Orchard Vision Navigation Line Extraction Based on YOLOv8-Trunk Detection
Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to quickly identify the positions of tree trunks. For this, we proposed a detection model called YOLOv8-Trunk in this study. Based on the detection re...
Saved in:
Published in | IEEE access Vol. 12; pp. 104126 - 104137 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to quickly identify the positions of tree trunks. For this, we proposed a detection model called YOLOv8-Trunk in this study. Based on the detection results of vine tree trunks by YOLOv8-Trunk, the network generates a series of center point coordinates at the bottom of the detection boxes. Subsequently, the least square method is employed to fit reference lines on both sides of the trunk, thereby determining the navigation path for the orchard robot. To enhance the focus on the target, an efficient multi-scale attention (EMA) mechanism is introduced into traditional YOLOv8 network. On the data level, we adopted a novel Mix-Shelter method to augment the datasets for training the detection model, thereby bolstering the robustness. In addition, we also explored the impact of loss functions and optimizers on the performance of the detection model. A comprehensive set of ablation and comparison experiments is conducted in this study. The experimental results affirm that the YOLOv8-Trunk network adeptly detects vine tree trunks, achieving an accuracy rate of 92.7%. The obtained navigation path based on the detect result is reliable. This study provides valuable reference for the realization of intelligent inspection in orchards. |
---|---|
AbstractList | Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to quickly identify the positions of tree trunks. For this, we proposed a detection model called YOLOv8-Trunk in this study. Based on the detection results of vine tree trunks by YOLOv8-Trunk, the network generates a series of center point coordinates at the bottom of the detection boxes. Subsequently, the least square method is employed to fit reference lines on both sides of the trunk, thereby determining the navigation path for the orchard robot. To enhance the focus on the target, an efficient multi-scale attention (EMA) mechanism is introduced into traditional YOLOv8 network. On the data level, we adopted a novel Mix-Shelter method to augment the datasets for training the detection model, thereby bolstering the robustness. In addition, we also explored the impact of loss functions and optimizers on the performance of the detection model. A comprehensive set of ablation and comparison experiments is conducted in this study. The experimental results affirm that the YOLOv8-Trunk network adeptly detects vine tree trunks, achieving an accuracy rate of 92.7%. The obtained navigation path based on the detect result is reliable. This study provides valuable reference for the realization of intelligent inspection in orchards. |
Author | Hou, Wenhui Cao, Ziang Meng, Junjie Liu, Lu Rao, Yuan Gong, Changzhi |
Author_xml | – sequence: 1 givenname: Ziang surname: Cao fullname: Cao, Ziang organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China – sequence: 2 givenname: Changzhi surname: Gong fullname: Gong, Changzhi organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China – sequence: 3 givenname: Junjie surname: Meng fullname: Meng, Junjie organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China – sequence: 4 givenname: Lu orcidid: 0000-0001-8137-671X surname: Liu fullname: Liu, Lu organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China – sequence: 5 givenname: Yuan orcidid: 0000-0002-4386-2490 surname: Rao fullname: Rao, Yuan organization: Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, China – sequence: 6 givenname: Wenhui orcidid: 0000-0002-7691-5018 surname: Hou fullname: Hou, Wenhui email: hwh303@ahau.edu.cn organization: Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering, Anhui Agricultural University, Hefei, Anhui, China |
BookMark | eNqFUU1PAjEQbQwmIvIL9LCJ58V-bbc9IqKSbOQAmnhqum0Xi7iL3YXov7ewxBAvTprM63Tem2beOeiUVWkBuERwgBAUN8PRaDybDTDEdEAoxuGcgC5GTMQkIaxzhM9Av66XMAQPpSTtgsnU6zflTfTialeV0ZPauoVqdjBzpY3GX41Xen-_VbU1UQCv02y65fHcb8r36M42dv9-AU4Ltapt_5B74Pl-PB89xtn0YTIaZrGmUDQxpwVFUEGDaW5yIzhlFnIu0gJxnAhIdWIKgYwxPCU4ZQzrlMI8JxxxpjUmPTBpdU2llnLt3Yfy37JSTu4LlV9I5RunV1YSSBkSOlEqx1QkucIMUVFAC21OUKqC1nWrtfbV58bWjVxWG1-G7wcuFwILynnoIm2X9lVde1v8TkVQ7iyQrQVyZ4E8WBBY4g9Lu2a_2bBRt_qHe9VynbX2aFrCCWcp-QGpCJOm |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_compag_2024_109839 crossref_primary_10_3390_su17020753 |
Cites_doi | 10.1109/IVS.2008.4621315 10.1016/j.compag.2020.105620 10.1080/10807039.2019.1689353 10.1080/10807039.2018.1443265 10.1007/978-3-642-18333-1_19 10.1016/j.biosystemseng.2023.06.010 10.25165/j.ijabe.20231605.8120 10.1038/nature14539 10.1016/j.compind.2018.03.008 10.1016/j.compag.2023.108469 10.1016/j.compag.2018.12.046 10.1016/j.compag.2023.108574 10.1007/s11119-021-09806-x 10.1016/j.compag.2019.01.012 10.1186/s13007-020-00624-2 10.1016/j.compag.2020.105384 10.1002/rob.21876 10.1016/j.compag.2015.09.025 10.1016/j.compag.2023.108235 10.1017/S0021859618000436 10.1109/ACCESS.2022.3205602 10.1016/j.compag.2006.06.001 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3422422 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 104137 |
ExternalDocumentID | oai_doaj_org_article_304619c5aab2495ba26149f0e0eb317a 10_1109_ACCESS_2024_3422422 10583867 |
Genre | orig-research |
GrantInformation_xml | – fundername: University Natural Science Research Project of Anhui Province grantid: 2022AH050872 funderid: 10.13039/501100009558 – fundername: Anhui Province Key Laboratory of Advanced Numerical Control and Servo Technology grantid: XJSK202306 – fundername: Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University grantid: KLAS2023KF004 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-84f410a0d24bdbd9846e08897f1825904c5df91ddd87327662c740bb38186cc23 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Mon Jun 30 17:08:57 EDT 2025 Tue Jul 01 03:02:38 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Wed Aug 27 02:35:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-84f410a0d24bdbd9846e08897f1825904c5df91ddd87327662c740bb38186cc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8137-671X 0000-0002-4386-2490 0000-0002-7691-5018 |
OpenAccessLink | https://doaj.org/article/304619c5aab2495ba26149f0e0eb317a |
PQID | 3089929488 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3422422 doaj_primary_oai_doaj_org_article_304619c5aab2495ba26149f0e0eb317a crossref_citationtrail_10_1109_ACCESS_2024_3422422 ieee_primary_10583867 proquest_journals_3089929488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 Ma (ref23) 2023 ref11 ref10 ref2 ref1 ref17 ref16 ref19 Redmon (ref18) 2018 Reis (ref24) 2023 Chen (ref26) 2023 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref7 doi: 10.1109/IVS.2008.4621315 – ident: ref16 doi: 10.1016/j.compag.2020.105620 – year: 2023 ident: ref23 article-title: MPDIoU: A loss for efficient and accurate bounding box regression publication-title: arXiv:2307.07662 – ident: ref2 doi: 10.1080/10807039.2019.1689353 – ident: ref3 doi: 10.1080/10807039.2018.1443265 – ident: ref9 doi: 10.1007/978-3-642-18333-1_19 – ident: ref22 doi: 10.1016/j.biosystemseng.2023.06.010 – ident: ref1 doi: 10.25165/j.ijabe.20231605.8120 – ident: ref11 doi: 10.1038/nature14539 – ident: ref15 doi: 10.1016/j.compind.2018.03.008 – ident: ref20 doi: 10.1016/j.compag.2023.108469 – ident: ref4 doi: 10.1016/j.compag.2018.12.046 – year: 2023 ident: ref24 article-title: Real-time flying object detection with YOLOv8 publication-title: arXiv:2305.09972 – year: 2023 ident: ref26 article-title: Symbolic discovery of optimization algorithms publication-title: arXiv:2302.06675 – ident: ref21 doi: 10.1016/j.compag.2023.108574 – ident: ref12 doi: 10.1007/s11119-021-09806-x – ident: ref17 doi: 10.1016/j.compag.2019.01.012 – ident: ref19 doi: 10.1186/s13007-020-00624-2 – ident: ref14 doi: 10.1016/j.compag.2020.105384 – ident: ref6 doi: 10.1002/rob.21876 – ident: ref8 doi: 10.1016/j.compag.2015.09.025 – ident: ref5 doi: 10.1016/j.compag.2023.108235 – ident: ref13 doi: 10.1017/S0021859618000436 – ident: ref25 doi: 10.1109/ACCESS.2022.3205602 – ident: ref10 doi: 10.1016/j.compag.2006.06.001 – year: 2018 ident: ref18 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 |
SSID | ssj0000816957 |
Score | 2.3261673 |
Snippet | Visual navigation is the pivotal technology for enabling autonomous operations of orchard robots. To obtain orchard navigation lines, the robot needs to... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104126 |
SubjectTerms | Ablation Autonomous navigation Convolutional neural networks EMA Feature extraction least square method Least squares approximations Lion MPDIoU Navigation navigation line extraction Object segmentation Robot kinematics Robots Robustness trunk detection Trunk networks YOLO YOLOv8 |
SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2VPcGBli-xLUU59NgsjmPH8RG2iwC1u5cFwSmyY_sCCmjJrhC_vmPHu6JFIG5WFCdOxp6ZZ8-8AfiRW1dnpS1T7gRPGSMmLQuZpSpXVFNOizxQCv0ZF2eX7OKaX8dk9ZALY60NwWd24JvhLN_c13O_VYYr3B_yFWIN1hC5dclaqw0VX0FCchGZhTIij46HQ_wIxICUDXKGtorSf6xPIOmPVVVeqeJgX04_w3g5si6s5HYwb_Wgfv6PtPHDQ_8Cm9HTTI67qbEFn2yzDRsv-Ad34HwSmJJMchUyzJOxWgTGDWwiRrXJ6KmddYkPyQlaO5Ng42bye7Io0-ls3twmv2wbQrmaXbg8HU2HZ2msrZDWiOjatGSOZUQRQ5k22kh0Q6yPeBIOAQeXhNXcOJkZY0qRU1EUtBaMaO0NvA-1zveg19w3dh8S55ShigonNGUKNYDmOXU8KyXqAp3JPtDlP6_qSDzu61_cVQGAEFl1gqq8oKooqD78XHV66Hg33r_9xAtzdasnzQ4XUAhVXINVIJeXNVdK-4rbWiF6ZNIRS6xGN0r1YdcL7sX7Opn14WA5N6q4wh_xYYhUqUT99_WNbt9g3Q-x2685gF47m9vv6MG0-jDM3L9CUOl0 priority: 102 providerName: IEEE |
Title | Orchard Vision Navigation Line Extraction Based on YOLOv8-Trunk Detection |
URI | https://ieeexplore.ieee.org/document/10583867 https://www.proquest.com/docview/3089929488 https://doaj.org/article/304619c5aab2495ba26149f0e0eb317a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyITxEoVQZGArZjx_HYFipAQBdAZYrs2F5AAZW04udzdlIUhAQLmxU5cXw---4ld-8QOk6tK0lu84Q7wRPGsEnyTJJEpYpqymmWBkqh27vs8oFdT_m0U-rLx4Q19MCN4M4CI7gsuVLal0nWClx-Jh22GGAgEcE1ApvXAVPhDM5JJrloaYYIlmeD0QhmBICQstOUgeGi9JspCoz9bYmVH-dyMDbjTbTReonxoHm7LbRiq2203uEO3EFXk8ByZOLHkB0e36lFYMuAJuBLG1981LMmaSEegqUyMTSeJjeTRZ7cz-bVc3xu6xCGVe2ih_HF_egyaesiJCWgsTrJmWMEK2wo00YbCS6E9dFKwgFY4BKzkhsniTEmFykVWUZLwbDW3jj7MOl0D61Wr5XdR7FzylBFhRMgXQW7V_OUOk5yCftYExkhuhRRUbak4b52xUsRwAOWRSPXwsu1aOUaoZOvm94azozfuw-97L-6esLrcAHUoGjVoPhLDSK061euM57_H5yJCPWWS1m0u_MdHgYok0o4uw7-Y-xDtObn03yY6aHVeja3R-Cq1LoftLIfsgo_ARLG3-E |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LctMwFL1TygJY8CxDoIAXsMNBliXLWnTRpu0kNE02KVNWRrKkTRmXSZ3y-Jf-Sr-tV7KSKTCw6ww7jUeSbenoPqSrcwHe5NbVWWnLlDvBU8aISctCZqnKFdWU0yIPlEKHk2J4xD4c8-M1uFjdhbHWhuAz2_fFcJZvTuuF3yrDFe4P-QoRYygP7I9v6KGdbY12cTrfUrq_NxsM05hEIK3RdWnTkjmWEUUMZdpoI1HfWh_aIxxa1lwSVnPjZGaMKUVORVHQWjCitddkPqY4x35vwW00NDjtroettnB8zgrJReQyyoh8vz0Y4LCh10lZP2eoHSn9Rd-FtAAxj8sfwj9otP0HcLkciy6Q5aS_aHW__vkbTeR_O1gP4X60pZPtDvyPYM02j-HeNYbFJzCaBi4ok3wMd-iTiToPnCJYRC_cJnvf23l3tSPZQX1uEix8mo6n52U6my-ak2TXtiFYrdmAoxv5l6ew3pw29hkkzilDFRVOaMoUyjjNc-p4VkqUdjqTPaDLOa7qSK3uM3x8qYKLRWTVAaPywKgiMHrwbtXoa8cs8u_qOx48q6qeFjw8wEmvopSpAn2-rLlS2ucU1wr9YyYdscRqNBRVDzY8UK69r8NIDzaXWKyiDDvDztAXpxIl_PO_NHsNd4azw3E1Hk0OXsBd_7nd7tQmrLfzhX2J9lqrX4VVk8Dnm0beFdBFRKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orchard+Vision+Navigation+Line+Extraction+Based+on+YOLOv8-Trunk+Detection&rft.jtitle=IEEE+access&rft.au=Cao%2C+Ziang&rft.au=Gong%2C+Changzhi&rft.au=Meng%2C+Junjie&rft.au=Liu%2C+Lu&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=104126&rft.epage=104137&rft_id=info:doi/10.1109%2FACCESS.2024.3422422&rft.externalDocID=10583867 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |