Digital Predistortion Based Experimental Evaluation of Optimized Recurrent Neural Network for 5G Analog Radio Over Fiber Links
In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating non-li...
Saved in:
Published in | IEEE access Vol. 12; pp. 19765 - 19777 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating non-linearities in Radio over Fiber (RoF) systems for enhancing communication capabilities in remote regions. The seamless integration of RoF and 5G technologies requires robust linearization techniques to ensure high-quality signal transmission. In this paper, we propose and exhibit the effectiveness of a machine learning (ML)-based DPD method for linearizing next-generation Analog Radio over Fiber (A-RoF) links within the 5G landscape. The study investigates the use of an optimized recurrent neural network (ORNN) based DPD experimentally on a multiband 5G new radio (NR) A-RoF system while maintaining low complexity. The ORNN model is evaluated using flexible-waveform signals at 2.14 GHz and 5G NR signals at 10 GHz transmitted over a 10 km fiber length. The proposed ORNN-based machine learning approach is optimized and is compared with conventional generalized memory polynomial (GMP) model and canonical piecewise linearization (CPWL) methods in terms of Adjacent Channel Power Ratio (ACPR), Error Vector Magnitude (EVM), and in terms of computation complexity including, storage, time and memory consumption. The findings demonstrate that the proposed ORNN model reduces EVM to below 2% as compared to 12% for non-compensated cases while ACPR is reduced by 18 dBc, meeting 3GPP limits. |
---|---|
AbstractList | In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating non-linearities in Radio over Fiber (RoF) systems for enhancing communication capabilities in remote regions. The seamless integration of RoF and 5G technologies requires robust linearization techniques to ensure high-quality signal transmission. In this paper, we propose and exhibit the effectiveness of a machine learning (ML)-based DPD method for linearizing next-generation Analog Radio over Fiber (A-RoF) links within the 5G landscape. The study investigates the use of an optimized recurrent neural network (ORNN) based DPD experimentally on a multiband 5G new radio (NR) A-RoF system while maintaining low complexity. The ORNN model is evaluated using flexible-waveform signals at 2.14 GHz and 5G NR signals at 10 GHz transmitted over a 10 km fiber length. The proposed ORNN-based machine learning approach is optimized and is compared with conventional generalized memory polynomial (GMP) model and canonical piecewise linearization (CPWL) methods in terms of Adjacent Channel Power Ratio (ACPR), Error Vector Magnitude (EVM), and in terms of computation complexity including, storage, time and memory consumption. The findings demonstrate that the proposed ORNN model reduces EVM to below 2% as compared to 12% for non-compensated cases while ACPR is reduced by 18 dBc, meeting 3GPP limits. |
Author | Danyaro, Kamaluddeen Usman Alam, Tanvir Qureshi, Rizwan Hadi, Muhammad Usman AlQushaibi, Alawi |
Author_xml | – sequence: 1 givenname: Muhammad Usman orcidid: 0000-0002-3363-2886 surname: Hadi fullname: Hadi, Muhammad Usman email: m.hadi@ulster.ac.uk organization: School of Engineering, Ulster University, Belfast, U.K – sequence: 2 givenname: Kamaluddeen Usman orcidid: 0000-0003-1022-4983 surname: Danyaro fullname: Danyaro, Kamaluddeen Usman organization: Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Perak, Malaysia – sequence: 3 givenname: Alawi orcidid: 0000-0002-3001-1224 surname: AlQushaibi fullname: AlQushaibi, Alawi organization: Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Perak, Malaysia – sequence: 4 givenname: Rizwan orcidid: 0000-0002-0039-982X surname: Qureshi fullname: Qureshi, Rizwan organization: Department of Imaging Physics, MD Anderson Center, The University of Texas, Houston, TX, USA – sequence: 5 givenname: Tanvir orcidid: 0000-0001-7033-3693 surname: Alam fullname: Alam, Tanvir organization: College of Science and Engineering, Hamad bin Khalifa University, Doha, Qatar |
BookMark | eNpNUctu2zAQFIoUaJrmC9IDgZ7t8i3p6LpOGsCIi6Q5E0txZdBRRJeU8uih3146CooQBB-7M0MM52Nx1Icei-KM0TljtP66WC5XNzdzTrmcC6Epr6t3xTFnup4JJfTRm_OH4jSlHc2jyiVVHhd_v_utH6AjPyM6n4YQBx968g0SOrJ62mP099gfAKsH6EZ46YaWbPaDv_d_MugamzHGjCFXOMYMvMLhMcQ70oZI1AVZ9NCFLbkG5wPZPGAk597mde37u_SpeN9Cl_D0dT8pbs9Xv5Y_ZuvNxeVysZ41ktbDrKxLWeuG2bZuEMt8tQJatMxqVbUMGVjrABiTCFIoQOsUtbJupFOC61KcFJeTrguwM_tsCuKzCeDNSyHErYHsvOnQSEYRFdPaliC1YlVL82wZd0o5rSBrfZm09jH8HjENZhfGmF0mw2su6eGjeUaJCdXEkFLE9v-rjJpDbmbKzRxyM6-5ZdbnieUR8Q1DMl0pJf4BBnaW2Q |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_comnet_2024_110506 crossref_primary_10_3390_smartcities7020032 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3360298 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 19777 |
ExternalDocumentID | oai_doaj_org_article_410ee5166b7a46518f08f0f12d55d65a 10_1109_ACCESS_2024_3360298 10416855 |
Genre | orig-research |
GrantInformation_xml | – fundername: Universiti Teknologi PETRONAS funderid: 10.13039/501100005710 – fundername: Ministry of Higher Education (MOHE), Malaysia funderid: 10.13039/501100003093 – fundername: Yayasan Universiti Teknologi PETRONAS-Fundamental Research Grant (YUTP-FRG) for the funding of this project: Digital Twin Model for Structural Asset Monitoring Solution and Decision Making for Onshore Facilities (cost centre: 015LC0-312) |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-797496c1bf9cee7797b3afeb1b658f1e1abbdaa114ea435aebd50b49c4d532673 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:13:21 EDT 2024 Thu Oct 10 19:45:13 EDT 2024 Fri Aug 23 01:01:53 EDT 2024 Mon Nov 04 11:48:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-797496c1bf9cee7797b3afeb1b658f1e1abbdaa114ea435aebd50b49c4d532673 |
ORCID | 0000-0001-7033-3693 0000-0003-1022-4983 0000-0002-0039-982X 0000-0002-3363-2886 0000-0002-3001-1224 |
OpenAccessLink | https://doaj.org/article/410ee5166b7a46518f08f0f12d55d65a |
PQID | 2924035362 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3360298 proquest_journals_2924035362 ieee_primary_10416855 doaj_primary_oai_doaj_org_article_410ee5166b7a46518f08f0f12d55d65a |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
SSID | ssj0000816957 |
Score | 2.3608031 |
Snippet | In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 19765 |
SubjectTerms | 5G mobile communication Complexity Costs Digital predistortion Digital systems error vector magnitude fiber nonlinearity Linearization Machine learning Neural networks Optical fiber amplifiers Optical fiber dispersion Optical fiber networks Polynomials Predistortion Radio radio over fiber recurrent neural network Recurrent neural networks Remote regions Signal quality Signal transmission Training data Waveforms |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4anMaBwQaiDJAPOy5dktpxfYTSgpBWJjQkbpZfbKMK0aDSXjjst--9JK06JiSkHtLIUZx8fn7fc_y-B_DNZVGTZw2JzlEn0sQ0Ia8YEyw98QlXuNxzNvLPcXF5K6_u1F2brF7nwoQQ6s1nocuH9bd8X5ULXiojCyf60FdqAza0MU2y1mpBhStIGKVbZaEsNT9OBwN6CIoBc9nt9QoWG__H-9Qi_W1Vlf-m4tq_jD7BeNmzZlvJQ3cxx2758kq08d1d34HtlmmK02Zo7MKHMP0MW2v6g1_gz_nknouGiF8zTs-l8JthEmfk2bwYrmn_i-FKFFxUUVzTPPM4eaFGN7xczwJPglU-qOG42VYuiAsLdSFY86S6FzfOTypxTWYjRrxFRXAI_LwHt6Ph78Fl0hZkSEoKA-eJpuDDFGWG0ZBv1fQXey7SbI_EY2IWMofonaMQKziiYS6gVylKU0qviCbq3j5sTqtpOACB5BTJ-tHTW5ERdZ-4l5fe-7zAUqLvwPclUPap0d2wdbySGtvgahlX2-LagTMGc9WURbPrEwSCbW3QyiwNQWVFgdpxCfh-TOkXs9wr5QvlOrDHwK3dr8GsA0fLsWFbC3-2uWElQ0X-__CNy77CR-5is15zBJvz2SIcE4OZ40k9cv8CSNPvWA priority: 102 providerName: IEEE |
Title | Digital Predistortion Based Experimental Evaluation of Optimized Recurrent Neural Network for 5G Analog Radio Over Fiber Links |
URI | https://ieeexplore.ieee.org/document/10416855 https://www.proquest.com/docview/2924035362 https://doaj.org/article/410ee5166b7a46518f08f0f12d55d65a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCY1TP5IRSkuFRIsqKnWz7NiuOtAiKAsDv527JK2CGFiQsiSxlPju7Ps-y_6OkEvDgoLM6iOVWBXxLMQRZMUQ2dwBnjDSJA5PIz8O5WDCH6ZiWiv1hXvCSnng0nBtzmLvBZPSKoN1u9MQwxVY4oRwUpTQKM5qZKqYg1MmM6EqmSF4377pdqFHQAgTft3pSFQe_5GKCsX-qsTKr3m5SDb9PbJboUR6U_7dPtnyiwOyU9MOPCRfd_MZFvygT294tBaoM5qY3kJWcrRX0-2nvY2gN10GOoI54mX-CY3GuNSO4kwUFTqg4bDcEk4Bx1JxT1GvZDmjY-PmSzqCkKd93F5Ckb6-N8mk33vuDqKqmEKUA4VbRQqIQyZzZkMGeVHBre2YADO1BQwSmGfGWmcM0CNvAEIZb52ILc9y7gRAPNU5Io3FcuGPCbWQ0GDkWsdkyoNVKeAmx51zibQ5t65FrtZ21a-lZoYuuEac6dINGt2gKze0yC3aftMUBa-LBxAGugoD_VcYtEgTPVf7HiDNVIgWOVu7Ulej810nGaoQCsjdJ__x7VOyjf0pF2bOSGP19uHPAaqs7EURlRfFqcJv3gzlmw |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9gA9QIEiAqXsocc62M5-xMc2JE2hTVHVSr2tdry7VYSIqza59MBvZ8Z2ogBCQsrBsdby2m9n58165w3AgcuiIc8aEpOjSWQR04S8Ykyw9MQnnHa552zk84keX8svN-qmTVavc2FCCPXms9Dlw_pbvq_KBS-VkYUTfegr9QS2iFj3dZOutVpS4RoShTKttlCWFp-OBgN6DIoCc9nt9TTLjf_mf2qZ_rauyl-Tce1hRi9gsuxbs7Hke3cxx275-Ids4393fgeet1xTHDWD4yVshNkr2F5TIHwNPz9Pb7lsiPh2zwm6FIAzUOKYfJsXwzX1fzFcyYKLKooLmml-TB-p0SUv2LPEk2CdD2o4aTaWC2LDQp0IVj2pbsWl89NKXJDhiBFvUhEcBD_swvVoeDUYJ21JhqSkQHCeGAo_Cl1mGAvyrob-Ys9Fmu-RmEzMQuYQvXMUZAVHRMwF9CpFWZTSKyKKpvcGNmfVLLwFgeQWyf7R01uREU2f2JeX3vtcYynRd-BwCZS9a5Q3bB2xpIVtcLWMq21x7cAxg7lqyrLZ9QkCwbZWaGWWhqAyrdE4LgLfjyn9YpZ7pbxWrgO7DNza_RrMOrC3HBu2tfEHmxesZaiIAbz7x2Uf4en46vzMnp1Ovr6HZ9zdZvVmDzbn94vwgfjMHPfrUfwL7Ibyow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Predistortion+Based+Experimental+Evaluation+of+Optimized+Recurrent+Neural+Network+for+5G+Analog+Radio+Over+Fiber+Links&rft.jtitle=IEEE+access&rft.au=Hadi%2C+Muhammad+Usman&rft.au=Danyaro%2C+Kamaluddeen+Usman&rft.au=AlQushaibi%2C+Alawi&rft.au=Qureshi%2C+Rizwan&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=19765&rft.epage=19777&rft_id=info:doi/10.1109%2FACCESS.2024.3360298&rft.externalDocID=10416855 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |