020.105479_b0270 article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2015.10.068 – volume: 133 start-page: 576 year: 2015 ident: 10.1016/j.ijfatigue.2020.105479_b0130 article-title: Fatigue behaviour of additively manufactured Ti-6Al-4V publication-title: Procedia Eng doi: 10.1016/j.proeng.2015.12.632 – volume: 33 start-page: 948 year: 2011 ident: 10.1016/j.ijfatigue.2020.105479_b0005 article-title: Multiaxial fatigue: An overview and some approximation models for life estimation publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2011.01.003 – volume: 211 start-page: 66 year: 2011 ident: 10.1016/j.ijfatigue.2020.105479_b0170 article-title: Effects of continuous cast section size on torsion deformation and fatigue of induction hardened 1050 steel shafts publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2010.08.026 – year: 2020 ident: 10.1016/j.ijfatigue.2020.105479_b0180 article-title: On the consideration of failure mechanism change with life in multiaxial fatigue damage analysis using Fatemi-Socie critical plane-based damage parameter – volume: 126 start-page: 155 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0055 article-title: Cyclic plastic behavior of additively manufactured Ti-6Al-4V under uniaxial and multiaxial non-proportional loading publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.05.003 – volume: 131 start-page: 209 year: 2017 ident: 10.1016/j.ijfatigue.2020.105479_b0125 article-title: Solubility of Argon in laser additive manufactured α-titanium under hot isostatic pressing condition publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2017.01.040 – volume: 25 start-page: 71 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0075 article-title: Investigation on the mode of failures and fatigue life of laser-based powder bed fusion produced stainless steel parts under variable amplitude loading conditions publication-title: Addit Manuf – ident: 10.1016/j.ijfatigue.2020.105479_b0080 – volume: 117 start-page: 352 year: 2018 ident: 10.1016/j.ijfatigue.2020.105479_b0030 article-title: Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.07.035 – year: 2018 ident: 10.1016/j.ijfatigue.2020.105479_b0140 article-title: Crack paths in additive manufactured Ti-6Al-4V specimens subjected to multiaxial cyclic loads – volume: 105 start-page: 283 year: 2017 ident: 10.1016/j.ijfatigue.2020.105479_b0010 article-title: Multiaxial variable amplitude fatigue life analysis using the critical plane approach, Part I: Un-notched specimen experiments and life estimations publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.09.008 – year: 2017 ident: 10.1016/j.ijfatigue.2020.105479_b0235 article-title: Development, test, and evaluation of additively manufactured flight critical aircraft components – volume: 103 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0050 article-title: Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2019.102260 – volume: 101 start-page: 159 year: 2015 ident: 10.1016/j.ijfatigue.2020.105479_b0215 article-title: Fatigue life of 2024–T3 aluminum under variable amplitude multiaxial loadings: Experimental results and predictions publication-title: Procedia Eng doi: 10.1016/j.proeng.2015.02.021 – volume: 58 start-page: 126 year: 2014 ident: 10.1016/j.ijfatigue.2020.105479_b0145 article-title: Small fatigue crack growth under multiaxial stresses publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.02.002 – volume: 182 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0115 article-title: Defect characteristics and analysis of their variability in metal additive manufacturing publication-title: Mater Des doi: 10.1016/j.matdes.2019.108091 – volume: 11 start-page: 41 year: 2016 ident: 10.1016/j.ijfatigue.2020.105479_b0250 article-title: The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting publication-title: Virtual Phys. Prototyping doi: 10.1080/17452759.2016.1142215 – volume: 85 start-page: 130 year: 2016 ident: 10.1016/j.ijfatigue.2020.105479_b0100 article-title: Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2015.12.003 – volume: 300 year: 2019 ident: 10.1016/j.ijfatigue.2020.105479_b0065 article-title: Multiaxial fatigue strength under non-proportional loading of additively manufactured notched components of Ti-6Al-4V publication-title: MATEC Web of Conferences doi: 10.1051/matecconf/201930003005 – volume: 99 start-page: 187 year: 2017 ident: 10.1016/j.ijfatigue.2020.105479_b0015 article-title: Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.03.002 |
SSID | ssj0009075 |
Score | 2.5161915 |
Snippet | •Multiaxial fatigue of powder bed fusion additive manufactured metals.•Surface finish, defects, and heat treatment effects on multiaxial fatigue of AM... Additive manufacturing (AM) has recently gained much interest from researchers and practitioners in a wide range of industries due to the many advantages it... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105479 |
SubjectTerms | Additive manufacturing Anisotropy Damage Defects Deformation mechanisms Fatigue cracking Fatigue life predictions Fatigue performance Fracture mechanics Heat treatment Laser beams Manufacturing Materials fatigue Metal fatigue Multiaxial fatigue Notches Porosity Powder Bed Fusion (PBF) Powder beds Production methods Residual stress Surface roughness Titanium base alloys Variable amplitude loading |
Title | Multiaxial fatigue of additive manufactured metals: Performance, analysis, and applications |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2020.105479 https://www.proquest.com/docview/2439979582 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMAB8RSDMeXAkbI0TfrghiamAdLEgUmTOERpk0qb2Jj2kDjx27HblG0IaQduaRW3qe06dvvZJuQ6E6nMuc08bVjgCVirl6RWeqlMwgyUGuxmgfLthd2-eBrIQY20q1wYhFU621_a9MJauzMtx83WdDhsISwJohfwCEBPMarADHYRoZbffq1gHklZbBcnezh7A-M1HOXw_PiJhIPbhD1vBWK6_t6hftnqYgPqHJID5znS-3JxR6RmJ8dkf62e4Al5K9Jp9SfoFHW3pB85RcwQWjU61pMlZjIsZ9bQsQW_e35HX1apAzdUuxolODJ0_e_2Kel3Hl7bXc91T_AyiNkWXpxEgYlNxjhIIbc-09rmWQT-Gcs157H2gzjlibAQMRkYs5AZmTJhZCJZIKLgjOxMPib2nNCU5amPgaIGBsUyBBkaHvlYUTSOAxHWSVhxTGWutDh2uHhXFYZspH5YrZDVqmR1nbAfwmlZXWM7yV0lErWhKAr2gO3EjUqIyr2rc8UxJIsSGfOL_1z7kuzhUQmGbJCdxWxpr8BhWaTNQiObZPf-8bnb-wb3U-o8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGOAAHxFM8BuTAkWpp2vTBDSFQB2PiABIShyhtUmkTbAg2iZ-PvaYbQ0gcuEVt3Ua269jt5y8Ap0WYy1LYwtOGB16Ic_XS3Eovl2lUoFNj3JyifHtR9hjePMmnBlzWvTAEq3Sxv4rp02jtjrSdNttv_X6bYElYvWBGgH5KVcUSLBM7lWzC8kXnNuvNuXcrvl263iOBBZhXf1CiCugricDMiba9DQnW9fsi9SNcT9eg6w1Yd8kju6jmtwkNO9yCtW-UgtvwPO2o1Z_oVsw9ko1KRrAhCmzsVQ8n1MwwebeGvVpMvT_O2f28e-CMaUdTQiPDvv_g3oHH66uHy8xzGyh4BZZtYy9J48AkpuACDVFan2ttyyLGFI2XWohE-0GSizS0WDQZHPOIG5nz0MhU8iCMg11oDkdDuwcs52XuU62oUUGJjNCMRsQ-kYomSRBG-xDVGlOFYxenTS5eVA0jG6iZqhWpWlWq3gc-E3yrCDb-FjmvTaIWfEXhMvC3cKs2onKv64cSVJXFqUzEwX_ufQIr2cNdV3U7vdtDWKUzFTayBc3x-8QeYf4yzo-df34BBLHs7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiaxial+fatigue+of+additive+manufactured+metals%3A+Performance%2C+analysis%2C+and+applications&rft.jtitle=International+journal+of+fatigue&rft.au=Fatemi%2C+A.&rft.au=Molaei%2C+R.&rft.au=Phan%2C+N.&rft.date=2020-05-01&rft.issn=0142-1123&rft.volume=134&rft.spage=105479&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijfatigue_2020_105479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |