A critical case of Rallis inner product formula
Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central va...
Saved in:
Published in | Science China. Mathematics Vol. 60; no. 2; pp. 201 - 222 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.02.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1674-7283 1869-1862 |
DOI | 10.1007/s11425-015-0770-7 |
Cover
Loading…
Abstract | Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature. |
---|---|
AbstractList | Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2
n
+1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands
L
-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature. Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature. Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n+1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature. |
Author | WU ChenYan |
AuthorAffiliation | Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China |
Author_xml | – sequence: 1 givenname: ChenYan surname: Wu fullname: Wu, ChenYan email: chywu@fudan.edu.cn organization: Shanghai Center for Mathematical Sciences, Fudan University |
BookMark | eNp9kEtrAyEUhaWk0DTND-huaNfTqOP4WIbQFwQKpV2L42hqmGiiM4v--xomlNJFLpyri_N55FyDiQ_eAHCL4AOCkC0SQgTXJURZjMGSXYAp4lSUeeFJvlNGSoZ5dQXmKW1hnkpAwqopWCwLHV3vtOoKrZIpgi3eVde5VDjvTSz2MbSD7gsb4m7o1A24tKpLZn46Z-Dz6fFj9VKu355fV8t1qQkUfcmEIbqmTVPbtm4F55yaBmOqNasU4aglWAtjCLPCNjW2pDXKaqu5Eli3tKlm4H58N-cfBpN6uQ1D9DlSIs4hhwgJml1sdOkYUorGSu161bvg-6hcJxGUx4LkWJDMBcljQZJlEv0j99HtVPw-y-CRSdnrNyb--dMZ6O4U9BX85pC53yTKEIYVy_oBU5OEWw |
CitedBy_id | crossref_primary_10_2140_ant_2024_18_969 crossref_primary_10_1093_imrn_rnaa121 crossref_primary_10_1016_j_jnt_2022_03_010 crossref_primary_10_2140_pjm_2022_317_207 |
Cites_doi | 10.1007/BFb0077894 10.1007/s00209-003-0580-5 10.2307/2118540 10.1007/BFb0078125 10.1007/BF02808058 10.1007/978-1-4684-9884-4 10.1017/S002776300001059X 10.1007/s00222-014-0509-0 10.2307/2952456 10.1353/ajm.2011.0038 10.1007/s00222-013-0460-5 10.1112/S0010437X12000486 10.1007/s00222-013-0476-x 10.1007/BF02391774 10.1112/S0010437X11005379 10.2140/pjm.1993.157.335 10.1215/kjm/1250518935 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2017 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1007/s11425-015-0770-7 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | A critical case of Rallis inner product formula |
EISSN | 1869-1862 |
EndPage | 222 |
ExternalDocumentID | 10_1007_s11425_015_0770_7 671203720 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 ~WA -SA -S~ 0R~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c409t-79e4c56bb5fd5d98886eb226cc73a481d42c9ee47f9fb52f4deafcfc8a92cd6b3 |
IEDL.DBID | U2A |
ISSN | 1674-7283 |
IngestDate | Fri Jul 25 10:25:56 EDT 2025 Thu Apr 24 23:05:45 EDT 2025 Tue Jul 01 03:54:53 EDT 2025 Fri Feb 21 02:33:42 EST 2025 Wed Feb 14 10:05:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Rallis inner product formula 11F27 theta lift regularised Siegel-Weil formula 11F70 function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-79e4c56bb5fd5d98886eb226cc73a481d42c9ee47f9fb52f4deafcfc8a92cd6b3 |
Notes | regularised Siegel-Weil formula, Rallis inner product formula, theta lift, L-function Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature. 11-5837/O1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880801196 |
PQPubID | 2043629 |
PageCount | 22 |
ParticipantIDs | proquest_journals_1880801196 crossref_citationtrail_10_1007_s11425_015_0770_7 crossref_primary_10_1007_s11425_015_0770_7 springer_journals_10_1007_s11425_015_0770_7 chongqing_primary_671203720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationTitleAlternate | SCIENCE CHINA Mathematics |
PublicationYear | 2017 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Kudla, Rallis (CR15) 1992; 78 Yamana (CR23) 2011; 147 Weil (CR22) 1965; 113 Yamana (CR24) 2014; 196 Rao (CR20) 1993; 157 Gan, Ichino (CR2) 2014; 195 Gelbart, Piatetski-Shapiro, Rallis (CR5) 1987 Rallis (CR19) 1987 Ichino (CR7) 2001; 539 Zorn (CR25) 2011; 133 Gan, Savin (CR4) 2012; 148 Li (CR17) 1992; 428 Gan (CR1) 2012; 208 Ikeda (CR10) 1996; 103 Kudla, Rallis (CR16) 1994; 140 Ikeda (CR9) 1994; 34 Howe (CR6) 2011 Kudla (CR11) 1996 Ichino (CR8) 2004; 247 Rallis (CR18) 1984; 51 Kudla, Rallis (CR14) 1988; 391 Gan, Qiu, Takeda (CR3) 2014; 198 Kudla, Rallis (CR13) 1988; 387 Kudla (CR12) 1997; 146 Serre (CR21) 1973 S Rallis (770_CR18) 1984; 51 W T Gan (770_CR4) 2012; 148 C Zorn (770_CR25) 2011; 133 W T Gan (770_CR1) 2012; 208 S Rallis (770_CR19) 1987 W T Gan (770_CR3) 2014; 198 R R Rao (770_CR20) 1993; 157 R Howe (770_CR6) 2011 S Kudla (770_CR15) 1992; 78 T Ikeda (770_CR9) 1994; 34 S Yamana (770_CR24) 2014; 196 S Kudla (770_CR13) 1988; 387 A Weil (770_CR22) 1965; 113 S Kudla (770_CR11) 1996 T Ikeda (770_CR10) 1996; 103 S Yamana (770_CR23) 2011; 147 S Kudla (770_CR14) 1988; 391 S Kudla (770_CR16) 1994; 140 S Kudla (770_CR12) 1997; 146 A Ichino (770_CR8) 2004; 247 J S Li (770_CR17) 1992; 428 A Ichino (770_CR7) 2001; 539 W T Gan (770_CR2) 2014; 195 S Gelbart (770_CR5) 1987 J-P Serre (770_CR21) 1973 |
References_xml | – year: 1987 ident: CR19 publication-title: -Functions and the Oscillator Representation doi: 10.1007/BFb0077894 – volume: 387 start-page: 1 year: 1988 end-page: 68 ident: CR13 article-title: On the Weil-Siegel formula. publication-title: J Reine Angew Math – volume: 247 start-page: 241 year: 2004 end-page: 277 ident: CR8 article-title: A regularized Siegel-Weil formula for unitary groups. publication-title: Math Z doi: 10.1007/s00209-003-0580-5 – start-page: 224 year: 2011 end-page: 331 ident: CR6 article-title: On a notion of rank for unitary representations of the classical groups publication-title: Harmonic Analysis and Group Representation – volume: 140 start-page: 1 year: 1994 end-page: 80 ident: CR16 article-title: A regularized Siegel-Weil formula: the first term identity. publication-title: Ann of Math (2) doi: 10.2307/2118540 – year: 1987 ident: CR5 publication-title: Explicit Constructions of Automorphic L-Functions doi: 10.1007/BFb0078125 – volume: 539 start-page: 201 year: 2001 end-page: 234 ident: CR7 article-title: On the regularized Siegel-Weil formula. publication-title: J Reine Angew Math – volume: 78 start-page: 209 year: 1992 end-page: 256 ident: CR15 article-title: Ramified degenerate principal series representations for Sp( ). publication-title: Israel J Math doi: 10.1007/BF02808058 – volume: 51 start-page: 333 year: 1984 end-page: 399 ident: CR18 article-title: On the Howe duality conjecture. publication-title: Compos Math – year: 1973 ident: CR21 publication-title: A Course in Arithmetic doi: 10.1007/978-1-4684-9884-4 – volume: 208 start-page: 67 year: 2012 end-page: 95 ident: CR1 article-title: Doubling zeta integrals and local factors for metaplectic groups. publication-title: Nagoya Math J doi: 10.1017/S002776300001059X – volume: 428 start-page: 177 year: 1992 end-page: 217 ident: CR17 article-title: Nonvanishing theorems for the cohomology of certain arithmetic quotients. publication-title: J Reine Angew Math – volume: 198 start-page: 739 year: 2014 end-page: 831 ident: CR3 article-title: The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula. publication-title: Invent Math doi: 10.1007/s00222-014-0509-0 – volume: 146 start-page: 545 year: 1997 end-page: 646 ident: CR12 article-title: Central derivatives of Eisenstein series and height pairings. publication-title: Ann of Math (2) doi: 10.2307/2952456 – volume: 133 start-page: 1313 year: 2011 end-page: 1364 ident: CR25 article-title: Theta dichotomy and doubling epsilon factors for ( ). publication-title: Amer J Math doi: 10.1353/ajm.2011.0038 – volume: 103 start-page: 183 year: 1996 end-page: 218 ident: CR10 article-title: On the residue of the Eisenstein series and the Siegel-Weil formula. publication-title: Compos Math – volume: 195 start-page: 509 year: 2014 end-page: 672 ident: CR2 article-title: Formal degrees and local theta correspondence. publication-title: Invent Math doi: 10.1007/s00222-013-0460-5 – volume: 148 start-page: 1655 year: 2012 end-page: 1694 ident: CR4 article-title: Representations of metaplectic groups I: Epsilon dichotomy and local Langlands correspondence. publication-title: Compos Math doi: 10.1112/S0010437X12000486 – volume: 196 start-page: 651 year: 2014 end-page: 732 ident: CR24 article-title: -functions and theta correspondence for classical groups. publication-title: Invent Math doi: 10.1007/s00222-013-0476-x – volume: 113 start-page: 1 year: 1965 end-page: 87 ident: CR22 article-title: Sur la formule de Siegel dans la théorie des groupes classiques. publication-title: Acta Math doi: 10.1007/BF02391774 – volume: 147 start-page: 1003 year: 2011 end-page: 1021 ident: CR23 article-title: On the Siegel-Weil formula: The case of singular forms. publication-title: Compos Math doi: 10.1112/S0010437X11005379 – year: 1996 ident: CR11 publication-title: Notes on the local theta correspondence – volume: 391 start-page: 65 year: 1988 end-page: 84 ident: CR14 article-title: On the Weil-Siegel formula. II. The isotropic convergent case publication-title: J Reine Angew Math – volume: 157 start-page: 335 year: 1993 end-page: 371 ident: CR20 article-title: On some explicit formulas in the theory of Weil representation. publication-title: Pacific J Math doi: 10.2140/pjm.1993.157.335 – volume: 34 start-page: 615 year: 1994 end-page: 636 ident: CR9 article-title: On the theory of Jacobi forms and Fourier-Jacobi coefficients of Eisenstein series. publication-title: J Math Kyoto Univ – volume: 147 start-page: 1003 year: 2011 ident: 770_CR23 publication-title: Compos Math doi: 10.1112/S0010437X11005379 – volume: 539 start-page: 201 year: 2001 ident: 770_CR7 publication-title: J Reine Angew Math – volume: 113 start-page: 1 year: 1965 ident: 770_CR22 publication-title: Acta Math doi: 10.1007/BF02391774 – start-page: 224 volume-title: Harmonic Analysis and Group Representation year: 2011 ident: 770_CR6 – volume: 51 start-page: 333 year: 1984 ident: 770_CR18 publication-title: Compos Math – volume: 196 start-page: 651 year: 2014 ident: 770_CR24 publication-title: Invent Math doi: 10.1007/s00222-013-0476-x – volume: 148 start-page: 1655 year: 2012 ident: 770_CR4 publication-title: Compos Math doi: 10.1112/S0010437X12000486 – volume-title: L-Functions and the Oscillator Representation year: 1987 ident: 770_CR19 doi: 10.1007/BFb0077894 – volume: 247 start-page: 241 year: 2004 ident: 770_CR8 publication-title: Math Z doi: 10.1007/s00209-003-0580-5 – volume: 195 start-page: 509 year: 2014 ident: 770_CR2 publication-title: Invent Math doi: 10.1007/s00222-013-0460-5 – volume-title: Explicit Constructions of Automorphic L-Functions year: 1987 ident: 770_CR5 doi: 10.1007/BFb0078125 – volume: 428 start-page: 177 year: 1992 ident: 770_CR17 publication-title: J Reine Angew Math – volume: 78 start-page: 209 year: 1992 ident: 770_CR15 publication-title: Israel J Math doi: 10.1007/BF02808058 – volume: 198 start-page: 739 year: 2014 ident: 770_CR3 publication-title: Invent Math doi: 10.1007/s00222-014-0509-0 – volume-title: Notes on the local theta correspondence year: 1996 ident: 770_CR11 – volume: 140 start-page: 1 year: 1994 ident: 770_CR16 publication-title: Ann of Math (2) doi: 10.2307/2118540 – volume: 34 start-page: 615 year: 1994 ident: 770_CR9 publication-title: J Math Kyoto Univ doi: 10.1215/kjm/1250518935 – volume: 103 start-page: 183 year: 1996 ident: 770_CR10 publication-title: Compos Math – volume: 133 start-page: 1313 year: 2011 ident: 770_CR25 publication-title: Amer J Math doi: 10.1353/ajm.2011.0038 – volume-title: A Course in Arithmetic year: 1973 ident: 770_CR21 doi: 10.1007/978-1-4684-9884-4 – volume: 208 start-page: 67 year: 2012 ident: 770_CR1 publication-title: Nagoya Math J doi: 10.1017/S002776300001059X – volume: 146 start-page: 545 year: 1997 ident: 770_CR12 publication-title: Ann of Math (2) doi: 10.2307/2952456 – volume: 391 start-page: 65 year: 1988 ident: 770_CR14 publication-title: J Reine Angew Math – volume: 157 start-page: 335 year: 1993 ident: 770_CR20 publication-title: Pacific J Math doi: 10.2140/pjm.1993.157.335 – volume: 387 start-page: 1 year: 1988 ident: 770_CR13 publication-title: J Reine Angew Math |
SSID | ssj0000390473 |
Score | 2.0854943 |
Snippet | Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 201 |
SubjectTerms | Applications of Mathematics L-函数 Langlands Lifts Mathematics Mathematics and Statistics Weil 产品配方 案例 正交群 积公式 空间相关 |
Title | A critical case of Rallis inner product formula |
URI | http://lib.cqvip.com/qk/60114X/201702/671203720.html https://link.springer.com/article/10.1007/s11425-015-0770-7 https://www.proquest.com/docview/1880801196 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgu8AB8SnKBsqBE6iiy9JkPU5oYwKNA2LSOEVJmgDStA26_X-cru0AARKHnpq4kpPUfrH9DHDuuEZQgegkQfsdMqdUqATliFKc04zb1LZ87fDwng9G7HYcj4s67qzMdi9Dkvmfel3s1sL9hdAXHyGiUGxCPUbo7vP4RrRbXaxEiOJZHln2CfahQPtZRjN_kuI5FV5m0-c3_OJX27R2OL_FSHPT09-FncJnJN3VIu_Bhp3uw_awIlzNDuCqS0zRtIAYNExk5siDmkxeM5I31yLzFbMr8T7qcqIOYdTvPV4PwqIXQmgQgS1CkVhmYq517NI4TRC3csTElBsj2oqh08moSaxlwiVOx9Sx1CpnnOmohJqU6_YR1KazqT0GQpniFo9pS0cdZhxV_opfqyhFZ0IYFwfQqDQi5yvOC8lFi0a-o00AUakjaQoacd_NYiLXBMhexRJVLL2KpQjgoppSyvtjcLNUvCyOUyY9aVzHs9PxAC7Lxfj0-jdhJ_8a3YAt6o12npPdhNrifWlP0eVY6DOod2-e7npn-Vb7AIBfzAc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5ROKgHfxsR1B48aaajdi07EiOiiAeDiZ6atmvVSEAFLv71vo4NlKiJh53Wddtru_d9e6_fAzhwXCOpQHYSo_8OmFMqUIJyZCnOacZtYqt-73D7hjfv2NV9dJ_t4x7k2e55SDL9Uk83u1VxfiH1xUOIMBDzUGRIwVkBivWLh9b010qIPJ6lsWWfYh8I9KB5PPOnfryqwlO_9_iG9_zunaaQcyZKmjqfxgp08sce55y8HI-G-th8zCg6_vO9VmE5A6OkPp49azBne-uw1J4ouQ424KROTFYNgRj0eKTvyK3qdp8HJK3aRV7HkrHEg99RV23CXeO8c9YMsiILgUFqNwxEbJmJuNaRS6IkRkLMkWxTbow4VQzRLKMmtpYJFzsdUccSq5xxpqZiahKuT7eg0Ov37DYQyhS3uP6rOqwx46jysQOtwgRRijAuKkF5Ymj5OhbTkFxUaehL5ZQgzE0vTaZP7stkdOVUWdlbSqKlpLeUFCU4nFyS9_dH40o-njJbpwPp1ehqXvaOl-AoH54vp3_rbOdfrfdhodlpX8vry5tWGRapRwZp4ncFCsP3kd1FXDPUe9k8_gRBL-ol |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRULsgeeutjx94AQKTY1jN8cKKOUphKjUPXltx17QVmmXphd-PeMmaaFikdAecorjyGMn832e8TcAe45rJBXITmL03wFzSgVKUI4sxTnNuE1s3Z8dvr7h7Q676Ebdos7psMx2L0OS-ZkGr9KUZrVB4mrTg291XGtIg_ESIgzEF5hnXpu9AvPNs5-X022WEDk9G8eZfbp9INCblrHN9_rxCgsP_fT3X3z_W081hZ8zEdOxI2otw69yCHn-yZ_DUaYPzfOMuuN_jHEFlgqQSpr5qlqFOZuuwdfricLrcB1qTWKKKgnEoCckfUfuVK_3OCTjal5kkEvJEg-KRz31DTqt0_vjdlAUXwgMUr4sELFlJuJaRy6JkhiJMkcSTrkx4kgxRLmMmthaJlzsdEQdS6xyxpmGiqlJuD76DpW0n9ofQChT3OJ_oa7DBjOOKh9T0CpMEL0I46IqbE6MLge5yIbkok5DX0KnCmE5DdIUuuW-fEZPThWXvaUkWkp6S0lRhf3JI2V_HzTeKudWFt_vUHqVuoaXw-NVOCin6tXtf3W28anWu7Bwe9KSV-c3l5uwSD1gGOeDb0ElexrZbYQ7md4plvQLzOTzCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+case+of+Rallis+inner+product+formula&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E6%95%B0%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=WU+ChenYan&rft.date=2017-02-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=60&rft.issue=2&rft.spage=201&rft.epage=222&rft_id=info:doi/10.1007%2Fs11425-015-0770-7&rft.externalDocID=671203720 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg |