A computational framework for evaluating the role of mobility on the propagation of epidemics on point processes
This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected...
Saved in:
Published in | Journal of mathematical biology Vol. 84; no. 1-2; p. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2022
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 0303-6812 1432-1416 1432-1416 |
DOI | 10.1007/s00285-021-01692-1 |
Cover
Abstract | This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate. |
---|---|
AbstractList | This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate. This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate.This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected individuals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinction of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate. This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous Poisson point processes of the Euclidean plane, where the infection rate of a susceptible individual is proportional to the number of infected indi-viduals in a disc around it. The main focus of the paper is a model where points are also subject to some random motion. Conservation equations for moment measures are leveraged to analyze the stationary regime of the point processes of infected and susceptible individuals. A heuristic factorization of the third moment measure is then proposed to obtain simple polynomial equations allowing one to derive closed form approximations for the fraction of infected individuals in the steady state. These polynomial equations also lead to a phase diagram which tentatively delineates the regions of the space of parameters (population density, infection radius, infection and recovery rate, and motion rate) where the epidemic survives and those where there is extinction. A key take-away from this phase diagram is that the extinc-tion of the epidemic is not always aided by a decrease in the motion rate. These results are substantiated by simulations on large two dimensional tori. These simulations show that the polynomial equations accurately predict the fraction of infected individuals when the epidemic survives. The simulations also show that the proposed phase diagram accurately predicts the parameter regions where the mean survival time of the epidemic increases (resp. decreases) with motion rate. |
ArticleNumber | 4 |
Author | Baccelli, François Ramesan, Nithin |
Author_xml | – sequence: 1 givenname: François orcidid: 0000-0002-9326-8422 surname: Baccelli fullname: Baccelli, François email: francois.baccelli@inria.fr organization: INRIA, UT Austin – sequence: 2 givenname: Nithin surname: Ramesan fullname: Ramesan, Nithin organization: UT Austin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34928428$$D View this record in MEDLINE/PubMed https://hal.science/hal-03542621$$DView record in HAL |
BookMark | eNp9kU9P3DAQxS1EBQvlC3CoLPXSHtLO2N7EOa5QWyqt1Et7tpysvZg6cWonIL59nQ1_JA6cbM383rzRvDNy3IfeEHKJ8AUBqq8JgMl1AQwLwLJmBR6RFQqePwLLY7ICDrwoJbJTcpbSLQBW6xpPyCkXNZOCyRUZNrQN3TCNenSh157aqDtzH-JfakOk5k77Kbf6PR1vDI3BGxos7ULjvBsfaOgP9SGGQe8PI-a2GdzOdK5Nc38Irh9nojUpmfSevLPaJ3Px-J6TP9-__b66Lra_fvy82myLVkA9FrIGDU0lbcWQSVmaCuy6lhyF4CCbkgtjK0BkVmPV1JrtAGoQzALsNG9Lfk4-L3NvtFdDdJ2ODypop643WzXXgK8FKxneYWY_LWze8t9k0qg6l1rjve5NmJJiJbI8G6oZ_fgKvQ1TzIc7UCgZguSZ-vBITU1nds_-T3fPAFuANoaUorHPCIKaw1VLuCqHqw7hqtlbvhK1bsltjNr5t6V8kabs0-9NfFn7DdV_7wm2UQ |
CitedBy_id | crossref_primary_10_1017_apr_2023_17 crossref_primary_10_1007_s00285_021_01692_1 |
Cites_doi | 10.1007/978-3-662-11657-9 10.1016/j.bulm.2004.11.002 10.1093/oso/9780198805090.001.0001 10.1017/S0963548317000372 10.1239/aap/1427814586 10.1016/j.tpb.2003.07.002 10.1103/PhysRevE.89.022808 10.1007/978-3-319-28028-8_13 10.1214/aop/1176989541 10.1007/s00285-021-01692-1 10.1007/s10955-020-02547-7 10.1103/RevModPhys.87.925 10.1007/s11134-017-9524-3 10.1561/9781601982650 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M7N M7P M7S M7Z P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC VOOES |
DOI | 10.1007/s00285-021-01692-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biochemistry Abstracts 1 Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Computer Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics Computer Science |
EISSN | 1432-1416 |
ExternalDocumentID | oai_HAL_hal_03542621v1 34928428 10_1007_s00285_021_01692_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 788851 funderid: http://dx.doi.org/10.13039/501100000781 |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK8 LLZTM M0L M1P M4Y M7P M7S MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 YLTOR YQT Z45 Z7U ZMTXR ZWQNP ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7TM 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 JQ2 K9. M7N M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 1XC VOOES |
ID | FETCH-LOGICAL-c409t-890a0b78f7212886e70f5983144308b634ef70112fa17b9a2d009042f00da3c63 |
IEDL.DBID | U2A |
ISSN | 0303-6812 1432-1416 |
IngestDate | Fri Sep 12 12:47:25 EDT 2025 Fri Sep 05 13:52:17 EDT 2025 Fri Jul 25 19:12:19 EDT 2025 Wed Feb 19 02:28:04 EST 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 02:03:16 EDT 2025 Fri Feb 21 02:46:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Epidemic Markov process Motion 60G55 Phase diagram Contact process Boolean model Shot-noise process 92D30 Point process Stationary regime SIS model 60K35 Moment measures |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-890a0b78f7212886e70f5983144308b634ef70112fa17b9a2d009042f00da3c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9326-8422 0000-0003-0960-775X |
OpenAccessLink | https://hal.science/hal-03542621 |
PMID | 34928428 |
PQID | 2611821083 |
PQPubID | 54026 |
ParticipantIDs | hal_primary_oai_HAL_hal_03542621v1 proquest_miscellaneous_2612042071 proquest_journals_2611821083 pubmed_primary_34928428 crossref_primary_10_1007_s00285_021_01692_1 crossref_citationtrail_10_1007_s00285_021_01692_1 springer_journals_10_1007_s00285_021_01692_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Journal of mathematical biology |
PublicationTitleAbbrev | J. Math. Biol |
PublicationTitleAlternate | J Math Biol |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer |
References | WilkinsonRRSharkeyKJMessage passing and moment closure for susceptible-infected-recovered epidemics on finite networksPhys Rev E201489202280810.1103/PhysRevE.89.022808 Baccelli F, Ramesan N (2020) A Computational Framework for Evaluating the Role of Mobility on the Propagation of Epidemics on Point Processes. arXiv:2009.08515 LiggettTStochastic Interacting Systems1999NYSpringer0949.60006 HaoCVSuper-exponential extinction time of the contact process on random geometric graphsCombinat Probab Comput2018272162185377819810.1017/S0963548317000372 Baccelli F, Blaszczyszyn B (2009) Stochastic Geometry and Wireless Networks Volume. I–Theory. NoW Publishers KrishnarajahICookAMarionGGibsonGNovel moment closure approximations in stochastic epidemicsBull Mathe Biol2005674855873221643310.1016/j.bulm.2004.11.002 Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev Mod Phys2015873925340604010.1103/RevModPhys.87.925 BaccelliFMathieuFNorrosIOn Spatial Point Processes with Uniform Births and Deaths by Random ConnectionQueueing Syst.2017861–295140364201210.1007/s11134-017-9524-3 GanesanGInfection spread in random geometric graphsAdv Appl Probab2015471164181332732010.1239/aap/1427814586 NewmanMEJNetworks2018NYOxford University Press10.1093/oso/9780198805090.001.0001 LloydALEstimating variability in models for recurrent epidemics: assessing the use of moment closure techniquesTheor populat Biol2004651496510.1016/j.tpb.2003.07.002 Ménard L, Singh A (2015) “Percolation by cumulative merging and phase transition for the contact process on random graphs”, arXiv preprint arXiv:1502.06982 PemantleRThe contact process on treesAnn Probab199220420892116118805410.1214/aop/1176989541 FigueiredoDIacobelliGShneerS“The End Time of SIS Epidemics Driven by Random Walks on Edge-Transitive Graphs”J Statist Phys20201793651671409999810.1007/s10955-020-02547-7 Kuehn C (2016) “Moment closure—a brief review”, Control Self-Organ Nonlinear Syst 253–271 BaccelliFBrémaudPElements of Queueing Theory20032VerlagSpringer10.1007/978-3-662-11657-9 FranceschettiMMeesterRWJRandom networks for communication2007NYCambridge University Press1143.82001 D Figueiredo (1692_CR5) 2020; 179 MEJ Newman (1692_CR14) 2018 RR Wilkinson (1692_CR17) 2014; 89 CV Hao (1692_CR8) 2018; 27 AL Lloyd (1692_CR12) 2004; 65 F Baccelli (1692_CR1) 2003 1692_CR10 R Pastor-Satorras (1692_CR15) 2015; 87 F Baccelli (1692_CR2) 2017; 86 G Ganesan (1692_CR7) 2015; 47 I Krishnarajah (1692_CR9) 2005; 67 1692_CR3 T Liggett (1692_CR11) 1999 M Franceschetti (1692_CR6) 2007 1692_CR13 1692_CR4 R Pemantle (1692_CR16) 1992; 20 |
References_xml | – reference: Ménard L, Singh A (2015) “Percolation by cumulative merging and phase transition for the contact process on random graphs”, arXiv preprint arXiv:1502.06982 – reference: NewmanMEJNetworks2018NYOxford University Press10.1093/oso/9780198805090.001.0001 – reference: BaccelliFMathieuFNorrosIOn Spatial Point Processes with Uniform Births and Deaths by Random ConnectionQueueing Syst.2017861–295140364201210.1007/s11134-017-9524-3 – reference: LiggettTStochastic Interacting Systems1999NYSpringer0949.60006 – reference: HaoCVSuper-exponential extinction time of the contact process on random geometric graphsCombinat Probab Comput2018272162185377819810.1017/S0963548317000372 – reference: FigueiredoDIacobelliGShneerS“The End Time of SIS Epidemics Driven by Random Walks on Edge-Transitive Graphs”J Statist Phys20201793651671409999810.1007/s10955-020-02547-7 – reference: KrishnarajahICookAMarionGGibsonGNovel moment closure approximations in stochastic epidemicsBull Mathe Biol2005674855873221643310.1016/j.bulm.2004.11.002 – reference: BaccelliFBrémaudPElements of Queueing Theory20032VerlagSpringer10.1007/978-3-662-11657-9 – reference: Kuehn C (2016) “Moment closure—a brief review”, Control Self-Organ Nonlinear Syst 253–271 – reference: GanesanGInfection spread in random geometric graphsAdv Appl Probab2015471164181332732010.1239/aap/1427814586 – reference: WilkinsonRRSharkeyKJMessage passing and moment closure for susceptible-infected-recovered epidemics on finite networksPhys Rev E201489202280810.1103/PhysRevE.89.022808 – reference: Baccelli F, Blaszczyszyn B (2009) Stochastic Geometry and Wireless Networks Volume. I–Theory. NoW Publishers – reference: Pastor-SatorrasRCastellanoCVan MieghemPVespignaniAEpidemic processes in complex networksRev Mod Phys2015873925340604010.1103/RevModPhys.87.925 – reference: PemantleRThe contact process on treesAnn Probab199220420892116118805410.1214/aop/1176989541 – reference: FranceschettiMMeesterRWJRandom networks for communication2007NYCambridge University Press1143.82001 – reference: LloydALEstimating variability in models for recurrent epidemics: assessing the use of moment closure techniquesTheor populat Biol2004651496510.1016/j.tpb.2003.07.002 – reference: Baccelli F, Ramesan N (2020) A Computational Framework for Evaluating the Role of Mobility on the Propagation of Epidemics on Point Processes. arXiv:2009.08515 – volume-title: Elements of Queueing Theory year: 2003 ident: 1692_CR1 doi: 10.1007/978-3-662-11657-9 – volume: 67 start-page: 855 issue: 4 year: 2005 ident: 1692_CR9 publication-title: Bull Mathe Biol doi: 10.1016/j.bulm.2004.11.002 – volume-title: Networks year: 2018 ident: 1692_CR14 doi: 10.1093/oso/9780198805090.001.0001 – volume: 27 start-page: 162 issue: 2 year: 2018 ident: 1692_CR8 publication-title: Combinat Probab Comput doi: 10.1017/S0963548317000372 – ident: 1692_CR13 – volume-title: Stochastic Interacting Systems year: 1999 ident: 1692_CR11 – volume: 47 start-page: 164 issue: 1 year: 2015 ident: 1692_CR7 publication-title: Adv Appl Probab doi: 10.1239/aap/1427814586 – volume: 65 start-page: 49 issue: 1 year: 2004 ident: 1692_CR12 publication-title: Theor populat Biol doi: 10.1016/j.tpb.2003.07.002 – volume: 89 start-page: 022808 issue: 2 year: 2014 ident: 1692_CR17 publication-title: Phys Rev E doi: 10.1103/PhysRevE.89.022808 – ident: 1692_CR10 doi: 10.1007/978-3-319-28028-8_13 – volume: 20 start-page: 2089 issue: 4 year: 1992 ident: 1692_CR16 publication-title: Ann Probab doi: 10.1214/aop/1176989541 – ident: 1692_CR4 doi: 10.1007/s00285-021-01692-1 – volume-title: Random networks for communication year: 2007 ident: 1692_CR6 – volume: 179 start-page: 651 issue: 3 year: 2020 ident: 1692_CR5 publication-title: J Statist Phys doi: 10.1007/s10955-020-02547-7 – volume: 87 start-page: 925 issue: 3 year: 2015 ident: 1692_CR15 publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.87.925 – volume: 86 start-page: 95 issue: 1–2 year: 2017 ident: 1692_CR2 publication-title: Queueing Syst. doi: 10.1007/s11134-017-9524-3 – ident: 1692_CR3 doi: 10.1561/9781601982650 |
SSID | ssj0017591 |
Score | 2.349022 |
Snippet | This paper is focused on SIS (Susceptible-Infected-Susceptible) epidemic dynamics (also known as the contact process) on populations modelled by homogeneous... |
SourceID | hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4 |
SubjectTerms | Applications of Mathematics Communicable Diseases - epidemiology Computer applications Computer Science Conservation equations Disease Susceptibility - epidemiology Epidemics Euclidean geometry Extinction Humans Infections Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Models, Biological Networking and Internet Architecture Parameters Phase diagrams Polynomials Population Density Probability Reproduction Simulation Survival Toruses |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_8QOiL2FbrqS2p9E2D2e_sg8i13HGUepSicG9LNpuooLurdwr-985kP0Sk97qZ7OV2JpPfZL4AfoS-SK1QiuNpIniYSMXzQgU8NEiP550KnCvmfBpPLsPfs2i2AtMuF4bCKjud6BR1UWm6Iz9BpI9Q2EPEcFbfc-oaRd7VroWGalsrFKeuxNgqrKNKlij36z9H07__er9CEjU99FBxc6q81abRuGQ6Mj8oW5nM6zj1uffmqFq9pkDJ9yj0nQfVHUzjLdhsESUbNiLwEVZM-Qk2mh6Tz5-hHjLtOje0t37MduFYDPEq66p9l1cMoSCjYENWWXZXuaDZZ1aV7jkuCDWPewUNm6avrJ7TeF3dlAtWNxkHZr4Nl-PRxa8Jb9sscI3G3YLLVCiRJ9Im9M1kbBJho1QGaGoFQuZxEBqboBrwrfKSPFV-gbgM97oVArmq42AH1sqqNLvAIomTlVd4WuZhJFUeER5NA53HwurQG4DXfdFMtzXIqRXGbdZXT3ZcyJALmeNChnOO-jl1U4FjKfUhMqonpOLZk-GfjJ6JIKLy-94TEh10fMzaLTvPXgVsAN_7Ydxs5EFRpakeHY2P_xxh2QC-NPzvf4rKPEo05gZw3AnE68v_v-C95WvZhw8-JVy4S58DWFs8PJqvCIMW-bdWtl8AXFX_Wg priority: 102 providerName: ProQuest |
Title | A computational framework for evaluating the role of mobility on the propagation of epidemics on point processes |
URI | https://link.springer.com/article/10.1007/s00285-021-01692-1 https://www.ncbi.nlm.nih.gov/pubmed/34928428 https://www.proquest.com/docview/2611821083 https://www.proquest.com/docview/2612042071 https://hal.science/hal-03542621 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS9xAEB_0RKgfStVWT6_HKv3WLmzem4-x3Hn4QqQH109hk9tVQZPDnIL_fWc2Dym2gl8SyM5uHpPZnd_OC-Cb74rYCKU4riaC-5FUPJsrj_sa6XG9U541xZxfhJOpfzILZk1QWNV6u7cmSTtTd8FuBA8ompjgbxi7HDHPWoDYncRx6iad7SAK6jp5ODlzyq7VhMr8e4y_lqPVG3KGfK1pvrKS2sVn_Ak-NlojS2o2b8KKLrZgva4j-bwFG-dd8tVqGxYJy22thmafj5nWAYuhhsra_N7FNcNOjNwLWWnYfWndZJ9ZWdjr-Hg419ghqFnXlWTzitoX5W2xZIs6xkBXn2E6Hv36OeFNYQWeI5xbchkLJbJIGoR_rpShjoQJYukhuPKEzELP1yZCwXeNcqIsVu4cNTGUbiME8jEPvS_QK8pC7wILJHZWztzJZeYHUmUBaaCxl2ehMLnv9MFpv2-aN1nHqfjFXdrlS7Y8SZEnqeVJin2-d30Wdc6NN6kPkW0dIaXLniRnKV0TXkAJ950nJBq0XE0bIa1SBI-IrhxUQvtw0DWjeJHNRBW6fLQ0Lr45KmJ92Kn_hu5WlNhRInzrw4_293gZ_P8PvPc-8n344FLIhd32GUBv-fCov6IitMyGsBrNIjzK8fEQ1pLj36cjPB-NLi6vhlYm_gA-lf85 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WyG4IN4sFDAITmDhvJ1DhRZotaXbFUKt1JvrOHaLBElgt6D9c_w2ZpxHhSp66zUeO05mbH_jeQG8jEORO6E1x9NE8DiTmheljnhskR7POx15U8z-PJ0exp-OkqM1-NPHwpBbZb8n-o26rA3dkb9FpI9QOEDE8K75walqFFlX-xIauiutUG75FGNdYMeeXf1GFW6xtfsR-f0qDHe2Dz5MeVdlgBvUbZZc5kKLIpMOdaFQytRmwiW5jFDTiIQs0ii2LsNVEDodZEWuwxJhCYq6EwI_yqQRjrsOGzFFuI5g4_32_POXwY6RJW3NPjwoOGX66sJ2fPAeqTsUHU3qfJqHPPjnaFw_JcfMi6j3gsXWH4Q7t-Bmh2DZpBW527Bmqztwra1puboLzYQZXymiu2Vkrnf_YoiPWZ9dvDphCD0ZOTey2rHvtXfSXbG68s9xQrjT-SGo2bZ1bM2C2pv6a7VkTRvhYBf34PBKfvh9GFV1ZR8CSyR21kEZGFnEidRFQvg3j0yRCmfiYAxB_0eV6XKeU-mNb2rI1uy5oJALynNBYZ_XQ5-mzfhxKfULZNRASMm6p5OZomciSijdf_ALiTZ7Pqpui1ioc4Eew_OhGRc3WWx0ZeszTxPilyMMHMODlv_DqyitpETlcQxveoE4H_z_E350-VyewfXpwf5MzXbne4_hRkjBHv7CaRNGy59n9glCsGXxtJNzBsdXvbT-Aq1hOWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W4G4IN4sFDAITmDVcV7OoUIL7WpLy6pCVOotOIndIkES2C1o_yK_ihnHSYUqeus1fsTJjD3feF4ALyMpMiu05ihNBI9SpXlR6ZBHBvujvNOhM8V8nCezo-jDcXy8Bn_6WBhyq-zPRHdQV01Jd-RbiPQRCgeIGLasd4s43Jm-bX9wqiBFlta-nIb2ZRaqbZduzAd57JvVb1TnFtt7O0j7V1JOdz-_n3FfcYCXqOcsucqEFkWqLOpFUqnEpMLGmQpR6wiFKpIwMjbFHSGtDtIi07JCiIJsb4XADyyTEOddh40UpWQ0go13u_PDT4NNI427-n0oNDhl_fIhPC6Qj1QfipQm1T7JJA_-EZPrp-SkeREBX7DeOqE4vQU3PZplk479bsOaqe_Ata6-5eoutBNWuqoR_saR2d4VjCFWZn2m8fqEIQxl5OjIGsu-N85hd8Wa2j3HBeGp56agZtPVtC0X1N42X-sla7toB7O4B0dX8sPvw6huavMQWKxwsA6qoFRFFCtdxISFs7AsEmHLKBhD0P_RvPT5z6kMx7d8yNzsqJAjFXJHhRzHvB7GtF32j0t7v0BCDR0pcfdscpDTMxHGlPo_-IWdNns65v64WOTnzD2G50MzbnSy3ujaNGeuj8QvR0g4hgcd_YdXUYpJhYrkGN70DHE--f8X_OjytTyD67jF8oO9-f5juCEp7sPdPW3CaPnzzDxBNLYsnno2Z_DlqnfWX55ZPYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+framework+for+evaluating+the+role+of+mobility+on+the+propagation+of+epidemics+on+point+processes&rft.jtitle=Journal+of+mathematical+biology&rft.au=Baccelli%2C+Fran%C3%A7ois&rft.au=Ramesan%2C+Nithin&rft.date=2022-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=84&rft.issue=1-2&rft_id=info:doi/10.1007%2Fs00285-021-01692-1&rft.externalDocID=10_1007_s00285_021_01692_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon |