A critical case of Rallis inner product formula

Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central va...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 60; no. 2; pp. 201 - 222
Main Author Wu, ChenYan
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.02.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-015-0770-7

Cover

Loading…
Abstract Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature.
AbstractList Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2 n +1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L -function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature.
Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature.
Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n+1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature.
Author WU ChenYan
AuthorAffiliation Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
Author_xml – sequence: 1
  givenname: ChenYan
  surname: Wu
  fullname: Wu, ChenYan
  email: chywu@fudan.edu.cn
  organization: Shanghai Center for Mathematical Sciences, Fudan University
BookMark eNp9kEtrAyEUhaWk0DTND-huaNfTqOP4WIbQFwQKpV2L42hqmGiiM4v--xomlNJFLpyri_N55FyDiQ_eAHCL4AOCkC0SQgTXJURZjMGSXYAp4lSUeeFJvlNGSoZ5dQXmKW1hnkpAwqopWCwLHV3vtOoKrZIpgi3eVde5VDjvTSz2MbSD7gsb4m7o1A24tKpLZn46Z-Dz6fFj9VKu355fV8t1qQkUfcmEIbqmTVPbtm4F55yaBmOqNasU4aglWAtjCLPCNjW2pDXKaqu5Eli3tKlm4H58N-cfBpN6uQ1D9DlSIs4hhwgJml1sdOkYUorGSu161bvg-6hcJxGUx4LkWJDMBcljQZJlEv0j99HtVPw-y-CRSdnrNyb--dMZ6O4U9BX85pC53yTKEIYVy_oBU5OEWw
CitedBy_id crossref_primary_10_2140_ant_2024_18_969
crossref_primary_10_1093_imrn_rnaa121
crossref_primary_10_1016_j_jnt_2022_03_010
crossref_primary_10_2140_pjm_2022_317_207
Cites_doi 10.1007/BFb0077894
10.1007/s00209-003-0580-5
10.2307/2118540
10.1007/BFb0078125
10.1007/BF02808058
10.1007/978-1-4684-9884-4
10.1017/S002776300001059X
10.1007/s00222-014-0509-0
10.2307/2952456
10.1353/ajm.2011.0038
10.1007/s00222-013-0460-5
10.1112/S0010437X12000486
10.1007/s00222-013-0476-x
10.1007/BF02391774
10.1112/S0010437X11005379
10.2140/pjm.1993.157.335
10.1215/kjm/1250518935
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2017
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1007/s11425-015-0770-7
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate A critical case of Rallis inner product formula
EISSN 1869-1862
EndPage 222
ExternalDocumentID 10_1007_s11425_015_0770_7
671203720
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~WA
-SA
-S~
0R~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
CJPJV
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c409t-79e4c56bb5fd5d98886eb226cc73a481d42c9ee47f9fb52f4deafcfc8a92cd6b3
IEDL.DBID U2A
ISSN 1674-7283
IngestDate Fri Jul 25 10:25:56 EDT 2025
Thu Apr 24 23:05:45 EDT 2025
Tue Jul 01 03:54:53 EDT 2025
Fri Feb 21 02:33:42 EST 2025
Wed Feb 14 10:05:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Rallis inner product formula
11F27
theta lift
regularised Siegel-Weil formula
11F70
function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-79e4c56bb5fd5d98886eb226cc73a481d42c9ee47f9fb52f4deafcfc8a92cd6b3
Notes regularised Siegel-Weil formula, Rallis inner product formula, theta lift, L-function
Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic space of dimension 2n + 1. We show a case of regularised Rallis inner product formula that relates the pairing of theta lifts to the central value of the Langlands L-function of π twisted by a character. The bulk of this paper focuses on proving a case of regularised Siegel-Weil formula, on which the Rallis inner product formula is based and whose proof is missing in the literature.
11-5837/O1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880801196
PQPubID 2043629
PageCount 22
ParticipantIDs proquest_journals_1880801196
crossref_citationtrail_10_1007_s11425_015_0770_7
crossref_primary_10_1007_s11425_015_0770_7
springer_journals_10_1007_s11425_015_0770_7
chongqing_primary_671203720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationTitleAlternate SCIENCE CHINA Mathematics
PublicationYear 2017
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Kudla, Rallis (CR15) 1992; 78
Yamana (CR23) 2011; 147
Weil (CR22) 1965; 113
Yamana (CR24) 2014; 196
Rao (CR20) 1993; 157
Gan, Ichino (CR2) 2014; 195
Gelbart, Piatetski-Shapiro, Rallis (CR5) 1987
Rallis (CR19) 1987
Ichino (CR7) 2001; 539
Zorn (CR25) 2011; 133
Gan, Savin (CR4) 2012; 148
Li (CR17) 1992; 428
Gan (CR1) 2012; 208
Ikeda (CR10) 1996; 103
Kudla, Rallis (CR16) 1994; 140
Ikeda (CR9) 1994; 34
Howe (CR6) 2011
Kudla (CR11) 1996
Ichino (CR8) 2004; 247
Rallis (CR18) 1984; 51
Kudla, Rallis (CR14) 1988; 391
Gan, Qiu, Takeda (CR3) 2014; 198
Kudla, Rallis (CR13) 1988; 387
Kudla (CR12) 1997; 146
Serre (CR21) 1973
S Rallis (770_CR18) 1984; 51
W T Gan (770_CR4) 2012; 148
C Zorn (770_CR25) 2011; 133
W T Gan (770_CR1) 2012; 208
S Rallis (770_CR19) 1987
W T Gan (770_CR3) 2014; 198
R R Rao (770_CR20) 1993; 157
R Howe (770_CR6) 2011
S Kudla (770_CR15) 1992; 78
T Ikeda (770_CR9) 1994; 34
S Yamana (770_CR24) 2014; 196
S Kudla (770_CR13) 1988; 387
A Weil (770_CR22) 1965; 113
S Kudla (770_CR11) 1996
T Ikeda (770_CR10) 1996; 103
S Yamana (770_CR23) 2011; 147
S Kudla (770_CR14) 1988; 391
S Kudla (770_CR16) 1994; 140
S Kudla (770_CR12) 1997; 146
A Ichino (770_CR8) 2004; 247
J S Li (770_CR17) 1992; 428
A Ichino (770_CR7) 2001; 539
W T Gan (770_CR2) 2014; 195
S Gelbart (770_CR5) 1987
J-P Serre (770_CR21) 1973
References_xml – year: 1987
  ident: CR19
  publication-title: -Functions and the Oscillator Representation
  doi: 10.1007/BFb0077894
– volume: 387
  start-page: 1
  year: 1988
  end-page: 68
  ident: CR13
  article-title: On the Weil-Siegel formula.
  publication-title: J Reine Angew Math
– volume: 247
  start-page: 241
  year: 2004
  end-page: 277
  ident: CR8
  article-title: A regularized Siegel-Weil formula for unitary groups.
  publication-title: Math Z
  doi: 10.1007/s00209-003-0580-5
– start-page: 224
  year: 2011
  end-page: 331
  ident: CR6
  article-title: On a notion of rank for unitary representations of the classical groups
  publication-title: Harmonic Analysis and Group Representation
– volume: 140
  start-page: 1
  year: 1994
  end-page: 80
  ident: CR16
  article-title: A regularized Siegel-Weil formula: the first term identity.
  publication-title: Ann of Math (2)
  doi: 10.2307/2118540
– year: 1987
  ident: CR5
  publication-title: Explicit Constructions of Automorphic L-Functions
  doi: 10.1007/BFb0078125
– volume: 539
  start-page: 201
  year: 2001
  end-page: 234
  ident: CR7
  article-title: On the regularized Siegel-Weil formula.
  publication-title: J Reine Angew Math
– volume: 78
  start-page: 209
  year: 1992
  end-page: 256
  ident: CR15
  article-title: Ramified degenerate principal series representations for Sp( ).
  publication-title: Israel J Math
  doi: 10.1007/BF02808058
– volume: 51
  start-page: 333
  year: 1984
  end-page: 399
  ident: CR18
  article-title: On the Howe duality conjecture.
  publication-title: Compos Math
– year: 1973
  ident: CR21
  publication-title: A Course in Arithmetic
  doi: 10.1007/978-1-4684-9884-4
– volume: 208
  start-page: 67
  year: 2012
  end-page: 95
  ident: CR1
  article-title: Doubling zeta integrals and local factors for metaplectic groups.
  publication-title: Nagoya Math J
  doi: 10.1017/S002776300001059X
– volume: 428
  start-page: 177
  year: 1992
  end-page: 217
  ident: CR17
  article-title: Nonvanishing theorems for the cohomology of certain arithmetic quotients.
  publication-title: J Reine Angew Math
– volume: 198
  start-page: 739
  year: 2014
  end-page: 831
  ident: CR3
  article-title: The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula.
  publication-title: Invent Math
  doi: 10.1007/s00222-014-0509-0
– volume: 146
  start-page: 545
  year: 1997
  end-page: 646
  ident: CR12
  article-title: Central derivatives of Eisenstein series and height pairings.
  publication-title: Ann of Math (2)
  doi: 10.2307/2952456
– volume: 133
  start-page: 1313
  year: 2011
  end-page: 1364
  ident: CR25
  article-title: Theta dichotomy and doubling epsilon factors for ( ).
  publication-title: Amer J Math
  doi: 10.1353/ajm.2011.0038
– volume: 103
  start-page: 183
  year: 1996
  end-page: 218
  ident: CR10
  article-title: On the residue of the Eisenstein series and the Siegel-Weil formula.
  publication-title: Compos Math
– volume: 195
  start-page: 509
  year: 2014
  end-page: 672
  ident: CR2
  article-title: Formal degrees and local theta correspondence.
  publication-title: Invent Math
  doi: 10.1007/s00222-013-0460-5
– volume: 148
  start-page: 1655
  year: 2012
  end-page: 1694
  ident: CR4
  article-title: Representations of metaplectic groups I: Epsilon dichotomy and local Langlands correspondence.
  publication-title: Compos Math
  doi: 10.1112/S0010437X12000486
– volume: 196
  start-page: 651
  year: 2014
  end-page: 732
  ident: CR24
  article-title: -functions and theta correspondence for classical groups.
  publication-title: Invent Math
  doi: 10.1007/s00222-013-0476-x
– volume: 113
  start-page: 1
  year: 1965
  end-page: 87
  ident: CR22
  article-title: Sur la formule de Siegel dans la théorie des groupes classiques.
  publication-title: Acta Math
  doi: 10.1007/BF02391774
– volume: 147
  start-page: 1003
  year: 2011
  end-page: 1021
  ident: CR23
  article-title: On the Siegel-Weil formula: The case of singular forms.
  publication-title: Compos Math
  doi: 10.1112/S0010437X11005379
– year: 1996
  ident: CR11
  publication-title: Notes on the local theta correspondence
– volume: 391
  start-page: 65
  year: 1988
  end-page: 84
  ident: CR14
  article-title: On the Weil-Siegel formula. II. The isotropic convergent case
  publication-title: J Reine Angew Math
– volume: 157
  start-page: 335
  year: 1993
  end-page: 371
  ident: CR20
  article-title: On some explicit formulas in the theory of Weil representation.
  publication-title: Pacific J Math
  doi: 10.2140/pjm.1993.157.335
– volume: 34
  start-page: 615
  year: 1994
  end-page: 636
  ident: CR9
  article-title: On the theory of Jacobi forms and Fourier-Jacobi coefficients of Eisenstein series.
  publication-title: J Math Kyoto Univ
– volume: 147
  start-page: 1003
  year: 2011
  ident: 770_CR23
  publication-title: Compos Math
  doi: 10.1112/S0010437X11005379
– volume: 539
  start-page: 201
  year: 2001
  ident: 770_CR7
  publication-title: J Reine Angew Math
– volume: 113
  start-page: 1
  year: 1965
  ident: 770_CR22
  publication-title: Acta Math
  doi: 10.1007/BF02391774
– start-page: 224
  volume-title: Harmonic Analysis and Group Representation
  year: 2011
  ident: 770_CR6
– volume: 51
  start-page: 333
  year: 1984
  ident: 770_CR18
  publication-title: Compos Math
– volume: 196
  start-page: 651
  year: 2014
  ident: 770_CR24
  publication-title: Invent Math
  doi: 10.1007/s00222-013-0476-x
– volume: 148
  start-page: 1655
  year: 2012
  ident: 770_CR4
  publication-title: Compos Math
  doi: 10.1112/S0010437X12000486
– volume-title: L-Functions and the Oscillator Representation
  year: 1987
  ident: 770_CR19
  doi: 10.1007/BFb0077894
– volume: 247
  start-page: 241
  year: 2004
  ident: 770_CR8
  publication-title: Math Z
  doi: 10.1007/s00209-003-0580-5
– volume: 195
  start-page: 509
  year: 2014
  ident: 770_CR2
  publication-title: Invent Math
  doi: 10.1007/s00222-013-0460-5
– volume-title: Explicit Constructions of Automorphic L-Functions
  year: 1987
  ident: 770_CR5
  doi: 10.1007/BFb0078125
– volume: 428
  start-page: 177
  year: 1992
  ident: 770_CR17
  publication-title: J Reine Angew Math
– volume: 78
  start-page: 209
  year: 1992
  ident: 770_CR15
  publication-title: Israel J Math
  doi: 10.1007/BF02808058
– volume: 198
  start-page: 739
  year: 2014
  ident: 770_CR3
  publication-title: Invent Math
  doi: 10.1007/s00222-014-0509-0
– volume-title: Notes on the local theta correspondence
  year: 1996
  ident: 770_CR11
– volume: 140
  start-page: 1
  year: 1994
  ident: 770_CR16
  publication-title: Ann of Math (2)
  doi: 10.2307/2118540
– volume: 34
  start-page: 615
  year: 1994
  ident: 770_CR9
  publication-title: J Math Kyoto Univ
  doi: 10.1215/kjm/1250518935
– volume: 103
  start-page: 183
  year: 1996
  ident: 770_CR10
  publication-title: Compos Math
– volume: 133
  start-page: 1313
  year: 2011
  ident: 770_CR25
  publication-title: Amer J Math
  doi: 10.1353/ajm.2011.0038
– volume-title: A Course in Arithmetic
  year: 1973
  ident: 770_CR21
  doi: 10.1007/978-1-4684-9884-4
– volume: 208
  start-page: 67
  year: 2012
  ident: 770_CR1
  publication-title: Nagoya Math J
  doi: 10.1017/S002776300001059X
– volume: 146
  start-page: 545
  year: 1997
  ident: 770_CR12
  publication-title: Ann of Math (2)
  doi: 10.2307/2952456
– volume: 391
  start-page: 65
  year: 1988
  ident: 770_CR14
  publication-title: J Reine Angew Math
– volume: 157
  start-page: 335
  year: 1993
  ident: 770_CR20
  publication-title: Pacific J Math
  doi: 10.2140/pjm.1993.157.335
– volume: 387
  start-page: 1
  year: 1988
  ident: 770_CR13
  publication-title: J Reine Angew Math
SSID ssj0000390473
Score 2.0854943
Snippet Let π be a genuine cuspidal representation of the metaplectic group of rank n. We consider the theta lifts to the orthogonal group associated to a quadratic...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms Applications of Mathematics
L-函数
Langlands
Lifts
Mathematics
Mathematics and Statistics
Weil
产品配方
案例
正交群
积公式
空间相关
Title A critical case of Rallis inner product formula
URI http://lib.cqvip.com/qk/60114X/201702/671203720.html
https://link.springer.com/article/10.1007/s11425-015-0770-7
https://www.proquest.com/docview/1880801196
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgu8AB8SnKBsqBE6iiy9JkPU5oYwKNA2LSOEVJmgDStA26_X-cru0AARKHnpq4kpPUfrH9DHDuuEZQgegkQfsdMqdUqATliFKc04zb1LZ87fDwng9G7HYcj4s67qzMdi9Dkvmfel3s1sL9hdAXHyGiUGxCPUbo7vP4RrRbXaxEiOJZHln2CfahQPtZRjN_kuI5FV5m0-c3_OJX27R2OL_FSHPT09-FncJnJN3VIu_Bhp3uw_awIlzNDuCqS0zRtIAYNExk5siDmkxeM5I31yLzFbMr8T7qcqIOYdTvPV4PwqIXQmgQgS1CkVhmYq517NI4TRC3csTElBsj2oqh08moSaxlwiVOx9Sx1CpnnOmohJqU6_YR1KazqT0GQpniFo9pS0cdZhxV_opfqyhFZ0IYFwfQqDQi5yvOC8lFi0a-o00AUakjaQoacd_NYiLXBMhexRJVLL2KpQjgoppSyvtjcLNUvCyOUyY9aVzHs9PxAC7Lxfj0-jdhJ_8a3YAt6o12npPdhNrifWlP0eVY6DOod2-e7npn-Vb7AIBfzAc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5ROKgHfxsR1B48aaajdi07EiOiiAeDiZ6atmvVSEAFLv71vo4NlKiJh53Wddtru_d9e6_fAzhwXCOpQHYSo_8OmFMqUIJyZCnOacZtYqt-73D7hjfv2NV9dJ_t4x7k2e55SDL9Uk83u1VxfiH1xUOIMBDzUGRIwVkBivWLh9b010qIPJ6lsWWfYh8I9KB5PPOnfryqwlO_9_iG9_zunaaQcyZKmjqfxgp08sce55y8HI-G-th8zCg6_vO9VmE5A6OkPp49azBne-uw1J4ouQ424KROTFYNgRj0eKTvyK3qdp8HJK3aRV7HkrHEg99RV23CXeO8c9YMsiILgUFqNwxEbJmJuNaRS6IkRkLMkWxTbow4VQzRLKMmtpYJFzsdUccSq5xxpqZiahKuT7eg0Ov37DYQyhS3uP6rOqwx46jysQOtwgRRijAuKkF5Ymj5OhbTkFxUaehL5ZQgzE0vTaZP7stkdOVUWdlbSqKlpLeUFCU4nFyS9_dH40o-njJbpwPp1ehqXvaOl-AoH54vp3_rbOdfrfdhodlpX8vry5tWGRapRwZp4ncFCsP3kd1FXDPUe9k8_gRBL-ol
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRULsgeeutjx94AQKTY1jN8cKKOUphKjUPXltx17QVmmXphd-PeMmaaFikdAecorjyGMn832e8TcAe45rJBXITmL03wFzSgVKUI4sxTnNuE1s3Z8dvr7h7Q676Ebdos7psMx2L0OS-ZkGr9KUZrVB4mrTg291XGtIg_ESIgzEF5hnXpu9AvPNs5-X022WEDk9G8eZfbp9INCblrHN9_rxCgsP_fT3X3z_W081hZ8zEdOxI2otw69yCHn-yZ_DUaYPzfOMuuN_jHEFlgqQSpr5qlqFOZuuwdfricLrcB1qTWKKKgnEoCckfUfuVK_3OCTjal5kkEvJEg-KRz31DTqt0_vjdlAUXwgMUr4sELFlJuJaRy6JkhiJMkcSTrkx4kgxRLmMmthaJlzsdEQdS6xyxpmGiqlJuD76DpW0n9ofQChT3OJ_oa7DBjOOKh9T0CpMEL0I46IqbE6MLge5yIbkok5DX0KnCmE5DdIUuuW-fEZPThWXvaUkWkp6S0lRhf3JI2V_HzTeKudWFt_vUHqVuoaXw-NVOCin6tXtf3W28anWu7Bwe9KSV-c3l5uwSD1gGOeDb0ElexrZbYQ7md4plvQLzOTzCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+case+of+Rallis+inner+product+formula&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E6%95%B0%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=WU+ChenYan&rft.date=2017-02-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=60&rft.issue=2&rft.spage=201&rft.epage=222&rft_id=info:doi/10.1007%2Fs11425-015-0770-7&rft.externalDocID=671203720
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg