Systematic review of lithium extraction from salt-lake brines via precipitation approaches

•Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing Li and Mg.•Future research needs on lithium extraction are discussed. Lithium is one of the most important raw materials for the production o...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 139; p. 105868
Main Authors Zhang, Ye, Hu, Yuehua, Wang, Li, Sun, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing Li and Mg.•Future research needs on lithium extraction are discussed. Lithium is one of the most important raw materials for the production of glass, ceramics, nuclear materials, pharmaceuticals, and batteries. Almost 80% of total land-based lithium reserves globally are salt-lake brines. Therefore, lithium should be extracted from salt-lake brines to meet the demand of various industries for lithium resources. Several approaches for lithium extraction have been developed in the past few decades, such as precipitation, ion exchange, adsorption, solvent extraction, and electrolysis. Among these methods, precipitation is the earliest studied and utilized in industrial plants. Furthermore, it has several advantages, such as low cost, green principle, and easy industrialization. This paper reviews the precipitation technology for lithium extraction and the relative mechanism proposed in literature to identify its important parameters. Precipitant dosage, pH value, temperature, and particle size of precipitate are important factors in the process. Economic viability and green principle of various methods are discussed, and potential technologies are suggested. Novel magnesium precipitants appear to be a prospective technology for lithium extraction from brines with high Mg/Li mass ratios. Magnesium precipitation technology also shows great potential in the comprehensive utilization of lithium and magnesium resources. Various precipitation approaches for lithium extraction from brines and perspectives for further investigation are proposed.
AbstractList •Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing Li and Mg.•Future research needs on lithium extraction are discussed. Lithium is one of the most important raw materials for the production of glass, ceramics, nuclear materials, pharmaceuticals, and batteries. Almost 80% of total land-based lithium reserves globally are salt-lake brines. Therefore, lithium should be extracted from salt-lake brines to meet the demand of various industries for lithium resources. Several approaches for lithium extraction have been developed in the past few decades, such as precipitation, ion exchange, adsorption, solvent extraction, and electrolysis. Among these methods, precipitation is the earliest studied and utilized in industrial plants. Furthermore, it has several advantages, such as low cost, green principle, and easy industrialization. This paper reviews the precipitation technology for lithium extraction and the relative mechanism proposed in literature to identify its important parameters. Precipitant dosage, pH value, temperature, and particle size of precipitate are important factors in the process. Economic viability and green principle of various methods are discussed, and potential technologies are suggested. Novel magnesium precipitants appear to be a prospective technology for lithium extraction from brines with high Mg/Li mass ratios. Magnesium precipitation technology also shows great potential in the comprehensive utilization of lithium and magnesium resources. Various precipitation approaches for lithium extraction from brines and perspectives for further investigation are proposed.
ArticleNumber 105868
Author Sun, Wei
Wang, Li
Hu, Yuehua
Zhang, Ye
Author_xml – sequence: 1
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
– sequence: 2
  givenname: Yuehua
  surname: Hu
  fullname: Hu, Yuehua
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  email: li_wang@csu.edu.cn
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
– sequence: 4
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  email: sunmenghu@csu.edu.cn
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD6TYiZPYLJBQxUuqxALYsLEcZ0xd8pJtCv17XNIVC1iNNDP3zp0zQ5Ou7wChc0oWlNDiYrNobQfd2yIlVMRWzgt-hKaUl2kiGGMTNCVcpEnBy_wEzbzfEELykospen3a-QCtClZjB1sLn7g3uLFhbT9aDF_BKR1s32Hj-hZ71YSkUe-AKxcvery1Cg8OtB1sUD97ahhcr_Qa_Ck6NqrxcHaoc_Rye_O8vE9Wj3cPy-tVohkRISlrRYkWeWnqkhSZEVoxU4ExBWNFTfJMpUWlodBckzjhUAkwtSYiJ1xlVGdzdDn6atd778BIfQgTw9tGUiL3lORGjpTknpIcKUUx-yUenG2V2_0nuxplEB-L1Jz02kKnobaRRpB1b_82-AY954kh
CitedBy_id crossref_primary_10_1016_j_hydromet_2021_105578
crossref_primary_10_1016_j_jobe_2025_111862
crossref_primary_10_1016_j_mseb_2024_117220
crossref_primary_10_3390_polym16111520
crossref_primary_10_1016_j_desal_2020_114894
crossref_primary_10_1021_acsaem_1c02654
crossref_primary_10_1016_j_procs_2022_11_323
crossref_primary_10_3390_coatings11070854
crossref_primary_10_1016_j_cjche_2024_01_013
crossref_primary_10_1016_j_seppur_2024_129917
crossref_primary_10_1016_j_ecolind_2022_109256
crossref_primary_10_1021_acssuschemeng_4c08394
crossref_primary_10_57634_RCR5074
crossref_primary_10_1038_s44359_025_00036_2
crossref_primary_10_1016_j_jece_2024_115276
crossref_primary_10_1016_j_memsci_2024_122759
crossref_primary_10_1016_j_seppur_2021_118756
crossref_primary_10_1039_D4RA02757D
crossref_primary_10_3390_min13101303
crossref_primary_10_3389_fenrg_2022_895681
crossref_primary_10_1016_j_cej_2024_155349
crossref_primary_10_1016_j_resconrec_2024_107980
crossref_primary_10_2166_wpt_2021_004
crossref_primary_10_1016_j_mineng_2020_106743
crossref_primary_10_1016_j_ccr_2024_215727
crossref_primary_10_1016_j_jece_2024_113680
crossref_primary_10_1016_j_seppur_2021_119134
crossref_primary_10_1016_j_desal_2022_116261
crossref_primary_10_1016_j_ces_2023_119400
crossref_primary_10_1016_j_desal_2022_115847
crossref_primary_10_1080_19392699_2023_2174109
crossref_primary_10_1016_j_memsci_2021_119542
crossref_primary_10_1080_12269328_2024_2338087
crossref_primary_10_1016_j_gsf_2022_101485
crossref_primary_10_2139_ssrn_4144353
crossref_primary_10_1016_j_pmatsci_2022_100958
crossref_primary_10_1016_j_micromeso_2024_113403
crossref_primary_10_1007_s11426_024_2235_6
crossref_primary_10_1016_j_hydromet_2023_106217
crossref_primary_10_1016_j_desal_2024_118010
crossref_primary_10_1016_j_surfin_2024_105697
crossref_primary_10_1016_j_seppur_2021_118613
crossref_primary_10_1016_j_gsme_2024_05_002
crossref_primary_10_1007_s40831_023_00738_6
crossref_primary_10_1007_s10853_020_05147_8
crossref_primary_10_2174_0124055204266229230927035347
crossref_primary_10_1016_j_comptc_2023_114139
crossref_primary_10_1016_j_jiec_2025_01_014
crossref_primary_10_1038_s44221_024_00326_2
crossref_primary_10_1016_j_cherd_2024_09_028
crossref_primary_10_1016_j_hydromet_2021_105772
crossref_primary_10_1149_1945_7111_acc360
crossref_primary_10_1016_j_cej_2024_154341
crossref_primary_10_1016_j_seppur_2023_126162
crossref_primary_10_1126_sciadv_adq9823
crossref_primary_10_1039_D2TA01131J
crossref_primary_10_1016_j_desal_2024_117967
crossref_primary_10_1016_j_desal_2024_118016
crossref_primary_10_1021_acsestwater_3c00013
crossref_primary_10_1016_j_seppur_2024_129439
crossref_primary_10_3390_batteries10110379
crossref_primary_10_1016_j_desal_2022_116093
crossref_primary_10_1080_08827508_2025_2473088
crossref_primary_10_3390_separations10010024
crossref_primary_10_1021_acssuschemeng_2c06301
crossref_primary_10_1016_j_cep_2024_110079
crossref_primary_10_3390_membranes12111042
crossref_primary_10_1016_j_jelechem_2023_117487
crossref_primary_10_1016_j_seppur_2022_121309
crossref_primary_10_1016_j_desal_2020_114621
crossref_primary_10_1016_j_desal_2024_117732
crossref_primary_10_1016_j_seppur_2022_122997
crossref_primary_10_1016_j_cej_2024_153807
crossref_primary_10_1016_j_advmem_2024_100093
crossref_primary_10_1016_j_seppur_2021_119177
crossref_primary_10_1002_aws2_70016
crossref_primary_10_1016_j_desal_2022_116186
crossref_primary_10_1016_j_ccr_2024_215923
crossref_primary_10_3389_fceng_2022_1008680
crossref_primary_10_1002_crat_201900169
crossref_primary_10_1016_j_memsci_2024_123558
crossref_primary_10_1016_j_hydromet_2021_105759
crossref_primary_10_1021_acs_est_3c05935
crossref_primary_10_1007_s13369_023_07870_1
crossref_primary_10_1016_j_desal_2022_115767
crossref_primary_10_1016_j_jece_2023_111814
crossref_primary_10_1016_j_desal_2023_117109
crossref_primary_10_1016_j_mineng_2023_108293
crossref_primary_10_1016_j_jcis_2022_07_116
crossref_primary_10_1016_j_rineng_2025_104190
crossref_primary_10_1080_07366299_2025_2452890
crossref_primary_10_1016_j_jiec_2022_05_053
crossref_primary_10_1002_aws2_70009
crossref_primary_10_1021_acs_energyfuels_2c04113
crossref_primary_10_1016_j_desal_2022_116196
crossref_primary_10_1002_adma_202300913
crossref_primary_10_1002_smll_202406951
crossref_primary_10_1016_j_mineng_2025_109179
crossref_primary_10_1016_j_desal_2020_114883
crossref_primary_10_1016_j_jpowsour_2023_233798
crossref_primary_10_1007_s12598_024_02760_3
crossref_primary_10_1007_s11157_019_09517_w
crossref_primary_10_1016_j_seppur_2024_126375
crossref_primary_10_1016_j_desal_2024_117999
crossref_primary_10_1016_j_hydromet_2024_106282
crossref_primary_10_1016_j_desal_2020_114522
crossref_primary_10_1016_j_jiec_2019_09_002
crossref_primary_10_1007_s11696_023_02779_3
crossref_primary_10_1177_07482337231156670
crossref_primary_10_3390_ma16114190
crossref_primary_10_3390_en18061359
crossref_primary_10_3390_su152216016
crossref_primary_10_1073_pnas_2022197118
crossref_primary_10_1016_j_desal_2025_118574
crossref_primary_10_1016_j_desal_2023_116395
crossref_primary_10_1016_j_jwpe_2023_104148
crossref_primary_10_1016_j_mineng_2022_107468
crossref_primary_10_1016_j_memsci_2022_120733
crossref_primary_10_61186_jrr_2307_1017
crossref_primary_10_1021_acs_energyfuels_4c00732
crossref_primary_10_1016_j_advmem_2023_100065
crossref_primary_10_3390_met14030345
crossref_primary_10_1002_aic_18703
crossref_primary_10_1021_acsapm_3c01994
crossref_primary_10_1016_j_jscs_2022_101535
crossref_primary_10_1021_acs_jpcc_3c05676
crossref_primary_10_1016_j_dyepig_2020_108896
crossref_primary_10_1016_j_desal_2022_116201
crossref_primary_10_1016_j_desal_2024_117659
crossref_primary_10_1186_s40643_021_00384_4
crossref_primary_10_1016_j_desal_2022_116205
crossref_primary_10_1016_j_seppur_2021_119099
crossref_primary_10_1007_s10853_023_08327_4
crossref_primary_10_1039_D3EW00769C
crossref_primary_10_1016_j_mtcomm_2025_111817
crossref_primary_10_1002_tcr_202000055
crossref_primary_10_1016_j_desal_2024_118515
crossref_primary_10_1002_cjce_25537
crossref_primary_10_1016_j_desal_2024_118516
crossref_primary_10_1016_j_desal_2020_114710
crossref_primary_10_1021_acsenvironau_4c00061
crossref_primary_10_1016_j_ces_2020_116019
crossref_primary_10_31466_kfbd_1427540
crossref_primary_10_1080_08827508_2022_2047041
crossref_primary_10_1016_j_jece_2025_115510
crossref_primary_10_3390_resources14020027
crossref_primary_10_1039_D1MA00216C
crossref_primary_10_1002_smll_202306530
crossref_primary_10_1021_acsestengg_3c00167
crossref_primary_10_1016_j_cej_2024_155043
crossref_primary_10_3390_min10090773
crossref_primary_10_1016_j_jechem_2023_10_005
crossref_primary_10_1016_j_cej_2024_158315
crossref_primary_10_20964_2022_12_103
crossref_primary_10_3390_nano13091471
crossref_primary_10_1002_biot_202000151
crossref_primary_10_1016_j_psep_2023_08_069
crossref_primary_10_1007_s10311_023_01669_0
crossref_primary_10_1016_j_jclepro_2020_124905
crossref_primary_10_1016_j_jclepro_2022_133773
crossref_primary_10_1016_j_desal_2024_117677
crossref_primary_10_1016_j_susmat_2024_e00923
crossref_primary_10_1021_acs_iecr_3c03069
crossref_primary_10_1016_j_seppur_2022_122485
crossref_primary_10_1016_j_memsci_2024_122728
crossref_primary_10_1016_j_memsci_2023_121358
crossref_primary_10_1177_17475198231159051
crossref_primary_10_1016_j_memsci_2024_122844
crossref_primary_10_3390_membranes13020252
crossref_primary_10_3390_resources11100089
crossref_primary_10_1080_19392699_2022_2083611
crossref_primary_10_1016_j_seppur_2022_120626
crossref_primary_10_1016_j_desal_2021_115302
crossref_primary_10_1016_j_susmat_2024_e01108
crossref_primary_10_1007_s10853_020_05019_1
crossref_primary_10_1016_S1003_6326_23_66428_3
crossref_primary_10_1021_acs_iecr_1c02361
crossref_primary_10_1016_j_cej_2024_159061
crossref_primary_10_1021_acs_jpcc_4c06793
crossref_primary_10_1016_j_ccr_2024_215971
crossref_primary_10_1016_j_bej_2024_109615
crossref_primary_10_1016_j_mineng_2023_108333
crossref_primary_10_1016_j_sctalk_2024_100367
crossref_primary_10_1039_D4NJ02205J
crossref_primary_10_1016_j_cej_2024_153401
crossref_primary_10_1016_j_seppur_2024_128058
crossref_primary_10_1149_1945_7111_ac1cc5
crossref_primary_10_1016_j_chroma_2024_464712
crossref_primary_10_1016_j_jclepro_2023_138547
crossref_primary_10_1016_j_desal_2025_118766
crossref_primary_10_1016_j_hazadv_2023_100347
crossref_primary_10_1016_j_desal_2025_118764
crossref_primary_10_3390_min9090511
crossref_primary_10_1016_j_jwpe_2024_106512
crossref_primary_10_1038_s41893_024_01435_2
crossref_primary_10_1016_j_fluid_2022_113696
crossref_primary_10_1016_j_fuel_2020_117319
crossref_primary_10_1016_j_mineng_2022_107713
crossref_primary_10_1016_j_desal_2019_114187
crossref_primary_10_1016_j_hydromet_2020_105515
crossref_primary_10_3390_pr11020418
crossref_primary_10_1016_j_mineng_2023_108210
crossref_primary_10_1016_j_seppur_2023_124841
crossref_primary_10_1021_acsaenm_3c00196
crossref_primary_10_1016_j_cej_2025_159220
crossref_primary_10_1016_j_seppur_2024_130358
crossref_primary_10_3390_membranes11090697
crossref_primary_10_1016_j_jmrt_2021_04_073
crossref_primary_10_3390_su17010121
crossref_primary_10_1016_j_cej_2024_155009
crossref_primary_10_1016_j_cplett_2022_139371
crossref_primary_10_1016_j_electacta_2023_143519
crossref_primary_10_1016_j_seppur_2024_129806
crossref_primary_10_1016_j_seppur_2023_126237
crossref_primary_10_1088_1755_1315_1275_1_012011
crossref_primary_10_1016_j_desal_2024_118445
Cites_doi 10.1016/j.mineng.2017.04.008
10.1016/j.rser.2011.11.023
10.1016/j.mineng.2016.01.010
10.1021/acs.jced.5b00570
10.1021/je301166y
10.1021/j100187a061
10.3724/j.issn.1000-0518.1994.1.7
10.1016/j.hydromet.2019.05.019
10.4028/www.scientific.net/AMR.634-638.126
10.1016/j.hydromet.2018.05.001
10.1016/j.calphad.2018.01.002
10.1016/j.colsurfa.2008.09.050
10.1016/j.apsusc.2017.08.016
10.1016/0304-386X(91)90056-R
10.1021/j100404a043
10.1016/j.hydromet.2015.12.008
10.1016/S0011-9164(03)00455-7
10.1021/j100202a074
10.1016/j.hydromet.2007.09.005
10.2475/03.2015.02
10.1007/s10498-012-9168-1
10.1016/j.materresbull.2017.09.048
10.1016/0304-386X(81)90044-X
10.1016/j.desal.2016.05.010
10.1016/0927-7757(95)03185-G
10.1016/j.calphad.2004.02.001
10.1021/acs.jced.6b00359
10.1016/j.calphad.2015.05.001
10.1021/je200091k
10.1016/j.joule.2018.07.006
10.1016/j.hydromet.2013.05.013
10.1016/j.chemosphere.2017.06.025
10.1002/ijch.196300021
10.1016/S1003-6326(15)64032-8
10.1016/j.hydromet.2018.01.005
10.1021/je00021a011
10.1021/je5008108
10.1021/je4010867
10.1016/j.calphad.2014.10.003
10.1007/s12613-012-0553-y
10.1016/j.hydromet.2017.08.003
10.1063/1.4977190
10.1021/ie502749n
10.1016/j.seppur.2016.08.031
10.1595/205651317X696676
10.1021/acs.jced.6b00626
10.1007/s12665-017-6885-1
10.1016/j.jct.2013.07.024
10.1007/s10934-016-0201-4
10.1021/ie049130x
10.1134/S0036024415090149
10.1016/S0021-9614(03)00122-8
10.1016/j.seppur.2016.08.034
10.1016/S0364-5916(01)00053-0
10.1016/j.jct.2005.04.002
10.1016/S0167-2991(99)80567-9
10.1111/1755-6724.12711
10.1016/j.hydromet.2017.10.017
10.1021/je800245m
10.1016/j.seppur.2016.08.006
10.1016/j.hydromet.2016.11.012
10.1021/je8009013
10.1016/j.scitotenv.2018.05.223
10.1016/j.seppur.2017.07.028
10.1021/j100404a042
10.1021/je400956h
10.1016/j.mineng.2018.08.043
10.1039/C4DT03689A
10.1021/je300874c
10.1016/j.hydromet.2017.04.007
10.1016/j.jiec.2016.01.015
10.1039/C6RA14230C
10.1016/j.seppur.2018.09.006
10.1021/jp101041j
10.1111/1755-6724.12767
10.1007/s40242-014-3506-3
10.1016/j.memsci.2017.02.020
10.1021/acs.jced.5b00888
10.1134/S0036023607120091
10.1021/acs.est.7b03464
10.1016/j.calphad.2016.03.007
10.1021/je050337m
10.1021/jp973043j
10.1016/j.hydromet.2012.02.008
10.1016/j.cej.2015.11.092
10.1016/j.desal.2015.08.013
10.1021/je060334p
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2019.105868
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2019_105868
S0892687519302791
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c409t-7da10c957fd7063f9ca4fbeff6446d053a26bce6c8c0a4f8eb9efdc09508a31c3
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Tue Jul 01 01:13:26 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Fri Feb 23 02:35:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Green principle
Lithium extraction
Precipitation
Salt-lake brine
Comprehensive utilization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-7da10c957fd7063f9ca4fbeff6446d053a26bce6c8c0a4f8eb9efdc09508a31c3
ParticipantIDs crossref_citationtrail_10_1016_j_mineng_2019_105868
crossref_primary_10_1016_j_mineng_2019_105868
elsevier_sciencedirect_doi_10_1016_j_mineng_2019_105868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deng, Yu, Sun (b0075) 2008; 53
Zhang, Hu, Sun, Liu, Wang, Wang, Sun (b0605) 2018; 128
Hamzaoui, M'nif, Hammi, Rokbani (b0155) 2003; 158
Zhong, Zhou, Yin (b0635) 2003; 1
Song, Yao (b0375) 2003; 11
Song, Huang, Qiu, Li, He (b0355) 2017; 173
Hamzaoui, Jamoussi, M'nif (b0150) 2008; 90
Clegg, Ho, Chan, Brimblecombe (b0050) 1995; 40
Sang, Yin, Xing (b0325) 2006; 38
Boryta, D.A., Kullberg, T.F., Thurston, A.M., 2011. Production of lithium compounds directly from lithium containing brines, the United States.
Wang, Zeng (b0455) 2014; 59
Li, Zeng, Yu, Peng (b0220) 2013; 58
Hai, Zhou, Fuji, Shirai, Ren, Zeng, Li (b0140) 2018; 97
Lassin, Christov, Andre, Azaroual (b0185) 2015; 315
Li, Liu, Yu, Zhang, Li, Zeng (b0210) 2015; 89
Kaplan (b0180) 1963; 1
Zheng, M., Bu, L., Deng, Y., 2004. Method to crystallize lithium carbonate from carbonate type brine using solar ponds, China.
Li, Zeng, Wang, Yu (b0215) 2014; 30
Wang, Zhong, Du, Zhao, Wang (b0435) 2018; 175
Heidari, Momeni (b0160) 2017; 76
Xiang, Liang, Zhou, Qin, Fei (b0465) 2017; 171
Choubey, Kim, Srivastava, Lee, Lee (b0040) 2016; 89
Li, Hou, Li, Jin, Li, Ran (b0240) 2016; 90
Hamzaoui, Hammi, M’nif (b0145) 2007; 52
.
Zeng, Lin, Yu (b0560) 2012; 57
Yang, Li, Li, Guo, Meng, Li (b0495) 2012; 19
Wang, Li (b0430) 2016
Xu, Zhang, Wang, Gui, Liu, Yang (b0490) 2014; 53
Li, Duo, Yu, Zeng (b0230) 2014; 43
Wang, Meng, Ma (b0445) 2009; 334
Gao, Zheng, Song, Bu, Wang (b0100) 2012; 18
Epstein, Feist, Zmora, Marcus (b0080) 1981; 6
Li, Deshmane, Paranthaman, Bhave, Moyer, Harrison (b0225) 2018; 62
Zheng, Zhang, Liu, Qi, Kong, Nie, Pu, Hou, Wang, Zhang, Kong, Lin (b0620) 2016; 90
Lu, Qin, Zhang, Wu, Cui, Li, Wang, Yan (b0260) 2018; 427
Sun, Meng, Yin, Zhu, Li, Yan (b0400) 2016; 23
Kang, Shen, Wan (b0175) 1981; 31
Shi, Jing, Xiao, Wang, Yao, Jia (b0335) 2017; 172
Zeng, Ling, Ni, Zhang (b0570) 2007; 52
Zhang, Hu, Sun, Khoso, Wang, Sun (b0600) 2019; 187
Li, Zeng, Han, Guo, Yin, Yao (b0195) 2015; 51
Sang, Yin, Tang, Zhang (b0320) 2003; 35
An, Kang, Tran, Kim, Lim, Tran (b0005) 2012; 117–118
Saravaia, Gupta, Kulshrestha (b0330) 2016; 6
Bukowsky, Uhlemann, Steinborn (b0015) 1991; 27
Paranthaman, Li, Luo, Hoke, Ucar, Moyer, Harrison (b0290) 2017; 51
Xiao, X.L., 2005. Study on Al(OH)3 Precipitate Lithium from Brine, Qinghai Institute of Salt Lakes. Chinese Academy of Sciences, Xining.
Yin, Li, Wan, Li, Zeng (b0515) 2008; 66
Garrett (b0105) 2004
Goodenough, R.D., Stenger, V.A., 1961. Recovery of Lithium from Lithium Aluminate Complex, the United States.
Zeng, Lin (b0550) 2009; 54
Pauwels, Brach, Fouillac (b0295) 1995; 100
Lu, Z., Hu, S., Yuan, J., 2005. Method of lithium carbonate extraction from brines with high Mg/Li mass ratio, China.
Ooi, Makita, Sonoda, Chitrakar, Tasaki-Handa, Nakazato (b0280) 2016; 288
Liu, Zhong, Chen, Zhao (b0255) 2018; 176
Lawagon, Nisola, Mun, Tron, Torrejos, Seo, Kim, Chung (b0190) 2016; 35
Xiao, Zeng (b0470) 2018; 178
Grosjean, Miranda, Perrin, Poggi (b0125) 2012; 16
Wang, Ji, Hu, Liu, Sun (b0440) 2017; 184
Zhang, Zeng, Luo, Yu (b0580) 2018; 45
Pitzer, Simonson (b0305) 1986; 90
Song, Nghiem, Li, He (b0360) 2017; 3
Chen, Zhong, Yan (b0020) 2014; 43
Roskill, 2009. The economics of lithium. Roskill Information Services
Clegg, Pitzer, Brimblecombe (b0060) 1992; 96
Song, Yao (b0380) 2003; 27
Ren, Song (b0310) 1994; 11
Song, Yao (b0365) 2001; 25
Xiao, Sang, Zhao (b0475) 2010; 39
Zymon, Kurbiel (b0640) 1986; 1985
Clegg, Brimblecombe (b0045) 1998; 102
Zhang, Sang, Zhong, Zhao (b0595) 2014; 59
Zhong, H., Xu, H., 2007. A method for separation of lithium from magnesium in magnesium sulfate subtype brines, China.
Hai, C., Zhou, Y., Du, Y., Ren, X., Sun, Y., Shen, Y., Zeng, J., Li, S., Li, X., Dong, O., Zhang, L., 2018a. A method for preparing porous magnesium silicate lithium powder with high specific surface area by using salt lake brine after potassium extraction, China.
Yang, Zhang, Ding, He, Zhou (b0505) 2018; 2
Goodenough, R.D., 1961. Process for the Recovery and Separation of Lithium and Aluminum from Lithium Aluminate Complex, the United States.
Zhang, T., Zhang, T., 2018. A method for directly synthesizing quaternary ammonium salt modified magnesium silicate lithium by salt lake brine, China.
Li, Kang, Liu, Wang, Ren, Meng (b0235) 2016; 43
Clegg, Pitzer (b0055) 1992; 96
Flexer, Baspineiro, Galli (b0085) 2018; 639
Nie, Sun, Song, Yu (b0270) 2017; 530
Gruber, Medina (b0130) 2010
Li, Zeng, Yin, Gao (b0200) 2018; 60
Ooi, Makita, Sonoda, Chitrakar, Tasaki-Handa, Nakazato (b0285) 2017; 169
Deng, Wang (b0070) 2013
Tran, Luong, An, Kang, Kim, Tran (b0420) 2013; 138
Choubey, Chung, Kim, Lee, Srivastava (b0035) 2017; 110
Zeng, Cao, Li, Yu, Lin (b0545) 2011; 56
Yu, Zeng, Guo, Zhang (b0535) 2016; 61
Dave, Ghosh (b0065) 2005; 44
Liu, Chen, He, Zhao (b0250) 2015; 376
Song, Zhao, Du, Wang, Guo, Deng (b0395) 2017
Song, Yao (b0370) 2003; 11
Zhang, Zeng, Yu (b0610) 2013; 45
Cheng, Li, Cheng (b0030) 2013; 67
Zhang, Li, Shi, Li, Peng, Nie (b0585) 2017; 188
Wang, Du, Jing, Guo, Deng (b0460) 2017; 62
Ji, Chen, Yuan, Liu, Zhao, Feng (b0170) 2017; 172
Wang, R., Wang, J., Wang, X., Zhong, Q., Gao, G., 2005. A method for extracting lithium carbonate from brine with a high Mg/Li mass ratio, China.
Zeng, Lin, Meng (b0555) 2008; 6
Zeng, Shao (b0575) 2006; 51
Yang, Li, Chai, Li (b0500) 2013; 634–638
Chen, Zhong, Yan (b0025) 2014; 43
Li, Zeng, Yin, Han, Guo, Yao (b0205) 2016; 53
Shi, Liu, Ye, Cao, Gao, Shen (b0340) 2019; 210
Xu, H., Li, X., Shi, X., Chen, B., 2006. A method for magnesium and lithium recovery from the salt lake brine.
USGS (b0425) 2017
Pelly (b0300) 1978; 28
Yu, Zheng, Tang, Wu, Nie, Bu (b0525) 2013; 32
Yuanhui, Guo, Wang, Song, Deng (b0540) 2015; 48
Song, Gang, Ma, Yang, Mu (b0390) 2017; 7
Swain (b0405) 2017; 172
Simonson, Pitzer (b0345) 1986; 90
Tan, Zeng, Mu, Yu, Zhang (b0410) 2014; 59
Goodenough, R.D., 1960. Recovery of Lithium, the United States.
Nie, Sun, Sun, Song, Yu (b0275) 2017; 403
Yu, Luo, Wu, Cheng, Zeng (b0530) 2016; 61
Friese, Ebel (b0090) 2010; 114
Yao, Y., Jia, Y., Sun, J., Jing, Y., Li, W., 2007. Preparation of magnesium - lithium silicate montmorillonite from salt lake brine, China.
Yu, Wang, Cao, Gao, Hui, Guo, Wang (b0520) 2015; 44
Zeng, Lin, Zheng (b0565) 2009; 23
Song, Yao (b0385) 2004; 12
Tran, Han, Kim, Kim, Tran (b0415) 2016; 160
Zhong, H., Xu, H., Fu, Y., 2009. A method for lithium extraction and separation of lithium from magnesium in brine, China.
Fu, Sang, Zhou, Liu, Zhang (b0095) 2016; 61
Li, Zhao, Liu, Chen, Zhong (b0245) 2015; 25
Sohr, Voigt, Zeng (b0350) 2017; 46
Isupov, Kotsupalo, Nemudry, Menzeres (b0165) 1999; 120
USGS (10.1016/j.mineng.2019.105868_b0425) 2017
Tran (10.1016/j.mineng.2019.105868_b0420) 2013; 138
10.1016/j.mineng.2019.105868_b0120
Saravaia (10.1016/j.mineng.2019.105868_b0330) 2016; 6
Isupov (10.1016/j.mineng.2019.105868_b0165) 1999; 120
10.1016/j.mineng.2019.105868_b0485
10.1016/j.mineng.2019.105868_b0480
Clegg (10.1016/j.mineng.2019.105868_b0045) 1998; 102
Zhong (10.1016/j.mineng.2019.105868_b0635) 2003; 1
Yu (10.1016/j.mineng.2019.105868_b0520) 2015; 44
Clegg (10.1016/j.mineng.2019.105868_b0055) 1992; 96
Epstein (10.1016/j.mineng.2019.105868_b0080) 1981; 6
Li (10.1016/j.mineng.2019.105868_b0235) 2016; 43
Choubey (10.1016/j.mineng.2019.105868_b0040) 2016; 89
Li (10.1016/j.mineng.2019.105868_b0195) 2015; 51
10.1016/j.mineng.2019.105868_b0110
Li (10.1016/j.mineng.2019.105868_b0200) 2018; 60
Zhang (10.1016/j.mineng.2019.105868_b0610) 2013; 45
Nie (10.1016/j.mineng.2019.105868_b0270) 2017; 530
Song (10.1016/j.mineng.2019.105868_b0370) 2003; 11
10.1016/j.mineng.2019.105868_b0590
Song (10.1016/j.mineng.2019.105868_b0395) 2017
Yang (10.1016/j.mineng.2019.105868_b0500) 2013; 634–638
Li (10.1016/j.mineng.2019.105868_b0205) 2016; 53
10.1016/j.mineng.2019.105868_b0510
10.1016/j.mineng.2019.105868_b0630
10.1016/j.mineng.2019.105868_b0115
Li (10.1016/j.mineng.2019.105868_b0240) 2016; 90
Xiao (10.1016/j.mineng.2019.105868_b0470) 2018; 178
Wang (10.1016/j.mineng.2019.105868_b0455) 2014; 59
Yang (10.1016/j.mineng.2019.105868_b0505) 2018; 2
An (10.1016/j.mineng.2019.105868_b0005) 2012; 117–118
Simonson (10.1016/j.mineng.2019.105868_b0345) 1986; 90
10.1016/j.mineng.2019.105868_b0265
Deng (10.1016/j.mineng.2019.105868_b0070) 2013
Ooi (10.1016/j.mineng.2019.105868_b0285) 2017; 169
Fu (10.1016/j.mineng.2019.105868_b0095) 2016; 61
Xiang (10.1016/j.mineng.2019.105868_b0465) 2017; 171
Wang (10.1016/j.mineng.2019.105868_b0430) 2016
Wang (10.1016/j.mineng.2019.105868_b0445) 2009; 334
Grosjean (10.1016/j.mineng.2019.105868_b0125) 2012; 16
Ren (10.1016/j.mineng.2019.105868_b0310) 1994; 11
Hamzaoui (10.1016/j.mineng.2019.105868_b0150) 2008; 90
Song (10.1016/j.mineng.2019.105868_b0365) 2001; 25
Song (10.1016/j.mineng.2019.105868_b0380) 2003; 27
Sun (10.1016/j.mineng.2019.105868_b0400) 2016; 23
Deng (10.1016/j.mineng.2019.105868_b0075) 2008; 53
Zeng (10.1016/j.mineng.2019.105868_b0555) 2008; 6
Gruber (10.1016/j.mineng.2019.105868_b0130) 2010
Kaplan (10.1016/j.mineng.2019.105868_b0180) 1963; 1
10.1016/j.mineng.2019.105868_b0010
Pauwels (10.1016/j.mineng.2019.105868_b0295) 1995; 100
Song (10.1016/j.mineng.2019.105868_b0375) 2003; 11
Zhang (10.1016/j.mineng.2019.105868_b0580) 2018; 45
Sang (10.1016/j.mineng.2019.105868_b0325) 2006; 38
Friese (10.1016/j.mineng.2019.105868_b0090) 2010; 114
Li (10.1016/j.mineng.2019.105868_b0245) 2015; 25
Liu (10.1016/j.mineng.2019.105868_b0255) 2018; 176
Li (10.1016/j.mineng.2019.105868_b0220) 2013; 58
Nie (10.1016/j.mineng.2019.105868_b0275) 2017; 403
Clegg (10.1016/j.mineng.2019.105868_b0050) 1995; 40
Shi (10.1016/j.mineng.2019.105868_b0335) 2017; 172
10.1016/j.mineng.2019.105868_b0135
Sang (10.1016/j.mineng.2019.105868_b0320) 2003; 35
Lu (10.1016/j.mineng.2019.105868_b0260) 2018; 427
Yang (10.1016/j.mineng.2019.105868_b0495) 2012; 19
Zeng (10.1016/j.mineng.2019.105868_b0560) 2012; 57
Hamzaoui (10.1016/j.mineng.2019.105868_b0145) 2007; 52
Zhang (10.1016/j.mineng.2019.105868_b0585) 2017; 188
Zhang (10.1016/j.mineng.2019.105868_b0605) 2018; 128
Yuanhui (10.1016/j.mineng.2019.105868_b0540) 2015; 48
Clegg (10.1016/j.mineng.2019.105868_b0060) 1992; 96
Zeng (10.1016/j.mineng.2019.105868_b0575) 2006; 51
Paranthaman (10.1016/j.mineng.2019.105868_b0290) 2017; 51
Zheng (10.1016/j.mineng.2019.105868_b0620) 2016; 90
Liu (10.1016/j.mineng.2019.105868_b0250) 2015; 376
Zymon (10.1016/j.mineng.2019.105868_b0640) 1986; 1985
Li (10.1016/j.mineng.2019.105868_b0225) 2018; 62
Pitzer (10.1016/j.mineng.2019.105868_b0305) 1986; 90
Tran (10.1016/j.mineng.2019.105868_b0415) 2016; 160
Zhang (10.1016/j.mineng.2019.105868_b0595) 2014; 59
Li (10.1016/j.mineng.2019.105868_b0210) 2015; 89
Wang (10.1016/j.mineng.2019.105868_b0440) 2017; 184
Hamzaoui (10.1016/j.mineng.2019.105868_b0155) 2003; 158
Song (10.1016/j.mineng.2019.105868_b0355) 2017; 173
Swain (10.1016/j.mineng.2019.105868_b0405) 2017; 172
Yu (10.1016/j.mineng.2019.105868_b0530) 2016; 61
Lassin (10.1016/j.mineng.2019.105868_b0185) 2015; 315
Xu (10.1016/j.mineng.2019.105868_b0490) 2014; 53
Heidari (10.1016/j.mineng.2019.105868_b0160) 2017; 76
Pelly (10.1016/j.mineng.2019.105868_b0300) 1978; 28
Yin (10.1016/j.mineng.2019.105868_b0515) 2008; 66
10.1016/j.mineng.2019.105868_b0315
Dave (10.1016/j.mineng.2019.105868_b0065) 2005; 44
Xiao (10.1016/j.mineng.2019.105868_b0475) 2010; 39
Bukowsky (10.1016/j.mineng.2019.105868_b0015) 1991; 27
Hai (10.1016/j.mineng.2019.105868_b0140) 2018; 97
Wang (10.1016/j.mineng.2019.105868_b0435) 2018; 175
Zhang (10.1016/j.mineng.2019.105868_b0600) 2019; 187
Li (10.1016/j.mineng.2019.105868_b0215) 2014; 30
Song (10.1016/j.mineng.2019.105868_b0385) 2004; 12
Cheng (10.1016/j.mineng.2019.105868_b0030) 2013; 67
10.1016/j.mineng.2019.105868_b0625
Kang (10.1016/j.mineng.2019.105868_b0175) 1981; 31
Chen (10.1016/j.mineng.2019.105868_b0020) 2014; 43
Lawagon (10.1016/j.mineng.2019.105868_b0190) 2016; 35
Wang (10.1016/j.mineng.2019.105868_b0460) 2017; 62
Yu (10.1016/j.mineng.2019.105868_b0525) 2013; 32
Chen (10.1016/j.mineng.2019.105868_b0025) 2014; 43
Garrett (10.1016/j.mineng.2019.105868_b0105) 2004
Shi (10.1016/j.mineng.2019.105868_b0340) 2019; 210
Sohr (10.1016/j.mineng.2019.105868_b0350) 2017; 46
10.1016/j.mineng.2019.105868_b0450
Zeng (10.1016/j.mineng.2019.105868_b0565) 2009; 23
Li (10.1016/j.mineng.2019.105868_b0230) 2014; 43
Choubey (10.1016/j.mineng.2019.105868_b0035) 2017; 110
10.1016/j.mineng.2019.105868_b0615
Flexer (10.1016/j.mineng.2019.105868_b0085) 2018; 639
Tan (10.1016/j.mineng.2019.105868_b0410) 2014; 59
Zeng (10.1016/j.mineng.2019.105868_b0545) 2011; 56
Ooi (10.1016/j.mineng.2019.105868_b0280) 2016; 288
Song (10.1016/j.mineng.2019.105868_b0360) 2017; 3
Yu (10.1016/j.mineng.2019.105868_b0535) 2016; 61
Gao (10.1016/j.mineng.2019.105868_b0100) 2012; 18
Ji (10.1016/j.mineng.2019.105868_b0170) 2017; 172
Song (10.1016/j.mineng.2019.105868_b0390) 2017; 7
Zeng (10.1016/j.mineng.2019.105868_b0570) 2007; 52
Zeng (10.1016/j.mineng.2019.105868_b0550) 2009; 54
References_xml – volume: 53
  start-page: 2496
  year: 2008
  end-page: 2500
  ident: b0075
  article-title: Metastable phase equilibrium in the aqueous quaternary system (Li
  publication-title: J. Chem. Eng. Data
– volume: 90
  start-page: 1195
  year: 2016
  end-page: 1235
  ident: b0620
  article-title: Progress and prospects of Salt Lake Research in China
  publication-title: Acta Geol. Sin-Engl.
– volume: 634–638
  start-page: 126
  year: 2013
  end-page: 129
  ident: b0500
  article-title: Studies on the interaction mechanism between lithium chloride and amorphous Al(OH)
  publication-title: Adv. Mater. Res.
– volume: 210
  start-page: 885
  year: 2019
  end-page: 890
  ident: b0340
  article-title: Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane
  publication-title: Sep. Purifi. Technol.
– reference: Xiao, X.L., 2005. Study on Al(OH)3 Precipitate Lithium from Brine, Qinghai Institute of Salt Lakes. Chinese Academy of Sciences, Xining.
– volume: 53
  start-page: 78
  year: 2016
  end-page: 89
  ident: b0205
  article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl+H
  publication-title: Calphad
– volume: 117–118
  start-page: 64
  year: 2012
  end-page: 70
  ident: b0005
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
– volume: 138
  start-page: 93
  year: 2013
  end-page: 99
  ident: b0420
  article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate
  publication-title: Hydrometallurgy
– volume: 23
  start-page: 7
  year: 2009
  end-page: 11
  ident: b0565
  article-title: An experimental study on the metastable equilibrium in quaternary system Li
  publication-title: J. Chem. Eng. Chin. Univ.
– volume: 403
  start-page: 128
  year: 2017
  end-page: 135
  ident: b0275
  article-title: Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes
  publication-title: Desalination
– volume: 28
  start-page: 469
  year: 1978
  end-page: 474
  ident: b0300
  article-title: Recovery of lithium from Dead Sea brines
  publication-title: J. Appl. Chem. Biotech.
– reference: Zheng, M., Bu, L., Deng, Y., 2004. Method to crystallize lithium carbonate from carbonate type brine using solar ponds, China.
– volume: 43
  start-page: 1
  year: 2014
  end-page: 4
  ident: b0020
  article-title: Present situation of the process and technique of lithium recovery from brine around the world
  publication-title: J. Salt Chem. Ind.
– reference: Goodenough, R.D., 1960. Recovery of Lithium, the United States.
– volume: 178
  start-page: 283
  year: 2018
  end-page: 286
  ident: b0470
  article-title: Thermodynamic study on recovery of lithium using phosphate precipitation method
  publication-title: Hydrometallurgy
– reference: Lu, Z., Hu, S., Yuan, J., 2005. Method of lithium carbonate extraction from brines with high Mg/Li mass ratio, China.
– volume: 19
  start-page: 290
  year: 2012
  end-page: 294
  ident: b0495
  article-title: Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine
  publication-title: Int. J. Min. Met. Mater.
– volume: 25
  start-page: 329
  year: 2001
  end-page: 341
  ident: b0365
  article-title: Thermodynamics and phase diagram of the Salt Lake Brine System at 25°C I. Li
  publication-title: Calphad
– volume: 184
  start-page: 594
  year: 2017
  end-page: 600
  ident: b0440
  article-title: A review on in situ phytoremediation of mine tailings
  publication-title: Chemosphere
– volume: 11
  start-page: 1
  year: 2003
  end-page: 11
  ident: b0375
  article-title: Parameters of Pitzer model for the salt lake brine system and their applications II. Prediction of solubilities in the system Li
  publication-title: J. Salt Lake Res.
– volume: 110
  start-page: 104
  year: 2017
  end-page: 121
  ident: b0035
  article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs)
  publication-title: Miner. Eng.
– volume: 45
  start-page: 15
  year: 2013
  end-page: 17
  ident: b0610
  article-title: Study on phase equilibrium of ternary system Li
  publication-title: Inorg. Chem. Ind.
– volume: 66
  start-page: 1815
  year: 2008
  end-page: 1826
  ident: b0515
  article-title: Comparison of thermodynamic models in high-solubility salt+H
  publication-title: Acta Chim. Sin.
– start-page: 1
  year: 2004
  end-page: 235
  ident: b0105
  article-title: Lithium, Handbook of Lithium and Natural Calcium Chloride
– volume: 67
  start-page: 74
  year: 2013
  end-page: 82
  ident: b0030
  article-title: Solubility of Li
  publication-title: J. Chem. Thermodyn.
– volume: 61
  start-page: 1246
  year: 2016
  end-page: 1253
  ident: b0535
  article-title: Stable phase equilibrium and phase diagram of the quinary system Li
  publication-title: J. Chem. Eng. Data
– volume: 90
  start-page: 1
  year: 2008
  end-page: 7
  ident: b0150
  article-title: Lithium recovery from highly concentrated solutions: response surface methodology (RSM) process parameters optimization
  publication-title: Hydrometallurgy
– volume: 114
  start-page: 11595
  year: 2010
  end-page: 11631
  ident: b0090
  article-title: Temperature dependent thermodynamic model of the system H
  publication-title: J. Phys. Chem. A
– volume: 56
  start-page: 2569
  year: 2011
  end-page: 2573
  ident: b0545
  article-title: Metastable phase equilibrium in the aqueous quaternary system (Li
  publication-title: J. Chem. Eng. Data
– volume: 6
  start-page: 47
  year: 2008
  end-page: 50
  ident: b0555
  article-title: Study on metastable phase equilibrium of quaternary system Li
  publication-title: Chem. Eng.
– volume: 175
  start-page: 102
  year: 2018
  end-page: 108
  ident: b0435
  article-title: Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process
  publication-title: Hydrometallurgy
– volume: 96
  start-page: 3513
  year: 1992
  end-page: 3520
  ident: b0055
  article-title: Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes
  publication-title: J. Phys. Chem.
– volume: 57
  start-page: 3672
  year: 2012
  end-page: 3676
  ident: b0560
  article-title: Study on the solubility of the aqueous quaternary system Li
  publication-title: J. Chem. Eng. Data
– volume: 59
  start-page: 821
  year: 2014
  end-page: 824
  ident: b0595
  article-title: Equilibria in the quaternary system Na
  publication-title: J. Chem. Eng. Data
– volume: 35
  start-page: 1513
  year: 2003
  end-page: 1520
  ident: b0320
  article-title: (Liquid + solid) metastable equilibria in quinary system Li
  publication-title: J. Chem. Thermodyn.
– volume: 160
  start-page: 106
  year: 2016
  end-page: 114
  ident: b0415
  article-title: Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate
  publication-title: Hydrometallurgy
– reference: Zhang, T., Zhang, T., 2018. A method for directly synthesizing quaternary ammonium salt modified magnesium silicate lithium by salt lake brine, China.
– volume: 171
  start-page: 27
  year: 2017
  end-page: 32
  ident: b0465
  article-title: Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl
  publication-title: Hydrometallurgy
– volume: 43
  start-page: 81
  year: 2016
  end-page: 82
  ident: b0235
  article-title: Research on distribution and extraction technology of lithium resources
  publication-title: Guangdong Chem./Indust.
– volume: 158
  start-page: 221
  year: 2003
  end-page: 224
  ident: b0155
  article-title: Contribution to the lithium recovery from brine
  publication-title: Desalination
– volume: 43
  start-page: 16
  year: 2014
  end-page: 18
  ident: b0230
  article-title: Stable phase equilibrium in the aqueous ternary system Li
  publication-title: J. Salt Chem. Ind.
– volume: 11
  start-page: 7
  year: 1994
  end-page: 10
  ident: b0310
  article-title: Study on the phase diagram and solution properties for the quaternary system Li
  publication-title: Chin. J. Appl. Chem.
– volume: 100
  start-page: 73
  year: 1995
  end-page: 82
  ident: b0295
  article-title: Study of Li
  publication-title: Colloid. Surf. A
– reference: Goodenough, R.D., Stenger, V.A., 1961. Recovery of Lithium from Lithium Aluminate Complex, the United States.
– volume: 35
  start-page: 347
  year: 2016
  end-page: 356
  ident: b0190
  article-title: Adsorptive Li
  publication-title: J. Ind. Eng. Chem.
– year: 2010
  ident: b0130
  article-title: Global Lithium Availability: A Constraint for Electric Vehicles
– reference: Zhong, H., Xu, H., Fu, Y., 2009. A method for lithium extraction and separation of lithium from magnesium in brine, China.
– volume: 3
  start-page: 593
  year: 2017
  end-page: 597
  ident: b0360
  article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 58
  start-page: 455
  year: 2013
  end-page: 459
  ident: b0220
  article-title: Solubility of the aqueous reciprocal quaternary system Li
  publication-title: J. Chem. Eng. Data
– reference: Goodenough, R.D., 1961. Process for the Recovery and Separation of Lithium and Aluminum from Lithium Aluminate Complex, the United States.
– volume: 89
  start-page: 1572
  year: 2015
  end-page: 1577
  ident: b0210
  article-title: The phase diagram and physicochemical properties of the quaternary system Li
  publication-title: Russ. J. Phys. Chem. A+
– volume: 376
  start-page: 35
  year: 2015
  end-page: 40
  ident: b0250
  article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis
  publication-title: Desalination
– volume: 16
  start-page: 1735
  year: 2012
  end-page: 1744
  ident: b0125
  article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry
  publication-title: Renew. Sust. Energ. Rev.
– reference: Hai, C., Zhou, Y., Du, Y., Ren, X., Sun, Y., Shen, Y., Zeng, J., Li, S., Li, X., Dong, O., Zhang, L., 2018a. A method for preparing porous magnesium silicate lithium powder with high specific surface area by using salt lake brine after potassium extraction, China.
– volume: 188
  start-page: 167
  year: 2017
  end-page: 173
  ident: b0585
  article-title: Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: 269
  year: 1981
  end-page: 275
  ident: b0080
  article-title: Extraction of lithium from the dead sea
  publication-title: Hydrometallurgy
– volume: 90
  start-page: 3009
  year: 1986
  end-page: 3013
  ident: b0345
  article-title: Thermodynamics of multicomponent, miscible ionic systems: the system lithium nitrate-potassium nitrate-water
  publication-title: J. Phys. Chem.
– volume: 44
  start-page: 15721
  year: 2015
  end-page: 15724
  ident: b0520
  article-title: The structure of H
  publication-title: Dalton Trans.
– volume: 18
  start-page: 343
  year: 2012
  end-page: 356
  ident: b0100
  article-title: The 273.15-K-isothermal evaporation experiment of lithium brine from the Zhabei Salt Lake, Tibet, and its geochemical significance
  publication-title: Aquat. Geochem.
– volume: 60
  start-page: 163
  year: 2018
  end-page: 176
  ident: b0200
  article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. III. Li
  publication-title: Calphad
– volume: 530
  start-page: 185
  year: 2017
  end-page: 191
  ident: b0270
  article-title: Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis
  publication-title: J. Membr. Sci.
– volume: 40
  start-page: 1079
  year: 1995
  end-page: 1090
  ident: b0050
  article-title: Thermodynamic properties of aqueous (NH
  publication-title: J. Chem. Eng. Data
– volume: 176
  start-page: 73
  year: 2018
  end-page: 77
  ident: b0255
  article-title: Separating lithium and magnesium in brine by aluminum-based materials
  publication-title: Hydrometallurgy
– volume: 172
  start-page: 473
  year: 2017
  end-page: 479
  ident: b0335
  article-title: Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents
  publication-title: Sep. Purifi. Technol.
– volume: 427
  start-page: 931
  year: 2018
  end-page: 941
  ident: b0260
  article-title: Multilayered ion-imprinted membranes with high selectivity towards Li
  publication-title: Appl. Surf. Sci
– volume: 44
  start-page: 2903
  year: 2005
  end-page: 2907
  ident: b0065
  article-title: Enrichment of bromine in sea-bittern with recovery of other marine chemicals
  publication-title: Ind. Eng. Chem. Res.
– volume: 1
  start-page: 115
  year: 1963
  end-page: 120
  ident: b0180
  article-title: Process for the extraction of lithium from dead sea solutions
  publication-title: Israel J. Chem.
– volume: 7
  year: 2017
  ident: b0390
  article-title: Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake
  publication-title: Minerals-Basel
– volume: 173
  start-page: 63
  year: 2017
  end-page: 70
  ident: b0355
  article-title: Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl
  publication-title: Hydrometallurgy
– volume: 97
  start-page: 473
  year: 2018
  end-page: 482
  ident: b0140
  article-title: Electrical conductivity of hydrothermally synthesized sodium lithium magnesium silicate
  publication-title: Mater. Res. Bull.
– volume: 1
  start-page: 23
  year: 2003
  end-page: 28
  ident: b0635
  article-title: Progress in technology for extracting lithium from Li-bearing brine resources
  publication-title: Multipurpose Utilization Miner. Resour.
– year: 2017
  ident: b0425
  article-title: Mineral Commodity Summaries 2017
– volume: 128
  start-page: 141
  year: 2018
  end-page: 152
  ident: b0605
  article-title: Systematic review of feldspar beneficiation and its comprehensive application
  publication-title: Miner. Eng.
– volume: 96
  start-page: 9470
  year: 1992
  end-page: 9479
  ident: b0060
  article-title: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes
  publication-title: J. Phys. Chem.
– volume: 51
  start-page: 1
  year: 2015
  end-page: 12
  ident: b0195
  article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. I. LiCl+H
  publication-title: Calphad
– volume: 59
  start-page: 4173
  year: 2014
  end-page: 4178
  ident: b0410
  article-title: Stable phase equilibrium of aqueous quaternary system Li
  publication-title: J. Chem. Eng. Data
– volume: 46
  year: 2017
  ident: b0350
  article-title: IUPAC-NIST Solubility Data Series. 104. Lithium sulfate and its double salts in aqueous solutions
  publication-title: J. Phys. Chem. Ref. Data
– volume: 120
  start-page: 621
  year: 1999
  end-page: 652
  ident: b0165
  article-title: Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions
  publication-title: Stud. Surf. Sci. Catal.
– volume: 23
  start-page: 1411
  year: 2016
  end-page: 1419
  ident: b0400
  article-title: Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li
  publication-title: J. Porous Mat.
– volume: 172
  start-page: 168
  year: 2017
  end-page: 177
  ident: b0170
  article-title: Preliminary study on recovering lithium from high Mg
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: 106980
  year: 2016
  end-page: 106989
  ident: b0330
  article-title: Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium
  publication-title: RSC Adv.
– year: 2013
  ident: b0070
  article-title: Experimental Research Methods for Phase Equilibrium of Salt-Water Systems
– volume: 1985
  start-page: 345
  year: 1986
  end-page: 353
  ident: b0640
  article-title: Application of previously precipitated Active Aluminium Hydroxide (AAH) for removal of refractory substances from wastewater
  publication-title: Chem. Protect. Environ.
– year: 2017
  ident: b0395
  article-title: Solid-liquid phase equilibria of the aqueous systems containing lithium, magnesium and borate ions
  publication-title: IOP Conference Series: Materials Science and Engineering 274
– volume: 62
  start-page: 253
  year: 2017
  end-page: 258
  ident: b0460
  article-title: Solid-liquid phase equilibrium in the ternary systems (Li
  publication-title: J. Chem. Eng. Data
– volume: 45
  start-page: 1008
  year: 2018
  end-page: 1014
  ident: b0580
  article-title: Stable phase equilibrium of the aqueous quaternary system Li
  publication-title: Chiang Mai J. Sci.
– volume: 76
  start-page: 551
  year: 2017
  ident: b0160
  article-title: Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide
  publication-title: Environ. Earth Sci.
– reference: Roskill, 2009. The economics of lithium. Roskill Information Services,
– volume: 11
  start-page: 1
  year: 2003
  end-page: 7
  ident: b0370
  article-title: Parameters of Pitzer model for the salt lake brine system and their applications I. Applications in physical chemistry for the system Li
  publication-title: J. Salt Lake Res.
– reference: Zhong, H., Xu, H., 2007. A method for separation of lithium from magnesium in magnesium sulfate subtype brines, China.
– volume: 48
  start-page: 13
  year: 2015
  end-page: 17
  ident: b0540
  article-title: Predictions on the solubility and equiscale line of water content for the quaternary system (Li+Na+Cl+SO4+H2O) at 298.15 K
  publication-title: Calphad
– volume: 172
  start-page: 388
  year: 2017
  end-page: 403
  ident: b0405
  article-title: Recovery and recycling of lithium: a review
  publication-title: Sep. Purif. Technol.
– reference: Yao, Y., Jia, Y., Sun, J., Jing, Y., Li, W., 2007. Preparation of magnesium - lithium silicate montmorillonite from salt lake brine, China.
– volume: 334
  start-page: 34
  year: 2009
  end-page: 39
  ident: b0445
  article-title: Study on Li
  publication-title: Colloid. Surf. A
– volume: 288
  start-page: 137
  year: 2016
  end-page: 145
  ident: b0280
  article-title: Modelling of column lithium adsorption from pH-buffered brine using surface Li
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 3484
  year: 2015
  end-page: 3489
  ident: b0245
  article-title: Extraction of lithium from salt lake brine by aluminum-based alloys
  publication-title: T. Nonferr. Metal. Soc.
– volume: 39
  start-page: 18
  year: 2010
  end-page: 20
  ident: b0475
  article-title: Study on phase equilibrium of the quaternary system K
  publication-title: J. Salt Chem. Ind.
– reference: Boryta, D.A., Kullberg, T.F., Thurston, A.M., 2011. Production of lithium compounds directly from lithium containing brines, the United States.
– volume: 52
  start-page: 1859
  year: 2007
  end-page: 1863
  ident: b0145
  article-title: Operating conditions for lithium recovery from natural brines
  publication-title: Russ. J. Inorg. Chem.+
– volume: 12
  start-page: 1
  year: 2004
  end-page: 10
  ident: b0385
  article-title: Parameters of Pitzer model for the salt lake brine system and their applications III. Applications in process technology in the system Li
  publication-title: J. Salt Lake Res.
– volume: 53
  start-page: 16502
  year: 2014
  end-page: 16507
  ident: b0490
  article-title: Systemic and direct production of battery-grade lithium carbonate from a Saline Lake
  publication-title: Ind. Eng. Chem. Res.
– volume: 51
  start-page: 219
  year: 2006
  end-page: 222
  ident: b0575
  article-title: Liquid−solid metastable equilibria in the quinary system Li
  publication-title: J. Chem. Eng. Data
– year: 2016
  ident: b0430
  article-title: Salt Technology
– volume: 639
  start-page: 1188
  year: 2018
  end-page: 1204
  ident: b0085
  article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing
  publication-title: Sci. Total Environ.
– volume: 62
  start-page: 161
  year: 2018
  end-page: 176
  ident: b0225
  article-title: Lithium recovery from aqueous resources and batteries: a brief review
  publication-title: Johnson Matthey Tech.
– volume: 89
  start-page: 119
  year: 2016
  end-page: 137
  ident: b0040
  article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources
  publication-title: Miner. Eng.
– volume: 315
  start-page: 204
  year: 2015
  end-page: 256
  ident: b0185
  article-title: A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 C
  publication-title: Am. J. Sci.
– volume: 27
  start-page: 343
  year: 2003
  end-page: 352
  ident: b0380
  article-title: Thermodynamics and phase diagram of the salt lake brine system at 298.15 kV. Model for the system Li
  publication-title: Calphad
– volume: 2
  start-page: 1648
  year: 2018
  end-page: 1651
  ident: b0505
  article-title: Lithium metal extraction from seawater
  publication-title: Joule
– volume: 31
  start-page: 683687
  year: 1981
  ident: b0175
  article-title: The adsorption of lithium onto alumina from solutions of mixed chlorides: effects of temperature and electrolyte control
  publication-title: J. Chem. Tech. Biotechnol.
– volume: 38
  start-page: 173
  year: 2006
  ident: b0325
  article-title: (Solid + liquid) metastable equilibria in quaternary system Li
  publication-title: J. Chem. Thermodyn.
– volume: 61
  start-page: 3311
  year: 2016
  end-page: 3316
  ident: b0530
  article-title: Solid-liquid equilibrium on the reciprocal aqueous quaternary system Li
  publication-title: J. Chem. Eng. Data
– volume: 27
  start-page: 317
  year: 1991
  end-page: 325
  ident: b0015
  article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride
  publication-title: Hydrometallurgy
– volume: 61
  start-page: 1071
  year: 2016
  end-page: 1077
  ident: b0095
  article-title: Phase equilibria in the ternary systems Li
  publication-title: J. Chem. Eng. Data
– volume: 30
  start-page: 676
  year: 2014
  end-page: 680
  ident: b0215
  article-title: Isothermal evaporation of quaternary system Li
  publication-title: Chem. Res. Chin. Univ.
– reference: .
– volume: 90
  start-page: 767
  year: 2016
  end-page: 768
  ident: b0240
  article-title: Lithium resources in brine of China's Sea salt field operations
  publication-title: Acta Geol. Sin-Engl.
– volume: 59
  start-page: 903
  year: 2014
  end-page: 911
  ident: b0455
  article-title: Metastable phase equilibrium of the quinary aqueous system Li
  publication-title: J. Chem. Eng. Data
– volume: 32
  start-page: 1248
  year: 2013
  end-page: 1252
  ident: b0525
  article-title: Comparative study of lithium extraction from the carbonate brine between solar pond and laboratory simulation experiment
  publication-title: Chem. Indust. Eng. Progr.
– volume: 43
  start-page: 1
  year: 2014
  end-page: 4
  ident: b0025
  article-title: Present situation of the process and technique of lithium recovery from brine around the world
  publication-title: J. Salt Chem. Ind.
– volume: 90
  start-page: 3005
  year: 1986
  end-page: 3009
  ident: b0305
  article-title: Thermodynamics of multicomponent, miscible, ionic systems: theory and equations
  publication-title: J. Phys. Chem.
– reference: Xu, H., Li, X., Shi, X., Chen, B., 2006. A method for magnesium and lithium recovery from the salt lake brine.
– volume: 187
  start-page: 125
  year: 2019
  end-page: 133
  ident: b0600
  article-title: A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine
  publication-title: Hydrometallurgy
– volume: 169
  start-page: 31
  year: 2017
  end-page: 40
  ident: b0285
  article-title: Modelling of column lithium desorption from Li
  publication-title: Hydrometallurgy
– volume: 51
  start-page: 13481
  year: 2017
  end-page: 13486
  ident: b0290
  article-title: Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 2155
  year: 1998
  end-page: 2171
  ident: b0045
  article-title: Thermodynamic model of the system H
  publication-title: J. Phys. Chem. A
– reference: Wang, R., Wang, J., Wang, X., Zhong, Q., Gao, G., 2005. A method for extracting lithium carbonate from brine with a high Mg/Li mass ratio, China.
– volume: 54
  start-page: 2054
  year: 2009
  end-page: 2059
  ident: b0550
  article-title: Solubility and density measurements of concentrated Li
  publication-title: J. Chem. Eng. Data
– volume: 52
  start-page: 164
  year: 2007
  end-page: 167
  ident: b0570
  article-title: Study on the metastable equilibria of the salt lake brine system Li
  publication-title: J. Chem. Eng. Data
– volume: 110
  start-page: 104
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0035
  article-title: Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs)
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.04.008
– volume: 16
  start-page: 1735
  year: 2012
  ident: 10.1016/j.mineng.2019.105868_b0125
  article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2011.11.023
– volume: 89
  start-page: 119
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0040
  article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.01.010
– volume: 3
  start-page: 593
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0360
  article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook
  publication-title: Environ. Sci.: Water Res. Technol.
– ident: 10.1016/j.mineng.2019.105868_b0010
– volume: 61
  start-page: 1071
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0095
  article-title: Phase equilibria in the ternary systems Li2B4O7 – MgB4O7 – H2O and K2B4O7 – MgB4O7 – H2O at 273 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.5b00570
– volume: 58
  start-page: 455
  year: 2013
  ident: 10.1016/j.mineng.2019.105868_b0220
  article-title: Solubility of the aqueous reciprocal quaternary system Li+, Na+ // CO32–, SO42– - H2O at 273.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je301166y
– volume: 96
  start-page: 3513
  year: 1992
  ident: 10.1016/j.mineng.2019.105868_b0055
  article-title: Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100187a061
– volume: 31
  start-page: 683687
  year: 1981
  ident: 10.1016/j.mineng.2019.105868_b0175
  article-title: The adsorption of lithium onto alumina from solutions of mixed chlorides: effects of temperature and electrolyte control
  publication-title: J. Chem. Tech. Biotechnol.
– volume: 45
  start-page: 15
  year: 2013
  ident: 10.1016/j.mineng.2019.105868_b0610
  article-title: Study on phase equilibrium of ternary system Li+, K+ // borate - H2O at 348 K (in Chinese)
  publication-title: Inorg. Chem. Ind.
– volume: 11
  start-page: 7
  year: 1994
  ident: 10.1016/j.mineng.2019.105868_b0310
  article-title: Study on the phase diagram and solution properties for the quaternary system Li+, K+ // Cl−, SO42− − H2O at 323 K, 348 K
  publication-title: Chin. J. Appl. Chem.
  doi: 10.3724/j.issn.1000-0518.1994.1.7
– volume: 187
  start-page: 125
  year: 2019
  ident: 10.1016/j.mineng.2019.105868_b0600
  article-title: A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2019.05.019
– volume: 634–638
  start-page: 126
  year: 2013
  ident: 10.1016/j.mineng.2019.105868_b0500
  article-title: Studies on the interaction mechanism between lithium chloride and amorphous Al(OH)3
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.634-638.126
– volume: 178
  start-page: 283
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0470
  article-title: Thermodynamic study on recovery of lithium using phosphate precipitation method
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.05.001
– volume: 60
  start-page: 163
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0200
  article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. III. Li2SO4+H2O, Na2SO4+H2O, K2SO4+H2O, MgSO4+H2O and CaSO4+H2O systems
  publication-title: Calphad
  doi: 10.1016/j.calphad.2018.01.002
– volume: 23
  start-page: 7
  year: 2009
  ident: 10.1016/j.mineng.2019.105868_b0565
  article-title: An experimental study on the metastable equilibrium in quaternary system Li+, K+ // SO42−, B4O72− − H2O at 273 K
  publication-title: J. Chem. Eng. Chin. Univ.
– volume: 334
  start-page: 34
  year: 2009
  ident: 10.1016/j.mineng.2019.105868_b0445
  article-title: Study on Li+ uptake by lithium ion-sieve via the pH technique
  publication-title: Colloid. Surf. A
  doi: 10.1016/j.colsurfa.2008.09.050
– ident: 10.1016/j.mineng.2019.105868_b0110
– volume: 427
  start-page: 931
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0260
  article-title: Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone
  publication-title: Appl. Surf. Sci
  doi: 10.1016/j.apsusc.2017.08.016
– volume: 27
  start-page: 317
  year: 1991
  ident: 10.1016/j.mineng.2019.105868_b0015
  article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(91)90056-R
– volume: 90
  start-page: 3009
  year: 1986
  ident: 10.1016/j.mineng.2019.105868_b0345
  article-title: Thermodynamics of multicomponent, miscible ionic systems: the system lithium nitrate-potassium nitrate-water
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100404a043
– volume: 160
  start-page: 106
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0415
  article-title: Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.12.008
– volume: 158
  start-page: 221
  year: 2003
  ident: 10.1016/j.mineng.2019.105868_b0155
  article-title: Contribution to the lithium recovery from brine
  publication-title: Desalination
  doi: 10.1016/S0011-9164(03)00455-7
– volume: 96
  start-page: 9470
  year: 1992
  ident: 10.1016/j.mineng.2019.105868_b0060
  article-title: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100202a074
– volume: 90
  start-page: 1
  year: 2008
  ident: 10.1016/j.mineng.2019.105868_b0150
  article-title: Lithium recovery from highly concentrated solutions: response surface methodology (RSM) process parameters optimization
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2007.09.005
– volume: 315
  start-page: 204
  year: 2015
  ident: 10.1016/j.mineng.2019.105868_b0185
  article-title: A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 C
  publication-title: Am. J. Sci.
  doi: 10.2475/03.2015.02
– volume: 18
  start-page: 343
  year: 2012
  ident: 10.1016/j.mineng.2019.105868_b0100
  article-title: The 273.15-K-isothermal evaporation experiment of lithium brine from the Zhabei Salt Lake, Tibet, and its geochemical significance
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-012-9168-1
– volume: 97
  start-page: 473
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0140
  article-title: Electrical conductivity of hydrothermally synthesized sodium lithium magnesium silicate
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.09.048
– volume: 6
  start-page: 269
  year: 1981
  ident: 10.1016/j.mineng.2019.105868_b0080
  article-title: Extraction of lithium from the dead sea
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(81)90044-X
– volume: 403
  start-page: 128
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0275
  article-title: Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.05.010
– volume: 100
  start-page: 73
  year: 1995
  ident: 10.1016/j.mineng.2019.105868_b0295
  article-title: Study of Li+ adsorption onto polymeric aluminium (III) hydroxide for application in the treatment of geothermal waters
  publication-title: Colloid. Surf. A
  doi: 10.1016/0927-7757(95)03185-G
– volume: 27
  start-page: 343
  year: 2003
  ident: 10.1016/j.mineng.2019.105868_b0380
  article-title: Thermodynamics and phase diagram of the salt lake brine system at 298.15 kV. Model for the system Li+, Na+, K+, Mg2+/Cl-, SO42–-H2O and its applications
  publication-title: Calphad
  doi: 10.1016/j.calphad.2004.02.001
– volume: 6
  start-page: 47
  year: 2008
  ident: 10.1016/j.mineng.2019.105868_b0555
  article-title: Study on metastable phase equilibrium of quaternary system Li+, K+ // CO32−, B4O72− − H2O at 273 K (in chinese)
  publication-title: Chem. Eng.
– volume: 61
  start-page: 3311
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0530
  article-title: Solid-liquid equilibrium on the reciprocal aqueous quaternary system Li+, Mg2+ // Cl–, and Borate – H2O at 323 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.6b00359
– volume: 51
  start-page: 1
  year: 2015
  ident: 10.1016/j.mineng.2019.105868_b0195
  article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. I. LiCl+H2O system
  publication-title: Calphad
  doi: 10.1016/j.calphad.2015.05.001
– volume: 56
  start-page: 2569
  year: 2011
  ident: 10.1016/j.mineng.2019.105868_b0545
  article-title: Metastable phase equilibrium in the aqueous quaternary system (Li2SO4 + Na2SO4 + Li2B4O7 + Na2B4O7 + H2O) at 273.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je200091k
– year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0395
  article-title: Solid-liquid phase equilibria of the aqueous systems containing lithium, magnesium and borate ions
– volume: 43
  start-page: 1
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0025
  article-title: Present situation of the process and technique of lithium recovery from brine around the world
  publication-title: J. Salt Chem. Ind.
– volume: 28
  start-page: 469
  year: 1978
  ident: 10.1016/j.mineng.2019.105868_b0300
  article-title: Recovery of lithium from Dead Sea brines
  publication-title: J. Appl. Chem. Biotech.
– volume: 2
  start-page: 1648
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0505
  article-title: Lithium metal extraction from seawater
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.006
– volume: 138
  start-page: 93
  year: 2013
  ident: 10.1016/j.mineng.2019.105868_b0420
  article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.05.013
– volume: 184
  start-page: 594
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0440
  article-title: A review on in situ phytoremediation of mine tailings
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.06.025
– year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0425
– ident: 10.1016/j.mineng.2019.105868_b0615
– volume: 1
  start-page: 115
  year: 1963
  ident: 10.1016/j.mineng.2019.105868_b0180
  article-title: Process for the extraction of lithium from dead sea solutions
  publication-title: Israel J. Chem.
  doi: 10.1002/ijch.196300021
– volume: 66
  start-page: 1815
  year: 2008
  ident: 10.1016/j.mineng.2019.105868_b0515
  article-title: Comparison of thermodynamic models in high-solubility salt+H2O systems Ⅰ: Binary systems
  publication-title: Acta Chim. Sin.
– volume: 25
  start-page: 3484
  year: 2015
  ident: 10.1016/j.mineng.2019.105868_b0245
  article-title: Extraction of lithium from salt lake brine by aluminum-based alloys
  publication-title: T. Nonferr. Metal. Soc.
  doi: 10.1016/S1003-6326(15)64032-8
– volume: 39
  start-page: 18
  year: 2010
  ident: 10.1016/j.mineng.2019.105868_b0475
  article-title: Study on phase equilibrium of the quaternary system K2B4O7 +Li2B4O7 + MgB4O7 − H2O at 288 K
  publication-title: J. Salt Chem. Ind.
– volume: 176
  start-page: 73
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0255
  article-title: Separating lithium and magnesium in brine by aluminum-based materials
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.01.005
– volume: 40
  start-page: 1079
  year: 1995
  ident: 10.1016/j.mineng.2019.105868_b0050
  article-title: Thermodynamic properties of aqueous (NH4)2SO4 to high supersaturation as a function of temperature
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00021a011
– volume: 59
  start-page: 4173
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0410
  article-title: Stable phase equilibrium of aqueous quaternary system Li+, K+, Mg2+ // Borate – H2O at 348 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je5008108
– year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0430
– volume: 59
  start-page: 903
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0455
  article-title: Metastable phase equilibrium of the quinary aqueous system Li++K++Cl–+CO32–+B4O72–+H2O at 273.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je4010867
– volume: 48
  start-page: 13
  year: 2015
  ident: 10.1016/j.mineng.2019.105868_b0540
  article-title: Predictions on the solubility and equiscale line of water content for the quaternary system (Li+Na+Cl+SO4+H2O) at 298.15 K
  publication-title: Calphad
  doi: 10.1016/j.calphad.2014.10.003
– volume: 19
  start-page: 290
  year: 2012
  ident: 10.1016/j.mineng.2019.105868_b0495
  article-title: Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine
  publication-title: Int. J. Min. Met. Mater.
  doi: 10.1007/s12613-012-0553-y
– volume: 173
  start-page: 63
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0355
  article-title: Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4 * 2TBP] as extractant: thermodynamics, kinetics and processes
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.08.003
– volume: 46
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0350
  article-title: IUPAC-NIST Solubility Data Series. 104. Lithium sulfate and its double salts in aqueous solutions
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.4977190
– volume: 43
  start-page: 1
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0020
  article-title: Present situation of the process and technique of lithium recovery from brine around the world
  publication-title: J. Salt Chem. Ind.
– volume: 53
  start-page: 16502
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0490
  article-title: Systemic and direct production of battery-grade lithium carbonate from a Saline Lake
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie502749n
– volume: 172
  start-page: 388
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0405
  article-title: Recovery and recycling of lithium: a review
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.031
– volume: 62
  start-page: 161
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0225
  article-title: Lithium recovery from aqueous resources and batteries: a brief review
  publication-title: Johnson Matthey Tech.
  doi: 10.1595/205651317X696676
– volume: 62
  start-page: 253
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0460
  article-title: Solid-liquid phase equilibrium in the ternary systems (Li2B4O7 + MgB4O7 + H2O) and (Na2B4O7 + MgB4O7 + H2O) at 298.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.6b00626
– volume: 76
  start-page: 551
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0160
  article-title: Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6885-1
– volume: 11
  start-page: 1
  year: 2003
  ident: 10.1016/j.mineng.2019.105868_b0375
  article-title: Parameters of Pitzer model for the salt lake brine system and their applications II. Prediction of solubilities in the system Li+, Na+, K+, Mg2+/Cl-, SO42-–H2O
  publication-title: J. Salt Lake Res.
– volume: 1
  start-page: 23
  year: 2003
  ident: 10.1016/j.mineng.2019.105868_b0635
  article-title: Progress in technology for extracting lithium from Li-bearing brine resources
  publication-title: Multipurpose Utilization Miner. Resour.
– volume: 67
  start-page: 74
  year: 2013
  ident: 10.1016/j.mineng.2019.105868_b0030
  article-title: Solubility of Li2CO3 in Na–K–Li–Cl brines from 20 to 90°C
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2013.07.024
– ident: 10.1016/j.mineng.2019.105868_b0315
– ident: 10.1016/j.mineng.2019.105868_b0450
– volume: 23
  start-page: 1411
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0400
  article-title: Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+
  publication-title: J. Porous Mat.
  doi: 10.1007/s10934-016-0201-4
– ident: 10.1016/j.mineng.2019.105868_b0510
– volume: 44
  start-page: 2903
  year: 2005
  ident: 10.1016/j.mineng.2019.105868_b0065
  article-title: Enrichment of bromine in sea-bittern with recovery of other marine chemicals
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049130x
– volume: 89
  start-page: 1572
  year: 2015
  ident: 10.1016/j.mineng.2019.105868_b0210
  article-title: The phase diagram and physicochemical properties of the quaternary system Li+, Rb+, Mg2+ // borate - H2O at 348 K
  publication-title: Russ. J. Phys. Chem. A+
  doi: 10.1134/S0036024415090149
– volume: 12
  start-page: 1
  year: 2004
  ident: 10.1016/j.mineng.2019.105868_b0385
  article-title: Parameters of Pitzer model for the salt lake brine system and their applications III. Applications in process technology in the system Li+, Na+, K+, Mg2+/Cl-, SO42-–H2O
  publication-title: J. Salt Lake Res.
– volume: 35
  start-page: 1513
  year: 2003
  ident: 10.1016/j.mineng.2019.105868_b0320
  article-title: (Liquid + solid) metastable equilibria in quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O at T=288 K for Zhabuye salt lake
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/S0021-9614(03)00122-8
– volume: 43
  start-page: 81
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0235
  article-title: Research on distribution and extraction technology of lithium resources
  publication-title: Guangdong Chem./Indust.
– ident: 10.1016/j.mineng.2019.105868_b0485
– volume: 172
  start-page: 473
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0335
  article-title: Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents
  publication-title: Sep. Purifi. Technol.
  doi: 10.1016/j.seppur.2016.08.034
– ident: 10.1016/j.mineng.2019.105868_b0120
– volume: 32
  start-page: 1248
  year: 2013
  ident: 10.1016/j.mineng.2019.105868_b0525
  article-title: Comparative study of lithium extraction from the carbonate brine between solar pond and laboratory simulation experiment
  publication-title: Chem. Indust. Eng. Progr.
– volume: 25
  start-page: 329
  year: 2001
  ident: 10.1016/j.mineng.2019.105868_b0365
  article-title: Thermodynamics and phase diagram of the Salt Lake Brine System at 25°C I. Li+, K+, Mg2+/Cl−, SO42−, -H2O system
  publication-title: Calphad
  doi: 10.1016/S0364-5916(01)00053-0
– volume: 38
  start-page: 173
  year: 2006
  ident: 10.1016/j.mineng.2019.105868_b0325
  article-title: (Solid + liquid) metastable equilibria in quaternary system Li2SO4 + K2SO4 + Li2B4O7 + K2B4O7 + H2O at 288 K
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2005.04.002
– volume: 120
  start-page: 621
  year: 1999
  ident: 10.1016/j.mineng.2019.105868_b0165
  article-title: Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(99)80567-9
– volume: 90
  start-page: 767
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0240
  article-title: Lithium resources in brine of China's Sea salt field operations
  publication-title: Acta Geol. Sin-Engl.
  doi: 10.1111/1755-6724.12711
– volume: 175
  start-page: 102
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0435
  article-title: Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.10.017
– volume: 53
  start-page: 2496
  year: 2008
  ident: 10.1016/j.mineng.2019.105868_b0075
  article-title: Metastable phase equilibrium in the aqueous quaternary system (Li2SO4 + K2SO4 + MgSO4 + H2O) at 288.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je800245m
– volume: 172
  start-page: 168
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0170
  article-title: Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.006
– ident: 10.1016/j.mineng.2019.105868_b0625
– ident: 10.1016/j.mineng.2019.105868_b0115
– volume: 169
  start-page: 31
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0285
  article-title: Modelling of column lithium desorption from Li+-loaded adsorbent obtained by adsorption from salt brine
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.11.012
– volume: 54
  start-page: 2054
  year: 2009
  ident: 10.1016/j.mineng.2019.105868_b0550
  article-title: Solubility and density measurements of concentrated Li2B4O7 + Na2B4O7 + K2B4O7 + Li2SO4 + Na2SO4 + K2SO4 + H2O solution at 273.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je8009013
– volume: 639
  start-page: 1188
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0085
  article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.223
– volume: 188
  start-page: 167
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0585
  article-title: Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.07.028
– volume: 90
  start-page: 3005
  year: 1986
  ident: 10.1016/j.mineng.2019.105868_b0305
  article-title: Thermodynamics of multicomponent, miscible, ionic systems: theory and equations
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100404a042
– volume: 59
  start-page: 821
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0595
  article-title: Equilibria in the quaternary system Na+, K+ // Cl–, B4O72– – H2O at 323 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je400956h
– volume: 128
  start-page: 141
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0605
  article-title: Systematic review of feldspar beneficiation and its comprehensive application
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.08.043
– volume: 11
  start-page: 1
  year: 2003
  ident: 10.1016/j.mineng.2019.105868_b0370
  article-title: Parameters of Pitzer model for the salt lake brine system and their applications I. Applications in physical chemistry for the system Li+, Na+, K+, Mg2+/Cl-, SO42-–H2O
  publication-title: J. Salt Lake Res.
– volume: 45
  start-page: 1008
  year: 2018
  ident: 10.1016/j.mineng.2019.105868_b0580
  article-title: Stable phase equilibrium of the aqueous quaternary system Li+, K+, Mg2+//Borate - H2O at 323 K
  publication-title: Chiang Mai J. Sci.
– year: 2010
  ident: 10.1016/j.mineng.2019.105868_b0130
– volume: 44
  start-page: 15721
  year: 2015
  ident: 10.1016/j.mineng.2019.105868_b0520
  article-title: The structure of H2TiO3-a short discussion on “Lithium recovery from salt lake brine by H2TiO3”
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03689A
– volume: 7
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0390
  article-title: Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake
  publication-title: Minerals-Basel
– volume: 57
  start-page: 3672
  year: 2012
  ident: 10.1016/j.mineng.2019.105868_b0560
  article-title: Study on the solubility of the aqueous quaternary system Li2SO4 + Na2SO4 + K2SO4 + H2O at 273.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je300874c
– volume: 171
  start-page: 27
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0465
  article-title: Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.04.007
– volume: 1985
  start-page: 345
  year: 1986
  ident: 10.1016/j.mineng.2019.105868_b0640
  article-title: Application of previously precipitated Active Aluminium Hydroxide (AAH) for removal of refractory substances from wastewater
  publication-title: Chem. Protect. Environ.
– volume: 35
  start-page: 347
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0190
  article-title: Adsorptive Li+ mining from liquid resources by H2TiO3: equilibrium, kinetics, thermodynamics, and mechanisms
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.01.015
– ident: 10.1016/j.mineng.2019.105868_b0630
– volume: 6
  start-page: 106980
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0330
  article-title: Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium
  publication-title: RSC Adv.
  doi: 10.1039/C6RA14230C
– volume: 210
  start-page: 885
  year: 2019
  ident: 10.1016/j.mineng.2019.105868_b0340
  article-title: Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane
  publication-title: Sep. Purifi. Technol.
  doi: 10.1016/j.seppur.2018.09.006
– volume: 114
  start-page: 11595
  year: 2010
  ident: 10.1016/j.mineng.2019.105868_b0090
  article-title: Temperature dependent thermodynamic model of the system H+−NH4+−Na+−SO42−−NO3−−Cl−−H2O
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp101041j
– ident: 10.1016/j.mineng.2019.105868_b0590
– volume: 90
  start-page: 1195
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0620
  article-title: Progress and prospects of Salt Lake Research in China
  publication-title: Acta Geol. Sin-Engl.
  doi: 10.1111/1755-6724.12767
– year: 2013
  ident: 10.1016/j.mineng.2019.105868_b0070
– ident: 10.1016/j.mineng.2019.105868_b0265
– ident: 10.1016/j.mineng.2019.105868_b0135
– volume: 30
  start-page: 676
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0215
  article-title: Isothermal evaporation of quaternary system Li+, K+, Mg2+ // Cl− - H2O at 348 K
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-014-3506-3
– volume: 530
  start-page: 185
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0270
  article-title: Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.02.020
– volume: 61
  start-page: 1246
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0535
  article-title: Stable phase equilibrium and phase diagram of the quinary system Li+, K+, Rb+, Mg2+ // Borate - H2O at T = 348.15 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.5b00888
– start-page: 1
  year: 2004
  ident: 10.1016/j.mineng.2019.105868_b0105
– volume: 52
  start-page: 1859
  year: 2007
  ident: 10.1016/j.mineng.2019.105868_b0145
  article-title: Operating conditions for lithium recovery from natural brines
  publication-title: Russ. J. Inorg. Chem.+
  doi: 10.1134/S0036023607120091
– volume: 51
  start-page: 13481
  year: 2017
  ident: 10.1016/j.mineng.2019.105868_b0290
  article-title: Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03464
– volume: 53
  start-page: 78
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0205
  article-title: Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl+H2O, KCl+H2O, MgCl2+H2O and CaCl2+H2O systems
  publication-title: Calphad
  doi: 10.1016/j.calphad.2016.03.007
– volume: 51
  start-page: 219
  year: 2006
  ident: 10.1016/j.mineng.2019.105868_b0575
  article-title: Liquid−solid metastable equilibria in the quinary system Li+ + K+ + Cl− + CO32− + B4O72− + H2O at T = 288 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je050337m
– volume: 102
  start-page: 2155
  year: 1998
  ident: 10.1016/j.mineng.2019.105868_b0045
  article-title: Thermodynamic model of the system H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15K
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp973043j
– volume: 117–118
  start-page: 64
  year: 2012
  ident: 10.1016/j.mineng.2019.105868_b0005
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.02.008
– volume: 288
  start-page: 137
  year: 2016
  ident: 10.1016/j.mineng.2019.105868_b0280
  article-title: Modelling of column lithium adsorption from pH-buffered brine using surface Li+/H+ ion exchange reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.11.092
– ident: 10.1016/j.mineng.2019.105868_b0480
– volume: 43
  start-page: 16
  year: 2014
  ident: 10.1016/j.mineng.2019.105868_b0230
  article-title: Stable phase equilibrium in the aqueous ternary system Li+, Mg2+ // borate - H2O at 323K
  publication-title: J. Salt Chem. Ind.
– volume: 376
  start-page: 35
  year: 2015
  ident: 10.1016/j.mineng.2019.105868_b0250
  article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.08.013
– volume: 52
  start-page: 164
  year: 2007
  ident: 10.1016/j.mineng.2019.105868_b0570
  article-title: Study on the metastable equilibria of the salt lake brine system Li2SO4 + Na2SO4 + K2SO4 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O at 288 K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je060334p
SSID ssj0005789
Score 2.6294265
SecondaryResourceType review_article
Snippet •Precipitation approaches are widely used to extract lithium from salt lake brines.•Promising magnesium precipitation technology for comprehensively utilizing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105868
SubjectTerms Comprehensive utilization
Green principle
Lithium extraction
Precipitation
Salt-lake brine
Title Systematic review of lithium extraction from salt-lake brines via precipitation approaches
URI https://dx.doi.org/10.1016/j.mineng.2019.105868
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY_eZbI6lWKpiL7VQvCx5arXdLu3Wo7_dZLNbKoiCx92dQJiZnXyB-b4B4NqnDKsEY0Sk8FBEQoGoJBEKBPUkj32ecMt3fhziwTi6n8STBujVXBjbVlnVflfTy2pdvelU3uzk02ln5CU0wAZuGwhi7laOwR4Rm-U3n1ttHqQcg2eNkbWu6XNlj9fcILnsxTZ4UTvwNrGCqz8dT1tHTv8A7FdYEXbddg5BQ2VHYG9LQfAYPI82SszQsVDgQkMDrV-n6zk0hXfpiAvQ0kjgis0KNGPvCnJL-lvBjymDudW3yCupblhrjKvVCRj3b596A1SNS0DCXNIK423me4LGREtigIemgkWaK60N5MHS_GwswFwoLBLhmS-J4lRpEyE7B5aFvghPQTNbZOoMwFhzFgbcx56ikUpkIkUYMiFiaQLoCb8FwtpLqag2aEdazNK6aewtdb5NrW9T59sWQJtVudPS-MOe1AFIv-VEasr9ryvP_73yAuzaJ9fidwmaxXKtrgzsKHi7zKs22OnePQyGX6kM2tk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT8IwFG0IPKgPxs-In33wtWGfXftIiGQo8AIkxJel7Tqdwlhg-Ptt6YaYGE18XXuT5ra7PU3OOReAe5syLAnGKIiFhbzAFYjGgYccQa2Y-zYnXOudB0McTrzHqT-tgU6lhdG0yrL2m5q-qdbll1aZzVaepq2RRaiDFdxWEES9rbSCvaHdqfw6aLR7T-Hwi-kRbDrh6flIB1QKug3Na67AXPaiOV5U97wl2nP1pxtq59bpHoHDEi7CtlnRMajJ7AQc7JgInoLn0daMGRohClwkUKHr13Q9h6r2Lo12AWolCVyxWYFm7F1CrnV_K_iRMphri4u8dOuGlc24XJ2BSfdh3AlR2TEBCfVOK1TCmW0J6gdJHCjskVDBvITLJFGoB8fqf2MO5kJiQYSlRojkVCZqk3QrWObawj0H9WyRyQsA_YQz1-E2tiT1JIlJLFyXCeHHag8tYTeBW2UpEuUCdVeLWVTxxt4ik9tI5zYyuW0CtI3KjZ3GH_ODagOib8ciUhX_18jLf0fegb1wPOhH_d7w6Qrs6xHD-LsG9WK5ljcKhRT8tjxlnyxx3Yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+review+of+lithium+extraction+from+salt-lake+brines+via+precipitation+approaches&rft.jtitle=Minerals+engineering&rft.au=Zhang%2C+Ye&rft.au=Hu%2C+Yuehua&rft.au=Wang%2C+Li&rft.au=Sun%2C+Wei&rft.date=2019-08-01&rft.issn=0892-6875&rft.volume=139&rft.spage=105868&rft_id=info:doi/10.1016%2Fj.mineng.2019.105868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2019_105868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon