High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment
•Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are investigated.•Σ3 CSLBs show great resistance of intergranular damage.•The present model addresses fatigue, creep and oxidation on life prediction. Th...
Saved in:
Published in | International journal of fatigue Vol. 118; pp. 8 - 21 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.01.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0142-1123 1879-3452 |
DOI | 10.1016/j.ijfatigue.2018.05.008 |
Cover
Loading…
Abstract | •Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are investigated.•Σ3 CSLBs show great resistance of intergranular damage.•The present model addresses fatigue, creep and oxidation on life prediction.
The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at 650 °C. Compared with LCF tests, the effects of tensile and compressive strain hold times on creep-fatigue lifetimes are experimentally explored with varying total strain ranges in the present work. In order to elucidate the damage mechanisms under complex loading waveforms, an additional series of tests with both tensile and compressive hold times are carried out at a given total strain range of 2.0%. Posterior to the cyclic tests, main-crack-failure modes and secondary cracking modes are studied via optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. Main-crack failure mechanisms are examined by the fracture appearance observations. Cracking modes are explored through quantitative characterization on the distributions of secondary cracks in the longitudinal cross sections under different loading waveforms. Moreover, a generalized life model based on linear damage summation (LDS) framework and energy dissipation criterion (EDC) is elaborated to estimate the damage mechanisms of fatigue, creep and oxidation. The prediction results can well establish the correlations between the reductions of numbers of cycles to failure and the presences of different damage mechanisms under respective loading waveforms. |
---|---|
AbstractList | The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at 650 °C. Compared with LCF tests, the effects of tensile and compressive strain hold times on creep-fatigue lifetimes are experimentally explored with varying total strain ranges in the present work. In order to elucidate the damage mechanisms under complex loading waveforms, an additional series of tests with both tensile and compressive hold times are carried out at a given total strain range of 2.0%. Posterior to the cyclic tests, main-crack-failure modes and secondary cracking modes are studied via optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. Main-crack failure mechanisms are examined by the fracture appearance observations. Cracking modes are explored through quantitative characterization on the distributions of secondary cracks in the longitudinal cross sections under different loading waveforms. Moreover, a generalized life model based on linear damage summation (LDS) framework and energy dissipation criterion (EDC) is elaborated to estimate the damage mechanisms of fatigue, creep and oxidation. The prediction results can well establish the correlations between the reductions of numbers of cycles to failure and the presences of different damage mechanisms under respective loading waveforms. •Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are investigated.•Σ3 CSLBs show great resistance of intergranular damage.•The present model addresses fatigue, creep and oxidation on life prediction. The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at 650 °C. Compared with LCF tests, the effects of tensile and compressive strain hold times on creep-fatigue lifetimes are experimentally explored with varying total strain ranges in the present work. In order to elucidate the damage mechanisms under complex loading waveforms, an additional series of tests with both tensile and compressive hold times are carried out at a given total strain range of 2.0%. Posterior to the cyclic tests, main-crack-failure modes and secondary cracking modes are studied via optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. Main-crack failure mechanisms are examined by the fracture appearance observations. Cracking modes are explored through quantitative characterization on the distributions of secondary cracks in the longitudinal cross sections under different loading waveforms. Moreover, a generalized life model based on linear damage summation (LDS) framework and energy dissipation criterion (EDC) is elaborated to estimate the damage mechanisms of fatigue, creep and oxidation. The prediction results can well establish the correlations between the reductions of numbers of cycles to failure and the presences of different damage mechanisms under respective loading waveforms. |
Author | Zhang, Cheng-Cheng Wang, Ji Zhang, Xian-Cheng Tu, Shan-Tung Wang, Run-Zi Zhu, Shun-Peng |
Author_xml | – sequence: 1 givenname: Run-Zi surname: Wang fullname: Wang, Run-Zi organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China – sequence: 2 givenname: Shun-Peng surname: Zhu fullname: Zhu, Shun-Peng organization: Center for System Reliability & Safety, University of Electronic Science and Technology of China, Chengdu 611731, PR China – sequence: 3 givenname: Ji surname: Wang fullname: Wang, Ji organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China – sequence: 4 givenname: Xian-Cheng surname: Zhang fullname: Zhang, Xian-Cheng email: xczhang@ecust.edu.cn organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China – sequence: 5 givenname: Shan-Tung surname: Tu fullname: Tu, Shan-Tung email: sttu@ecust.edu.cn organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China – sequence: 6 givenname: Cheng-Cheng surname: Zhang fullname: Zhang, Cheng-Cheng organization: AECC Commercial Aircraft Engine Co. LTD, Shanghai Engineering Research Center for Commercial Aircraft Engine, Shanghai 201108, PR China |
BookMark | eNqNkE1r3DAQQEXYQDcfv6GCnu2O5C-p0ENI0yYQmktyFpI92pWx5a0kB_Lv4-1ucuglPQ2IeU_MOyMrP3kk5DODnAGrv_a5661ObjNjzoGJHKocQJyQNRONzIqy4iuyBlbyjDFefCJnMfYAIKGp1iTdus2WJhx3GHSaA9Kji2rf0TYg7rK3F4Nb_eymEKnzVNPfLjM6YkfjvIeHYXr5Rn_oUW-QjthutXdxjH89g7OLMEaMcUSfLsip1UPEy-M8J08_bx6vb7P7h19311f3WVuCTFmjLQrNDTfSCG6qQhiJRY1GVlrYznKou4rXJUMsSrC1EbJm0mBnWWlr3RTn5MvBuwvTnxljUv00B798qTgrmOBSQr1sfT9stWGKMaBVrUvLyZNPQbtBMVD70KpX76HVPrSCSi2hF775h98FN-rw8h_k1YHEJcKzw6Bi69C32LmAbVLd5D50vALkwKHz |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2024_110404 crossref_primary_10_1016_j_mtcomm_2024_110260 crossref_primary_10_1016_j_matchar_2023_113240 crossref_primary_10_1515_mt_2022_0397 crossref_primary_10_1016_j_engfailanal_2025_109508 crossref_primary_10_1016_j_cja_2024_11_023 crossref_primary_10_1016_j_ijfatigue_2021_106227 crossref_primary_10_1111_ffe_13410 crossref_primary_10_1111_ffe_14389 crossref_primary_10_1016_j_engfracmech_2019_03_040 crossref_primary_10_1177_1056789518786031 crossref_primary_10_1016_j_engfailanal_2024_109029 crossref_primary_10_1016_j_ijfatigue_2024_108728 crossref_primary_10_1016_j_ijfatigue_2021_106187 crossref_primary_10_1016_j_ijfatigue_2023_108007 crossref_primary_10_3390_met12050889 crossref_primary_10_1016_j_ijfatigue_2021_106189 crossref_primary_10_1016_j_ijfatigue_2023_107833 crossref_primary_10_1016_j_ijfatigue_2024_108800 crossref_primary_10_1016_j_msea_2025_148132 crossref_primary_10_1016_j_ijfatigue_2022_106820 crossref_primary_10_1016_j_ijfatigue_2024_108369 crossref_primary_10_1016_j_ijfatigue_2024_108402 crossref_primary_10_1016_j_ijpvp_2021_104513 crossref_primary_10_1016_j_jmrt_2022_12_094 crossref_primary_10_1016_j_ijfatigue_2023_107555 crossref_primary_10_1016_j_tafmec_2019_102333 crossref_primary_10_1016_j_ijfatigue_2022_107154 crossref_primary_10_1016_j_engfracmech_2021_107955 crossref_primary_10_1016_j_engfailanal_2024_108783 crossref_primary_10_1111_ffe_13341 crossref_primary_10_1111_ffe_13385 crossref_primary_10_1177_1687814018816403 crossref_primary_10_1016_j_ijfatigue_2020_105848 crossref_primary_10_1016_j_jallcom_2024_175814 crossref_primary_10_1016_j_eml_2020_100791 crossref_primary_10_1016_j_matchar_2023_112917 crossref_primary_10_1016_j_ijfatigue_2022_107067 crossref_primary_10_1016_j_ijfatigue_2023_107768 crossref_primary_10_1016_j_jmst_2024_12_066 crossref_primary_10_1016_j_ijfatigue_2021_106677 crossref_primary_10_1016_j_ijfatigue_2021_106357 crossref_primary_10_1016_j_ijplas_2019_03_012 crossref_primary_10_1016_j_matdes_2020_108639 crossref_primary_10_1111_ffe_14435 crossref_primary_10_1016_j_ijmecsci_2022_107871 crossref_primary_10_1016_j_pnsc_2021_07_005 crossref_primary_10_1016_j_ress_2024_110578 crossref_primary_10_1016_j_commatsci_2021_110690 crossref_primary_10_1016_j_matchar_2023_113209 crossref_primary_10_1016_j_ijmecsci_2024_109373 crossref_primary_10_1016_j_matdes_2024_113267 crossref_primary_10_1111_ffe_12937 crossref_primary_10_1016_j_ijfatigue_2019_105185 crossref_primary_10_1016_j_engfracmech_2024_110507 crossref_primary_10_1016_j_ijfatigue_2021_106569 crossref_primary_10_26896_1028_6861_2023_89_4_50_62 crossref_primary_10_1111_ffe_14288 crossref_primary_10_1016_j_engfracmech_2019_106582 crossref_primary_10_1016_j_ijfatigue_2020_105879 crossref_primary_10_1016_j_ijfatigue_2020_105837 crossref_primary_10_1016_j_matpr_2022_03_487 crossref_primary_10_1016_j_jmrt_2021_11_116 crossref_primary_10_1016_j_ijfatigue_2021_106522 crossref_primary_10_1111_ffe_12906 crossref_primary_10_1016_j_ijfatigue_2024_108341 crossref_primary_10_1007_s11661_020_05961_4 crossref_primary_10_1016_j_ijfatigue_2019_105452 crossref_primary_10_1016_j_engfracmech_2021_107859 crossref_primary_10_1016_j_ijfatigue_2024_108582 crossref_primary_10_1016_j_ijfatigue_2019_05_005 crossref_primary_10_1016_j_msea_2022_143741 crossref_primary_10_1016_j_engfracmech_2021_107781 crossref_primary_10_3390_a12120260 crossref_primary_10_2355_isijinternational_ISIJINT_2019_321 crossref_primary_10_1016_j_ijfatigue_2023_107828 crossref_primary_10_1007_s00419_024_02607_4 crossref_primary_10_1016_j_jmrt_2025_01_139 crossref_primary_10_1016_j_ijmecsci_2021_106628 crossref_primary_10_1111_ffe_14013 crossref_primary_10_1177_1687814019856752 crossref_primary_10_1016_j_ijfatigue_2019_06_010 crossref_primary_10_1016_j_ijfatigue_2020_106031 crossref_primary_10_1016_j_matchar_2023_112938 crossref_primary_10_1016_j_ijfatigue_2024_108732 crossref_primary_10_1016_j_ress_2022_108523 crossref_primary_10_1520_MPC20200167 crossref_primary_10_1016_j_ijfatigue_2025_108872 crossref_primary_10_1016_j_jmps_2019_04_016 crossref_primary_10_3390_app9061112 |
Cites_doi | 10.1016/S0921-5093(02)00753-0 10.1016/S0142-1123(01)00049-4 10.1016/j.actamat.2009.08.022 10.1016/0142-1123(83)90026-9 10.1179/174328005X14320 10.1016/j.ijpvp.2007.11.006 10.1016/j.msea.2018.02.029 10.1016/j.ijfatigue.2007.05.008 10.1179/174328405X63935 10.1520/JTE10520J 10.1016/j.msea.2013.02.003 10.1016/0921-5093(92)90358-8 10.1016/j.ijfatigue.2009.01.023 10.1016/j.actamat.2014.10.002 10.1016/j.ijmecsci.2005.08.004 10.3184/096034013X13757890932442 10.1016/j.msea.2004.03.075 10.1115/PVP2008-61820 10.1115/1.3224979 10.1126/science.1159610 10.1111/j.1460-2695.1994.tb00231.x 10.1016/j.engfailanal.2009.01.010 10.1016/j.actamat.2008.03.019 10.1016/j.msea.2016.11.040 10.1177/0954410016641448 10.1016/j.ijfatigue.2017.07.008 10.1111/ffe.12048 10.1016/j.msea.2015.12.096 10.1016/j.ijfatigue.2016.11.021 10.1016/j.ijfatigue.2017.01.002 10.7449/1989/Superalloys_1989_241_256 10.1016/j.ijfatigue.2016.12.015 10.1016/S1875-5372(10)60122-1 10.1016/j.ijfatigue.2011.10.018 10.1016/0001-6160(66)90168-4 10.1111/ffe.12569 10.1016/j.actamat.2015.11.015 10.1016/0029-5493(94)90024-8 10.1016/j.ijfatigue.2016.03.005 10.1016/j.ijfatigue.2009.07.003 10.1016/j.engfracmech.2015.01.002 10.1016/S1359-6454(99)00007-5 10.1179/0960340915Z.000000000120 10.1023/A:1026351619636 10.1016/j.engfracmech.2012.04.021 10.1016/j.msea.2013.07.020 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jan 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2019 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2018.05.008 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
EndPage | 21 |
ExternalDocumentID | 10_1016_j_ijfatigue_2018_05_008 S0142112318301798 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c409t-7afe8a2b2b9b82b538b9e36eb95a8fdf206d52641ee340f6b89619bedf14f6a73 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Fri Jul 25 05:18:56 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Tue Jul 01 01:54:28 EDT 2025 Fri Feb 23 02:28:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Coincident site lattice boundary Life assessment Hold time effect Damage mechanism Creep-fatigue |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-7afe8a2b2b9b82b538b9e36eb95a8fdf206d52641ee340f6b89619bedf14f6a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2131829906 |
PQPubID | 2045465 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2131829906 crossref_citationtrail_10_1016_j_ijfatigue_2018_05_008 crossref_primary_10_1016_j_ijfatigue_2018_05_008 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2018_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Andrieu E, Cozar R, Pineau A. Effect of environment and microstructure on the high temperature behavior of alloy 718, Superalloys 718, 625 and various derivatives 1989:241–256. Mannan, Valsan (b0195) 2006; 48 Park, Sato, Kokawa (b0160) 2003; 38 Lu, Lu, Suresh (b0155) 2009; 324 Miao J, Pollock TM, Wayne Jones J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Materialia 2009;57:5964–74. Billot, Villechaise, Jouiad, Mendez (b0175) 2010; 32 Fournier, Sauzay, Caes, Noblecourt, Mottot, Bougault (b0125) 2008; 30 Wang, Zhu, Zhang, Tu, Gong, Zhang (b0200) 2017; 104 Liu, Zhang, Zhang, Zhang (b0215) 2015; 83 Deng, Tu, Zhang, Wang, Qin (b0005) 2015; 134 Abuzaid, Oral, Sehitoglu, Lambros, Maier (b0150) 2013; 36 Gayda, Miner (b0180) 1983; 5 Asayama T, Jetter R. An overview of creep-fatigue damage evaluation methods and an alternative approach. In: Proceedings of ASME PVP; 2008. Vöse, Becker, Fischersworring-Bunk, Hackenberg (b0070) 2013; 53 Krupp, Wagenhuber, Kane, McMahon (b0105) 2005; 21 Tu, Zhang (b0030) 2016 Wang, Zhang, Gong, Zhu, Tu, Zhang (b0240) 2017; 97 Thakker AB, Cowles BA. Low strain, long life creep fatigue of AF2-1DA and INCO 718; 1983. Vöse, Becker, Fischersworring-Bunk, Hackenberg (b0065) 2012; 32 Krupp (b0110) 2005; 50 ASTM E-112. Standard test methods for determining average grain size. ASTM International USA; 2010. Liu, Lin, Zhao, Zhao, Chen, Huang (b0130) 2010; 39 Andrieu, Molins, Ghonem, Pineau (b0055) 1992; 154 Pineau, Antolovich (b0020) 2009; 16 Challenger KD, Miller AK, Brinkman CR. An explanation for the effects of hold periods on the elevated temperature fatigue behavior of 2 1/4 Cr-1 Mo steel. J Eng Mater Technol 1981;103:7–14. Wang, Zhang, Tu, Zhu, Zhang (b0235) 2016; 90 Takahashi (b0250) 2008; 85 Guo, Qian, Meng, Zhang, Li (b0095) 2013; 584 Skelton (b0225) 2013; 30 Reed, Kumar, Minich, Rudd (b0140) 2008; 56 Schlesinger, Seifert, Preussner (b0075) 2017; 99 Tong, Dalby, Byrne, Henderson, Hardy (b0025) 2001; 23 Wang, Chen, Zhang, Tu, Wang, Zhang (b0060) 2017; 97 Zhang, Li, Zeng, Tu, Zhang, Wang (b0010) 2017; 682 Yamaura, Igarashi, Tsurekawa, Watanabe (b0165) 1999; 47 Takahashi (b0230) 2015; 32 Aoto, Komine, Ueno, Kawasaki, Wada (b0120) 1994; 153 Li, Shang, Zhang, Liu, Li, Li (b0080) 2018; 719 Zhu, Lei, Wang (b0245) 2017; 40 Leo Prakash, Walsh, Maclachlan, Korsunsky (b0035) 2009; 31 Chen, Zhang, Xu, Lin, Chen (b0040) 2016; 655 Shao, Zhang, Liu, Zhang, Pang, Zhang (b0170) 2016; 103 Zhu, Yang, Huang, Lv, Wang (b0015) 2017; 231 Brandon (b0135) 1966; 14 Ostergren (b0220) 1976; 4 Ramirez, Lippold (b0185) 2004; 380 Krupp, Kane, Liu, Dueber, Laird, McMahon (b0115) 2003; 349 Lynch, Radtke, Wicks, Byrnes (b0190) 1994; 17 ASME E 2714-13. Standard Test Method for Creep-Fatigue Testing, American Society of Testing and Materials; 2013. Prasad, Sarkar, Ghosal, Kumar (b0045) 2013; 572 Zhu, Huang, He, Liu, Wang (b0210) 2012; 90 10.1016/j.ijfatigue.2018.05.008_b0090 Leo Prakash (10.1016/j.ijfatigue.2018.05.008_b0035) 2009; 31 Fournier (10.1016/j.ijfatigue.2018.05.008_b0125) 2008; 30 10.1016/j.ijfatigue.2018.05.008_b0050 Tu (10.1016/j.ijfatigue.2018.05.008_b0030) 2016 Skelton (10.1016/j.ijfatigue.2018.05.008_b0225) 2013; 30 Krupp (10.1016/j.ijfatigue.2018.05.008_b0110) 2005; 50 Wang (10.1016/j.ijfatigue.2018.05.008_b0240) 2017; 97 Andrieu (10.1016/j.ijfatigue.2018.05.008_b0055) 1992; 154 Park (10.1016/j.ijfatigue.2018.05.008_b0160) 2003; 38 Billot (10.1016/j.ijfatigue.2018.05.008_b0175) 2010; 32 10.1016/j.ijfatigue.2018.05.008_b0255 Takahashi (10.1016/j.ijfatigue.2018.05.008_b0250) 2008; 85 Deng (10.1016/j.ijfatigue.2018.05.008_b0005) 2015; 134 Liu (10.1016/j.ijfatigue.2018.05.008_b0130) 2010; 39 Liu (10.1016/j.ijfatigue.2018.05.008_b0215) 2015; 83 Krupp (10.1016/j.ijfatigue.2018.05.008_b0115) 2003; 349 Ramirez (10.1016/j.ijfatigue.2018.05.008_b0185) 2004; 380 Wang (10.1016/j.ijfatigue.2018.05.008_b0200) 2017; 104 Brandon (10.1016/j.ijfatigue.2018.05.008_b0135) 1966; 14 10.1016/j.ijfatigue.2018.05.008_b0205 Reed (10.1016/j.ijfatigue.2018.05.008_b0140) 2008; 56 Vöse (10.1016/j.ijfatigue.2018.05.008_b0065) 2012; 32 Tong (10.1016/j.ijfatigue.2018.05.008_b0025) 2001; 23 Zhu (10.1016/j.ijfatigue.2018.05.008_b0210) 2012; 90 10.1016/j.ijfatigue.2018.05.008_b0085 Shao (10.1016/j.ijfatigue.2018.05.008_b0170) 2016; 103 Vöse (10.1016/j.ijfatigue.2018.05.008_b0070) 2013; 53 Gayda (10.1016/j.ijfatigue.2018.05.008_b0180) 1983; 5 Mannan (10.1016/j.ijfatigue.2018.05.008_b0195) 2006; 48 Guo (10.1016/j.ijfatigue.2018.05.008_b0095) 2013; 584 Zhu (10.1016/j.ijfatigue.2018.05.008_b0245) 2017; 40 Abuzaid (10.1016/j.ijfatigue.2018.05.008_b0150) 2013; 36 Lu (10.1016/j.ijfatigue.2018.05.008_b0155) 2009; 324 Takahashi (10.1016/j.ijfatigue.2018.05.008_b0230) 2015; 32 Zhang (10.1016/j.ijfatigue.2018.05.008_b0010) 2017; 682 Schlesinger (10.1016/j.ijfatigue.2018.05.008_b0075) 2017; 99 Aoto (10.1016/j.ijfatigue.2018.05.008_b0120) 1994; 153 Lynch (10.1016/j.ijfatigue.2018.05.008_b0190) 1994; 17 Prasad (10.1016/j.ijfatigue.2018.05.008_b0045) 2013; 572 Krupp (10.1016/j.ijfatigue.2018.05.008_b0105) 2005; 21 Wang (10.1016/j.ijfatigue.2018.05.008_b0235) 2016; 90 Li (10.1016/j.ijfatigue.2018.05.008_b0080) 2018; 719 Zhu (10.1016/j.ijfatigue.2018.05.008_b0015) 2017; 231 Wang (10.1016/j.ijfatigue.2018.05.008_b0060) 2017; 97 Chen (10.1016/j.ijfatigue.2018.05.008_b0040) 2016; 655 Yamaura (10.1016/j.ijfatigue.2018.05.008_b0165) 1999; 47 Ostergren (10.1016/j.ijfatigue.2018.05.008_b0220) 1976; 4 Pineau (10.1016/j.ijfatigue.2018.05.008_b0020) 2009; 16 10.1016/j.ijfatigue.2018.05.008_b0100 10.1016/j.ijfatigue.2018.05.008_b0145 |
References_xml | – volume: 83 start-page: 341 year: 2015 end-page: 356 ident: b0215 article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: damage mechanisms and life prediction publication-title: Acta Mater – volume: 38 start-page: 4379 year: 2003 end-page: 4383 ident: b0160 article-title: Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D publication-title: J Mater Sci – reference: Challenger KD, Miller AK, Brinkman CR. An explanation for the effects of hold periods on the elevated temperature fatigue behavior of 2 1/4 Cr-1 Mo steel. J Eng Mater Technol 1981;103:7–14. – volume: 104 start-page: 61 year: 2017 end-page: 71 ident: b0200 article-title: A generalized strain energy density exhaustion model allowing for compressive hold effect publication-title: Int J Fatigue – volume: 99 start-page: 242 year: 2017 end-page: 249 ident: b0075 article-title: Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction publication-title: Int J Fatigue – volume: 154 start-page: 21 year: 1992 end-page: 28 ident: b0055 article-title: Intergranular crack tip oxidation mechanism in a nickel-based superalloy publication-title: Mater Sci Eng, A – volume: 56 start-page: 3278 year: 2008 end-page: 3289 ident: b0140 article-title: Fracture roughness scaling and its correlation with grain boundary network structure publication-title: Acta Mater – volume: 90 start-page: 12 year: 2016 end-page: 22 ident: b0235 article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction publication-title: Int J Fatigue – volume: 719 start-page: 61 year: 2018 end-page: 71 ident: b0080 article-title: Thermo-mechanical fatigue damage behavior for Ni-based superalloy under axial-torsional loading publication-title: Mater Sci Eng, A – volume: 584 start-page: 133 year: 2013 end-page: 142 ident: b0095 article-title: Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel publication-title: Mater Sci Eng, A – volume: 17 start-page: 297 year: 1994 end-page: 311 ident: b0190 article-title: Fatigue crack growth in nickel-based superalloys at 500–700 C. I: Waspaloy publication-title: Fatigue Fract Eng Mater Struct – volume: 97 start-page: 190 year: 2017 end-page: 201 ident: b0060 article-title: The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behaviour in a forged and precipitation hardened nickel-based superalloy publication-title: Int J Fatigue – volume: 32 start-page: 595 year: 2012 end-page: 607 ident: b0065 article-title: A mechanism-based approach to life prediction for a Nickel-base alloy subjected to cyclic and creep-fatigue publication-title: Technische Mechanik – start-page: 1 year: 2016 end-page: 23 ident: b0030 article-title: Fatigue crack initiation mechanisms publication-title: Ref Module Mater Sci Mater Eng – reference: Miao J, Pollock TM, Wayne Jones J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Materialia 2009;57:5964–74. – volume: 36 start-page: 809 year: 2013 end-page: 826 ident: b0150 article-title: Fatigue crack initiation in Hastelloy X – the role of boundaries publication-title: Fatigue Fract Eng Mater Struct – volume: 47 start-page: 1163 year: 1999 end-page: 1174 ident: b0165 article-title: Structure-dependent intergranular oxidation in Ni–Fe polycrystalline alloy publication-title: Acta Mater – volume: 40 start-page: 1343 year: 2017 end-page: 1354 ident: b0245 article-title: Mean stress and ratcheting corrections in fatigue life prediction of metals publication-title: Fatigue Fract Eng Mater Struct – volume: 103 start-page: 781 year: 2016 end-page: 795 ident: b0170 article-title: Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction publication-title: Acta Mater – volume: 30 start-page: 663 year: 2008 end-page: 676 ident: b0125 article-title: Creep-fatigue-oxidation interactions in a 9Cr–1Mo martensitic steel. Part II: effect of compressive holding period on fatigue lifetime publication-title: Int J Fatigue – volume: 14 start-page: 1479 year: 1966 end-page: 1484 ident: b0135 article-title: The structure of high-angle grain boundaries publication-title: Acta Metall – volume: 90 start-page: 89 year: 2012 end-page: 100 ident: b0210 article-title: A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys publication-title: Eng Fract Mech – volume: 30 start-page: 183 year: 2013 end-page: 201 ident: b0225 article-title: The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components publication-title: Mater High Temp – volume: 16 start-page: 2668 year: 2009 end-page: 2697 ident: b0020 article-title: High temperature fatigue of nickel-base superalloys – a review with special emphasis on deformation modes and oxidation publication-title: Eng Fail Anal – volume: 31 start-page: 1966 year: 2009 end-page: 1977 ident: b0035 article-title: Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation publication-title: Int J Fatigue – volume: 682 start-page: 12 year: 2017 end-page: 22 ident: b0010 article-title: Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase publication-title: Mater Sci Eng, A – reference: Andrieu E, Cozar R, Pineau A. Effect of environment and microstructure on the high temperature behavior of alloy 718, Superalloys 718, 625 and various derivatives 1989:241–256. – reference: Asayama T, Jetter R. An overview of creep-fatigue damage evaluation methods and an alternative approach. In: Proceedings of ASME PVP; 2008. – volume: 655 start-page: 175 year: 2016 end-page: 182 ident: b0040 article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C publication-title: Mater Sci Eng, A – reference: ASME E 2714-13. Standard Test Method for Creep-Fatigue Testing, American Society of Testing and Materials; 2013. – volume: 23 start-page: 897 year: 2001 end-page: 902 ident: b0025 article-title: Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys publication-title: Int J Fatigue – volume: 39 start-page: 1519 year: 2010 end-page: 1524 ident: b0130 article-title: Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy publication-title: Rare Metal Mater Eng – volume: 21 start-page: 1247 year: 2005 end-page: 1254 ident: b0105 article-title: Improving resistance to dynamic embrittlement and intergranular oxidation of nickel based superalloys by grain boundary engineering type processing publication-title: Mater Sci Technol – volume: 153 start-page: 97 year: 1994 end-page: 110 ident: b0120 article-title: Creep-fatigue evaluation of normalized and tempered modified 9Cr-1Mo publication-title: Nucl Eng Des – volume: 231 start-page: 677 year: 2017 end-page: 688 ident: b0015 article-title: A unified criterion for fatigue–creep life prediction of high temperature components publication-title: Proc Inst Mech Eng G: J Aerospace Eng – volume: 324 start-page: 349 year: 2009 end-page: 352 ident: b0155 article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale publication-title: Science – volume: 4 start-page: 327 year: 1976 end-page: 339 ident: b0220 article-title: A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue publication-title: J Test Eval – volume: 134 start-page: 433 year: 2015 end-page: 450 ident: b0005 article-title: Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 publication-title: Eng Fract Mech – volume: 32 start-page: 492 year: 2015 end-page: 501 ident: b0230 article-title: Effect of cyclic loading on subsequent creep behaviour and its implications in creep–fatigue life assessment publication-title: Mater High Temp – reference: ASTM E-112. Standard test methods for determining average grain size. ASTM International USA; 2010. – volume: 5 start-page: 135 year: 1983 end-page: 143 ident: b0180 article-title: Fatigue crack initiation and propagation in several nickel-base superalloys at 650 °C publication-title: Int J Fatigue – volume: 349 start-page: 213 year: 2003 end-page: 217 ident: b0115 article-title: The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718 publication-title: Mater Sci Eng, A – reference: Thakker AB, Cowles BA. Low strain, long life creep fatigue of AF2-1DA and INCO 718; 1983. – volume: 50 start-page: 83 year: 2005 end-page: 97 ident: b0110 article-title: Dynamic embrittlement—time–dependent quasi–brittle intergranular fracture at high temperatures publication-title: Int Mater Rev – volume: 97 start-page: 114 year: 2017 end-page: 123 ident: b0240 article-title: Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 C based on cycle-by-cycle concept publication-title: Int J Fatigue – volume: 32 start-page: 824 year: 2010 end-page: 829 ident: b0175 article-title: Creep–fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy publication-title: Int J Fatigue – volume: 85 start-page: 423 year: 2008 end-page: 440 ident: b0250 article-title: Study on creep-fatigue evaluation procedures for high chromium steels—Part II: sensitivity to calculated deformation publication-title: Int J Press Vessels Pip – volume: 572 start-page: 1 year: 2013 end-page: 7 ident: b0045 article-title: Simultaneous creep–fatigue damage accumulation of forged turbine disc of IN 718 superalloy publication-title: Mater Sci Eng, A – volume: 380 start-page: 245 year: 2004 end-page: 258 ident: b0185 article-title: High temperature behavior of Ni-base weld metal publication-title: Mater Sci Eng, A – volume: 53 start-page: 49 year: 2013 end-page: 57 ident: b0070 article-title: An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions publication-title: Int J Fatigue – volume: 48 start-page: 160 year: 2006 end-page: 175 ident: b0195 article-title: High-temperature low cycle fatigue, creep–fatigue and thermomechanical fatigue of steels and their welds publication-title: Int J Mech Sci – volume: 349 start-page: 213 year: 2003 ident: 10.1016/j.ijfatigue.2018.05.008_b0115 article-title: The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718 publication-title: Mater Sci Eng, A doi: 10.1016/S0921-5093(02)00753-0 – volume: 23 start-page: 897 year: 2001 ident: 10.1016/j.ijfatigue.2018.05.008_b0025 article-title: Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys publication-title: Int J Fatigue doi: 10.1016/S0142-1123(01)00049-4 – ident: 10.1016/j.ijfatigue.2018.05.008_b0145 doi: 10.1016/j.actamat.2009.08.022 – volume: 5 start-page: 135 year: 1983 ident: 10.1016/j.ijfatigue.2018.05.008_b0180 article-title: Fatigue crack initiation and propagation in several nickel-base superalloys at 650 °C publication-title: Int J Fatigue doi: 10.1016/0142-1123(83)90026-9 – volume: 50 start-page: 83 year: 2005 ident: 10.1016/j.ijfatigue.2018.05.008_b0110 article-title: Dynamic embrittlement—time–dependent quasi–brittle intergranular fracture at high temperatures publication-title: Int Mater Rev doi: 10.1179/174328005X14320 – start-page: 1 year: 2016 ident: 10.1016/j.ijfatigue.2018.05.008_b0030 article-title: Fatigue crack initiation mechanisms publication-title: Ref Module Mater Sci Mater Eng – volume: 85 start-page: 423 year: 2008 ident: 10.1016/j.ijfatigue.2018.05.008_b0250 article-title: Study on creep-fatigue evaluation procedures for high chromium steels—Part II: sensitivity to calculated deformation publication-title: Int J Press Vessels Pip doi: 10.1016/j.ijpvp.2007.11.006 – volume: 719 start-page: 61 year: 2018 ident: 10.1016/j.ijfatigue.2018.05.008_b0080 article-title: Thermo-mechanical fatigue damage behavior for Ni-based superalloy under axial-torsional loading publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2018.02.029 – volume: 30 start-page: 663 year: 2008 ident: 10.1016/j.ijfatigue.2018.05.008_b0125 article-title: Creep-fatigue-oxidation interactions in a 9Cr–1Mo martensitic steel. Part II: effect of compressive holding period on fatigue lifetime publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2007.05.008 – volume: 21 start-page: 1247 year: 2005 ident: 10.1016/j.ijfatigue.2018.05.008_b0105 article-title: Improving resistance to dynamic embrittlement and intergranular oxidation of nickel based superalloys by grain boundary engineering type processing publication-title: Mater Sci Technol doi: 10.1179/174328405X63935 – volume: 4 start-page: 327 year: 1976 ident: 10.1016/j.ijfatigue.2018.05.008_b0220 article-title: A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue publication-title: J Test Eval doi: 10.1520/JTE10520J – volume: 572 start-page: 1 year: 2013 ident: 10.1016/j.ijfatigue.2018.05.008_b0045 article-title: Simultaneous creep–fatigue damage accumulation of forged turbine disc of IN 718 superalloy publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2013.02.003 – volume: 154 start-page: 21 year: 1992 ident: 10.1016/j.ijfatigue.2018.05.008_b0055 article-title: Intergranular crack tip oxidation mechanism in a nickel-based superalloy publication-title: Mater Sci Eng, A doi: 10.1016/0921-5093(92)90358-8 – volume: 31 start-page: 1966 year: 2009 ident: 10.1016/j.ijfatigue.2018.05.008_b0035 article-title: Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2009.01.023 – volume: 83 start-page: 341 year: 2015 ident: 10.1016/j.ijfatigue.2018.05.008_b0215 article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: damage mechanisms and life prediction publication-title: Acta Mater doi: 10.1016/j.actamat.2014.10.002 – volume: 48 start-page: 160 year: 2006 ident: 10.1016/j.ijfatigue.2018.05.008_b0195 article-title: High-temperature low cycle fatigue, creep–fatigue and thermomechanical fatigue of steels and their welds publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2005.08.004 – ident: 10.1016/j.ijfatigue.2018.05.008_b0090 – volume: 30 start-page: 183 year: 2013 ident: 10.1016/j.ijfatigue.2018.05.008_b0225 article-title: The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components publication-title: Mater High Temp doi: 10.3184/096034013X13757890932442 – volume: 380 start-page: 245 year: 2004 ident: 10.1016/j.ijfatigue.2018.05.008_b0185 article-title: High temperature behavior of Ni-base weld metal publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2004.03.075 – ident: 10.1016/j.ijfatigue.2018.05.008_b0205 doi: 10.1115/PVP2008-61820 – ident: 10.1016/j.ijfatigue.2018.05.008_b0255 doi: 10.1115/1.3224979 – volume: 324 start-page: 349 year: 2009 ident: 10.1016/j.ijfatigue.2018.05.008_b0155 article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale publication-title: Science doi: 10.1126/science.1159610 – volume: 17 start-page: 297 year: 1994 ident: 10.1016/j.ijfatigue.2018.05.008_b0190 article-title: Fatigue crack growth in nickel-based superalloys at 500–700 C. I: Waspaloy publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/j.1460-2695.1994.tb00231.x – volume: 16 start-page: 2668 year: 2009 ident: 10.1016/j.ijfatigue.2018.05.008_b0020 article-title: High temperature fatigue of nickel-base superalloys – a review with special emphasis on deformation modes and oxidation publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2009.01.010 – ident: 10.1016/j.ijfatigue.2018.05.008_b0085 – volume: 56 start-page: 3278 year: 2008 ident: 10.1016/j.ijfatigue.2018.05.008_b0140 article-title: Fracture roughness scaling and its correlation with grain boundary network structure publication-title: Acta Mater doi: 10.1016/j.actamat.2008.03.019 – volume: 682 start-page: 12 year: 2017 ident: 10.1016/j.ijfatigue.2018.05.008_b0010 article-title: Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2016.11.040 – volume: 231 start-page: 677 year: 2017 ident: 10.1016/j.ijfatigue.2018.05.008_b0015 article-title: A unified criterion for fatigue–creep life prediction of high temperature components publication-title: Proc Inst Mech Eng G: J Aerospace Eng doi: 10.1177/0954410016641448 – ident: 10.1016/j.ijfatigue.2018.05.008_b0100 – volume: 104 start-page: 61 year: 2017 ident: 10.1016/j.ijfatigue.2018.05.008_b0200 article-title: A generalized strain energy density exhaustion model allowing for compressive hold effect publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.07.008 – volume: 36 start-page: 809 year: 2013 ident: 10.1016/j.ijfatigue.2018.05.008_b0150 article-title: Fatigue crack initiation in Hastelloy X – the role of boundaries publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12048 – volume: 655 start-page: 175 year: 2016 ident: 10.1016/j.ijfatigue.2018.05.008_b0040 article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2015.12.096 – volume: 97 start-page: 114 year: 2017 ident: 10.1016/j.ijfatigue.2018.05.008_b0240 article-title: Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 C based on cycle-by-cycle concept publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.11.021 – volume: 97 start-page: 190 year: 2017 ident: 10.1016/j.ijfatigue.2018.05.008_b0060 article-title: The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behaviour in a forged and precipitation hardened nickel-based superalloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.01.002 – volume: 32 start-page: 595 year: 2012 ident: 10.1016/j.ijfatigue.2018.05.008_b0065 article-title: A mechanism-based approach to life prediction for a Nickel-base alloy subjected to cyclic and creep-fatigue publication-title: Technische Mechanik – ident: 10.1016/j.ijfatigue.2018.05.008_b0050 doi: 10.7449/1989/Superalloys_1989_241_256 – volume: 99 start-page: 242 year: 2017 ident: 10.1016/j.ijfatigue.2018.05.008_b0075 article-title: Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.12.015 – volume: 39 start-page: 1519 year: 2010 ident: 10.1016/j.ijfatigue.2018.05.008_b0130 article-title: Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy publication-title: Rare Metal Mater Eng doi: 10.1016/S1875-5372(10)60122-1 – volume: 53 start-page: 49 year: 2013 ident: 10.1016/j.ijfatigue.2018.05.008_b0070 article-title: An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2011.10.018 – volume: 14 start-page: 1479 year: 1966 ident: 10.1016/j.ijfatigue.2018.05.008_b0135 article-title: The structure of high-angle grain boundaries publication-title: Acta Metall doi: 10.1016/0001-6160(66)90168-4 – volume: 40 start-page: 1343 year: 2017 ident: 10.1016/j.ijfatigue.2018.05.008_b0245 article-title: Mean stress and ratcheting corrections in fatigue life prediction of metals publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12569 – volume: 103 start-page: 781 year: 2016 ident: 10.1016/j.ijfatigue.2018.05.008_b0170 article-title: Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction publication-title: Acta Mater doi: 10.1016/j.actamat.2015.11.015 – volume: 153 start-page: 97 year: 1994 ident: 10.1016/j.ijfatigue.2018.05.008_b0120 article-title: Creep-fatigue evaluation of normalized and tempered modified 9Cr-1Mo publication-title: Nucl Eng Des doi: 10.1016/0029-5493(94)90024-8 – volume: 90 start-page: 12 year: 2016 ident: 10.1016/j.ijfatigue.2018.05.008_b0235 article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.03.005 – volume: 32 start-page: 824 year: 2010 ident: 10.1016/j.ijfatigue.2018.05.008_b0175 article-title: Creep–fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2009.07.003 – volume: 134 start-page: 433 year: 2015 ident: 10.1016/j.ijfatigue.2018.05.008_b0005 article-title: Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.01.002 – volume: 47 start-page: 1163 year: 1999 ident: 10.1016/j.ijfatigue.2018.05.008_b0165 article-title: Structure-dependent intergranular oxidation in Ni–Fe polycrystalline alloy publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00007-5 – volume: 32 start-page: 492 year: 2015 ident: 10.1016/j.ijfatigue.2018.05.008_b0230 article-title: Effect of cyclic loading on subsequent creep behaviour and its implications in creep–fatigue life assessment publication-title: Mater High Temp doi: 10.1179/0960340915Z.000000000120 – volume: 38 start-page: 4379 year: 2003 ident: 10.1016/j.ijfatigue.2018.05.008_b0160 article-title: Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D publication-title: J Mater Sci doi: 10.1023/A:1026351619636 – volume: 90 start-page: 89 year: 2012 ident: 10.1016/j.ijfatigue.2018.05.008_b0210 article-title: A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2012.04.021 – volume: 584 start-page: 133 year: 2013 ident: 10.1016/j.ijfatigue.2018.05.008_b0095 article-title: Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2013.07.020 |
SSID | ssj0009075 |
Score | 2.556537 |
Snippet | •Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are... The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8 |
SubjectTerms | Coincident site lattice boundary Cold flow Compressive properties Crack propagation Cracking (fracturing) Creep-fatigue Cyclic testing Damage assessment Damage mechanism Electron backscatter diffraction Energy dissipation Failure mechanisms Failure modes Fatigue cracks Fatigue failure Fatigue life Fracture mechanics Fracture toughness High temperature Hold time effect Life assessment Low cycle fatigue Materials fatigue Metal fatigue Metals creep Nickel alloys Nickel base alloys Optical microscopy Oxidation Scanning electron microscopy Strain analysis Superalloys Waveforms |
Title | High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2018.05.008 https://www.proquest.com/docview/2131829906 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPMVbHlhNEzdxYzYEVAVEJ5C6WXZsS6naUJEysPDbuUuc8hASA2MsnxP7Lvew7r4j5EzwPLVSSyZcFrFE9yKmwW1lmdOuz0VqjcRq5IeRGD4ld-N0vEKu2loYTKsMur_R6bW2DiPdcJrdeVF0MS0JoheOQolihQW_SdJHKT9__0zzkA3YLk5mOPtbjlcx8bB_vCIBO5jVEJ7YZ_J3C_VDV9cGaLBJNoLnSC-bj9siK67cJutf8AR3yAKzNiiiTQWoZBpeTHVpKfiHbs7akbY-v6JFSTUdQYwMBs3S6hWJp9Pntwt6rWegbujMYXlwUc2qep1p4WHBJaLnLnka3DxeDVloq8ByCOYWrK-9yzQ3HNiQcQMaz0jXE87IVGfeeh4Jm4KfFDvXSyIvTCYhyjLO-jjxQvd7e6RTPpdun1ArbB47EefcZIn1RsYWAQXTWDhwNJL4gIj2KFUeMMex9cVUtcllE7XkgUIeqChVwIMDEi0J5w3sxt8kFy2v1DcJUmAc_iY-brmrwk9cKR6DbKG5Fof_WfuIrMGTbO5tjkln8fLqTsCTWZjTWlRPyerl7f1w9AFtCPXc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UB7QFBaQcvDh16tTbyJ19nbihYtrz2BxM2yY1sK2g2rZjnw75nZOEtBSBx6dTJONDOehzXzDcAvKcrcFabg0quEZ2aQcINhK1fe-KGQubMFdSNfT-XkNru4y-824LTrhaGyymj7W5u-stZxpR-52V9UVZ_KkjB7EaSUpFbqE2wSOlXeg83x-eVk-oK92-Lt0vucCF6VeVX3AVlAtyToCtUKxZNGTb7vpN6Y65UPOtuB7Rg8snH7f7uw4euv8OUfSME9WFLhBiPAqYiWzOKHmakdwxDRL3i30rXoN6yqmWFTTJPRpznWPBLxbPbwNGK_zRwtDpt76hCumnmz2mdWBdxwDer5DW7P_tycTnicrMBLzOeWfGiCV0ZYgZJQwqLRs4UfSG-L3KjggkikyzFUSr0fZEmQVhWYaFnvQpoFaYaD79CrH2q_D8xJV6ZepqWwKnPBFqkjTME8lR5jjSw9ANmxUpcRdpymX8x0V192r9cy0CQDneQaZXAAyZpw0SJvfEwy6mSlXymRRv_wMfFhJ10dz3GjRYrqRR5b_vifvU9ga3JzfaWvzqeXP-EzPinaa5xD6C3_PvojDGyW9jgq7jPScPiN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+temperature+fatigue+and+creep-fatigue+behaviors+in+a+Ni-based+superalloy%3A+Damage+mechanisms+and+life+assessment&rft.jtitle=International+journal+of+fatigue&rft.au=Wang%2C+Run-Zi&rft.au=Zhu%2C+Shun-Peng&rft.au=Wang%2C+Ji&rft.au=Zhang%2C+Xian-Cheng&rft.date=2019-01-01&rft.issn=0142-1123&rft.volume=118&rft.spage=8&rft.epage=21&rft_id=info:doi/10.1016%2Fj.ijfatigue.2018.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijfatigue_2018_05_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |