A computational framework for evaluating the role of mobility on the propagation of epidemics on point processes

This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical biology Vol. 84; no. 1-2; p. 4
Main Authors Baccelli, François, Ramesan, Nithin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2022
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN0303-6812
1432-1416
1432-1416
DOI10.1007/s00285-021-01692-1

Cover

Abstract This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate.
AbstractList This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate.
This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate.This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate.
This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected indi-viduals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinc-tion of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate.
ArticleNumber 4
Author Baccelli, François
Ramesan, Nithin
Author_xml – sequence: 1
  givenname: François
  orcidid: 0000-0002-9326-8422
  surname: Baccelli
  fullname: Baccelli, François
  email: francois.baccelli@inria.fr
  organization: INRIA, UT Austin
– sequence: 2
  givenname: Nithin
  surname: Ramesan
  fullname: Ramesan, Nithin
  organization: UT Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34928428$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03542621$$DView record in HAL
BookMark eNp9kU9P3DAQxS1EBQvlC3CoLPXSHtLO2N7EOa5QWyqt1Et7tpysvZg6cWonIL59nQ1_JA6cbM383rzRvDNy3IfeEHKJ8AUBqq8JgMl1AQwLwLJmBR6RFQqePwLLY7ICDrwoJbJTcpbSLQBW6xpPyCkXNZOCyRUZNrQN3TCNenSh157aqDtzH-JfakOk5k77Kbf6PR1vDI3BGxos7ULjvBsfaOgP9SGGQe8PI-a2GdzOdK5Nc38Irh9nojUpmfSevLPaJ3Px-J6TP9-__b66Lra_fvy82myLVkA9FrIGDU0lbcWQSVmaCuy6lhyF4CCbkgtjK0BkVmPV1JrtAGoQzALsNG9Lfk4-L3NvtFdDdJ2ODypop643WzXXgK8FKxneYWY_LWze8t9k0qg6l1rjve5NmJJiJbI8G6oZ_fgKvQ1TzIc7UCgZguSZ-vBITU1nds_-T3fPAFuANoaUorHPCIKaw1VLuCqHqw7hqtlbvhK1bsltjNr5t6V8kabs0-9NfFn7DdV_7wm2UQ
CitedBy_id crossref_primary_10_1017_apr_2023_17
crossref_primary_10_1007_s00285_021_01692_1
Cites_doi 10.1007/978-3-662-11657-9
10.1016/j.bulm.2004.11.002
10.1093/oso/9780198805090.001.0001
10.1017/S0963548317000372
10.1239/aap/1427814586
10.1016/j.tpb.2003.07.002
10.1103/PhysRevE.89.022808
10.1007/978-3-319-28028-8_13
10.1214/aop/1176989541
10.1007/s00285-021-01692-1
10.1007/s10955-020-02547-7
10.1103/RevModPhys.87.925
10.1007/s11134-017-9524-3
10.1561/9781601982650
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M7N
M7P
M7S
M7Z
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
VOOES
DOI 10.1007/s00285-021-01692-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biochemistry Abstracts 1
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Computer Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
Computer Science
EISSN 1432-1416
ExternalDocumentID oai_HAL_hal_03542621v1
34928428
10_1007_s00285_021_01692_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 788851
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
M7S
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK6
WK8
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
H94
JQ2
K9.
M7N
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c409t-890a0b78f7212886e70f5983144308b634ef70112fa17b9a2d009042f00da3c63
IEDL.DBID U2A
ISSN 0303-6812
1432-1416
IngestDate Fri Sep 12 12:47:25 EDT 2025
Fri Sep 05 13:52:17 EDT 2025
Fri Jul 25 19:12:19 EDT 2025
Wed Feb 19 02:28:04 EST 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 02:03:16 EDT 2025
Fri Feb 21 02:46:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Epidemic
Markov process
Motion
60G55
Phase diagram
Contact process
Boolean model
Shot-noise process
92D30
Point process
Stationary regime
SIS model
60K35
Moment measures
Language English
License 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-890a0b78f7212886e70f5983144308b634ef70112fa17b9a2d009042f00da3c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9326-8422
0000-0003-0960-775X
OpenAccessLink https://hal.science/hal-03542621
PMID 34928428
PQID 2611821083
PQPubID 54026
ParticipantIDs hal_primary_oai_HAL_hal_03542621v1
proquest_miscellaneous_2612042071
proquest_journals_2611821083
pubmed_primary_34928428
crossref_primary_10_1007_s00285_021_01692_1
crossref_citationtrail_10_1007_s00285_021_01692_1
springer_journals_10_1007_s00285_021_01692_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of mathematical biology
PublicationTitleAbbrev J. Math. Biol
PublicationTitleAlternate J Math Biol
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
References WilkinsonRRSharkeyKJMessage passing and moment closure for susceptible-infected-recovered epidemics on finite networksPhys Rev E201489202280810.1103/PhysRevE.89.022808
Baccelli F, Ramesan N (2020) A Computational Framework for Evaluating the Role of Mobility on the Propagation of Epidemics on Point Processes. arXiv:2009.08515
LiggettTStochastic Interacting Systems1999NYSpringer0949.60006
HaoCVSuper-exponential extinction time of the contact process on random geometric graphsCombinat Probab Comput2018272162185377819810.1017/S0963548317000372
Baccelli F, Blaszczyszyn B (2009) Stochastic Geometry and Wireless Networks Volume. I–Theory. NoW Publishers
KrishnarajahICookAMarionGGibsonGNovel moment closure approximations in stochastic epidemicsBull Mathe Biol2005674855873221643310.1016/j.bulm.2004.11.002
Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev Mod Phys2015873925340604010.1103/RevModPhys.87.925
BaccelliFMathieuFNorrosIOn Spatial Point Processes with Uniform Births and Deaths by Random ConnectionQueueing Syst.2017861–295140364201210.1007/s11134-017-9524-3
GanesanGInfection spread in random geometric graphsAdv Appl Probab2015471164181332732010.1239/aap/1427814586
NewmanMEJNetworks2018NYOxford University Press10.1093/oso/9780198805090.001.0001
LloydALEstimating variability in models for recurrent epidemics: assessing the use of moment closure techniquesTheor populat Biol2004651496510.1016/j.tpb.2003.07.002
Ménard L, Singh A (2015) “Percolation by cumulative merging and phase transition for the contact process on random graphs”, arXiv preprint arXiv:1502.06982
PemantleRThe contact process on treesAnn Probab199220420892116118805410.1214/aop/1176989541
FigueiredoDIacobelliGShneerS“The End Time of SIS Epidemics Driven by Random Walks on Edge-Transitive Graphs”J Statist Phys20201793651671409999810.1007/s10955-020-02547-7
Kuehn C (2016) “Moment closure—a brief review”, Control Self-Organ Nonlinear Syst 253–271
BaccelliFBrémaudPElements of Queueing Theory20032VerlagSpringer10.1007/978-3-662-11657-9
FranceschettiMMeesterRWJRandom networks for communication2007NYCambridge University Press1143.82001
D Figueiredo (1692_CR5) 2020; 179
MEJ Newman (1692_CR14) 2018
RR Wilkinson (1692_CR17) 2014; 89
CV Hao (1692_CR8) 2018; 27
AL Lloyd (1692_CR12) 2004; 65
F Baccelli (1692_CR1) 2003
1692_CR10
R Pastor-Satorras (1692_CR15) 2015; 87
F Baccelli (1692_CR2) 2017; 86
G Ganesan (1692_CR7) 2015; 47
I Krishnarajah (1692_CR9) 2005; 67
1692_CR3
T Liggett (1692_CR11) 1999
M Franceschetti (1692_CR6) 2007
1692_CR13
1692_CR4
R Pemantle (1692_CR16) 1992; 20
References_xml – reference: Ménard L, Singh A (2015) “Percolation by cumulative merging and phase transition for the contact process on random graphs”, arXiv preprint arXiv:1502.06982
– reference: NewmanMEJNetworks2018NYOxford University Press10.1093/oso/9780198805090.001.0001
– reference: BaccelliFMathieuFNorrosIOn Spatial Point Processes with Uniform Births and Deaths by Random ConnectionQueueing Syst.2017861–295140364201210.1007/s11134-017-9524-3
– reference: LiggettTStochastic Interacting Systems1999NYSpringer0949.60006
– reference: HaoCVSuper-exponential extinction time of the contact process on random geometric graphsCombinat Probab Comput2018272162185377819810.1017/S0963548317000372
– reference: FigueiredoDIacobelliGShneerS“The End Time of SIS Epidemics Driven by Random Walks on Edge-Transitive Graphs”J Statist Phys20201793651671409999810.1007/s10955-020-02547-7
– reference: KrishnarajahICookAMarionGGibsonGNovel moment closure approximations in stochastic epidemicsBull Mathe Biol2005674855873221643310.1016/j.bulm.2004.11.002
– reference: BaccelliFBrémaudPElements of Queueing Theory20032VerlagSpringer10.1007/978-3-662-11657-9
– reference: Kuehn C (2016) “Moment closure—a brief review”, Control Self-Organ Nonlinear Syst 253–271
– reference: GanesanGInfection spread in random geometric graphsAdv Appl Probab2015471164181332732010.1239/aap/1427814586
– reference: WilkinsonRRSharkeyKJMessage passing and moment closure for susceptible-infected-recovered epidemics on finite networksPhys Rev E201489202280810.1103/PhysRevE.89.022808
– reference: Baccelli F, Blaszczyszyn B (2009) Stochastic Geometry and Wireless Networks Volume. I–Theory. NoW Publishers
– reference: Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev Mod Phys2015873925340604010.1103/RevModPhys.87.925
– reference: PemantleRThe contact process on treesAnn Probab199220420892116118805410.1214/aop/1176989541
– reference: FranceschettiMMeesterRWJRandom networks for communication2007NYCambridge University Press1143.82001
– reference: LloydALEstimating variability in models for recurrent epidemics: assessing the use of moment closure techniquesTheor populat Biol2004651496510.1016/j.tpb.2003.07.002
– reference: Baccelli F, Ramesan N (2020) A Computational Framework for Evaluating the Role of Mobility on the Propagation of Epidemics on Point Processes. arXiv:2009.08515
– volume-title: Elements of Queueing Theory
  year: 2003
  ident: 1692_CR1
  doi: 10.1007/978-3-662-11657-9
– volume: 67
  start-page: 855
  issue: 4
  year: 2005
  ident: 1692_CR9
  publication-title: Bull Mathe Biol
  doi: 10.1016/j.bulm.2004.11.002
– volume-title: Networks
  year: 2018
  ident: 1692_CR14
  doi: 10.1093/oso/9780198805090.001.0001
– volume: 27
  start-page: 162
  issue: 2
  year: 2018
  ident: 1692_CR8
  publication-title: Combinat Probab Comput
  doi: 10.1017/S0963548317000372
– ident: 1692_CR13
– volume-title: Stochastic Interacting Systems
  year: 1999
  ident: 1692_CR11
– volume: 47
  start-page: 164
  issue: 1
  year: 2015
  ident: 1692_CR7
  publication-title: Adv Appl Probab
  doi: 10.1239/aap/1427814586
– volume: 65
  start-page: 49
  issue: 1
  year: 2004
  ident: 1692_CR12
  publication-title: Theor populat Biol
  doi: 10.1016/j.tpb.2003.07.002
– volume: 89
  start-page: 022808
  issue: 2
  year: 2014
  ident: 1692_CR17
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.89.022808
– ident: 1692_CR10
  doi: 10.1007/978-3-319-28028-8_13
– volume: 20
  start-page: 2089
  issue: 4
  year: 1992
  ident: 1692_CR16
  publication-title: Ann Probab
  doi: 10.1214/aop/1176989541
– ident: 1692_CR4
  doi: 10.1007/s00285-021-01692-1
– volume-title: Random networks for communication
  year: 2007
  ident: 1692_CR6
– volume: 179
  start-page: 651
  issue: 3
  year: 2020
  ident: 1692_CR5
  publication-title: J Statist Phys
  doi: 10.1007/s10955-020-02547-7
– volume: 87
  start-page: 925
  issue: 3
  year: 2015
  ident: 1692_CR15
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.87.925
– volume: 86
  start-page: 95
  issue: 1–2
  year: 2017
  ident: 1692_CR2
  publication-title: Queueing Syst.
  doi: 10.1007/s11134-017-9524-3
– ident: 1692_CR3
  doi: 10.1561/9781601982650
SSID ssj0017591
Score 2.349022
Snippet This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous...
SourceID hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Applications of Mathematics
Communicable Diseases - epidemiology
Computer applications
Computer Science
Conservation equations
Disease Susceptibility - epidemiology
Epidemics
Euclidean geometry
Extinction
Humans
Infections
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Models, Biological
Networking and Internet Architecture
Parameters
Phase diagrams
Polynomials
Population Density
Probability
Reproduction
Simulation
Survival
Toruses
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_8QOiL2FbrqS2p9E2D2e_sg8i13HGUepSicG9LNpuooLurdwr-985kP0Sk97qZ7OV2JpPfZL4AfoS-SK1QiuNpIniYSMXzQgU8NEiP550KnCvmfBpPLsPfs2i2AtMuF4bCKjud6BR1UWm6Iz9BpI9Q2EPEcFbfc-oaRd7VroWGalsrFKeuxNgqrKNKlij36z9H07__er9CEjU99FBxc6q81abRuGQ6Mj8oW5nM6zj1uffmqFq9pkDJ9yj0nQfVHUzjLdhsESUbNiLwEVZM-Qk2mh6Tz5-hHjLtOje0t37MduFYDPEq66p9l1cMoSCjYENWWXZXuaDZZ1aV7jkuCDWPewUNm6avrJ7TeF3dlAtWNxkHZr4Nl-PRxa8Jb9sscI3G3YLLVCiRJ9Im9M1kbBJho1QGaGoFQuZxEBqboBrwrfKSPFV-gbgM97oVArmq42AH1sqqNLvAIomTlVd4WuZhJFUeER5NA53HwurQG4DXfdFMtzXIqRXGbdZXT3ZcyJALmeNChnOO-jl1U4FjKfUhMqonpOLZk-GfjJ6JIKLy-94TEh10fMzaLTvPXgVsAN_7Ydxs5EFRpakeHY2P_xxh2QC-NPzvf4rKPEo05gZw3AnE68v_v-C95WvZhw8-JVy4S58DWFs8PJqvCIMW-bdWtl8AXFX_Wg
  priority: 102
  providerName: ProQuest
Title A computational framework for evaluating the role of mobility on the propagation of epidemics on point processes
URI https://link.springer.com/article/10.1007/s00285-021-01692-1
https://www.ncbi.nlm.nih.gov/pubmed/34928428
https://www.proquest.com/docview/2611821083
https://www.proquest.com/docview/2612042071
https://hal.science/hal-03542621
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS9xAEB_0RKgfStVWT6_HKv3WLmzem4-x3Hn4QqQH109hk9tVQZPDnIL_fWc2Dym2gl8SyM5uHpPZnd_OC-Cb74rYCKU4riaC-5FUPJsrj_sa6XG9U541xZxfhJOpfzILZk1QWNV6u7cmSTtTd8FuBA8ompjgbxi7HDHPWoDYncRx6iad7SAK6jp5ODlzyq7VhMr8e4y_lqPVG3KGfK1pvrKS2sVn_Ak-NlojS2o2b8KKLrZgva4j-bwFG-dd8tVqGxYJy22thmafj5nWAYuhhsra_N7FNcNOjNwLWWnYfWndZJ9ZWdjr-Hg419ghqFnXlWTzitoX5W2xZIs6xkBXn2E6Hv36OeFNYQWeI5xbchkLJbJIGoR_rpShjoQJYukhuPKEzELP1yZCwXeNcqIsVu4cNTGUbiME8jEPvS_QK8pC7wILJHZWztzJZeYHUmUBaaCxl2ehMLnv9MFpv2-aN1nHqfjFXdrlS7Y8SZEnqeVJin2-d30Wdc6NN6kPkW0dIaXLniRnKV0TXkAJ950nJBq0XE0bIa1SBI-IrhxUQvtw0DWjeJHNRBW6fLQ0Lr45KmJ92Kn_hu5WlNhRInzrw4_293gZ_P8PvPc-8n344FLIhd32GUBv-fCov6IitMyGsBrNIjzK8fEQ1pLj36cjPB-NLi6vhlYm_gA-lf85
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WyG4IN4sFDAITmDhvJ1DhRZotaXbFUKt1JvrOHaLBElgt6D9c_w2ZpxHhSp66zUeO05mbH_jeQG8jEORO6E1x9NE8DiTmheljnhskR7POx15U8z-PJ0exp-OkqM1-NPHwpBbZb8n-o26rA3dkb9FpI9QOEDE8K75walqFFlX-xIauiutUG75FGNdYMeeXf1GFW6xtfsR-f0qDHe2Dz5MeVdlgBvUbZZc5kKLIpMOdaFQytRmwiW5jFDTiIQs0ii2LsNVEDodZEWuwxJhCYq6EwI_yqQRjrsOGzFFuI5g4_32_POXwY6RJW3NPjwoOGX66sJ2fPAeqTsUHU3qfJqHPPjnaFw_JcfMi6j3gsXWH4Q7t-Bmh2DZpBW527Bmqztwra1puboLzYQZXymiu2Vkrnf_YoiPWZ9dvDphCD0ZOTey2rHvtXfSXbG68s9xQrjT-SGo2bZ1bM2C2pv6a7VkTRvhYBf34PBKfvh9GFV1ZR8CSyR21kEZGFnEidRFQvg3j0yRCmfiYAxB_0eV6XKeU-mNb2rI1uy5oJALynNBYZ_XQ5-mzfhxKfULZNRASMm6p5OZomciSijdf_ALiTZ7Pqpui1ioc4Eew_OhGRc3WWx0ZeszTxPilyMMHMODlv_DqyitpETlcQxveoE4H_z_E350-VyewfXpwf5MzXbne4_hRkjBHv7CaRNGy59n9glCsGXxtJNzBsdXvbT-Aq1hOWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W4G4IN4sFDAITmDVcV7OoUIL7WpLy6pCVOotOIndIkES2C1o_yK_ihnHSYUqeus1fsTJjD3feF4ALyMpMiu05ihNBI9SpXlR6ZBHBvujvNOhM8V8nCezo-jDcXy8Bn_6WBhyq-zPRHdQV01Jd-RbiPQRCgeIGLasd4s43Jm-bX9wqiBFlta-nIb2ZRaqbZduzAd57JvVb1TnFtt7O0j7V1JOdz-_n3FfcYCXqOcsucqEFkWqLOpFUqnEpMLGmQpR6wiFKpIwMjbFHSGtDtIi07JCiIJsb4XADyyTEOddh40UpWQ0go13u_PDT4NNI427-n0oNDhl_fIhPC6Qj1QfipQm1T7JJA_-EZPrp-SkeREBX7DeOqE4vQU3PZplk479bsOaqe_Ata6-5eoutBNWuqoR_saR2d4VjCFWZn2m8fqEIQxl5OjIGsu-N85hd8Wa2j3HBeGp56agZtPVtC0X1N42X-sla7toB7O4B0dX8sPvw6huavMQWKxwsA6qoFRFFCtdxISFs7AsEmHLKBhD0P_RvPT5z6kMx7d8yNzsqJAjFXJHhRzHvB7GtF32j0t7v0BCDR0pcfdscpDTMxHGlPo_-IWdNns65v64WOTnzD2G50MzbnSy3ujaNGeuj8QvR0g4hgcd_YdXUYpJhYrkGN70DHE--f8X_OjytTyD67jF8oO9-f5juCEp7sPdPW3CaPnzzDxBNLYsnno2Z_DlqnfWX55ZPYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+framework+for+evaluating+the+role+of+mobility+on+the+propagation+of+epidemics+on+point+processes&rft.jtitle=Journal+of+mathematical+biology&rft.au=Baccelli%2C+Fran%C3%A7ois&rft.au=Ramesan%2C+Nithin&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=84&rft.issue=1-2&rft_id=info:doi/10.1007%2Fs00285-021-01692-1&rft.externalDocID=10_1007_s00285_021_01692_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon