Systematic review of lithium extraction from salt-lake brines via precipitation approaches
•Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing Li and Mg.•Future research needs on lithium extraction are discussed. Lithium is one of the most important raw materials for the production o...
Saved in:
Published in | Minerals engineering Vol. 139; p. 105868 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing Li and Mg.•Future research needs on lithium extraction are discussed.
Lithium is one of the most important raw materials for the production of glass, ceramics, nuclear materials, pharmaceuticals, and batteries. Almost 80% of total land-based lithium reserves globally are salt-lake brines. Therefore, lithium should be extracted from salt-lake brines to meet the demand of various industries for lithium resources. Several approaches for lithium extraction have been developed in the past few decades, such as precipitation, ion exchange, adsorption, solvent extraction, and electrolysis. Among these methods, precipitation is the earliest studied and utilized in industrial plants. Furthermore, it has several advantages, such as low cost, green principle, and easy industrialization. This paper reviews the precipitation technology for lithium extraction and the relative mechanism proposed in literature to identify its important parameters. Precipitant dosage, pH value, temperature, and particle size of precipitate are important factors in the process. Economic viability and green principle of various methods are discussed, and potential technologies are suggested. Novel magnesium precipitants appear to be a prospective technology for lithium extraction from brines with high Mg/Li mass ratios. Magnesium precipitation technology also shows great potential in the comprehensive utilization of lithium and magnesium resources. Various precipitation approaches for lithium extraction from brines and perspectives for further investigation are proposed. |
---|---|
AbstractList | •Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing Li and Mg.•Future research needs on lithium extraction are discussed.
Lithium is one of the most important raw materials for the production of glass, ceramics, nuclear materials, pharmaceuticals, and batteries. Almost 80% of total land-based lithium reserves globally are salt-lake brines. Therefore, lithium should be extracted from salt-lake brines to meet the demand of various industries for lithium resources. Several approaches for lithium extraction have been developed in the past few decades, such as precipitation, ion exchange, adsorption, solvent extraction, and electrolysis. Among these methods, precipitation is the earliest studied and utilized in industrial plants. Furthermore, it has several advantages, such as low cost, green principle, and easy industrialization. This paper reviews the precipitation technology for lithium extraction and the relative mechanism proposed in literature to identify its important parameters. Precipitant dosage, pH value, temperature, and particle size of precipitate are important factors in the process. Economic viability and green principle of various methods are discussed, and potential technologies are suggested. Novel magnesium precipitants appear to be a prospective technology for lithium extraction from brines with high Mg/Li mass ratios. Magnesium precipitation technology also shows great potential in the comprehensive utilization of lithium and magnesium resources. Various precipitation approaches for lithium extraction from brines and perspectives for further investigation are proposed. |
ArticleNumber | 105868 |
Author | Sun, Wei Wang, Li Hu, Yuehua Zhang, Ye |
Author_xml | – sequence: 1 givenname: Ye surname: Zhang fullname: Zhang, Ye organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China – sequence: 2 givenname: Yuehua surname: Hu fullname: Hu, Yuehua organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li email: li_wang@csu.edu.cn organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China – sequence: 4 givenname: Wei surname: Sun fullname: Sun, Wei email: sunmenghu@csu.edu.cn organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD6TYiZPYLJBQxUuqxALYsLEcZ0xd8pJtCv17XNIVC1iNNDP3zp0zQ5Ou7wChc0oWlNDiYrNobQfd2yIlVMRWzgt-hKaUl2kiGGMTNCVcpEnBy_wEzbzfEELykospen3a-QCtClZjB1sLn7g3uLFhbT9aDF_BKR1s32Hj-hZ71YSkUe-AKxcvery1Cg8OtB1sUD97ahhcr_Qa_Ck6NqrxcHaoc_Rye_O8vE9Wj3cPy-tVohkRISlrRYkWeWnqkhSZEVoxU4ExBWNFTfJMpUWlodBckzjhUAkwtSYiJ1xlVGdzdDn6atd778BIfQgTw9tGUiL3lORGjpTknpIcKUUx-yUenG2V2_0nuxplEB-L1Jz02kKnobaRRpB1b_82-AY954kh |
CitedBy_id | crossref_primary_10_1016_j_hydromet_2021_105578 crossref_primary_10_1016_j_jobe_2025_111862 crossref_primary_10_1016_j_mseb_2024_117220 crossref_primary_10_3390_polym16111520 crossref_primary_10_1016_j_desal_2020_114894 crossref_primary_10_1021_acsaem_1c02654 crossref_primary_10_1016_j_procs_2022_11_323 crossref_primary_10_3390_coatings11070854 crossref_primary_10_1016_j_cjche_2024_01_013 crossref_primary_10_1016_j_seppur_2024_129917 crossref_primary_10_1016_j_ecolind_2022_109256 crossref_primary_10_1021_acssuschemeng_4c08394 crossref_primary_10_57634_RCR5074 crossref_primary_10_1038_s44359_025_00036_2 crossref_primary_10_1016_j_jece_2024_115276 crossref_primary_10_1016_j_memsci_2024_122759 crossref_primary_10_1016_j_seppur_2021_118756 crossref_primary_10_1039_D4RA02757D crossref_primary_10_3390_min13101303 crossref_primary_10_3389_fenrg_2022_895681 crossref_primary_10_1016_j_cej_2024_155349 crossref_primary_10_1016_j_resconrec_2024_107980 crossref_primary_10_2166_wpt_2021_004 crossref_primary_10_1016_j_mineng_2020_106743 crossref_primary_10_1016_j_ccr_2024_215727 crossref_primary_10_1016_j_jece_2024_113680 crossref_primary_10_1016_j_seppur_2021_119134 crossref_primary_10_1016_j_desal_2022_116261 crossref_primary_10_1016_j_ces_2023_119400 crossref_primary_10_1016_j_desal_2022_115847 crossref_primary_10_1080_19392699_2023_2174109 crossref_primary_10_1016_j_memsci_2021_119542 crossref_primary_10_1080_12269328_2024_2338087 crossref_primary_10_1016_j_gsf_2022_101485 crossref_primary_10_2139_ssrn_4144353 crossref_primary_10_1016_j_pmatsci_2022_100958 crossref_primary_10_1016_j_micromeso_2024_113403 crossref_primary_10_1007_s11426_024_2235_6 crossref_primary_10_1016_j_hydromet_2023_106217 crossref_primary_10_1016_j_desal_2024_118010 crossref_primary_10_1016_j_surfin_2024_105697 crossref_primary_10_1016_j_seppur_2021_118613 crossref_primary_10_1016_j_gsme_2024_05_002 crossref_primary_10_1007_s40831_023_00738_6 crossref_primary_10_1007_s10853_020_05147_8 crossref_primary_10_2174_0124055204266229230927035347 crossref_primary_10_1016_j_comptc_2023_114139 crossref_primary_10_1016_j_jiec_2025_01_014 crossref_primary_10_1038_s44221_024_00326_2 crossref_primary_10_1016_j_cherd_2024_09_028 crossref_primary_10_1016_j_hydromet_2021_105772 crossref_primary_10_1149_1945_7111_acc360 crossref_primary_10_1016_j_cej_2024_154341 crossref_primary_10_1016_j_seppur_2023_126162 crossref_primary_10_1126_sciadv_adq9823 crossref_primary_10_1039_D2TA01131J crossref_primary_10_1016_j_desal_2024_117967 crossref_primary_10_1016_j_desal_2024_118016 crossref_primary_10_1021_acsestwater_3c00013 crossref_primary_10_1016_j_seppur_2024_129439 crossref_primary_10_3390_batteries10110379 crossref_primary_10_1016_j_desal_2022_116093 crossref_primary_10_1080_08827508_2025_2473088 crossref_primary_10_3390_separations10010024 crossref_primary_10_1021_acssuschemeng_2c06301 crossref_primary_10_1016_j_cep_2024_110079 crossref_primary_10_3390_membranes12111042 crossref_primary_10_1016_j_jelechem_2023_117487 crossref_primary_10_1016_j_seppur_2022_121309 crossref_primary_10_1016_j_desal_2020_114621 crossref_primary_10_1016_j_desal_2024_117732 crossref_primary_10_1016_j_seppur_2022_122997 crossref_primary_10_1016_j_cej_2024_153807 crossref_primary_10_1016_j_advmem_2024_100093 crossref_primary_10_1016_j_seppur_2021_119177 crossref_primary_10_1002_aws2_70016 crossref_primary_10_1016_j_desal_2022_116186 crossref_primary_10_1016_j_ccr_2024_215923 crossref_primary_10_3389_fceng_2022_1008680 crossref_primary_10_1002_crat_201900169 crossref_primary_10_1016_j_memsci_2024_123558 crossref_primary_10_1016_j_hydromet_2021_105759 crossref_primary_10_1021_acs_est_3c05935 crossref_primary_10_1007_s13369_023_07870_1 crossref_primary_10_1016_j_desal_2022_115767 crossref_primary_10_1016_j_jece_2023_111814 crossref_primary_10_1016_j_desal_2023_117109 crossref_primary_10_1016_j_mineng_2023_108293 crossref_primary_10_1016_j_jcis_2022_07_116 crossref_primary_10_1016_j_rineng_2025_104190 crossref_primary_10_1080_07366299_2025_2452890 crossref_primary_10_1016_j_jiec_2022_05_053 crossref_primary_10_1002_aws2_70009 crossref_primary_10_1021_acs_energyfuels_2c04113 crossref_primary_10_1016_j_desal_2022_116196 crossref_primary_10_1002_adma_202300913 crossref_primary_10_1002_smll_202406951 crossref_primary_10_1016_j_mineng_2025_109179 crossref_primary_10_1016_j_desal_2020_114883 crossref_primary_10_1016_j_jpowsour_2023_233798 crossref_primary_10_1007_s12598_024_02760_3 crossref_primary_10_1007_s11157_019_09517_w crossref_primary_10_1016_j_seppur_2024_126375 crossref_primary_10_1016_j_desal_2024_117999 crossref_primary_10_1016_j_hydromet_2024_106282 crossref_primary_10_1016_j_desal_2020_114522 crossref_primary_10_1016_j_jiec_2019_09_002 crossref_primary_10_1007_s11696_023_02779_3 crossref_primary_10_1177_07482337231156670 crossref_primary_10_3390_ma16114190 crossref_primary_10_3390_en18061359 crossref_primary_10_3390_su152216016 crossref_primary_10_1073_pnas_2022197118 crossref_primary_10_1016_j_desal_2025_118574 crossref_primary_10_1016_j_desal_2023_116395 crossref_primary_10_1016_j_jwpe_2023_104148 crossref_primary_10_1016_j_mineng_2022_107468 crossref_primary_10_1016_j_memsci_2022_120733 crossref_primary_10_61186_jrr_2307_1017 crossref_primary_10_1021_acs_energyfuels_4c00732 crossref_primary_10_1016_j_advmem_2023_100065 crossref_primary_10_3390_met14030345 crossref_primary_10_1002_aic_18703 crossref_primary_10_1021_acsapm_3c01994 crossref_primary_10_1016_j_jscs_2022_101535 crossref_primary_10_1021_acs_jpcc_3c05676 crossref_primary_10_1016_j_dyepig_2020_108896 crossref_primary_10_1016_j_desal_2022_116201 crossref_primary_10_1016_j_desal_2024_117659 crossref_primary_10_1186_s40643_021_00384_4 crossref_primary_10_1016_j_desal_2022_116205 crossref_primary_10_1016_j_seppur_2021_119099 crossref_primary_10_1007_s10853_023_08327_4 crossref_primary_10_1039_D3EW00769C crossref_primary_10_1016_j_mtcomm_2025_111817 crossref_primary_10_1002_tcr_202000055 crossref_primary_10_1016_j_desal_2024_118515 crossref_primary_10_1002_cjce_25537 crossref_primary_10_1016_j_desal_2024_118516 crossref_primary_10_1016_j_desal_2020_114710 crossref_primary_10_1021_acsenvironau_4c00061 crossref_primary_10_1016_j_ces_2020_116019 crossref_primary_10_31466_kfbd_1427540 crossref_primary_10_1080_08827508_2022_2047041 crossref_primary_10_1016_j_jece_2025_115510 crossref_primary_10_3390_resources14020027 crossref_primary_10_1039_D1MA00216C crossref_primary_10_1002_smll_202306530 crossref_primary_10_1021_acsestengg_3c00167 crossref_primary_10_1016_j_cej_2024_155043 crossref_primary_10_3390_min10090773 crossref_primary_10_1016_j_jechem_2023_10_005 crossref_primary_10_1016_j_cej_2024_158315 crossref_primary_10_20964_2022_12_103 crossref_primary_10_3390_nano13091471 crossref_primary_10_1002_biot_202000151 crossref_primary_10_1016_j_psep_2023_08_069 crossref_primary_10_1007_s10311_023_01669_0 crossref_primary_10_1016_j_jclepro_2020_124905 crossref_primary_10_1016_j_jclepro_2022_133773 crossref_primary_10_1016_j_desal_2024_117677 crossref_primary_10_1016_j_susmat_2024_e00923 crossref_primary_10_1021_acs_iecr_3c03069 crossref_primary_10_1016_j_seppur_2022_122485 crossref_primary_10_1016_j_memsci_2024_122728 crossref_primary_10_1016_j_memsci_2023_121358 crossref_primary_10_1177_17475198231159051 crossref_primary_10_1016_j_memsci_2024_122844 crossref_primary_10_3390_membranes13020252 crossref_primary_10_3390_resources11100089 crossref_primary_10_1080_19392699_2022_2083611 crossref_primary_10_1016_j_seppur_2022_120626 crossref_primary_10_1016_j_desal_2021_115302 crossref_primary_10_1016_j_susmat_2024_e01108 crossref_primary_10_1007_s10853_020_05019_1 crossref_primary_10_1016_S1003_6326_23_66428_3 crossref_primary_10_1021_acs_iecr_1c02361 crossref_primary_10_1016_j_cej_2024_159061 crossref_primary_10_1021_acs_jpcc_4c06793 crossref_primary_10_1016_j_ccr_2024_215971 crossref_primary_10_1016_j_bej_2024_109615 crossref_primary_10_1016_j_mineng_2023_108333 crossref_primary_10_1016_j_sctalk_2024_100367 crossref_primary_10_1039_D4NJ02205J crossref_primary_10_1016_j_cej_2024_153401 crossref_primary_10_1016_j_seppur_2024_128058 crossref_primary_10_1149_1945_7111_ac1cc5 crossref_primary_10_1016_j_chroma_2024_464712 crossref_primary_10_1016_j_jclepro_2023_138547 crossref_primary_10_1016_j_desal_2025_118766 crossref_primary_10_1016_j_hazadv_2023_100347 crossref_primary_10_1016_j_desal_2025_118764 crossref_primary_10_3390_min9090511 crossref_primary_10_1016_j_jwpe_2024_106512 crossref_primary_10_1038_s41893_024_01435_2 crossref_primary_10_1016_j_fluid_2022_113696 crossref_primary_10_1016_j_fuel_2020_117319 crossref_primary_10_1016_j_mineng_2022_107713 crossref_primary_10_1016_j_desal_2019_114187 crossref_primary_10_1016_j_hydromet_2020_105515 crossref_primary_10_3390_pr11020418 crossref_primary_10_1016_j_mineng_2023_108210 crossref_primary_10_1016_j_seppur_2023_124841 crossref_primary_10_1021_acsaenm_3c00196 crossref_primary_10_1016_j_cej_2025_159220 crossref_primary_10_1016_j_seppur_2024_130358 crossref_primary_10_3390_membranes11090697 crossref_primary_10_1016_j_jmrt_2021_04_073 crossref_primary_10_3390_su17010121 crossref_primary_10_1016_j_cej_2024_155009 crossref_primary_10_1016_j_cplett_2022_139371 crossref_primary_10_1016_j_electacta_2023_143519 crossref_primary_10_1016_j_seppur_2024_129806 crossref_primary_10_1016_j_seppur_2023_126237 crossref_primary_10_1088_1755_1315_1275_1_012011 crossref_primary_10_1016_j_desal_2024_118445 |
Cites_doi | 10.1016/j.mineng.2017.04.008 10.1016/j.rser.2011.11.023 10.1016/j.mineng.2016.01.010 10.1021/acs.jced.5b00570 10.1021/je301166y 10.1021/j100187a061 10.3724/j.issn.1000-0518.1994.1.7 10.1016/j.hydromet.2019.05.019 10.4028/www.scientific.net/AMR.634-638.126 10.1016/j.hydromet.2018.05.001 10.1016/j.calphad.2018.01.002 10.1016/j.colsurfa.2008.09.050 10.1016/j.apsusc.2017.08.016 10.1016/0304-386X(91)90056-R 10.1021/j100404a043 10.1016/j.hydromet.2015.12.008 10.1016/S0011-9164(03)00455-7 10.1021/j100202a074 10.1016/j.hydromet.2007.09.005 10.2475/03.2015.02 10.1007/s10498-012-9168-1 10.1016/j.materresbull.2017.09.048 10.1016/0304-386X(81)90044-X 10.1016/j.desal.2016.05.010 10.1016/0927-7757(95)03185-G 10.1016/j.calphad.2004.02.001 10.1021/acs.jced.6b00359 10.1016/j.calphad.2015.05.001 10.1021/je200091k 10.1016/j.joule.2018.07.006 10.1016/j.hydromet.2013.05.013 10.1016/j.chemosphere.2017.06.025 10.1002/ijch.196300021 10.1016/S1003-6326(15)64032-8 10.1016/j.hydromet.2018.01.005 10.1021/je00021a011 10.1021/je5008108 10.1021/je4010867 10.1016/j.calphad.2014.10.003 10.1007/s12613-012-0553-y 10.1016/j.hydromet.2017.08.003 10.1063/1.4977190 10.1021/ie502749n 10.1016/j.seppur.2016.08.031 10.1595/205651317X696676 10.1021/acs.jced.6b00626 10.1007/s12665-017-6885-1 10.1016/j.jct.2013.07.024 10.1007/s10934-016-0201-4 10.1021/ie049130x 10.1134/S0036024415090149 10.1016/S0021-9614(03)00122-8 10.1016/j.seppur.2016.08.034 10.1016/S0364-5916(01)00053-0 10.1016/j.jct.2005.04.002 10.1016/S0167-2991(99)80567-9 10.1111/1755-6724.12711 10.1016/j.hydromet.2017.10.017 10.1021/je800245m 10.1016/j.seppur.2016.08.006 10.1016/j.hydromet.2016.11.012 10.1021/je8009013 10.1016/j.scitotenv.2018.05.223 10.1016/j.seppur.2017.07.028 10.1021/j100404a042 10.1021/je400956h 10.1016/j.mineng.2018.08.043 10.1039/C4DT03689A 10.1021/je300874c 10.1016/j.hydromet.2017.04.007 10.1016/j.jiec.2016.01.015 10.1039/C6RA14230C 10.1016/j.seppur.2018.09.006 10.1021/jp101041j 10.1111/1755-6724.12767 10.1007/s40242-014-3506-3 10.1016/j.memsci.2017.02.020 10.1021/acs.jced.5b00888 10.1134/S0036023607120091 10.1021/acs.est.7b03464 10.1016/j.calphad.2016.03.007 10.1021/je050337m 10.1021/jp973043j 10.1016/j.hydromet.2012.02.008 10.1016/j.cej.2015.11.092 10.1016/j.desal.2015.08.013 10.1021/je060334p |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2019.105868 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
ExternalDocumentID | 10_1016_j_mineng_2019_105868 S0892687519302791 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- SEP SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c409t-7da10c957fd7063f9ca4fbeff6446d053a26bce6c8c0a4f8eb9efdc09508a31c3 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Tue Jul 01 01:13:26 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Fri Feb 23 02:35:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Green principle Lithium extraction Precipitation Salt-lake brine Comprehensive utilization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-7da10c957fd7063f9ca4fbeff6446d053a26bce6c8c0a4f8eb9efdc09508a31c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mineng_2019_105868 crossref_primary_10_1016_j_mineng_2019_105868 elsevier_sciencedirect_doi_10_1016_j_mineng_2019_105868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Minerals engineering |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Deng, Yu, Sun (b0075) 2008; 53 Zhang, Hu, Sun, Liu, Wang, Wang, Sun (b0605) 2018; 128 Hamzaoui, M'nif, Hammi, Rokbani (b0155) 2003; 158 Zhong, Zhou, Yin (b0635) 2003; 1 Song, Yao (b0375) 2003; 11 Song, Huang, Qiu, Li, He (b0355) 2017; 173 Hamzaoui, Jamoussi, M'nif (b0150) 2008; 90 Clegg, Ho, Chan, Brimblecombe (b0050) 1995; 40 Sang, Yin, Xing (b0325) 2006; 38 Boryta, D.A., Kullberg, T.F., Thurston, A.M., 2011. Production of lithium compounds directly from lithium containing brines, the United States. Wang, Zeng (b0455) 2014; 59 Li, Zeng, Yu, Peng (b0220) 2013; 58 Hai, Zhou, Fuji, Shirai, Ren, Zeng, Li (b0140) 2018; 97 Lassin, Christov, Andre, Azaroual (b0185) 2015; 315 Li, Liu, Yu, Zhang, Li, Zeng (b0210) 2015; 89 Kaplan (b0180) 1963; 1 Zheng, M., Bu, L., Deng, Y., 2004. Method to crystallize lithium carbonate from carbonate type brine using solar ponds, China. Li, Zeng, Wang, Yu (b0215) 2014; 30 Wang, Zhong, Du, Zhao, Wang (b0435) 2018; 175 Heidari, Momeni (b0160) 2017; 76 Xiang, Liang, Zhou, Qin, Fei (b0465) 2017; 171 Choubey, Kim, Srivastava, Lee, Lee (b0040) 2016; 89 Li, Hou, Li, Jin, Li, Ran (b0240) 2016; 90 Hamzaoui, Hammi, M’nif (b0145) 2007; 52 . Zeng, Lin, Yu (b0560) 2012; 57 Yang, Li, Li, Guo, Meng, Li (b0495) 2012; 19 Wang, Li (b0430) 2016 Xu, Zhang, Wang, Gui, Liu, Yang (b0490) 2014; 53 Li, Duo, Yu, Zeng (b0230) 2014; 43 Wang, Meng, Ma (b0445) 2009; 334 Gao, Zheng, Song, Bu, Wang (b0100) 2012; 18 Epstein, Feist, Zmora, Marcus (b0080) 1981; 6 Li, Deshmane, Paranthaman, Bhave, Moyer, Harrison (b0225) 2018; 62 Zheng, Zhang, Liu, Qi, Kong, Nie, Pu, Hou, Wang, Zhang, Kong, Lin (b0620) 2016; 90 Lu, Qin, Zhang, Wu, Cui, Li, Wang, Yan (b0260) 2018; 427 Sun, Meng, Yin, Zhu, Li, Yan (b0400) 2016; 23 Kang, Shen, Wan (b0175) 1981; 31 Shi, Jing, Xiao, Wang, Yao, Jia (b0335) 2017; 172 Zeng, Ling, Ni, Zhang (b0570) 2007; 52 Zhang, Hu, Sun, Khoso, Wang, Sun (b0600) 2019; 187 Li, Zeng, Han, Guo, Yin, Yao (b0195) 2015; 51 Sang, Yin, Tang, Zhang (b0320) 2003; 35 An, Kang, Tran, Kim, Lim, Tran (b0005) 2012; 117–118 Saravaia, Gupta, Kulshrestha (b0330) 2016; 6 Bukowsky, Uhlemann, Steinborn (b0015) 1991; 27 Paranthaman, Li, Luo, Hoke, Ucar, Moyer, Harrison (b0290) 2017; 51 Xiao, X.L., 2005. Study on Al(OH)3 Precipitate Lithium from Brine, Qinghai Institute of Salt Lakes. Chinese Academy of Sciences, Xining. Yin, Li, Wan, Li, Zeng (b0515) 2008; 66 Garrett (b0105) 2004 Goodenough, R.D., Stenger, V.A., 1961. Recovery of Lithium from Lithium Aluminate Complex, the United States. Zeng, Lin (b0550) 2009; 54 Pauwels, Brach, Fouillac (b0295) 1995; 100 Lu, Z., Hu, S., Yuan, J., 2005. Method of lithium carbonate extraction from brines with high Mg/Li mass ratio, China. Ooi, Makita, Sonoda, Chitrakar, Tasaki-Handa, Nakazato (b0280) 2016; 288 Liu, Zhong, Chen, Zhao (b0255) 2018; 176 Lawagon, Nisola, Mun, Tron, Torrejos, Seo, Kim, Chung (b0190) 2016; 35 Xiao, Zeng (b0470) 2018; 178 Grosjean, Miranda, Perrin, Poggi (b0125) 2012; 16 Wang, Ji, Hu, Liu, Sun (b0440) 2017; 184 Zhang, Zeng, Luo, Yu (b0580) 2018; 45 Pitzer, Simonson (b0305) 1986; 90 Song, Nghiem, Li, He (b0360) 2017; 3 Chen, Zhong, Yan (b0020) 2014; 43 Roskill, 2009. The economics of lithium. Roskill Information Services Clegg, Pitzer, Brimblecombe (b0060) 1992; 96 Song, Yao (b0380) 2003; 27 Ren, Song (b0310) 1994; 11 Song, Yao (b0365) 2001; 25 Xiao, Sang, Zhao (b0475) 2010; 39 Zymon, Kurbiel (b0640) 1986; 1985 Clegg, Brimblecombe (b0045) 1998; 102 Zhang, Sang, Zhong, Zhao (b0595) 2014; 59 Zhong, H., Xu, H., 2007. A method for separation of lithium from magnesium in magnesium sulfate subtype brines, China. Hai, C., Zhou, Y., Du, Y., Ren, X., Sun, Y., Shen, Y., Zeng, J., Li, S., Li, X., Dong, O., Zhang, L., 2018a. A method for preparing porous magnesium silicate lithium powder with high specific surface area by using salt lake brine after potassium extraction, China. Yang, Zhang, Ding, He, Zhou (b0505) 2018; 2 Goodenough, R.D., 1961. Process for the Recovery and Separation of Lithium and Aluminum from Lithium Aluminate Complex, the United States. Zhang, T., Zhang, T., 2018. A method for directly synthesizing quaternary ammonium salt modified magnesium silicate lithium by salt lake brine, China. Li, Kang, Liu, Wang, Ren, Meng (b0235) 2016; 43 Clegg, Pitzer (b0055) 1992; 96 Flexer, Baspineiro, Galli (b0085) 2018; 639 Nie, Sun, Song, Yu (b0270) 2017; 530 Gruber, Medina (b0130) 2010 Li, Zeng, Yin, Gao (b0200) 2018; 60 Ooi, Makita, Sonoda, Chitrakar, Tasaki-Handa, Nakazato (b0285) 2017; 169 Deng, Wang (b0070) 2013 Tran, Luong, An, Kang, Kim, Tran (b0420) 2013; 138 Choubey, Chung, Kim, Lee, Srivastava (b0035) 2017; 110 Zeng, Cao, Li, Yu, Lin (b0545) 2011; 56 Yu, Zeng, Guo, Zhang (b0535) 2016; 61 Dave, Ghosh (b0065) 2005; 44 Liu, Chen, He, Zhao (b0250) 2015; 376 Song, Zhao, Du, Wang, Guo, Deng (b0395) 2017 Song, Yao (b0370) 2003; 11 Zhang, Zeng, Yu (b0610) 2013; 45 Cheng, Li, Cheng (b0030) 2013; 67 Zhang, Li, Shi, Li, Peng, Nie (b0585) 2017; 188 Wang, Du, Jing, Guo, Deng (b0460) 2017; 62 Ji, Chen, Yuan, Liu, Zhao, Feng (b0170) 2017; 172 Wang, R., Wang, J., Wang, X., Zhong, Q., Gao, G., 2005. A method for extracting lithium carbonate from brine with a high Mg/Li mass ratio, China. Zeng, Lin, Meng (b0555) 2008; 6 Zeng, Shao (b0575) 2006; 51 Yang, Li, Chai, Li (b0500) 2013; 634–638 Chen, Zhong, Yan (b0025) 2014; 43 Li, Zeng, Yin, Han, Guo, Yao (b0205) 2016; 53 Shi, Liu, Ye, Cao, Gao, Shen (b0340) 2019; 210 Xu, H., Li, X., Shi, X., Chen, B., 2006. A method for magnesium and lithium recovery from the salt lake brine. USGS (b0425) 2017 Pelly (b0300) 1978; 28 Yu, Zheng, Tang, Wu, Nie, Bu (b0525) 2013; 32 Yuanhui, Guo, Wang, Song, Deng (b0540) 2015; 48 Song, Gang, Ma, Yang, Mu (b0390) 2017; 7 Swain (b0405) 2017; 172 Simonson, Pitzer (b0345) 1986; 90 Tan, Zeng, Mu, Yu, Zhang (b0410) 2014; 59 Goodenough, R.D., 1960. Recovery of Lithium, the United States. Nie, Sun, Sun, Song, Yu (b0275) 2017; 403 Yu, Luo, Wu, Cheng, Zeng (b0530) 2016; 61 Friese, Ebel (b0090) 2010; 114 Yao, Y., Jia, Y., Sun, J., Jing, Y., Li, W., 2007. Preparation of magnesium - lithium silicate montmorillonite from salt lake brine, China. Yu, Wang, Cao, Gao, Hui, Guo, Wang (b0520) 2015; 44 Zeng, Lin, Zheng (b0565) 2009; 23 Song, Yao (b0385) 2004; 12 Tran, Han, Kim, Kim, Tran (b0415) 2016; 160 Zhong, H., Xu, H., Fu, Y., 2009. A method for lithium extraction and separation of lithium from magnesium in brine, China. Fu, Sang, Zhou, Liu, Zhang (b0095) 2016; 61 Li, Zhao, Liu, Chen, Zhong (b0245) 2015; 25 Sohr, Voigt, Zeng (b0350) 2017; 46 Isupov, Kotsupalo, Nemudry, Menzeres (b0165) 1999; 120 USGS (10.1016/j.mineng.2019.105868_b0425) 2017 Tran (10.1016/j.mineng.2019.105868_b0420) 2013; 138 10.1016/j.mineng.2019.105868_b0120 Saravaia (10.1016/j.mineng.2019.105868_b0330) 2016; 6 Isupov (10.1016/j.mineng.2019.105868_b0165) 1999; 120 10.1016/j.mineng.2019.105868_b0485 10.1016/j.mineng.2019.105868_b0480 Clegg (10.1016/j.mineng.2019.105868_b0045) 1998; 102 Zhong (10.1016/j.mineng.2019.105868_b0635) 2003; 1 Yu (10.1016/j.mineng.2019.105868_b0520) 2015; 44 Clegg (10.1016/j.mineng.2019.105868_b0055) 1992; 96 Epstein (10.1016/j.mineng.2019.105868_b0080) 1981; 6 Li (10.1016/j.mineng.2019.105868_b0235) 2016; 43 Choubey (10.1016/j.mineng.2019.105868_b0040) 2016; 89 Li (10.1016/j.mineng.2019.105868_b0195) 2015; 51 10.1016/j.mineng.2019.105868_b0110 Li (10.1016/j.mineng.2019.105868_b0200) 2018; 60 Zhang (10.1016/j.mineng.2019.105868_b0610) 2013; 45 Nie (10.1016/j.mineng.2019.105868_b0270) 2017; 530 Song (10.1016/j.mineng.2019.105868_b0370) 2003; 11 10.1016/j.mineng.2019.105868_b0590 Song (10.1016/j.mineng.2019.105868_b0395) 2017 Yang (10.1016/j.mineng.2019.105868_b0500) 2013; 634–638 Li (10.1016/j.mineng.2019.105868_b0205) 2016; 53 10.1016/j.mineng.2019.105868_b0510 10.1016/j.mineng.2019.105868_b0630 10.1016/j.mineng.2019.105868_b0115 Li (10.1016/j.mineng.2019.105868_b0240) 2016; 90 Xiao (10.1016/j.mineng.2019.105868_b0470) 2018; 178 Wang (10.1016/j.mineng.2019.105868_b0455) 2014; 59 Yang (10.1016/j.mineng.2019.105868_b0505) 2018; 2 An (10.1016/j.mineng.2019.105868_b0005) 2012; 117–118 Simonson (10.1016/j.mineng.2019.105868_b0345) 1986; 90 10.1016/j.mineng.2019.105868_b0265 Deng (10.1016/j.mineng.2019.105868_b0070) 2013 Ooi (10.1016/j.mineng.2019.105868_b0285) 2017; 169 Fu (10.1016/j.mineng.2019.105868_b0095) 2016; 61 Xiang (10.1016/j.mineng.2019.105868_b0465) 2017; 171 Wang (10.1016/j.mineng.2019.105868_b0430) 2016 Wang (10.1016/j.mineng.2019.105868_b0445) 2009; 334 Grosjean (10.1016/j.mineng.2019.105868_b0125) 2012; 16 Ren (10.1016/j.mineng.2019.105868_b0310) 1994; 11 Hamzaoui (10.1016/j.mineng.2019.105868_b0150) 2008; 90 Song (10.1016/j.mineng.2019.105868_b0365) 2001; 25 Song (10.1016/j.mineng.2019.105868_b0380) 2003; 27 Sun (10.1016/j.mineng.2019.105868_b0400) 2016; 23 Deng (10.1016/j.mineng.2019.105868_b0075) 2008; 53 Zeng (10.1016/j.mineng.2019.105868_b0555) 2008; 6 Gruber (10.1016/j.mineng.2019.105868_b0130) 2010 Kaplan (10.1016/j.mineng.2019.105868_b0180) 1963; 1 10.1016/j.mineng.2019.105868_b0010 Pauwels (10.1016/j.mineng.2019.105868_b0295) 1995; 100 Song (10.1016/j.mineng.2019.105868_b0375) 2003; 11 Zhang (10.1016/j.mineng.2019.105868_b0580) 2018; 45 Sang (10.1016/j.mineng.2019.105868_b0325) 2006; 38 Friese (10.1016/j.mineng.2019.105868_b0090) 2010; 114 Li (10.1016/j.mineng.2019.105868_b0245) 2015; 25 Liu (10.1016/j.mineng.2019.105868_b0255) 2018; 176 Li (10.1016/j.mineng.2019.105868_b0220) 2013; 58 Nie (10.1016/j.mineng.2019.105868_b0275) 2017; 403 Clegg (10.1016/j.mineng.2019.105868_b0050) 1995; 40 Shi (10.1016/j.mineng.2019.105868_b0335) 2017; 172 10.1016/j.mineng.2019.105868_b0135 Sang (10.1016/j.mineng.2019.105868_b0320) 2003; 35 Lu (10.1016/j.mineng.2019.105868_b0260) 2018; 427 Yang (10.1016/j.mineng.2019.105868_b0495) 2012; 19 Zeng (10.1016/j.mineng.2019.105868_b0560) 2012; 57 Hamzaoui (10.1016/j.mineng.2019.105868_b0145) 2007; 52 Zhang (10.1016/j.mineng.2019.105868_b0585) 2017; 188 Zhang (10.1016/j.mineng.2019.105868_b0605) 2018; 128 Yuanhui (10.1016/j.mineng.2019.105868_b0540) 2015; 48 Clegg (10.1016/j.mineng.2019.105868_b0060) 1992; 96 Zeng (10.1016/j.mineng.2019.105868_b0575) 2006; 51 Paranthaman (10.1016/j.mineng.2019.105868_b0290) 2017; 51 Zheng (10.1016/j.mineng.2019.105868_b0620) 2016; 90 Liu (10.1016/j.mineng.2019.105868_b0250) 2015; 376 Zymon (10.1016/j.mineng.2019.105868_b0640) 1986; 1985 Li (10.1016/j.mineng.2019.105868_b0225) 2018; 62 Pitzer (10.1016/j.mineng.2019.105868_b0305) 1986; 90 Tran (10.1016/j.mineng.2019.105868_b0415) 2016; 160 Zhang (10.1016/j.mineng.2019.105868_b0595) 2014; 59 Li (10.1016/j.mineng.2019.105868_b0210) 2015; 89 Wang (10.1016/j.mineng.2019.105868_b0440) 2017; 184 Hamzaoui (10.1016/j.mineng.2019.105868_b0155) 2003; 158 Song (10.1016/j.mineng.2019.105868_b0355) 2017; 173 Swain (10.1016/j.mineng.2019.105868_b0405) 2017; 172 Yu (10.1016/j.mineng.2019.105868_b0530) 2016; 61 Lassin (10.1016/j.mineng.2019.105868_b0185) 2015; 315 Xu (10.1016/j.mineng.2019.105868_b0490) 2014; 53 Heidari (10.1016/j.mineng.2019.105868_b0160) 2017; 76 Pelly (10.1016/j.mineng.2019.105868_b0300) 1978; 28 Yin (10.1016/j.mineng.2019.105868_b0515) 2008; 66 10.1016/j.mineng.2019.105868_b0315 Dave (10.1016/j.mineng.2019.105868_b0065) 2005; 44 Xiao (10.1016/j.mineng.2019.105868_b0475) 2010; 39 Bukowsky (10.1016/j.mineng.2019.105868_b0015) 1991; 27 Hai (10.1016/j.mineng.2019.105868_b0140) 2018; 97 Wang (10.1016/j.mineng.2019.105868_b0435) 2018; 175 Zhang (10.1016/j.mineng.2019.105868_b0600) 2019; 187 Li (10.1016/j.mineng.2019.105868_b0215) 2014; 30 Song (10.1016/j.mineng.2019.105868_b0385) 2004; 12 Cheng (10.1016/j.mineng.2019.105868_b0030) 2013; 67 10.1016/j.mineng.2019.105868_b0625 Kang (10.1016/j.mineng.2019.105868_b0175) 1981; 31 Chen (10.1016/j.mineng.2019.105868_b0020) 2014; 43 Lawagon (10.1016/j.mineng.2019.105868_b0190) 2016; 35 Wang (10.1016/j.mineng.2019.105868_b0460) 2017; 62 Yu (10.1016/j.mineng.2019.105868_b0525) 2013; 32 Chen (10.1016/j.mineng.2019.105868_b0025) 2014; 43 Garrett (10.1016/j.mineng.2019.105868_b0105) 2004 Shi (10.1016/j.mineng.2019.105868_b0340) 2019; 210 Sohr (10.1016/j.mineng.2019.105868_b0350) 2017; 46 10.1016/j.mineng.2019.105868_b0450 Zeng (10.1016/j.mineng.2019.105868_b0565) 2009; 23 Li (10.1016/j.mineng.2019.105868_b0230) 2014; 43 Choubey (10.1016/j.mineng.2019.105868_b0035) 2017; 110 10.1016/j.mineng.2019.105868_b0615 Flexer (10.1016/j.mineng.2019.105868_b0085) 2018; 639 Tan (10.1016/j.mineng.2019.105868_b0410) 2014; 59 Zeng (10.1016/j.mineng.2019.105868_b0545) 2011; 56 Ooi (10.1016/j.mineng.2019.105868_b0280) 2016; 288 Song (10.1016/j.mineng.2019.105868_b0360) 2017; 3 Yu (10.1016/j.mineng.2019.105868_b0535) 2016; 61 Gao (10.1016/j.mineng.2019.105868_b0100) 2012; 18 Ji (10.1016/j.mineng.2019.105868_b0170) 2017; 172 Song (10.1016/j.mineng.2019.105868_b0390) 2017; 7 Zeng (10.1016/j.mineng.2019.105868_b0570) 2007; 52 Zeng (10.1016/j.mineng.2019.105868_b0550) 2009; 54 |
References_xml | – volume: 53 start-page: 2496 year: 2008 end-page: 2500 ident: b0075 article-title: Metastable phase equilibrium in the aqueous quaternary system (Li publication-title: J. Chem. Eng. Data – volume: 90 start-page: 1195 year: 2016 end-page: 1235 ident: b0620 article-title: Progress and prospects of Salt Lake Research in China publication-title: Acta Geol. Sin-Engl. – volume: 634–638 start-page: 126 year: 2013 end-page: 129 ident: b0500 article-title: Studies on the interaction mechanism between lithium chloride and amorphous Al(OH) publication-title: Adv. Mater. Res. – volume: 210 start-page: 885 year: 2019 end-page: 890 ident: b0340 article-title: Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane publication-title: Sep. Purifi. Technol. – reference: Xiao, X.L., 2005. Study on Al(OH)3 Precipitate Lithium from Brine, Qinghai Institute of Salt Lakes. Chinese Academy of Sciences, Xining. – volume: 53 start-page: 78 year: 2016 end-page: 89 ident: b0205 article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl+H publication-title: Calphad – volume: 117–118 start-page: 64 year: 2012 end-page: 70 ident: b0005 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy – volume: 138 start-page: 93 year: 2013 end-page: 99 ident: b0420 article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate publication-title: Hydrometallurgy – volume: 23 start-page: 7 year: 2009 end-page: 11 ident: b0565 article-title: An experimental study on the metastable equilibrium in quaternary system Li publication-title: J. Chem. Eng. Chin. Univ. – volume: 403 start-page: 128 year: 2017 end-page: 135 ident: b0275 article-title: Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes publication-title: Desalination – volume: 28 start-page: 469 year: 1978 end-page: 474 ident: b0300 article-title: Recovery of lithium from Dead Sea brines publication-title: J. Appl. Chem. Biotech. – reference: Zheng, M., Bu, L., Deng, Y., 2004. Method to crystallize lithium carbonate from carbonate type brine using solar ponds, China. – volume: 43 start-page: 1 year: 2014 end-page: 4 ident: b0020 article-title: Present situation of the process and technique of lithium recovery from brine around the world publication-title: J. Salt Chem. Ind. – reference: Goodenough, R.D., 1960. Recovery of Lithium, the United States. – volume: 178 start-page: 283 year: 2018 end-page: 286 ident: b0470 article-title: Thermodynamic study on recovery of lithium using phosphate precipitation method publication-title: Hydrometallurgy – reference: Lu, Z., Hu, S., Yuan, J., 2005. Method of lithium carbonate extraction from brines with high Mg/Li mass ratio, China. – volume: 19 start-page: 290 year: 2012 end-page: 294 ident: b0495 article-title: Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine publication-title: Int. J. Min. Met. Mater. – volume: 25 start-page: 329 year: 2001 end-page: 341 ident: b0365 article-title: Thermodynamics and phase diagram of the Salt Lake Brine System at 25°C I. Li publication-title: Calphad – volume: 184 start-page: 594 year: 2017 end-page: 600 ident: b0440 article-title: A review on in situ phytoremediation of mine tailings publication-title: Chemosphere – volume: 11 start-page: 1 year: 2003 end-page: 11 ident: b0375 article-title: Parameters of Pitzer model for the salt lake brine system and their applications II. Prediction of solubilities in the system Li publication-title: J. Salt Lake Res. – volume: 110 start-page: 104 year: 2017 end-page: 121 ident: b0035 article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs) publication-title: Miner. Eng. – volume: 45 start-page: 15 year: 2013 end-page: 17 ident: b0610 article-title: Study on phase equilibrium of ternary system Li publication-title: Inorg. Chem. Ind. – volume: 66 start-page: 1815 year: 2008 end-page: 1826 ident: b0515 article-title: Comparison of thermodynamic models in high-solubility salt+H publication-title: Acta Chim. Sin. – start-page: 1 year: 2004 end-page: 235 ident: b0105 article-title: Lithium, Handbook of Lithium and Natural Calcium Chloride – volume: 67 start-page: 74 year: 2013 end-page: 82 ident: b0030 article-title: Solubility of Li publication-title: J. Chem. Thermodyn. – volume: 61 start-page: 1246 year: 2016 end-page: 1253 ident: b0535 article-title: Stable phase equilibrium and phase diagram of the quinary system Li publication-title: J. Chem. Eng. Data – volume: 90 start-page: 1 year: 2008 end-page: 7 ident: b0150 article-title: Lithium recovery from highly concentrated solutions: response surface methodology (RSM) process parameters optimization publication-title: Hydrometallurgy – volume: 114 start-page: 11595 year: 2010 end-page: 11631 ident: b0090 article-title: Temperature dependent thermodynamic model of the system H publication-title: J. Phys. Chem. A – volume: 56 start-page: 2569 year: 2011 end-page: 2573 ident: b0545 article-title: Metastable phase equilibrium in the aqueous quaternary system (Li publication-title: J. Chem. Eng. Data – volume: 6 start-page: 47 year: 2008 end-page: 50 ident: b0555 article-title: Study on metastable phase equilibrium of quaternary system Li publication-title: Chem. Eng. – volume: 175 start-page: 102 year: 2018 end-page: 108 ident: b0435 article-title: Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process publication-title: Hydrometallurgy – volume: 96 start-page: 3513 year: 1992 end-page: 3520 ident: b0055 article-title: Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes publication-title: J. Phys. Chem. – volume: 57 start-page: 3672 year: 2012 end-page: 3676 ident: b0560 article-title: Study on the solubility of the aqueous quaternary system Li publication-title: J. Chem. Eng. Data – volume: 59 start-page: 821 year: 2014 end-page: 824 ident: b0595 article-title: Equilibria in the quaternary system Na publication-title: J. Chem. Eng. Data – volume: 35 start-page: 1513 year: 2003 end-page: 1520 ident: b0320 article-title: (Liquid + solid) metastable equilibria in quinary system Li publication-title: J. Chem. Thermodyn. – volume: 160 start-page: 106 year: 2016 end-page: 114 ident: b0415 article-title: Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate publication-title: Hydrometallurgy – reference: Zhang, T., Zhang, T., 2018. A method for directly synthesizing quaternary ammonium salt modified magnesium silicate lithium by salt lake brine, China. – volume: 171 start-page: 27 year: 2017 end-page: 32 ident: b0465 article-title: Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl publication-title: Hydrometallurgy – volume: 43 start-page: 81 year: 2016 end-page: 82 ident: b0235 article-title: Research on distribution and extraction technology of lithium resources publication-title: Guangdong Chem./Indust. – volume: 158 start-page: 221 year: 2003 end-page: 224 ident: b0155 article-title: Contribution to the lithium recovery from brine publication-title: Desalination – volume: 43 start-page: 16 year: 2014 end-page: 18 ident: b0230 article-title: Stable phase equilibrium in the aqueous ternary system Li publication-title: J. Salt Chem. Ind. – volume: 11 start-page: 7 year: 1994 end-page: 10 ident: b0310 article-title: Study on the phase diagram and solution properties for the quaternary system Li publication-title: Chin. J. Appl. Chem. – volume: 100 start-page: 73 year: 1995 end-page: 82 ident: b0295 article-title: Study of Li publication-title: Colloid. Surf. A – reference: Goodenough, R.D., Stenger, V.A., 1961. Recovery of Lithium from Lithium Aluminate Complex, the United States. – volume: 35 start-page: 347 year: 2016 end-page: 356 ident: b0190 article-title: Adsorptive Li publication-title: J. Ind. Eng. Chem. – year: 2010 ident: b0130 article-title: Global Lithium Availability: A Constraint for Electric Vehicles – reference: Zhong, H., Xu, H., Fu, Y., 2009. A method for lithium extraction and separation of lithium from magnesium in brine, China. – volume: 3 start-page: 593 year: 2017 end-page: 597 ident: b0360 article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook publication-title: Environ. Sci.: Water Res. Technol. – volume: 58 start-page: 455 year: 2013 end-page: 459 ident: b0220 article-title: Solubility of the aqueous reciprocal quaternary system Li publication-title: J. Chem. Eng. Data – reference: Goodenough, R.D., 1961. Process for the Recovery and Separation of Lithium and Aluminum from Lithium Aluminate Complex, the United States. – volume: 89 start-page: 1572 year: 2015 end-page: 1577 ident: b0210 article-title: The phase diagram and physicochemical properties of the quaternary system Li publication-title: Russ. J. Phys. Chem. A+ – volume: 376 start-page: 35 year: 2015 end-page: 40 ident: b0250 article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis publication-title: Desalination – volume: 16 start-page: 1735 year: 2012 end-page: 1744 ident: b0125 article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry publication-title: Renew. Sust. Energ. Rev. – reference: Hai, C., Zhou, Y., Du, Y., Ren, X., Sun, Y., Shen, Y., Zeng, J., Li, S., Li, X., Dong, O., Zhang, L., 2018a. A method for preparing porous magnesium silicate lithium powder with high specific surface area by using salt lake brine after potassium extraction, China. – volume: 188 start-page: 167 year: 2017 end-page: 173 ident: b0585 article-title: Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system publication-title: Sep. Purif. Technol. – volume: 6 start-page: 269 year: 1981 end-page: 275 ident: b0080 article-title: Extraction of lithium from the dead sea publication-title: Hydrometallurgy – volume: 90 start-page: 3009 year: 1986 end-page: 3013 ident: b0345 article-title: Thermodynamics of multicomponent, miscible ionic systems: the system lithium nitrate-potassium nitrate-water publication-title: J. Phys. Chem. – volume: 44 start-page: 15721 year: 2015 end-page: 15724 ident: b0520 article-title: The structure of H publication-title: Dalton Trans. – volume: 18 start-page: 343 year: 2012 end-page: 356 ident: b0100 article-title: The 273.15-K-isothermal evaporation experiment of lithium brine from the Zhabei Salt Lake, Tibet, and its geochemical significance publication-title: Aquat. Geochem. – volume: 60 start-page: 163 year: 2018 end-page: 176 ident: b0200 article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. III. Li publication-title: Calphad – volume: 530 start-page: 185 year: 2017 end-page: 191 ident: b0270 article-title: Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis publication-title: J. Membr. Sci. – volume: 40 start-page: 1079 year: 1995 end-page: 1090 ident: b0050 article-title: Thermodynamic properties of aqueous (NH publication-title: J. Chem. Eng. Data – volume: 176 start-page: 73 year: 2018 end-page: 77 ident: b0255 article-title: Separating lithium and magnesium in brine by aluminum-based materials publication-title: Hydrometallurgy – volume: 172 start-page: 473 year: 2017 end-page: 479 ident: b0335 article-title: Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents publication-title: Sep. Purifi. Technol. – volume: 427 start-page: 931 year: 2018 end-page: 941 ident: b0260 article-title: Multilayered ion-imprinted membranes with high selectivity towards Li publication-title: Appl. Surf. Sci – volume: 44 start-page: 2903 year: 2005 end-page: 2907 ident: b0065 article-title: Enrichment of bromine in sea-bittern with recovery of other marine chemicals publication-title: Ind. Eng. Chem. Res. – volume: 1 start-page: 115 year: 1963 end-page: 120 ident: b0180 article-title: Process for the extraction of lithium from dead sea solutions publication-title: Israel J. Chem. – volume: 7 year: 2017 ident: b0390 article-title: Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake publication-title: Minerals-Basel – volume: 173 start-page: 63 year: 2017 end-page: 70 ident: b0355 article-title: Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl publication-title: Hydrometallurgy – volume: 97 start-page: 473 year: 2018 end-page: 482 ident: b0140 article-title: Electrical conductivity of hydrothermally synthesized sodium lithium magnesium silicate publication-title: Mater. Res. Bull. – volume: 1 start-page: 23 year: 2003 end-page: 28 ident: b0635 article-title: Progress in technology for extracting lithium from Li-bearing brine resources publication-title: Multipurpose Utilization Miner. Resour. – year: 2017 ident: b0425 article-title: Mineral Commodity Summaries 2017 – volume: 128 start-page: 141 year: 2018 end-page: 152 ident: b0605 article-title: Systematic review of feldspar beneficiation and its comprehensive application publication-title: Miner. Eng. – volume: 96 start-page: 9470 year: 1992 end-page: 9479 ident: b0060 article-title: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes publication-title: J. Phys. Chem. – volume: 51 start-page: 1 year: 2015 end-page: 12 ident: b0195 article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. I. LiCl+H publication-title: Calphad – volume: 59 start-page: 4173 year: 2014 end-page: 4178 ident: b0410 article-title: Stable phase equilibrium of aqueous quaternary system Li publication-title: J. Chem. Eng. Data – volume: 46 year: 2017 ident: b0350 article-title: IUPAC-NIST Solubility Data Series. 104. Lithium sulfate and its double salts in aqueous solutions publication-title: J. Phys. Chem. Ref. Data – volume: 120 start-page: 621 year: 1999 end-page: 652 ident: b0165 article-title: Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions publication-title: Stud. Surf. Sci. Catal. – volume: 23 start-page: 1411 year: 2016 end-page: 1419 ident: b0400 article-title: Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li publication-title: J. Porous Mat. – volume: 172 start-page: 168 year: 2017 end-page: 177 ident: b0170 article-title: Preliminary study on recovering lithium from high Mg publication-title: Sep. Purif. Technol. – volume: 6 start-page: 106980 year: 2016 end-page: 106989 ident: b0330 article-title: Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium publication-title: RSC Adv. – year: 2013 ident: b0070 article-title: Experimental Research Methods for Phase Equilibrium of Salt-Water Systems – volume: 1985 start-page: 345 year: 1986 end-page: 353 ident: b0640 article-title: Application of previously precipitated Active Aluminium Hydroxide (AAH) for removal of refractory substances from wastewater publication-title: Chem. Protect. Environ. – year: 2017 ident: b0395 article-title: Solid-liquid phase equilibria of the aqueous systems containing lithium, magnesium and borate ions publication-title: IOP Conference Series: Materials Science and Engineering 274 – volume: 62 start-page: 253 year: 2017 end-page: 258 ident: b0460 article-title: Solid-liquid phase equilibrium in the ternary systems (Li publication-title: J. Chem. Eng. Data – volume: 45 start-page: 1008 year: 2018 end-page: 1014 ident: b0580 article-title: Stable phase equilibrium of the aqueous quaternary system Li publication-title: Chiang Mai J. Sci. – volume: 76 start-page: 551 year: 2017 ident: b0160 article-title: Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide publication-title: Environ. Earth Sci. – reference: Roskill, 2009. The economics of lithium. Roskill Information Services, – volume: 11 start-page: 1 year: 2003 end-page: 7 ident: b0370 article-title: Parameters of Pitzer model for the salt lake brine system and their applications I. Applications in physical chemistry for the system Li publication-title: J. Salt Lake Res. – reference: Zhong, H., Xu, H., 2007. A method for separation of lithium from magnesium in magnesium sulfate subtype brines, China. – volume: 48 start-page: 13 year: 2015 end-page: 17 ident: b0540 article-title: Predictions on the solubility and equiscale line of water content for the quaternary system (Li+Na+Cl+SO4+H2O) at 298.15 K publication-title: Calphad – volume: 172 start-page: 388 year: 2017 end-page: 403 ident: b0405 article-title: Recovery and recycling of lithium: a review publication-title: Sep. Purif. Technol. – reference: Yao, Y., Jia, Y., Sun, J., Jing, Y., Li, W., 2007. Preparation of magnesium - lithium silicate montmorillonite from salt lake brine, China. – volume: 334 start-page: 34 year: 2009 end-page: 39 ident: b0445 article-title: Study on Li publication-title: Colloid. Surf. A – volume: 288 start-page: 137 year: 2016 end-page: 145 ident: b0280 article-title: Modelling of column lithium adsorption from pH-buffered brine using surface Li publication-title: Chem. Eng. J. – volume: 25 start-page: 3484 year: 2015 end-page: 3489 ident: b0245 article-title: Extraction of lithium from salt lake brine by aluminum-based alloys publication-title: T. Nonferr. Metal. Soc. – volume: 39 start-page: 18 year: 2010 end-page: 20 ident: b0475 article-title: Study on phase equilibrium of the quaternary system K publication-title: J. Salt Chem. Ind. – reference: Boryta, D.A., Kullberg, T.F., Thurston, A.M., 2011. Production of lithium compounds directly from lithium containing brines, the United States. – volume: 52 start-page: 1859 year: 2007 end-page: 1863 ident: b0145 article-title: Operating conditions for lithium recovery from natural brines publication-title: Russ. J. Inorg. Chem.+ – volume: 12 start-page: 1 year: 2004 end-page: 10 ident: b0385 article-title: Parameters of Pitzer model for the salt lake brine system and their applications III. Applications in process technology in the system Li publication-title: J. Salt Lake Res. – volume: 53 start-page: 16502 year: 2014 end-page: 16507 ident: b0490 article-title: Systemic and direct production of battery-grade lithium carbonate from a Saline Lake publication-title: Ind. Eng. Chem. Res. – volume: 51 start-page: 219 year: 2006 end-page: 222 ident: b0575 article-title: Liquid−solid metastable equilibria in the quinary system Li publication-title: J. Chem. Eng. Data – year: 2016 ident: b0430 article-title: Salt Technology – volume: 639 start-page: 1188 year: 2018 end-page: 1204 ident: b0085 article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing publication-title: Sci. Total Environ. – volume: 62 start-page: 161 year: 2018 end-page: 176 ident: b0225 article-title: Lithium recovery from aqueous resources and batteries: a brief review publication-title: Johnson Matthey Tech. – volume: 89 start-page: 119 year: 2016 end-page: 137 ident: b0040 article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources publication-title: Miner. Eng. – volume: 315 start-page: 204 year: 2015 end-page: 256 ident: b0185 article-title: A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 C publication-title: Am. J. Sci. – volume: 27 start-page: 343 year: 2003 end-page: 352 ident: b0380 article-title: Thermodynamics and phase diagram of the salt lake brine system at 298.15 kV. Model for the system Li publication-title: Calphad – volume: 2 start-page: 1648 year: 2018 end-page: 1651 ident: b0505 article-title: Lithium metal extraction from seawater publication-title: Joule – volume: 31 start-page: 683687 year: 1981 ident: b0175 article-title: The adsorption of lithium onto alumina from solutions of mixed chlorides: effects of temperature and electrolyte control publication-title: J. Chem. Tech. Biotechnol. – volume: 38 start-page: 173 year: 2006 ident: b0325 article-title: (Solid + liquid) metastable equilibria in quaternary system Li publication-title: J. Chem. Thermodyn. – volume: 61 start-page: 3311 year: 2016 end-page: 3316 ident: b0530 article-title: Solid-liquid equilibrium on the reciprocal aqueous quaternary system Li publication-title: J. Chem. Eng. Data – volume: 27 start-page: 317 year: 1991 end-page: 325 ident: b0015 article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride publication-title: Hydrometallurgy – volume: 61 start-page: 1071 year: 2016 end-page: 1077 ident: b0095 article-title: Phase equilibria in the ternary systems Li publication-title: J. Chem. Eng. Data – volume: 30 start-page: 676 year: 2014 end-page: 680 ident: b0215 article-title: Isothermal evaporation of quaternary system Li publication-title: Chem. Res. Chin. Univ. – reference: . – volume: 90 start-page: 767 year: 2016 end-page: 768 ident: b0240 article-title: Lithium resources in brine of China's Sea salt field operations publication-title: Acta Geol. Sin-Engl. – volume: 59 start-page: 903 year: 2014 end-page: 911 ident: b0455 article-title: Metastable phase equilibrium of the quinary aqueous system Li publication-title: J. Chem. Eng. Data – volume: 32 start-page: 1248 year: 2013 end-page: 1252 ident: b0525 article-title: Comparative study of lithium extraction from the carbonate brine between solar pond and laboratory simulation experiment publication-title: Chem. Indust. Eng. Progr. – volume: 43 start-page: 1 year: 2014 end-page: 4 ident: b0025 article-title: Present situation of the process and technique of lithium recovery from brine around the world publication-title: J. Salt Chem. Ind. – volume: 90 start-page: 3005 year: 1986 end-page: 3009 ident: b0305 article-title: Thermodynamics of multicomponent, miscible, ionic systems: theory and equations publication-title: J. Phys. Chem. – reference: Xu, H., Li, X., Shi, X., Chen, B., 2006. A method for magnesium and lithium recovery from the salt lake brine. – volume: 187 start-page: 125 year: 2019 end-page: 133 ident: b0600 article-title: A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine publication-title: Hydrometallurgy – volume: 169 start-page: 31 year: 2017 end-page: 40 ident: b0285 article-title: Modelling of column lithium desorption from Li publication-title: Hydrometallurgy – volume: 51 start-page: 13481 year: 2017 end-page: 13486 ident: b0290 article-title: Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents publication-title: Environ. Sci. Technol. – volume: 102 start-page: 2155 year: 1998 end-page: 2171 ident: b0045 article-title: Thermodynamic model of the system H publication-title: J. Phys. Chem. A – reference: Wang, R., Wang, J., Wang, X., Zhong, Q., Gao, G., 2005. A method for extracting lithium carbonate from brine with a high Mg/Li mass ratio, China. – volume: 54 start-page: 2054 year: 2009 end-page: 2059 ident: b0550 article-title: Solubility and density measurements of concentrated Li publication-title: J. Chem. Eng. Data – volume: 52 start-page: 164 year: 2007 end-page: 167 ident: b0570 article-title: Study on the metastable equilibria of the salt lake brine system Li publication-title: J. Chem. Eng. Data – volume: 110 start-page: 104 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0035 article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs) publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.04.008 – volume: 16 start-page: 1735 year: 2012 ident: 10.1016/j.mineng.2019.105868_b0125 article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2011.11.023 – volume: 89 start-page: 119 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0040 article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.01.010 – volume: 3 start-page: 593 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0360 article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook publication-title: Environ. Sci.: Water Res. Technol. – ident: 10.1016/j.mineng.2019.105868_b0010 – volume: 61 start-page: 1071 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0095 article-title: Phase equilibria in the ternary systems Li2B4O7 – MgB4O7 – H2O and K2B4O7 – MgB4O7 – H2O at 273 K publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.5b00570 – volume: 58 start-page: 455 year: 2013 ident: 10.1016/j.mineng.2019.105868_b0220 article-title: Solubility of the aqueous reciprocal quaternary system Li+, Na+ // CO32–, SO42– - H2O at 273.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/je301166y – volume: 96 start-page: 3513 year: 1992 ident: 10.1016/j.mineng.2019.105868_b0055 article-title: Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes publication-title: J. Phys. Chem. doi: 10.1021/j100187a061 – volume: 31 start-page: 683687 year: 1981 ident: 10.1016/j.mineng.2019.105868_b0175 article-title: The adsorption of lithium onto alumina from solutions of mixed chlorides: effects of temperature and electrolyte control publication-title: J. Chem. Tech. Biotechnol. – volume: 45 start-page: 15 year: 2013 ident: 10.1016/j.mineng.2019.105868_b0610 article-title: Study on phase equilibrium of ternary system Li+, K+ // borate - H2O at 348 K (in Chinese) publication-title: Inorg. Chem. Ind. – volume: 11 start-page: 7 year: 1994 ident: 10.1016/j.mineng.2019.105868_b0310 article-title: Study on the phase diagram and solution properties for the quaternary system Li+, K+ // Cl−, SO42− − H2O at 323 K, 348 K publication-title: Chin. J. Appl. Chem. doi: 10.3724/j.issn.1000-0518.1994.1.7 – volume: 187 start-page: 125 year: 2019 ident: 10.1016/j.mineng.2019.105868_b0600 article-title: A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.05.019 – volume: 634–638 start-page: 126 year: 2013 ident: 10.1016/j.mineng.2019.105868_b0500 article-title: Studies on the interaction mechanism between lithium chloride and amorphous Al(OH)3 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.634-638.126 – volume: 178 start-page: 283 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0470 article-title: Thermodynamic study on recovery of lithium using phosphate precipitation method publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.05.001 – volume: 60 start-page: 163 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0200 article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. III. Li2SO4+H2O, Na2SO4+H2O, K2SO4+H2O, MgSO4+H2O and CaSO4+H2O systems publication-title: Calphad doi: 10.1016/j.calphad.2018.01.002 – volume: 23 start-page: 7 year: 2009 ident: 10.1016/j.mineng.2019.105868_b0565 article-title: An experimental study on the metastable equilibrium in quaternary system Li+, K+ // SO42−, B4O72− − H2O at 273 K publication-title: J. Chem. Eng. Chin. Univ. – volume: 334 start-page: 34 year: 2009 ident: 10.1016/j.mineng.2019.105868_b0445 article-title: Study on Li+ uptake by lithium ion-sieve via the pH technique publication-title: Colloid. Surf. A doi: 10.1016/j.colsurfa.2008.09.050 – ident: 10.1016/j.mineng.2019.105868_b0110 – volume: 427 start-page: 931 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0260 article-title: Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone publication-title: Appl. Surf. Sci doi: 10.1016/j.apsusc.2017.08.016 – volume: 27 start-page: 317 year: 1991 ident: 10.1016/j.mineng.2019.105868_b0015 article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride publication-title: Hydrometallurgy doi: 10.1016/0304-386X(91)90056-R – volume: 90 start-page: 3009 year: 1986 ident: 10.1016/j.mineng.2019.105868_b0345 article-title: Thermodynamics of multicomponent, miscible ionic systems: the system lithium nitrate-potassium nitrate-water publication-title: J. Phys. Chem. doi: 10.1021/j100404a043 – volume: 160 start-page: 106 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0415 article-title: Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.12.008 – volume: 158 start-page: 221 year: 2003 ident: 10.1016/j.mineng.2019.105868_b0155 article-title: Contribution to the lithium recovery from brine publication-title: Desalination doi: 10.1016/S0011-9164(03)00455-7 – volume: 96 start-page: 9470 year: 1992 ident: 10.1016/j.mineng.2019.105868_b0060 article-title: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes publication-title: J. Phys. Chem. doi: 10.1021/j100202a074 – volume: 90 start-page: 1 year: 2008 ident: 10.1016/j.mineng.2019.105868_b0150 article-title: Lithium recovery from highly concentrated solutions: response surface methodology (RSM) process parameters optimization publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.09.005 – volume: 315 start-page: 204 year: 2015 ident: 10.1016/j.mineng.2019.105868_b0185 article-title: A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 C publication-title: Am. J. Sci. doi: 10.2475/03.2015.02 – volume: 18 start-page: 343 year: 2012 ident: 10.1016/j.mineng.2019.105868_b0100 article-title: The 273.15-K-isothermal evaporation experiment of lithium brine from the Zhabei Salt Lake, Tibet, and its geochemical significance publication-title: Aquat. Geochem. doi: 10.1007/s10498-012-9168-1 – volume: 97 start-page: 473 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0140 article-title: Electrical conductivity of hydrothermally synthesized sodium lithium magnesium silicate publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2017.09.048 – volume: 6 start-page: 269 year: 1981 ident: 10.1016/j.mineng.2019.105868_b0080 article-title: Extraction of lithium from the dead sea publication-title: Hydrometallurgy doi: 10.1016/0304-386X(81)90044-X – volume: 403 start-page: 128 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0275 article-title: Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes publication-title: Desalination doi: 10.1016/j.desal.2016.05.010 – volume: 100 start-page: 73 year: 1995 ident: 10.1016/j.mineng.2019.105868_b0295 article-title: Study of Li+ adsorption onto polymeric aluminium (III) hydroxide for application in the treatment of geothermal waters publication-title: Colloid. Surf. A doi: 10.1016/0927-7757(95)03185-G – volume: 27 start-page: 343 year: 2003 ident: 10.1016/j.mineng.2019.105868_b0380 article-title: Thermodynamics and phase diagram of the salt lake brine system at 298.15 kV. Model for the system Li+, Na+, K+, Mg2+/Cl-, SO42–-H2O and its applications publication-title: Calphad doi: 10.1016/j.calphad.2004.02.001 – volume: 6 start-page: 47 year: 2008 ident: 10.1016/j.mineng.2019.105868_b0555 article-title: Study on metastable phase equilibrium of quaternary system Li+, K+ // CO32−, B4O72− − H2O at 273 K (in chinese) publication-title: Chem. Eng. – volume: 61 start-page: 3311 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0530 article-title: Solid-liquid equilibrium on the reciprocal aqueous quaternary system Li+, Mg2+ // Cl–, and Borate – H2O at 323 K publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.6b00359 – volume: 51 start-page: 1 year: 2015 ident: 10.1016/j.mineng.2019.105868_b0195 article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. I. LiCl+H2O system publication-title: Calphad doi: 10.1016/j.calphad.2015.05.001 – volume: 56 start-page: 2569 year: 2011 ident: 10.1016/j.mineng.2019.105868_b0545 article-title: Metastable phase equilibrium in the aqueous quaternary system (Li2SO4 + Na2SO4 + Li2B4O7 + Na2B4O7 + H2O) at 273.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/je200091k – year: 2017 ident: 10.1016/j.mineng.2019.105868_b0395 article-title: Solid-liquid phase equilibria of the aqueous systems containing lithium, magnesium and borate ions – volume: 43 start-page: 1 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0025 article-title: Present situation of the process and technique of lithium recovery from brine around the world publication-title: J. Salt Chem. Ind. – volume: 28 start-page: 469 year: 1978 ident: 10.1016/j.mineng.2019.105868_b0300 article-title: Recovery of lithium from Dead Sea brines publication-title: J. Appl. Chem. Biotech. – volume: 2 start-page: 1648 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0505 article-title: Lithium metal extraction from seawater publication-title: Joule doi: 10.1016/j.joule.2018.07.006 – volume: 138 start-page: 93 year: 2013 ident: 10.1016/j.mineng.2019.105868_b0420 article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.05.013 – volume: 184 start-page: 594 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0440 article-title: A review on in situ phytoremediation of mine tailings publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.06.025 – year: 2017 ident: 10.1016/j.mineng.2019.105868_b0425 – ident: 10.1016/j.mineng.2019.105868_b0615 – volume: 1 start-page: 115 year: 1963 ident: 10.1016/j.mineng.2019.105868_b0180 article-title: Process for the extraction of lithium from dead sea solutions publication-title: Israel J. Chem. doi: 10.1002/ijch.196300021 – volume: 66 start-page: 1815 year: 2008 ident: 10.1016/j.mineng.2019.105868_b0515 article-title: Comparison of thermodynamic models in high-solubility salt+H2O systems Ⅰ: Binary systems publication-title: Acta Chim. Sin. – volume: 25 start-page: 3484 year: 2015 ident: 10.1016/j.mineng.2019.105868_b0245 article-title: Extraction of lithium from salt lake brine by aluminum-based alloys publication-title: T. Nonferr. Metal. Soc. doi: 10.1016/S1003-6326(15)64032-8 – volume: 39 start-page: 18 year: 2010 ident: 10.1016/j.mineng.2019.105868_b0475 article-title: Study on phase equilibrium of the quaternary system K2B4O7 +Li2B4O7 + MgB4O7 − H2O at 288 K publication-title: J. Salt Chem. Ind. – volume: 176 start-page: 73 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0255 article-title: Separating lithium and magnesium in brine by aluminum-based materials publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.01.005 – volume: 40 start-page: 1079 year: 1995 ident: 10.1016/j.mineng.2019.105868_b0050 article-title: Thermodynamic properties of aqueous (NH4)2SO4 to high supersaturation as a function of temperature publication-title: J. Chem. Eng. Data doi: 10.1021/je00021a011 – volume: 59 start-page: 4173 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0410 article-title: Stable phase equilibrium of aqueous quaternary system Li+, K+, Mg2+ // Borate – H2O at 348 K publication-title: J. Chem. Eng. Data doi: 10.1021/je5008108 – year: 2016 ident: 10.1016/j.mineng.2019.105868_b0430 – volume: 59 start-page: 903 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0455 article-title: Metastable phase equilibrium of the quinary aqueous system Li++K++Cl–+CO32–+B4O72–+H2O at 273.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/je4010867 – volume: 48 start-page: 13 year: 2015 ident: 10.1016/j.mineng.2019.105868_b0540 article-title: Predictions on the solubility and equiscale line of water content for the quaternary system (Li+Na+Cl+SO4+H2O) at 298.15 K publication-title: Calphad doi: 10.1016/j.calphad.2014.10.003 – volume: 19 start-page: 290 year: 2012 ident: 10.1016/j.mineng.2019.105868_b0495 article-title: Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine publication-title: Int. J. Min. Met. Mater. doi: 10.1007/s12613-012-0553-y – volume: 173 start-page: 63 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0355 article-title: Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4 * 2TBP] as extractant: thermodynamics, kinetics and processes publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.08.003 – volume: 46 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0350 article-title: IUPAC-NIST Solubility Data Series. 104. Lithium sulfate and its double salts in aqueous solutions publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.4977190 – volume: 43 start-page: 1 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0020 article-title: Present situation of the process and technique of lithium recovery from brine around the world publication-title: J. Salt Chem. Ind. – volume: 53 start-page: 16502 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0490 article-title: Systemic and direct production of battery-grade lithium carbonate from a Saline Lake publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie502749n – volume: 172 start-page: 388 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0405 article-title: Recovery and recycling of lithium: a review publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.08.031 – volume: 62 start-page: 161 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0225 article-title: Lithium recovery from aqueous resources and batteries: a brief review publication-title: Johnson Matthey Tech. doi: 10.1595/205651317X696676 – volume: 62 start-page: 253 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0460 article-title: Solid-liquid phase equilibrium in the ternary systems (Li2B4O7 + MgB4O7 + H2O) and (Na2B4O7 + MgB4O7 + H2O) at 298.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.6b00626 – volume: 76 start-page: 551 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0160 article-title: Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6885-1 – volume: 11 start-page: 1 year: 2003 ident: 10.1016/j.mineng.2019.105868_b0375 article-title: Parameters of Pitzer model for the salt lake brine system and their applications II. Prediction of solubilities in the system Li+, Na+, K+, Mg2+/Cl-, SO42-–H2O publication-title: J. Salt Lake Res. – volume: 1 start-page: 23 year: 2003 ident: 10.1016/j.mineng.2019.105868_b0635 article-title: Progress in technology for extracting lithium from Li-bearing brine resources publication-title: Multipurpose Utilization Miner. Resour. – volume: 67 start-page: 74 year: 2013 ident: 10.1016/j.mineng.2019.105868_b0030 article-title: Solubility of Li2CO3 in Na–K–Li–Cl brines from 20 to 90°C publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2013.07.024 – ident: 10.1016/j.mineng.2019.105868_b0315 – ident: 10.1016/j.mineng.2019.105868_b0450 – volume: 23 start-page: 1411 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0400 article-title: Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+ publication-title: J. Porous Mat. doi: 10.1007/s10934-016-0201-4 – ident: 10.1016/j.mineng.2019.105868_b0510 – volume: 44 start-page: 2903 year: 2005 ident: 10.1016/j.mineng.2019.105868_b0065 article-title: Enrichment of bromine in sea-bittern with recovery of other marine chemicals publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049130x – volume: 89 start-page: 1572 year: 2015 ident: 10.1016/j.mineng.2019.105868_b0210 article-title: The phase diagram and physicochemical properties of the quaternary system Li+, Rb+, Mg2+ // borate - H2O at 348 K publication-title: Russ. J. Phys. Chem. A+ doi: 10.1134/S0036024415090149 – volume: 12 start-page: 1 year: 2004 ident: 10.1016/j.mineng.2019.105868_b0385 article-title: Parameters of Pitzer model for the salt lake brine system and their applications III. Applications in process technology in the system Li+, Na+, K+, Mg2+/Cl-, SO42-–H2O publication-title: J. Salt Lake Res. – volume: 35 start-page: 1513 year: 2003 ident: 10.1016/j.mineng.2019.105868_b0320 article-title: (Liquid + solid) metastable equilibria in quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O at T=288 K for Zhabuye salt lake publication-title: J. Chem. Thermodyn. doi: 10.1016/S0021-9614(03)00122-8 – volume: 43 start-page: 81 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0235 article-title: Research on distribution and extraction technology of lithium resources publication-title: Guangdong Chem./Indust. – ident: 10.1016/j.mineng.2019.105868_b0485 – volume: 172 start-page: 473 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0335 article-title: Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents publication-title: Sep. Purifi. Technol. doi: 10.1016/j.seppur.2016.08.034 – ident: 10.1016/j.mineng.2019.105868_b0120 – volume: 32 start-page: 1248 year: 2013 ident: 10.1016/j.mineng.2019.105868_b0525 article-title: Comparative study of lithium extraction from the carbonate brine between solar pond and laboratory simulation experiment publication-title: Chem. Indust. Eng. Progr. – volume: 25 start-page: 329 year: 2001 ident: 10.1016/j.mineng.2019.105868_b0365 article-title: Thermodynamics and phase diagram of the Salt Lake Brine System at 25°C I. Li+, K+, Mg2+/Cl−, SO42−, -H2O system publication-title: Calphad doi: 10.1016/S0364-5916(01)00053-0 – volume: 38 start-page: 173 year: 2006 ident: 10.1016/j.mineng.2019.105868_b0325 article-title: (Solid + liquid) metastable equilibria in quaternary system Li2SO4 + K2SO4 + Li2B4O7 + K2B4O7 + H2O at 288 K publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2005.04.002 – volume: 120 start-page: 621 year: 1999 ident: 10.1016/j.mineng.2019.105868_b0165 article-title: Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(99)80567-9 – volume: 90 start-page: 767 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0240 article-title: Lithium resources in brine of China's Sea salt field operations publication-title: Acta Geol. Sin-Engl. doi: 10.1111/1755-6724.12711 – volume: 175 start-page: 102 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0435 article-title: Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.10.017 – volume: 53 start-page: 2496 year: 2008 ident: 10.1016/j.mineng.2019.105868_b0075 article-title: Metastable phase equilibrium in the aqueous quaternary system (Li2SO4 + K2SO4 + MgSO4 + H2O) at 288.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/je800245m – volume: 172 start-page: 168 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0170 article-title: Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.08.006 – ident: 10.1016/j.mineng.2019.105868_b0625 – ident: 10.1016/j.mineng.2019.105868_b0115 – volume: 169 start-page: 31 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0285 article-title: Modelling of column lithium desorption from Li+-loaded adsorbent obtained by adsorption from salt brine publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.11.012 – volume: 54 start-page: 2054 year: 2009 ident: 10.1016/j.mineng.2019.105868_b0550 article-title: Solubility and density measurements of concentrated Li2B4O7 + Na2B4O7 + K2B4O7 + Li2SO4 + Na2SO4 + K2SO4 + H2O solution at 273.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/je8009013 – volume: 639 start-page: 1188 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0085 article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.223 – volume: 188 start-page: 167 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0585 article-title: Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.07.028 – volume: 90 start-page: 3005 year: 1986 ident: 10.1016/j.mineng.2019.105868_b0305 article-title: Thermodynamics of multicomponent, miscible, ionic systems: theory and equations publication-title: J. Phys. Chem. doi: 10.1021/j100404a042 – volume: 59 start-page: 821 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0595 article-title: Equilibria in the quaternary system Na+, K+ // Cl–, B4O72– – H2O at 323 K publication-title: J. Chem. Eng. Data doi: 10.1021/je400956h – volume: 128 start-page: 141 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0605 article-title: Systematic review of feldspar beneficiation and its comprehensive application publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.08.043 – volume: 11 start-page: 1 year: 2003 ident: 10.1016/j.mineng.2019.105868_b0370 article-title: Parameters of Pitzer model for the salt lake brine system and their applications I. Applications in physical chemistry for the system Li+, Na+, K+, Mg2+/Cl-, SO42-–H2O publication-title: J. Salt Lake Res. – volume: 45 start-page: 1008 year: 2018 ident: 10.1016/j.mineng.2019.105868_b0580 article-title: Stable phase equilibrium of the aqueous quaternary system Li+, K+, Mg2+//Borate - H2O at 323 K publication-title: Chiang Mai J. Sci. – year: 2010 ident: 10.1016/j.mineng.2019.105868_b0130 – volume: 44 start-page: 15721 year: 2015 ident: 10.1016/j.mineng.2019.105868_b0520 article-title: The structure of H2TiO3-a short discussion on “Lithium recovery from salt lake brine by H2TiO3” publication-title: Dalton Trans. doi: 10.1039/C4DT03689A – volume: 7 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0390 article-title: Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake publication-title: Minerals-Basel – volume: 57 start-page: 3672 year: 2012 ident: 10.1016/j.mineng.2019.105868_b0560 article-title: Study on the solubility of the aqueous quaternary system Li2SO4 + Na2SO4 + K2SO4 + H2O at 273.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/je300874c – volume: 171 start-page: 27 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0465 article-title: Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.04.007 – volume: 1985 start-page: 345 year: 1986 ident: 10.1016/j.mineng.2019.105868_b0640 article-title: Application of previously precipitated Active Aluminium Hydroxide (AAH) for removal of refractory substances from wastewater publication-title: Chem. Protect. Environ. – volume: 35 start-page: 347 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0190 article-title: Adsorptive Li+ mining from liquid resources by H2TiO3: equilibrium, kinetics, thermodynamics, and mechanisms publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.01.015 – ident: 10.1016/j.mineng.2019.105868_b0630 – volume: 6 start-page: 106980 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0330 article-title: Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium publication-title: RSC Adv. doi: 10.1039/C6RA14230C – volume: 210 start-page: 885 year: 2019 ident: 10.1016/j.mineng.2019.105868_b0340 article-title: Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane publication-title: Sep. Purifi. Technol. doi: 10.1016/j.seppur.2018.09.006 – volume: 114 start-page: 11595 year: 2010 ident: 10.1016/j.mineng.2019.105868_b0090 article-title: Temperature dependent thermodynamic model of the system H+−NH4+−Na+−SO42−−NO3−−Cl−−H2O publication-title: J. Phys. Chem. A doi: 10.1021/jp101041j – ident: 10.1016/j.mineng.2019.105868_b0590 – volume: 90 start-page: 1195 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0620 article-title: Progress and prospects of Salt Lake Research in China publication-title: Acta Geol. Sin-Engl. doi: 10.1111/1755-6724.12767 – year: 2013 ident: 10.1016/j.mineng.2019.105868_b0070 – ident: 10.1016/j.mineng.2019.105868_b0265 – ident: 10.1016/j.mineng.2019.105868_b0135 – volume: 30 start-page: 676 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0215 article-title: Isothermal evaporation of quaternary system Li+, K+, Mg2+ // Cl− - H2O at 348 K publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-014-3506-3 – volume: 530 start-page: 185 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0270 article-title: Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.02.020 – volume: 61 start-page: 1246 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0535 article-title: Stable phase equilibrium and phase diagram of the quinary system Li+, K+, Rb+, Mg2+ // Borate - H2O at T = 348.15 K publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.5b00888 – start-page: 1 year: 2004 ident: 10.1016/j.mineng.2019.105868_b0105 – volume: 52 start-page: 1859 year: 2007 ident: 10.1016/j.mineng.2019.105868_b0145 article-title: Operating conditions for lithium recovery from natural brines publication-title: Russ. J. Inorg. Chem.+ doi: 10.1134/S0036023607120091 – volume: 51 start-page: 13481 year: 2017 ident: 10.1016/j.mineng.2019.105868_b0290 article-title: Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03464 – volume: 53 start-page: 78 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0205 article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl+H2O, KCl+H2O, MgCl2+H2O and CaCl2+H2O systems publication-title: Calphad doi: 10.1016/j.calphad.2016.03.007 – volume: 51 start-page: 219 year: 2006 ident: 10.1016/j.mineng.2019.105868_b0575 article-title: Liquid−solid metastable equilibria in the quinary system Li+ + K+ + Cl− + CO32− + B4O72− + H2O at T = 288 K publication-title: J. Chem. Eng. Data doi: 10.1021/je050337m – volume: 102 start-page: 2155 year: 1998 ident: 10.1016/j.mineng.2019.105868_b0045 article-title: Thermodynamic model of the system H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15K publication-title: J. Phys. Chem. A doi: 10.1021/jp973043j – volume: 117–118 start-page: 64 year: 2012 ident: 10.1016/j.mineng.2019.105868_b0005 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.02.008 – volume: 288 start-page: 137 year: 2016 ident: 10.1016/j.mineng.2019.105868_b0280 article-title: Modelling of column lithium adsorption from pH-buffered brine using surface Li+/H+ ion exchange reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.11.092 – ident: 10.1016/j.mineng.2019.105868_b0480 – volume: 43 start-page: 16 year: 2014 ident: 10.1016/j.mineng.2019.105868_b0230 article-title: Stable phase equilibrium in the aqueous ternary system Li+, Mg2+ // borate - H2O at 323K publication-title: J. Salt Chem. Ind. – volume: 376 start-page: 35 year: 2015 ident: 10.1016/j.mineng.2019.105868_b0250 article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis publication-title: Desalination doi: 10.1016/j.desal.2015.08.013 – volume: 52 start-page: 164 year: 2007 ident: 10.1016/j.mineng.2019.105868_b0570 article-title: Study on the metastable equilibria of the salt lake brine system Li2SO4 + Na2SO4 + K2SO4 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O at 288 K publication-title: J. Chem. Eng. Data doi: 10.1021/je060334p |
SSID | ssj0005789 |
Score | 2.6294265 |
SecondaryResourceType | review_article |
Snippet | •Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105868 |
SubjectTerms | Comprehensive utilization Green principle Lithium extraction Precipitation Salt-lake brine |
Title | Systematic review of lithium extraction from salt-lake brines via precipitation approaches |
URI | https://dx.doi.org/10.1016/j.mineng.2019.105868 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY_eZbI6lWKpiL7VQvCx5arXdLu3Wo7_dZLNbKoiCx92dQJiZnXyB-b4B4NqnDKsEY0Sk8FBEQoGoJBEKBPUkj32ecMt3fhziwTi6n8STBujVXBjbVlnVflfTy2pdvelU3uzk02ln5CU0wAZuGwhi7laOwR4Rm-U3n1ttHqQcg2eNkbWu6XNlj9fcILnsxTZ4UTvwNrGCqz8dT1tHTv8A7FdYEXbddg5BQ2VHYG9LQfAYPI82SszQsVDgQkMDrV-n6zk0hXfpiAvQ0kjgis0KNGPvCnJL-lvBjymDudW3yCupblhrjKvVCRj3b596A1SNS0DCXNIK423me4LGREtigIemgkWaK60N5MHS_GwswFwoLBLhmS-J4lRpEyE7B5aFvghPQTNbZOoMwFhzFgbcx56ikUpkIkUYMiFiaQLoCb8FwtpLqag2aEdazNK6aewtdb5NrW9T59sWQJtVudPS-MOe1AFIv-VEasr9ryvP_73yAuzaJ9fidwmaxXKtrgzsKHi7zKs22OnePQyGX6kM2tk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT8IwFG0IPKgPxs-In33wtWGfXftIiGQo8AIkxJel7Tqdwlhg-Ptt6YaYGE18XXuT5ra7PU3OOReAe5syLAnGKIiFhbzAFYjGgYccQa2Y-zYnXOudB0McTrzHqT-tgU6lhdG0yrL2m5q-qdbll1aZzVaepq2RRaiDFdxWEES9rbSCvaHdqfw6aLR7T-Hwi-kRbDrh6flIB1QKug3Na67AXPaiOV5U97wl2nP1pxtq59bpHoHDEi7CtlnRMajJ7AQc7JgInoLn0daMGRohClwkUKHr13Q9h6r2Lo12AWolCVyxWYFm7F1CrnV_K_iRMphri4u8dOuGlc24XJ2BSfdh3AlR2TEBCfVOK1TCmW0J6gdJHCjskVDBvITLJFGoB8fqf2MO5kJiQYSlRojkVCZqk3QrWObawj0H9WyRyQsA_YQz1-E2tiT1JIlJLFyXCeHHag8tYTeBW2UpEuUCdVeLWVTxxt4ik9tI5zYyuW0CtI3KjZ3GH_ODagOib8ciUhX_18jLf0fegb1wPOhH_d7w6Qrs6xHD-LsG9WK5ljcKhRT8tjxlnyxx3Yo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+review+of+lithium+extraction+from+salt-lake+brines+via+precipitation+approaches&rft.jtitle=Minerals+engineering&rft.au=Zhang%2C+Ye&rft.au=Hu%2C+Yuehua&rft.au=Wang%2C+Li&rft.au=Sun%2C+Wei&rft.date=2019-08-01&rft.issn=0892-6875&rft.volume=139&rft.spage=105868&rft_id=info:doi/10.1016%2Fj.mineng.2019.105868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2019_105868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |