High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment

•Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are investigated.•Σ3 CSLBs show great resistance of intergranular damage.•The present model addresses fatigue, creep and oxidation on life prediction. Th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 118; pp. 8 - 21
Main Authors Wang, Run-Zi, Zhu, Shun-Peng, Wang, Ji, Zhang, Xian-Cheng, Tu, Shan-Tung, Zhang, Cheng-Cheng
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0142-1123
1879-3452
DOI10.1016/j.ijfatigue.2018.05.008

Cover

Loading…
Abstract •Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are investigated.•Σ3 CSLBs show great resistance of intergranular damage.•The present model addresses fatigue, creep and oxidation on life prediction. The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at 650 °C. Compared with LCF tests, the effects of tensile and compressive strain hold times on creep-fatigue lifetimes are experimentally explored with varying total strain ranges in the present work. In order to elucidate the damage mechanisms under complex loading waveforms, an additional series of tests with both tensile and compressive hold times are carried out at a given total strain range of 2.0%. Posterior to the cyclic tests, main-crack-failure modes and secondary cracking modes are studied via optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. Main-crack failure mechanisms are examined by the fracture appearance observations. Cracking modes are explored through quantitative characterization on the distributions of secondary cracks in the longitudinal cross sections under different loading waveforms. Moreover, a generalized life model based on linear damage summation (LDS) framework and energy dissipation criterion (EDC) is elaborated to estimate the damage mechanisms of fatigue, creep and oxidation. The prediction results can well establish the correlations between the reductions of numbers of cycles to failure and the presences of different damage mechanisms under respective loading waveforms.
AbstractList The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at 650 °C. Compared with LCF tests, the effects of tensile and compressive strain hold times on creep-fatigue lifetimes are experimentally explored with varying total strain ranges in the present work. In order to elucidate the damage mechanisms under complex loading waveforms, an additional series of tests with both tensile and compressive hold times are carried out at a given total strain range of 2.0%. Posterior to the cyclic tests, main-crack-failure modes and secondary cracking modes are studied via optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. Main-crack failure mechanisms are examined by the fracture appearance observations. Cracking modes are explored through quantitative characterization on the distributions of secondary cracks in the longitudinal cross sections under different loading waveforms. Moreover, a generalized life model based on linear damage summation (LDS) framework and energy dissipation criterion (EDC) is elaborated to estimate the damage mechanisms of fatigue, creep and oxidation. The prediction results can well establish the correlations between the reductions of numbers of cycles to failure and the presences of different damage mechanisms under respective loading waveforms.
•Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are investigated.•Σ3 CSLBs show great resistance of intergranular damage.•The present model addresses fatigue, creep and oxidation on life prediction. The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at 650 °C. Compared with LCF tests, the effects of tensile and compressive strain hold times on creep-fatigue lifetimes are experimentally explored with varying total strain ranges in the present work. In order to elucidate the damage mechanisms under complex loading waveforms, an additional series of tests with both tensile and compressive hold times are carried out at a given total strain range of 2.0%. Posterior to the cyclic tests, main-crack-failure modes and secondary cracking modes are studied via optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. Main-crack failure mechanisms are examined by the fracture appearance observations. Cracking modes are explored through quantitative characterization on the distributions of secondary cracks in the longitudinal cross sections under different loading waveforms. Moreover, a generalized life model based on linear damage summation (LDS) framework and energy dissipation criterion (EDC) is elaborated to estimate the damage mechanisms of fatigue, creep and oxidation. The prediction results can well establish the correlations between the reductions of numbers of cycles to failure and the presences of different damage mechanisms under respective loading waveforms.
Author Zhang, Cheng-Cheng
Wang, Ji
Zhang, Xian-Cheng
Tu, Shan-Tung
Wang, Run-Zi
Zhu, Shun-Peng
Author_xml – sequence: 1
  givenname: Run-Zi
  surname: Wang
  fullname: Wang, Run-Zi
  organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
– sequence: 2
  givenname: Shun-Peng
  surname: Zhu
  fullname: Zhu, Shun-Peng
  organization: Center for System Reliability & Safety, University of Electronic Science and Technology of China, Chengdu 611731, PR China
– sequence: 3
  givenname: Ji
  surname: Wang
  fullname: Wang, Ji
  organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
– sequence: 4
  givenname: Xian-Cheng
  surname: Zhang
  fullname: Zhang, Xian-Cheng
  email: xczhang@ecust.edu.cn
  organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
– sequence: 5
  givenname: Shan-Tung
  surname: Tu
  fullname: Tu, Shan-Tung
  email: sttu@ecust.edu.cn
  organization: Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
– sequence: 6
  givenname: Cheng-Cheng
  surname: Zhang
  fullname: Zhang, Cheng-Cheng
  organization: AECC Commercial Aircraft Engine Co. LTD, Shanghai Engineering Research Center for Commercial Aircraft Engine, Shanghai 201108, PR China
BookMark eNqNkE1r3DAQQEXYQDcfv6GCnu2O5C-p0ENI0yYQmktyFpI92pWx5a0kB_Lv4-1ucuglPQ2IeU_MOyMrP3kk5DODnAGrv_a5661ObjNjzoGJHKocQJyQNRONzIqy4iuyBlbyjDFefCJnMfYAIKGp1iTdus2WJhx3GHSaA9Kji2rf0TYg7rK3F4Nb_eymEKnzVNPfLjM6YkfjvIeHYXr5Rn_oUW-QjthutXdxjH89g7OLMEaMcUSfLsip1UPEy-M8J08_bx6vb7P7h19311f3WVuCTFmjLQrNDTfSCG6qQhiJRY1GVlrYznKou4rXJUMsSrC1EbJm0mBnWWlr3RTn5MvBuwvTnxljUv00B798qTgrmOBSQr1sfT9stWGKMaBVrUvLyZNPQbtBMVD70KpX76HVPrSCSi2hF775h98FN-rw8h_k1YHEJcKzw6Bi69C32LmAbVLd5D50vALkwKHz
CitedBy_id crossref_primary_10_1016_j_engfracmech_2024_110404
crossref_primary_10_1016_j_mtcomm_2024_110260
crossref_primary_10_1016_j_matchar_2023_113240
crossref_primary_10_1515_mt_2022_0397
crossref_primary_10_1016_j_engfailanal_2025_109508
crossref_primary_10_1016_j_cja_2024_11_023
crossref_primary_10_1016_j_ijfatigue_2021_106227
crossref_primary_10_1111_ffe_13410
crossref_primary_10_1111_ffe_14389
crossref_primary_10_1016_j_engfracmech_2019_03_040
crossref_primary_10_1177_1056789518786031
crossref_primary_10_1016_j_engfailanal_2024_109029
crossref_primary_10_1016_j_ijfatigue_2024_108728
crossref_primary_10_1016_j_ijfatigue_2021_106187
crossref_primary_10_1016_j_ijfatigue_2023_108007
crossref_primary_10_3390_met12050889
crossref_primary_10_1016_j_ijfatigue_2021_106189
crossref_primary_10_1016_j_ijfatigue_2023_107833
crossref_primary_10_1016_j_ijfatigue_2024_108800
crossref_primary_10_1016_j_msea_2025_148132
crossref_primary_10_1016_j_ijfatigue_2022_106820
crossref_primary_10_1016_j_ijfatigue_2024_108369
crossref_primary_10_1016_j_ijfatigue_2024_108402
crossref_primary_10_1016_j_ijpvp_2021_104513
crossref_primary_10_1016_j_jmrt_2022_12_094
crossref_primary_10_1016_j_ijfatigue_2023_107555
crossref_primary_10_1016_j_tafmec_2019_102333
crossref_primary_10_1016_j_ijfatigue_2022_107154
crossref_primary_10_1016_j_engfracmech_2021_107955
crossref_primary_10_1016_j_engfailanal_2024_108783
crossref_primary_10_1111_ffe_13341
crossref_primary_10_1111_ffe_13385
crossref_primary_10_1177_1687814018816403
crossref_primary_10_1016_j_ijfatigue_2020_105848
crossref_primary_10_1016_j_jallcom_2024_175814
crossref_primary_10_1016_j_eml_2020_100791
crossref_primary_10_1016_j_matchar_2023_112917
crossref_primary_10_1016_j_ijfatigue_2022_107067
crossref_primary_10_1016_j_ijfatigue_2023_107768
crossref_primary_10_1016_j_jmst_2024_12_066
crossref_primary_10_1016_j_ijfatigue_2021_106677
crossref_primary_10_1016_j_ijfatigue_2021_106357
crossref_primary_10_1016_j_ijplas_2019_03_012
crossref_primary_10_1016_j_matdes_2020_108639
crossref_primary_10_1111_ffe_14435
crossref_primary_10_1016_j_ijmecsci_2022_107871
crossref_primary_10_1016_j_pnsc_2021_07_005
crossref_primary_10_1016_j_ress_2024_110578
crossref_primary_10_1016_j_commatsci_2021_110690
crossref_primary_10_1016_j_matchar_2023_113209
crossref_primary_10_1016_j_ijmecsci_2024_109373
crossref_primary_10_1016_j_matdes_2024_113267
crossref_primary_10_1111_ffe_12937
crossref_primary_10_1016_j_ijfatigue_2019_105185
crossref_primary_10_1016_j_engfracmech_2024_110507
crossref_primary_10_1016_j_ijfatigue_2021_106569
crossref_primary_10_26896_1028_6861_2023_89_4_50_62
crossref_primary_10_1111_ffe_14288
crossref_primary_10_1016_j_engfracmech_2019_106582
crossref_primary_10_1016_j_ijfatigue_2020_105879
crossref_primary_10_1016_j_ijfatigue_2020_105837
crossref_primary_10_1016_j_matpr_2022_03_487
crossref_primary_10_1016_j_jmrt_2021_11_116
crossref_primary_10_1016_j_ijfatigue_2021_106522
crossref_primary_10_1111_ffe_12906
crossref_primary_10_1016_j_ijfatigue_2024_108341
crossref_primary_10_1007_s11661_020_05961_4
crossref_primary_10_1016_j_ijfatigue_2019_105452
crossref_primary_10_1016_j_engfracmech_2021_107859
crossref_primary_10_1016_j_ijfatigue_2024_108582
crossref_primary_10_1016_j_ijfatigue_2019_05_005
crossref_primary_10_1016_j_msea_2022_143741
crossref_primary_10_1016_j_engfracmech_2021_107781
crossref_primary_10_3390_a12120260
crossref_primary_10_2355_isijinternational_ISIJINT_2019_321
crossref_primary_10_1016_j_ijfatigue_2023_107828
crossref_primary_10_1007_s00419_024_02607_4
crossref_primary_10_1016_j_jmrt_2025_01_139
crossref_primary_10_1016_j_ijmecsci_2021_106628
crossref_primary_10_1111_ffe_14013
crossref_primary_10_1177_1687814019856752
crossref_primary_10_1016_j_ijfatigue_2019_06_010
crossref_primary_10_1016_j_ijfatigue_2020_106031
crossref_primary_10_1016_j_matchar_2023_112938
crossref_primary_10_1016_j_ijfatigue_2024_108732
crossref_primary_10_1016_j_ress_2022_108523
crossref_primary_10_1520_MPC20200167
crossref_primary_10_1016_j_ijfatigue_2025_108872
crossref_primary_10_1016_j_jmps_2019_04_016
crossref_primary_10_3390_app9061112
Cites_doi 10.1016/S0921-5093(02)00753-0
10.1016/S0142-1123(01)00049-4
10.1016/j.actamat.2009.08.022
10.1016/0142-1123(83)90026-9
10.1179/174328005X14320
10.1016/j.ijpvp.2007.11.006
10.1016/j.msea.2018.02.029
10.1016/j.ijfatigue.2007.05.008
10.1179/174328405X63935
10.1520/JTE10520J
10.1016/j.msea.2013.02.003
10.1016/0921-5093(92)90358-8
10.1016/j.ijfatigue.2009.01.023
10.1016/j.actamat.2014.10.002
10.1016/j.ijmecsci.2005.08.004
10.3184/096034013X13757890932442
10.1016/j.msea.2004.03.075
10.1115/PVP2008-61820
10.1115/1.3224979
10.1126/science.1159610
10.1111/j.1460-2695.1994.tb00231.x
10.1016/j.engfailanal.2009.01.010
10.1016/j.actamat.2008.03.019
10.1016/j.msea.2016.11.040
10.1177/0954410016641448
10.1016/j.ijfatigue.2017.07.008
10.1111/ffe.12048
10.1016/j.msea.2015.12.096
10.1016/j.ijfatigue.2016.11.021
10.1016/j.ijfatigue.2017.01.002
10.7449/1989/Superalloys_1989_241_256
10.1016/j.ijfatigue.2016.12.015
10.1016/S1875-5372(10)60122-1
10.1016/j.ijfatigue.2011.10.018
10.1016/0001-6160(66)90168-4
10.1111/ffe.12569
10.1016/j.actamat.2015.11.015
10.1016/0029-5493(94)90024-8
10.1016/j.ijfatigue.2016.03.005
10.1016/j.ijfatigue.2009.07.003
10.1016/j.engfracmech.2015.01.002
10.1016/S1359-6454(99)00007-5
10.1179/0960340915Z.000000000120
10.1023/A:1026351619636
10.1016/j.engfracmech.2012.04.021
10.1016/j.msea.2013.07.020
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jan 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2019
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2018.05.008
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
EndPage 21
ExternalDocumentID 10_1016_j_ijfatigue_2018_05_008
S0142112318301798
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c409t-7afe8a2b2b9b82b538b9e36eb95a8fdf206d52641ee340f6b89619bedf14f6a73
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Fri Jul 25 05:18:56 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Tue Jul 01 01:54:28 EDT 2025
Fri Feb 23 02:28:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Coincident site lattice boundary
Life assessment
Hold time effect
Damage mechanism
Creep-fatigue
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-7afe8a2b2b9b82b538b9e36eb95a8fdf206d52641ee340f6b89619bedf14f6a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2131829906
PQPubID 2045465
PageCount 14
ParticipantIDs proquest_journals_2131829906
crossref_citationtrail_10_1016_j_ijfatigue_2018_05_008
crossref_primary_10_1016_j_ijfatigue_2018_05_008
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2018_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Andrieu E, Cozar R, Pineau A. Effect of environment and microstructure on the high temperature behavior of alloy 718, Superalloys 718, 625 and various derivatives 1989:241–256.
Mannan, Valsan (b0195) 2006; 48
Park, Sato, Kokawa (b0160) 2003; 38
Lu, Lu, Suresh (b0155) 2009; 324
Miao J, Pollock TM, Wayne Jones J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Materialia 2009;57:5964–74.
Billot, Villechaise, Jouiad, Mendez (b0175) 2010; 32
Fournier, Sauzay, Caes, Noblecourt, Mottot, Bougault (b0125) 2008; 30
Wang, Zhu, Zhang, Tu, Gong, Zhang (b0200) 2017; 104
Liu, Zhang, Zhang, Zhang (b0215) 2015; 83
Deng, Tu, Zhang, Wang, Qin (b0005) 2015; 134
Abuzaid, Oral, Sehitoglu, Lambros, Maier (b0150) 2013; 36
Gayda, Miner (b0180) 1983; 5
Asayama T, Jetter R. An overview of creep-fatigue damage evaluation methods and an alternative approach. In: Proceedings of ASME PVP; 2008.
Vöse, Becker, Fischersworring-Bunk, Hackenberg (b0070) 2013; 53
Krupp, Wagenhuber, Kane, McMahon (b0105) 2005; 21
Tu, Zhang (b0030) 2016
Wang, Zhang, Gong, Zhu, Tu, Zhang (b0240) 2017; 97
Thakker AB, Cowles BA. Low strain, long life creep fatigue of AF2-1DA and INCO 718; 1983.
Vöse, Becker, Fischersworring-Bunk, Hackenberg (b0065) 2012; 32
Krupp (b0110) 2005; 50
ASTM E-112. Standard test methods for determining average grain size. ASTM International USA; 2010.
Liu, Lin, Zhao, Zhao, Chen, Huang (b0130) 2010; 39
Andrieu, Molins, Ghonem, Pineau (b0055) 1992; 154
Pineau, Antolovich (b0020) 2009; 16
Challenger KD, Miller AK, Brinkman CR. An explanation for the effects of hold periods on the elevated temperature fatigue behavior of 2 1/4 Cr-1 Mo steel. J Eng Mater Technol 1981;103:7–14.
Wang, Zhang, Tu, Zhu, Zhang (b0235) 2016; 90
Takahashi (b0250) 2008; 85
Guo, Qian, Meng, Zhang, Li (b0095) 2013; 584
Skelton (b0225) 2013; 30
Reed, Kumar, Minich, Rudd (b0140) 2008; 56
Schlesinger, Seifert, Preussner (b0075) 2017; 99
Tong, Dalby, Byrne, Henderson, Hardy (b0025) 2001; 23
Wang, Chen, Zhang, Tu, Wang, Zhang (b0060) 2017; 97
Zhang, Li, Zeng, Tu, Zhang, Wang (b0010) 2017; 682
Yamaura, Igarashi, Tsurekawa, Watanabe (b0165) 1999; 47
Takahashi (b0230) 2015; 32
Aoto, Komine, Ueno, Kawasaki, Wada (b0120) 1994; 153
Li, Shang, Zhang, Liu, Li, Li (b0080) 2018; 719
Zhu, Lei, Wang (b0245) 2017; 40
Leo Prakash, Walsh, Maclachlan, Korsunsky (b0035) 2009; 31
Chen, Zhang, Xu, Lin, Chen (b0040) 2016; 655
Shao, Zhang, Liu, Zhang, Pang, Zhang (b0170) 2016; 103
Zhu, Yang, Huang, Lv, Wang (b0015) 2017; 231
Brandon (b0135) 1966; 14
Ostergren (b0220) 1976; 4
Ramirez, Lippold (b0185) 2004; 380
Krupp, Kane, Liu, Dueber, Laird, McMahon (b0115) 2003; 349
Lynch, Radtke, Wicks, Byrnes (b0190) 1994; 17
ASME E 2714-13. Standard Test Method for Creep-Fatigue Testing, American Society of Testing and Materials; 2013.
Prasad, Sarkar, Ghosal, Kumar (b0045) 2013; 572
Zhu, Huang, He, Liu, Wang (b0210) 2012; 90
10.1016/j.ijfatigue.2018.05.008_b0090
Leo Prakash (10.1016/j.ijfatigue.2018.05.008_b0035) 2009; 31
Fournier (10.1016/j.ijfatigue.2018.05.008_b0125) 2008; 30
10.1016/j.ijfatigue.2018.05.008_b0050
Tu (10.1016/j.ijfatigue.2018.05.008_b0030) 2016
Skelton (10.1016/j.ijfatigue.2018.05.008_b0225) 2013; 30
Krupp (10.1016/j.ijfatigue.2018.05.008_b0110) 2005; 50
Wang (10.1016/j.ijfatigue.2018.05.008_b0240) 2017; 97
Andrieu (10.1016/j.ijfatigue.2018.05.008_b0055) 1992; 154
Park (10.1016/j.ijfatigue.2018.05.008_b0160) 2003; 38
Billot (10.1016/j.ijfatigue.2018.05.008_b0175) 2010; 32
10.1016/j.ijfatigue.2018.05.008_b0255
Takahashi (10.1016/j.ijfatigue.2018.05.008_b0250) 2008; 85
Deng (10.1016/j.ijfatigue.2018.05.008_b0005) 2015; 134
Liu (10.1016/j.ijfatigue.2018.05.008_b0130) 2010; 39
Liu (10.1016/j.ijfatigue.2018.05.008_b0215) 2015; 83
Krupp (10.1016/j.ijfatigue.2018.05.008_b0115) 2003; 349
Ramirez (10.1016/j.ijfatigue.2018.05.008_b0185) 2004; 380
Wang (10.1016/j.ijfatigue.2018.05.008_b0200) 2017; 104
Brandon (10.1016/j.ijfatigue.2018.05.008_b0135) 1966; 14
10.1016/j.ijfatigue.2018.05.008_b0205
Reed (10.1016/j.ijfatigue.2018.05.008_b0140) 2008; 56
Vöse (10.1016/j.ijfatigue.2018.05.008_b0065) 2012; 32
Tong (10.1016/j.ijfatigue.2018.05.008_b0025) 2001; 23
Zhu (10.1016/j.ijfatigue.2018.05.008_b0210) 2012; 90
10.1016/j.ijfatigue.2018.05.008_b0085
Shao (10.1016/j.ijfatigue.2018.05.008_b0170) 2016; 103
Vöse (10.1016/j.ijfatigue.2018.05.008_b0070) 2013; 53
Gayda (10.1016/j.ijfatigue.2018.05.008_b0180) 1983; 5
Mannan (10.1016/j.ijfatigue.2018.05.008_b0195) 2006; 48
Guo (10.1016/j.ijfatigue.2018.05.008_b0095) 2013; 584
Zhu (10.1016/j.ijfatigue.2018.05.008_b0245) 2017; 40
Abuzaid (10.1016/j.ijfatigue.2018.05.008_b0150) 2013; 36
Lu (10.1016/j.ijfatigue.2018.05.008_b0155) 2009; 324
Takahashi (10.1016/j.ijfatigue.2018.05.008_b0230) 2015; 32
Zhang (10.1016/j.ijfatigue.2018.05.008_b0010) 2017; 682
Schlesinger (10.1016/j.ijfatigue.2018.05.008_b0075) 2017; 99
Aoto (10.1016/j.ijfatigue.2018.05.008_b0120) 1994; 153
Lynch (10.1016/j.ijfatigue.2018.05.008_b0190) 1994; 17
Prasad (10.1016/j.ijfatigue.2018.05.008_b0045) 2013; 572
Krupp (10.1016/j.ijfatigue.2018.05.008_b0105) 2005; 21
Wang (10.1016/j.ijfatigue.2018.05.008_b0235) 2016; 90
Li (10.1016/j.ijfatigue.2018.05.008_b0080) 2018; 719
Zhu (10.1016/j.ijfatigue.2018.05.008_b0015) 2017; 231
Wang (10.1016/j.ijfatigue.2018.05.008_b0060) 2017; 97
Chen (10.1016/j.ijfatigue.2018.05.008_b0040) 2016; 655
Yamaura (10.1016/j.ijfatigue.2018.05.008_b0165) 1999; 47
Ostergren (10.1016/j.ijfatigue.2018.05.008_b0220) 1976; 4
Pineau (10.1016/j.ijfatigue.2018.05.008_b0020) 2009; 16
10.1016/j.ijfatigue.2018.05.008_b0100
10.1016/j.ijfatigue.2018.05.008_b0145
References_xml – volume: 83
  start-page: 341
  year: 2015
  end-page: 356
  ident: b0215
  article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: damage mechanisms and life prediction
  publication-title: Acta Mater
– volume: 38
  start-page: 4379
  year: 2003
  end-page: 4383
  ident: b0160
  article-title: Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D
  publication-title: J Mater Sci
– reference: Challenger KD, Miller AK, Brinkman CR. An explanation for the effects of hold periods on the elevated temperature fatigue behavior of 2 1/4 Cr-1 Mo steel. J Eng Mater Technol 1981;103:7–14.
– volume: 104
  start-page: 61
  year: 2017
  end-page: 71
  ident: b0200
  article-title: A generalized strain energy density exhaustion model allowing for compressive hold effect
  publication-title: Int J Fatigue
– volume: 99
  start-page: 242
  year: 2017
  end-page: 249
  ident: b0075
  article-title: Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction
  publication-title: Int J Fatigue
– volume: 154
  start-page: 21
  year: 1992
  end-page: 28
  ident: b0055
  article-title: Intergranular crack tip oxidation mechanism in a nickel-based superalloy
  publication-title: Mater Sci Eng, A
– volume: 56
  start-page: 3278
  year: 2008
  end-page: 3289
  ident: b0140
  article-title: Fracture roughness scaling and its correlation with grain boundary network structure
  publication-title: Acta Mater
– volume: 90
  start-page: 12
  year: 2016
  end-page: 22
  ident: b0235
  article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction
  publication-title: Int J Fatigue
– volume: 719
  start-page: 61
  year: 2018
  end-page: 71
  ident: b0080
  article-title: Thermo-mechanical fatigue damage behavior for Ni-based superalloy under axial-torsional loading
  publication-title: Mater Sci Eng, A
– volume: 584
  start-page: 133
  year: 2013
  end-page: 142
  ident: b0095
  article-title: Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel
  publication-title: Mater Sci Eng, A
– volume: 17
  start-page: 297
  year: 1994
  end-page: 311
  ident: b0190
  article-title: Fatigue crack growth in nickel-based superalloys at 500–700 C. I: Waspaloy
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 97
  start-page: 190
  year: 2017
  end-page: 201
  ident: b0060
  article-title: The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behaviour in a forged and precipitation hardened nickel-based superalloy
  publication-title: Int J Fatigue
– volume: 32
  start-page: 595
  year: 2012
  end-page: 607
  ident: b0065
  article-title: A mechanism-based approach to life prediction for a Nickel-base alloy subjected to cyclic and creep-fatigue
  publication-title: Technische Mechanik
– start-page: 1
  year: 2016
  end-page: 23
  ident: b0030
  article-title: Fatigue crack initiation mechanisms
  publication-title: Ref Module Mater Sci Mater Eng
– reference: Miao J, Pollock TM, Wayne Jones J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Materialia 2009;57:5964–74.
– volume: 36
  start-page: 809
  year: 2013
  end-page: 826
  ident: b0150
  article-title: Fatigue crack initiation in Hastelloy X – the role of boundaries
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 47
  start-page: 1163
  year: 1999
  end-page: 1174
  ident: b0165
  article-title: Structure-dependent intergranular oxidation in Ni–Fe polycrystalline alloy
  publication-title: Acta Mater
– volume: 40
  start-page: 1343
  year: 2017
  end-page: 1354
  ident: b0245
  article-title: Mean stress and ratcheting corrections in fatigue life prediction of metals
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 103
  start-page: 781
  year: 2016
  end-page: 795
  ident: b0170
  article-title: Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction
  publication-title: Acta Mater
– volume: 30
  start-page: 663
  year: 2008
  end-page: 676
  ident: b0125
  article-title: Creep-fatigue-oxidation interactions in a 9Cr–1Mo martensitic steel. Part II: effect of compressive holding period on fatigue lifetime
  publication-title: Int J Fatigue
– volume: 14
  start-page: 1479
  year: 1966
  end-page: 1484
  ident: b0135
  article-title: The structure of high-angle grain boundaries
  publication-title: Acta Metall
– volume: 90
  start-page: 89
  year: 2012
  end-page: 100
  ident: b0210
  article-title: A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys
  publication-title: Eng Fract Mech
– volume: 30
  start-page: 183
  year: 2013
  end-page: 201
  ident: b0225
  article-title: The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components
  publication-title: Mater High Temp
– volume: 16
  start-page: 2668
  year: 2009
  end-page: 2697
  ident: b0020
  article-title: High temperature fatigue of nickel-base superalloys – a review with special emphasis on deformation modes and oxidation
  publication-title: Eng Fail Anal
– volume: 31
  start-page: 1966
  year: 2009
  end-page: 1977
  ident: b0035
  article-title: Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation
  publication-title: Int J Fatigue
– volume: 682
  start-page: 12
  year: 2017
  end-page: 22
  ident: b0010
  article-title: Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase
  publication-title: Mater Sci Eng, A
– reference: Andrieu E, Cozar R, Pineau A. Effect of environment and microstructure on the high temperature behavior of alloy 718, Superalloys 718, 625 and various derivatives 1989:241–256.
– reference: Asayama T, Jetter R. An overview of creep-fatigue damage evaluation methods and an alternative approach. In: Proceedings of ASME PVP; 2008.
– volume: 655
  start-page: 175
  year: 2016
  end-page: 182
  ident: b0040
  article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C
  publication-title: Mater Sci Eng, A
– reference: ASME E 2714-13. Standard Test Method for Creep-Fatigue Testing, American Society of Testing and Materials; 2013.
– volume: 23
  start-page: 897
  year: 2001
  end-page: 902
  ident: b0025
  article-title: Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys
  publication-title: Int J Fatigue
– volume: 39
  start-page: 1519
  year: 2010
  end-page: 1524
  ident: b0130
  article-title: Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy
  publication-title: Rare Metal Mater Eng
– volume: 21
  start-page: 1247
  year: 2005
  end-page: 1254
  ident: b0105
  article-title: Improving resistance to dynamic embrittlement and intergranular oxidation of nickel based superalloys by grain boundary engineering type processing
  publication-title: Mater Sci Technol
– volume: 153
  start-page: 97
  year: 1994
  end-page: 110
  ident: b0120
  article-title: Creep-fatigue evaluation of normalized and tempered modified 9Cr-1Mo
  publication-title: Nucl Eng Des
– volume: 231
  start-page: 677
  year: 2017
  end-page: 688
  ident: b0015
  article-title: A unified criterion for fatigue–creep life prediction of high temperature components
  publication-title: Proc Inst Mech Eng G: J Aerospace Eng
– volume: 324
  start-page: 349
  year: 2009
  end-page: 352
  ident: b0155
  article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale
  publication-title: Science
– volume: 4
  start-page: 327
  year: 1976
  end-page: 339
  ident: b0220
  article-title: A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue
  publication-title: J Test Eval
– volume: 134
  start-page: 433
  year: 2015
  end-page: 450
  ident: b0005
  article-title: Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169
  publication-title: Eng Fract Mech
– volume: 32
  start-page: 492
  year: 2015
  end-page: 501
  ident: b0230
  article-title: Effect of cyclic loading on subsequent creep behaviour and its implications in creep–fatigue life assessment
  publication-title: Mater High Temp
– reference: ASTM E-112. Standard test methods for determining average grain size. ASTM International USA; 2010.
– volume: 5
  start-page: 135
  year: 1983
  end-page: 143
  ident: b0180
  article-title: Fatigue crack initiation and propagation in several nickel-base superalloys at 650 °C
  publication-title: Int J Fatigue
– volume: 349
  start-page: 213
  year: 2003
  end-page: 217
  ident: b0115
  article-title: The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718
  publication-title: Mater Sci Eng, A
– reference: Thakker AB, Cowles BA. Low strain, long life creep fatigue of AF2-1DA and INCO 718; 1983.
– volume: 50
  start-page: 83
  year: 2005
  end-page: 97
  ident: b0110
  article-title: Dynamic embrittlement—time–dependent quasi–brittle intergranular fracture at high temperatures
  publication-title: Int Mater Rev
– volume: 97
  start-page: 114
  year: 2017
  end-page: 123
  ident: b0240
  article-title: Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 C based on cycle-by-cycle concept
  publication-title: Int J Fatigue
– volume: 32
  start-page: 824
  year: 2010
  end-page: 829
  ident: b0175
  article-title: Creep–fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy
  publication-title: Int J Fatigue
– volume: 85
  start-page: 423
  year: 2008
  end-page: 440
  ident: b0250
  article-title: Study on creep-fatigue evaluation procedures for high chromium steels—Part II: sensitivity to calculated deformation
  publication-title: Int J Press Vessels Pip
– volume: 572
  start-page: 1
  year: 2013
  end-page: 7
  ident: b0045
  article-title: Simultaneous creep–fatigue damage accumulation of forged turbine disc of IN 718 superalloy
  publication-title: Mater Sci Eng, A
– volume: 380
  start-page: 245
  year: 2004
  end-page: 258
  ident: b0185
  article-title: High temperature behavior of Ni-base weld metal
  publication-title: Mater Sci Eng, A
– volume: 53
  start-page: 49
  year: 2013
  end-page: 57
  ident: b0070
  article-title: An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions
  publication-title: Int J Fatigue
– volume: 48
  start-page: 160
  year: 2006
  end-page: 175
  ident: b0195
  article-title: High-temperature low cycle fatigue, creep–fatigue and thermomechanical fatigue of steels and their welds
  publication-title: Int J Mech Sci
– volume: 349
  start-page: 213
  year: 2003
  ident: 10.1016/j.ijfatigue.2018.05.008_b0115
  article-title: The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718
  publication-title: Mater Sci Eng, A
  doi: 10.1016/S0921-5093(02)00753-0
– volume: 23
  start-page: 897
  year: 2001
  ident: 10.1016/j.ijfatigue.2018.05.008_b0025
  article-title: Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(01)00049-4
– ident: 10.1016/j.ijfatigue.2018.05.008_b0145
  doi: 10.1016/j.actamat.2009.08.022
– volume: 5
  start-page: 135
  year: 1983
  ident: 10.1016/j.ijfatigue.2018.05.008_b0180
  article-title: Fatigue crack initiation and propagation in several nickel-base superalloys at 650 °C
  publication-title: Int J Fatigue
  doi: 10.1016/0142-1123(83)90026-9
– volume: 50
  start-page: 83
  year: 2005
  ident: 10.1016/j.ijfatigue.2018.05.008_b0110
  article-title: Dynamic embrittlement—time–dependent quasi–brittle intergranular fracture at high temperatures
  publication-title: Int Mater Rev
  doi: 10.1179/174328005X14320
– start-page: 1
  year: 2016
  ident: 10.1016/j.ijfatigue.2018.05.008_b0030
  article-title: Fatigue crack initiation mechanisms
  publication-title: Ref Module Mater Sci Mater Eng
– volume: 85
  start-page: 423
  year: 2008
  ident: 10.1016/j.ijfatigue.2018.05.008_b0250
  article-title: Study on creep-fatigue evaluation procedures for high chromium steels—Part II: sensitivity to calculated deformation
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2007.11.006
– volume: 719
  start-page: 61
  year: 2018
  ident: 10.1016/j.ijfatigue.2018.05.008_b0080
  article-title: Thermo-mechanical fatigue damage behavior for Ni-based superalloy under axial-torsional loading
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2018.02.029
– volume: 30
  start-page: 663
  year: 2008
  ident: 10.1016/j.ijfatigue.2018.05.008_b0125
  article-title: Creep-fatigue-oxidation interactions in a 9Cr–1Mo martensitic steel. Part II: effect of compressive holding period on fatigue lifetime
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2007.05.008
– volume: 21
  start-page: 1247
  year: 2005
  ident: 10.1016/j.ijfatigue.2018.05.008_b0105
  article-title: Improving resistance to dynamic embrittlement and intergranular oxidation of nickel based superalloys by grain boundary engineering type processing
  publication-title: Mater Sci Technol
  doi: 10.1179/174328405X63935
– volume: 4
  start-page: 327
  year: 1976
  ident: 10.1016/j.ijfatigue.2018.05.008_b0220
  article-title: A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue
  publication-title: J Test Eval
  doi: 10.1520/JTE10520J
– volume: 572
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijfatigue.2018.05.008_b0045
  article-title: Simultaneous creep–fatigue damage accumulation of forged turbine disc of IN 718 superalloy
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2013.02.003
– volume: 154
  start-page: 21
  year: 1992
  ident: 10.1016/j.ijfatigue.2018.05.008_b0055
  article-title: Intergranular crack tip oxidation mechanism in a nickel-based superalloy
  publication-title: Mater Sci Eng, A
  doi: 10.1016/0921-5093(92)90358-8
– volume: 31
  start-page: 1966
  year: 2009
  ident: 10.1016/j.ijfatigue.2018.05.008_b0035
  article-title: Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2009.01.023
– volume: 83
  start-page: 341
  year: 2015
  ident: 10.1016/j.ijfatigue.2018.05.008_b0215
  article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: damage mechanisms and life prediction
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.10.002
– volume: 48
  start-page: 160
  year: 2006
  ident: 10.1016/j.ijfatigue.2018.05.008_b0195
  article-title: High-temperature low cycle fatigue, creep–fatigue and thermomechanical fatigue of steels and their welds
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2005.08.004
– ident: 10.1016/j.ijfatigue.2018.05.008_b0090
– volume: 30
  start-page: 183
  year: 2013
  ident: 10.1016/j.ijfatigue.2018.05.008_b0225
  article-title: The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components
  publication-title: Mater High Temp
  doi: 10.3184/096034013X13757890932442
– volume: 380
  start-page: 245
  year: 2004
  ident: 10.1016/j.ijfatigue.2018.05.008_b0185
  article-title: High temperature behavior of Ni-base weld metal
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2004.03.075
– ident: 10.1016/j.ijfatigue.2018.05.008_b0205
  doi: 10.1115/PVP2008-61820
– ident: 10.1016/j.ijfatigue.2018.05.008_b0255
  doi: 10.1115/1.3224979
– volume: 324
  start-page: 349
  year: 2009
  ident: 10.1016/j.ijfatigue.2018.05.008_b0155
  article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale
  publication-title: Science
  doi: 10.1126/science.1159610
– volume: 17
  start-page: 297
  year: 1994
  ident: 10.1016/j.ijfatigue.2018.05.008_b0190
  article-title: Fatigue crack growth in nickel-based superalloys at 500–700 C. I: Waspaloy
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/j.1460-2695.1994.tb00231.x
– volume: 16
  start-page: 2668
  year: 2009
  ident: 10.1016/j.ijfatigue.2018.05.008_b0020
  article-title: High temperature fatigue of nickel-base superalloys – a review with special emphasis on deformation modes and oxidation
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2009.01.010
– ident: 10.1016/j.ijfatigue.2018.05.008_b0085
– volume: 56
  start-page: 3278
  year: 2008
  ident: 10.1016/j.ijfatigue.2018.05.008_b0140
  article-title: Fracture roughness scaling and its correlation with grain boundary network structure
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.03.019
– volume: 682
  start-page: 12
  year: 2017
  ident: 10.1016/j.ijfatigue.2018.05.008_b0010
  article-title: Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2016.11.040
– volume: 231
  start-page: 677
  year: 2017
  ident: 10.1016/j.ijfatigue.2018.05.008_b0015
  article-title: A unified criterion for fatigue–creep life prediction of high temperature components
  publication-title: Proc Inst Mech Eng G: J Aerospace Eng
  doi: 10.1177/0954410016641448
– ident: 10.1016/j.ijfatigue.2018.05.008_b0100
– volume: 104
  start-page: 61
  year: 2017
  ident: 10.1016/j.ijfatigue.2018.05.008_b0200
  article-title: A generalized strain energy density exhaustion model allowing for compressive hold effect
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.07.008
– volume: 36
  start-page: 809
  year: 2013
  ident: 10.1016/j.ijfatigue.2018.05.008_b0150
  article-title: Fatigue crack initiation in Hastelloy X – the role of boundaries
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12048
– volume: 655
  start-page: 175
  year: 2016
  ident: 10.1016/j.ijfatigue.2018.05.008_b0040
  article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2015.12.096
– volume: 97
  start-page: 114
  year: 2017
  ident: 10.1016/j.ijfatigue.2018.05.008_b0240
  article-title: Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 C based on cycle-by-cycle concept
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.11.021
– volume: 97
  start-page: 190
  year: 2017
  ident: 10.1016/j.ijfatigue.2018.05.008_b0060
  article-title: The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behaviour in a forged and precipitation hardened nickel-based superalloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.01.002
– volume: 32
  start-page: 595
  year: 2012
  ident: 10.1016/j.ijfatigue.2018.05.008_b0065
  article-title: A mechanism-based approach to life prediction for a Nickel-base alloy subjected to cyclic and creep-fatigue
  publication-title: Technische Mechanik
– ident: 10.1016/j.ijfatigue.2018.05.008_b0050
  doi: 10.7449/1989/Superalloys_1989_241_256
– volume: 99
  start-page: 242
  year: 2017
  ident: 10.1016/j.ijfatigue.2018.05.008_b0075
  article-title: Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.12.015
– volume: 39
  start-page: 1519
  year: 2010
  ident: 10.1016/j.ijfatigue.2018.05.008_b0130
  article-title: Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy
  publication-title: Rare Metal Mater Eng
  doi: 10.1016/S1875-5372(10)60122-1
– volume: 53
  start-page: 49
  year: 2013
  ident: 10.1016/j.ijfatigue.2018.05.008_b0070
  article-title: An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2011.10.018
– volume: 14
  start-page: 1479
  year: 1966
  ident: 10.1016/j.ijfatigue.2018.05.008_b0135
  article-title: The structure of high-angle grain boundaries
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(66)90168-4
– volume: 40
  start-page: 1343
  year: 2017
  ident: 10.1016/j.ijfatigue.2018.05.008_b0245
  article-title: Mean stress and ratcheting corrections in fatigue life prediction of metals
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12569
– volume: 103
  start-page: 781
  year: 2016
  ident: 10.1016/j.ijfatigue.2018.05.008_b0170
  article-title: Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2015.11.015
– volume: 153
  start-page: 97
  year: 1994
  ident: 10.1016/j.ijfatigue.2018.05.008_b0120
  article-title: Creep-fatigue evaluation of normalized and tempered modified 9Cr-1Mo
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(94)90024-8
– volume: 90
  start-page: 12
  year: 2016
  ident: 10.1016/j.ijfatigue.2018.05.008_b0235
  article-title: A modified strain energy density exhaustion model for creep–fatigue life prediction
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.03.005
– volume: 32
  start-page: 824
  year: 2010
  ident: 10.1016/j.ijfatigue.2018.05.008_b0175
  article-title: Creep–fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2009.07.003
– volume: 134
  start-page: 433
  year: 2015
  ident: 10.1016/j.ijfatigue.2018.05.008_b0005
  article-title: Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.01.002
– volume: 47
  start-page: 1163
  year: 1999
  ident: 10.1016/j.ijfatigue.2018.05.008_b0165
  article-title: Structure-dependent intergranular oxidation in Ni–Fe polycrystalline alloy
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00007-5
– volume: 32
  start-page: 492
  year: 2015
  ident: 10.1016/j.ijfatigue.2018.05.008_b0230
  article-title: Effect of cyclic loading on subsequent creep behaviour and its implications in creep–fatigue life assessment
  publication-title: Mater High Temp
  doi: 10.1179/0960340915Z.000000000120
– volume: 38
  start-page: 4379
  year: 2003
  ident: 10.1016/j.ijfatigue.2018.05.008_b0160
  article-title: Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D
  publication-title: J Mater Sci
  doi: 10.1023/A:1026351619636
– volume: 90
  start-page: 89
  year: 2012
  ident: 10.1016/j.ijfatigue.2018.05.008_b0210
  article-title: A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2012.04.021
– volume: 584
  start-page: 133
  year: 2013
  ident: 10.1016/j.ijfatigue.2018.05.008_b0095
  article-title: Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2013.07.020
SSID ssj0009075
Score 2.556537
Snippet •Low cycle fatigue and creep-fatigue behaviors are systematically explored.•Cracking modes and damage mechanisms under different loading waveforms are...
The low cycle fatigue (LCF) and creep-fatigue behaviors of Ni-based GH4169 superalloy are investigated by uniaxial strain-controlled fully-reversed testing at...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8
SubjectTerms Coincident site lattice boundary
Cold flow
Compressive properties
Crack propagation
Cracking (fracturing)
Creep-fatigue
Cyclic testing
Damage assessment
Damage mechanism
Electron backscatter diffraction
Energy dissipation
Failure mechanisms
Failure modes
Fatigue cracks
Fatigue failure
Fatigue life
Fracture mechanics
Fracture toughness
High temperature
Hold time effect
Life assessment
Low cycle fatigue
Materials fatigue
Metal fatigue
Metals creep
Nickel alloys
Nickel base alloys
Optical microscopy
Oxidation
Scanning electron microscopy
Strain analysis
Superalloys
Waveforms
Title High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment
URI https://dx.doi.org/10.1016/j.ijfatigue.2018.05.008
https://www.proquest.com/docview/2131829906
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPMVbHlhNEzdxYzYEVAVEJ5C6WXZsS6naUJEysPDbuUuc8hASA2MsnxP7Lvew7r4j5EzwPLVSSyZcFrFE9yKmwW1lmdOuz0VqjcRq5IeRGD4ld-N0vEKu2loYTKsMur_R6bW2DiPdcJrdeVF0MS0JoheOQolihQW_SdJHKT9__0zzkA3YLk5mOPtbjlcx8bB_vCIBO5jVEJ7YZ_J3C_VDV9cGaLBJNoLnSC-bj9siK67cJutf8AR3yAKzNiiiTQWoZBpeTHVpKfiHbs7akbY-v6JFSTUdQYwMBs3S6hWJp9Pntwt6rWegbujMYXlwUc2qep1p4WHBJaLnLnka3DxeDVloq8ByCOYWrK-9yzQ3HNiQcQMaz0jXE87IVGfeeh4Jm4KfFDvXSyIvTCYhyjLO-jjxQvd7e6RTPpdun1ArbB47EefcZIn1RsYWAQXTWDhwNJL4gIj2KFUeMMex9cVUtcllE7XkgUIeqChVwIMDEi0J5w3sxt8kFy2v1DcJUmAc_iY-brmrwk9cKR6DbKG5Fof_WfuIrMGTbO5tjkln8fLqTsCTWZjTWlRPyerl7f1w9AFtCPXc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UB7QFBaQcvDh16tTbyJ19nbihYtrz2BxM2yY1sK2g2rZjnw75nZOEtBSBx6dTJONDOehzXzDcAvKcrcFabg0quEZ2aQcINhK1fe-KGQubMFdSNfT-XkNru4y-824LTrhaGyymj7W5u-stZxpR-52V9UVZ_KkjB7EaSUpFbqE2wSOlXeg83x-eVk-oK92-Lt0vucCF6VeVX3AVlAtyToCtUKxZNGTb7vpN6Y65UPOtuB7Rg8snH7f7uw4euv8OUfSME9WFLhBiPAqYiWzOKHmakdwxDRL3i30rXoN6yqmWFTTJPRpznWPBLxbPbwNGK_zRwtDpt76hCumnmz2mdWBdxwDer5DW7P_tycTnicrMBLzOeWfGiCV0ZYgZJQwqLRs4UfSG-L3KjggkikyzFUSr0fZEmQVhWYaFnvQpoFaYaD79CrH2q_D8xJV6ZepqWwKnPBFqkjTME8lR5jjSw9ANmxUpcRdpymX8x0V192r9cy0CQDneQaZXAAyZpw0SJvfEwy6mSlXymRRv_wMfFhJ10dz3GjRYrqRR5b_vifvU9ga3JzfaWvzqeXP-EzPinaa5xD6C3_PvojDGyW9jgq7jPScPiN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+temperature+fatigue+and+creep-fatigue+behaviors+in+a+Ni-based+superalloy%3A+Damage+mechanisms+and+life+assessment&rft.jtitle=International+journal+of+fatigue&rft.au=Wang%2C+Run-Zi&rft.au=Zhu%2C+Shun-Peng&rft.au=Wang%2C+Ji&rft.au=Zhang%2C+Xian-Cheng&rft.date=2019-01-01&rft.issn=0142-1123&rft.volume=118&rft.spage=8&rft.epage=21&rft_id=info:doi/10.1016%2Fj.ijfatigue.2018.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijfatigue_2018_05_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon