Orchard Vision Navigation Line Extraction Based on YOLOv8-Trunk Detection

Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to quickly identify the positions of tree trunks. For this, we proposed a detection model called YOLOv8-Trunk in this study. Based on the detection re...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 104126 - 104137
Main Authors Cao, Ziang, Gong, Changzhi, Meng, Junjie, Liu, Lu, Rao, Yuan, Hou, Wenhui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to quickly identify the positions of tree trunks. For this, we proposed a detection model called YOLOv8-Trunk in this study. Based on the detection results of vine tree trunks by YOLOv8-Trunk, the network generates a series of center point coordinates at the bottom of the detection boxes. Subsequently, the least square method is employed to fit reference lines on both sides of the trunk, thereby determining the navigation path for the orchard robot. To enhance the focus on the target, an efficient multi-scale attention (EMA) mechanism is introduced into traditional YOLOv8 network. On the data level, we adopted a novel Mix-Shelter method to augment the datasets for training the detection model, thereby bolstering the robustness. In addition, we also explored the impact of loss functions and optimizers on the performance of the detection model. A comprehensive set of ablation and comparison experiments is conducted in this study. The experimental results affirm that the YOLOv8-Trunk network adeptly detects vine tree trunks, achieving an accuracy rate of 92.7%. The obtained navigation path based on the detect result is reliable. This study provides valuable reference for the realization of intelligent inspection in orchards.
AbstractList Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to quickly identify the positions of tree trunks. For this, we proposed a detection model called YOLOv8-Trunk in this study. Based on the detection results of vine tree trunks by YOLOv8-Trunk, the network generates a series of center point coordinates at the bottom of the detection boxes. Subsequently, the least square method is employed to fit reference lines on both sides of the trunk, thereby determining the navigation path for the orchard robot. To enhance the focus on the target, an efficient multi-scale attention (EMA) mechanism is introduced into traditional YOLOv8 network. On the data level, we adopted a novel Mix-Shelter method to augment the datasets for training the detection model, thereby bolstering the robustness. In addition, we also explored the impact of loss functions and optimizers on the performance of the detection model. A comprehensive set of ablation and comparison experiments is conducted in this study. The experimental results affirm that the YOLOv8-Trunk network adeptly detects vine tree trunks, achieving an accuracy rate of 92.7%. The obtained navigation path based on the detect result is reliable. This study provides valuable reference for the realization of intelligent inspection in orchards.
Author Hou, Wenhui
Cao, Ziang
Meng, Junjie
Liu, Lu
Rao, Yuan
Gong, Changzhi
Author_xml – sequence: 1
  givenname: Ziang
  surname: Cao
  fullname: Cao, Ziang
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China
– sequence: 2
  givenname: Changzhi
  surname: Gong
  fullname: Gong, Changzhi
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China
– sequence: 3
  givenname: Junjie
  surname: Meng
  fullname: Meng, Junjie
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China
– sequence: 4
  givenname: Lu
  orcidid: 0000-0001-8137-671X
  surname: Liu
  fullname: Liu, Lu
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China
– sequence: 5
  givenname: Yuan
  orcidid: 0000-0002-4386-2490
  surname: Rao
  fullname: Rao, Yuan
  organization: Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, China
– sequence: 6
  givenname: Wenhui
  orcidid: 0000-0002-7691-5018
  surname: Hou
  fullname: Hou, Wenhui
  email: hwh303@ahau.edu.cn
  organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China
BookMark eNqFUU1PAjEQbQwmIvIL9LCJ58V-bbc9IqKSbOQAmnhqum0Xi7iL3YXov7ewxBAvTprM63Tem2beOeiUVWkBuERwgBAUN8PRaDybDTDEdEAoxuGcgC5GTMQkIaxzhM9Av66XMAQPpSTtgsnU6zflTfTialeV0ZPauoVqdjBzpY3GX41Xen-_VbU1UQCv02y65fHcb8r36M42dv9-AU4Ltapt_5B74Pl-PB89xtn0YTIaZrGmUDQxpwVFUEGDaW5yIzhlFnIu0gJxnAhIdWIKgYwxPCU4ZQzrlMI8JxxxpjUmPTBpdU2llnLt3Yfy37JSTu4LlV9I5RunV1YSSBkSOlEqx1QkucIMUVFAC21OUKqC1nWrtfbV58bWjVxWG1-G7wcuFwILynnoIm2X9lVde1v8TkVQ7iyQrQVyZ4E8WBBY4g9Lu2a_2bBRt_qHe9VynbX2aFrCCWcp-QGpCJOm
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_compag_2024_109839
crossref_primary_10_3390_su17020753
Cites_doi 10.1109/IVS.2008.4621315
10.1016/j.compag.2020.105620
10.1080/10807039.2019.1689353
10.1080/10807039.2018.1443265
10.1007/978-3-642-18333-1_19
10.1016/j.biosystemseng.2023.06.010
10.25165/j.ijabe.20231605.8120
10.1038/nature14539
10.1016/j.compind.2018.03.008
10.1016/j.compag.2023.108469
10.1016/j.compag.2018.12.046
10.1016/j.compag.2023.108574
10.1007/s11119-021-09806-x
10.1016/j.compag.2019.01.012
10.1186/s13007-020-00624-2
10.1016/j.compag.2020.105384
10.1002/rob.21876
10.1016/j.compag.2015.09.025
10.1016/j.compag.2023.108235
10.1017/S0021859618000436
10.1109/ACCESS.2022.3205602
10.1016/j.compag.2006.06.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3422422
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 104137
ExternalDocumentID oai_doaj_org_article_304619c5aab2495ba26149f0e0eb317a
10_1109_ACCESS_2024_3422422
10583867
Genre orig-research
GrantInformation_xml – fundername: University Natural Science Research Project of Anhui Province
  grantid: 2022AH050872
  funderid: 10.13039/501100009558
– fundername: Anhui Province Key Laboratory of Advanced Numerical Control and Servo Technology
  grantid: XJSK202306
– fundername: Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University
  grantid: KLAS2023KF004
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-84f410a0d24bdbd9846e08897f1825904c5df91ddd87327662c740bb38186cc23
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:36 EDT 2025
Mon Jun 30 17:08:57 EDT 2025
Tue Jul 01 03:02:38 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Wed Aug 27 02:35:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-84f410a0d24bdbd9846e08897f1825904c5df91ddd87327662c740bb38186cc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8137-671X
0000-0002-4386-2490
0000-0002-7691-5018
OpenAccessLink https://doaj.org/article/304619c5aab2495ba26149f0e0eb317a
PQID 3089929488
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3422422
doaj_primary_oai_doaj_org_article_304619c5aab2495ba26149f0e0eb317a
crossref_citationtrail_10_1109_ACCESS_2024_3422422
ieee_primary_10583867
proquest_journals_3089929488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Ma (ref23) 2023
ref11
ref10
ref2
ref1
ref17
ref16
ref19
Redmon (ref18) 2018
Reis (ref24) 2023
Chen (ref26) 2023
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1109/IVS.2008.4621315
– ident: ref16
  doi: 10.1016/j.compag.2020.105620
– year: 2023
  ident: ref23
  article-title: MPDIoU: A loss for efficient and accurate bounding box regression
  publication-title: arXiv:2307.07662
– ident: ref2
  doi: 10.1080/10807039.2019.1689353
– ident: ref3
  doi: 10.1080/10807039.2018.1443265
– ident: ref9
  doi: 10.1007/978-3-642-18333-1_19
– ident: ref22
  doi: 10.1016/j.biosystemseng.2023.06.010
– ident: ref1
  doi: 10.25165/j.ijabe.20231605.8120
– ident: ref11
  doi: 10.1038/nature14539
– ident: ref15
  doi: 10.1016/j.compind.2018.03.008
– ident: ref20
  doi: 10.1016/j.compag.2023.108469
– ident: ref4
  doi: 10.1016/j.compag.2018.12.046
– year: 2023
  ident: ref24
  article-title: Real-time flying object detection with YOLOv8
  publication-title: arXiv:2305.09972
– year: 2023
  ident: ref26
  article-title: Symbolic discovery of optimization algorithms
  publication-title: arXiv:2302.06675
– ident: ref21
  doi: 10.1016/j.compag.2023.108574
– ident: ref12
  doi: 10.1007/s11119-021-09806-x
– ident: ref17
  doi: 10.1016/j.compag.2019.01.012
– ident: ref19
  doi: 10.1186/s13007-020-00624-2
– ident: ref14
  doi: 10.1016/j.compag.2020.105384
– ident: ref6
  doi: 10.1002/rob.21876
– ident: ref8
  doi: 10.1016/j.compag.2015.09.025
– ident: ref5
  doi: 10.1016/j.compag.2023.108235
– ident: ref13
  doi: 10.1017/S0021859618000436
– ident: ref25
  doi: 10.1109/ACCESS.2022.3205602
– ident: ref10
  doi: 10.1016/j.compag.2006.06.001
– year: 2018
  ident: ref18
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
SSID ssj0000816957
Score 2.3261673
Snippet Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104126
SubjectTerms Ablation
Autonomous navigation
Convolutional neural networks
EMA
Feature extraction
least square method
Least squares approximations
Lion
MPDIoU
Navigation
navigation line extraction
Object segmentation
Robot kinematics
Robots
Robustness
trunk detection
Trunk networks
YOLO
YOLOv8
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2VPcGBli-xLUU59NgsjmPH8RG2iwC1u5cFwSmyY_sCCmjJrhC_vmPHu6JFIG5WFCdOxp6ZZ8-8AfiRW1dnpS1T7gRPGSMmLQuZpSpXVFNOizxQCv0ZF2eX7OKaX8dk9ZALY60NwWd24JvhLN_c13O_VYYr3B_yFWIN1hC5dclaqw0VX0FCchGZhTIij46HQ_wIxICUDXKGtorSf6xPIOmPVVVeqeJgX04_w3g5si6s5HYwb_Wgfv6PtPHDQ_8Cm9HTTI67qbEFn2yzDRsv-Ad34HwSmJJMchUyzJOxWgTGDWwiRrXJ6KmddYkPyQlaO5Ng42bye7Io0-ls3twmv2wbQrmaXbg8HU2HZ2msrZDWiOjatGSOZUQRQ5k22kh0Q6yPeBIOAQeXhNXcOJkZY0qRU1EUtBaMaO0NvA-1zveg19w3dh8S55ShigonNGUKNYDmOXU8KyXqAp3JPtDlP6_qSDzu61_cVQGAEFl1gqq8oKooqD78XHV66Hg33r_9xAtzdasnzQ4XUAhVXINVIJeXNVdK-4rbWiF6ZNIRS6xGN0r1YdcL7sX7Opn14WA5N6q4wh_xYYhUqUT99_WNbt9g3Q-x2685gF47m9vv6MG0-jDM3L9CUOl0
  priority: 102
  providerName: IEEE
Title Orchard Vision Navigation Line Extraction Based on YOLOv8-Trunk Detection
URI https://ieeexplore.ieee.org/document/10583867
https://www.proquest.com/docview/3089929488
https://doaj.org/article/304619c5aab2495ba26149f0e0eb317a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyITxEoVQZGArZjx_HYFipAQBdAZYrs2F5AAZW04udzdlIUhAQLmxU5cXw---4ld-8QOk6tK0lu84Q7wRPGsEnyTJJEpYpqymmWBkqh27vs8oFdT_m0U-rLx4Q19MCN4M4CI7gsuVLal0nWClx-Jh22GGAgEcE1ApvXAVPhDM5JJrloaYYIlmeD0QhmBICQstOUgeGi9JspCoz9bYmVH-dyMDbjTbTReonxoHm7LbRiq2203uEO3EFXk8ByZOLHkB0e36lFYMuAJuBLG1981LMmaSEegqUyMTSeJjeTRZ7cz-bVc3xu6xCGVe2ih_HF_egyaesiJCWgsTrJmWMEK2wo00YbCS6E9dFKwgFY4BKzkhsniTEmFykVWUZLwbDW3jj7MOl0D61Wr5XdR7FzylBFhRMgXQW7V_OUOk5yCftYExkhuhRRUbak4b52xUsRwAOWRSPXwsu1aOUaoZOvm94azozfuw-97L-6esLrcAHUoGjVoPhLDSK061euM57_H5yJCPWWS1m0u_MdHgYok0o4uw7-Y-xDtObn03yY6aHVeja3R-Cq1LoftLIfsgo_ARLG3-E
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LctMwFL1TygJY8CxDoIAXsMNBliXLWnTRpu0kNE02KVNWRrKkTRmXSZ3y-Jf-Sr-tV7KSKTCw6ww7jUeSbenoPqSrcwHe5NbVWWnLlDvBU8aISctCZqnKFdWU0yIPlEKHk2J4xD4c8-M1uFjdhbHWhuAz2_fFcJZvTuuF3yrDFe4P-QoRYygP7I9v6KGdbY12cTrfUrq_NxsM05hEIK3RdWnTkjmWEUUMZdpoI1HfWh_aIxxa1lwSVnPjZGaMKUVORVHQWjCitddkPqY4x35vwW00NDjtroettnB8zgrJReQyyoh8vz0Y4LCh10lZP2eoHSn9Rd-FtAAxj8sfwj9otP0HcLkciy6Q5aS_aHW__vkbTeR_O1gP4X60pZPtDvyPYM02j-HeNYbFJzCaBi4ok3wMd-iTiToPnCJYRC_cJnvf23l3tSPZQX1uEix8mo6n52U6my-ak2TXtiFYrdmAoxv5l6ew3pw29hkkzilDFRVOaMoUyjjNc-p4VkqUdjqTPaDLOa7qSK3uM3x8qYKLRWTVAaPywKgiMHrwbtXoa8cs8u_qOx48q6qeFjw8wEmvopSpAn2-rLlS2ucU1wr9YyYdscRqNBRVDzY8UK69r8NIDzaXWKyiDDvDztAXpxIl_PO_NHsNd4azw3E1Hk0OXsBd_7nd7tQmrLfzhX2J9lqrX4VVk8Dnm0beFdBFRKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orchard+Vision+Navigation+Line+Extraction+Based+on+YOLOv8-Trunk+Detection&rft.jtitle=IEEE+access&rft.au=Cao%2C+Ziang&rft.au=Gong%2C+Changzhi&rft.au=Meng%2C+Junjie&rft.au=Liu%2C+Lu&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=104126&rft.epage=104137&rft_id=info:doi/10.1109%2FACCESS.2024.3422422&rft.externalDocID=10583867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon