Digital Predistortion Based Experimental Evaluation of Optimized Recurrent Neural Network for 5G Analog Radio Over Fiber Links

In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating non-li...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 19765 - 19777
Main Authors Hadi, Muhammad Usman, Danyaro, Kamaluddeen Usman, AlQushaibi, Alawi, Qureshi, Rizwan, Alam, Tanvir
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating non-linearities in Radio over Fiber (RoF) systems for enhancing communication capabilities in remote regions. The seamless integration of RoF and 5G technologies requires robust linearization techniques to ensure high-quality signal transmission. In this paper, we propose and exhibit the effectiveness of a machine learning (ML)-based DPD method for linearizing next-generation Analog Radio over Fiber (A-RoF) links within the 5G landscape. The study investigates the use of an optimized recurrent neural network (ORNN) based DPD experimentally on a multiband 5G new radio (NR) A-RoF system while maintaining low complexity. The ORNN model is evaluated using flexible-waveform signals at 2.14 GHz and 5G NR signals at 10 GHz transmitted over a 10 km fiber length. The proposed ORNN-based machine learning approach is optimized and is compared with conventional generalized memory polynomial (GMP) model and canonical piecewise linearization (CPWL) methods in terms of Adjacent Channel Power Ratio (ACPR), Error Vector Magnitude (EVM), and in terms of computation complexity including, storage, time and memory consumption. The findings demonstrate that the proposed ORNN model reduces EVM to below 2% as compared to 12% for non-compensated cases while ACPR is reduced by 18 dBc, meeting 3GPP limits.
AbstractList In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating non-linearities in Radio over Fiber (RoF) systems for enhancing communication capabilities in remote regions. The seamless integration of RoF and 5G technologies requires robust linearization techniques to ensure high-quality signal transmission. In this paper, we propose and exhibit the effectiveness of a machine learning (ML)-based DPD method for linearizing next-generation Analog Radio over Fiber (A-RoF) links within the 5G landscape. The study investigates the use of an optimized recurrent neural network (ORNN) based DPD experimentally on a multiband 5G new radio (NR) A-RoF system while maintaining low complexity. The ORNN model is evaluated using flexible-waveform signals at 2.14 GHz and 5G NR signals at 10 GHz transmitted over a 10 km fiber length. The proposed ORNN-based machine learning approach is optimized and is compared with conventional generalized memory polynomial (GMP) model and canonical piecewise linearization (CPWL) methods in terms of Adjacent Channel Power Ratio (ACPR), Error Vector Magnitude (EVM), and in terms of computation complexity including, storage, time and memory consumption. The findings demonstrate that the proposed ORNN model reduces EVM to below 2% as compared to 12% for non-compensated cases while ACPR is reduced by 18 dBc, meeting 3GPP limits.
Author Danyaro, Kamaluddeen Usman
Alam, Tanvir
Qureshi, Rizwan
Hadi, Muhammad Usman
AlQushaibi, Alawi
Author_xml – sequence: 1
  givenname: Muhammad Usman
  orcidid: 0000-0002-3363-2886
  surname: Hadi
  fullname: Hadi, Muhammad Usman
  email: m.hadi@ulster.ac.uk
  organization: School of Engineering, Ulster University, Belfast, U.K
– sequence: 2
  givenname: Kamaluddeen Usman
  orcidid: 0000-0003-1022-4983
  surname: Danyaro
  fullname: Danyaro, Kamaluddeen Usman
  organization: Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Perak, Malaysia
– sequence: 3
  givenname: Alawi
  orcidid: 0000-0002-3001-1224
  surname: AlQushaibi
  fullname: AlQushaibi, Alawi
  organization: Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Perak, Malaysia
– sequence: 4
  givenname: Rizwan
  orcidid: 0000-0002-0039-982X
  surname: Qureshi
  fullname: Qureshi, Rizwan
  organization: Department of Imaging Physics, MD Anderson Center, The University of Texas, Houston, TX, USA
– sequence: 5
  givenname: Tanvir
  orcidid: 0000-0001-7033-3693
  surname: Alam
  fullname: Alam, Tanvir
  organization: College of Science and Engineering, Hamad bin Khalifa University, Doha, Qatar
BookMark eNpNUctu2zAQFIoUaJrmC9IDgZ7t8i3p6LpOGsCIi6Q5E0txZdBRRJeU8uih3146CooQBB-7M0MM52Nx1Icei-KM0TljtP66WC5XNzdzTrmcC6Epr6t3xTFnup4JJfTRm_OH4jSlHc2jyiVVHhd_v_utH6AjPyM6n4YQBx968g0SOrJ62mP099gfAKsH6EZ46YaWbPaDv_d_MugamzHGjCFXOMYMvMLhMcQ70oZI1AVZ9NCFLbkG5wPZPGAk597mde37u_SpeN9Cl_D0dT8pbs9Xv5Y_ZuvNxeVysZ41ktbDrKxLWeuG2bZuEMt8tQJatMxqVbUMGVjrABiTCFIoQOsUtbJupFOC61KcFJeTrguwM_tsCuKzCeDNSyHErYHsvOnQSEYRFdPaliC1YlVL82wZd0o5rSBrfZm09jH8HjENZhfGmF0mw2su6eGjeUaJCdXEkFLE9v-rjJpDbmbKzRxyM6-5ZdbnieUR8Q1DMl0pJf4BBnaW2Q
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110506
crossref_primary_10_3390_smartcities7020032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3360298
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 19777
ExternalDocumentID oai_doaj_org_article_410ee5166b7a46518f08f0f12d55d65a
10_1109_ACCESS_2024_3360298
10416855
Genre orig-research
GrantInformation_xml – fundername: Universiti Teknologi PETRONAS
  funderid: 10.13039/501100005710
– fundername: Ministry of Higher Education (MOHE), Malaysia
  funderid: 10.13039/501100003093
– fundername: Yayasan Universiti Teknologi PETRONAS-Fundamental Research Grant (YUTP-FRG) for the funding of this project: Digital Twin Model for Structural Asset Monitoring Solution and Decision Making for Onshore Facilities (cost centre: 015LC0-312)
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-797496c1bf9cee7797b3afeb1b658f1e1abbdaa114ea435aebd50b49c4d532673
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 22 15:13:21 EDT 2024
Thu Oct 10 19:45:13 EDT 2024
Fri Aug 23 01:01:53 EDT 2024
Mon Nov 04 11:48:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-797496c1bf9cee7797b3afeb1b658f1e1abbdaa114ea435aebd50b49c4d532673
ORCID 0000-0001-7033-3693
0000-0003-1022-4983
0000-0002-0039-982X
0000-0002-3363-2886
0000-0002-3001-1224
OpenAccessLink https://doaj.org/article/410ee5166b7a46518f08f0f12d55d65a
PQID 2924035362
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3360298
proquest_journals_2924035362
ieee_primary_10416855
doaj_primary_oai_doaj_org_article_410ee5166b7a46518f08f0f12d55d65a
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0000816957
Score 2.3608031
Snippet In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF) technology plays a crucial role in extending reliable connectivity to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 19765
SubjectTerms 5G mobile communication
Complexity
Costs
Digital predistortion
Digital systems
error vector magnitude
fiber nonlinearity
Linearization
Machine learning
Neural networks
Optical fiber amplifiers
Optical fiber dispersion
Optical fiber networks
Polynomials
Predistortion
Radio
radio over fiber
recurrent neural network
Recurrent neural networks
Remote regions
Signal quality
Signal transmission
Training data
Waveforms
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4anMaBwQaiDJAPOy5dktpxfYTSgpBWJjQkbpZfbKMK0aDSXjjst--9JK06JiSkHtLIUZx8fn7fc_y-B_DNZVGTZw2JzlEn0sQ0Ia8YEyw98QlXuNxzNvLPcXF5K6_u1F2brF7nwoQQ6s1nocuH9bd8X5ULXiojCyf60FdqAza0MU2y1mpBhStIGKVbZaEsNT9OBwN6CIoBc9nt9QoWG__H-9Qi_W1Vlf-m4tq_jD7BeNmzZlvJQ3cxx2758kq08d1d34HtlmmK02Zo7MKHMP0MW2v6g1_gz_nknouGiF8zTs-l8JthEmfk2bwYrmn_i-FKFFxUUVzTPPM4eaFGN7xczwJPglU-qOG42VYuiAsLdSFY86S6FzfOTypxTWYjRrxFRXAI_LwHt6Ph78Fl0hZkSEoKA-eJpuDDFGWG0ZBv1fQXey7SbI_EY2IWMofonaMQKziiYS6gVylKU0qviCbq3j5sTqtpOACB5BTJ-tHTW5ERdZ-4l5fe-7zAUqLvwPclUPap0d2wdbySGtvgahlX2-LagTMGc9WURbPrEwSCbW3QyiwNQWVFgdpxCfh-TOkXs9wr5QvlOrDHwK3dr8GsA0fLsWFbC3-2uWElQ0X-__CNy77CR-5is15zBJvz2SIcE4OZ40k9cv8CSNPvWA
  priority: 102
  providerName: IEEE
Title Digital Predistortion Based Experimental Evaluation of Optimized Recurrent Neural Network for 5G Analog Radio Over Fiber Links
URI https://ieeexplore.ieee.org/document/10416855
https://www.proquest.com/docview/2924035362
https://doaj.org/article/410ee5166b7a46518f08f0f12d55d65a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCY1TP5IRSkuFRIsqKnWz7NiuOtAiKAsDv527JK2CGFiQsiSxlPju7Ps-y_6OkEvDgoLM6iOVWBXxLMQRZMUQ2dwBnjDSJA5PIz8O5WDCH6ZiWiv1hXvCSnng0nBtzmLvBZPSKoN1u9MQwxVY4oRwUpTQKM5qZKqYg1MmM6EqmSF4377pdqFHQAgTft3pSFQe_5GKCsX-qsTKr3m5SDb9PbJboUR6U_7dPtnyiwOyU9MOPCRfd_MZFvygT294tBaoM5qY3kJWcrRX0-2nvY2gN10GOoI54mX-CY3GuNSO4kwUFTqg4bDcEk4Bx1JxT1GvZDmjY-PmSzqCkKd93F5Ckb6-N8mk33vuDqKqmEKUA4VbRQqIQyZzZkMGeVHBre2YADO1BQwSmGfGWmcM0CNvAEIZb52ILc9y7gRAPNU5Io3FcuGPCbWQ0GDkWsdkyoNVKeAmx51zibQ5t65FrtZ21a-lZoYuuEac6dINGt2gKze0yC3aftMUBa-LBxAGugoD_VcYtEgTPVf7HiDNVIgWOVu7Ulej810nGaoQCsjdJ__x7VOyjf0pF2bOSGP19uHPAaqs7EURlRfFqcJv3gzlmw
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9gA9QIEiAqXsocc62M5-xMc2JE2hTVHVSr2tdry7VYSIqza59MBvZ8Z2ogBCQsrBsdby2m9n58165w3AgcuiIc8aEpOjSWQR04S8Ykyw9MQnnHa552zk84keX8svN-qmTVavc2FCCPXms9Dlw_pbvq_KBS-VkYUTfegr9QS2iFj3dZOutVpS4RoShTKttlCWFp-OBgN6DIoCc9nt9TTLjf_mf2qZ_rauyl-Tce1hRi9gsuxbs7Hke3cxx275-Ids4393fgeet1xTHDWD4yVshNkr2F5TIHwNPz9Pb7lsiPh2zwm6FIAzUOKYfJsXwzX1fzFcyYKLKooLmml-TB-p0SUv2LPEk2CdD2o4aTaWC2LDQp0IVj2pbsWl89NKXJDhiBFvUhEcBD_swvVoeDUYJ21JhqSkQHCeGAo_Cl1mGAvyrob-Ys9Fmu-RmEzMQuYQvXMUZAVHRMwF9CpFWZTSKyKKpvcGNmfVLLwFgeQWyf7R01uREU2f2JeX3vtcYynRd-BwCZS9a5Q3bB2xpIVtcLWMq21x7cAxg7lqyrLZ9QkCwbZWaGWWhqAyrdE4LgLfjyn9YpZ7pbxWrgO7DNza_RrMOrC3HBu2tfEHmxesZaiIAbz7x2Uf4en46vzMnp1Ovr6HZ9zdZvVmDzbn94vwgfjMHPfrUfwL7Ibyow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Predistortion+Based+Experimental+Evaluation+of+Optimized+Recurrent+Neural+Network+for+5G+Analog+Radio+Over+Fiber+Links&rft.jtitle=IEEE+access&rft.au=Hadi%2C+Muhammad+Usman&rft.au=Danyaro%2C+Kamaluddeen+Usman&rft.au=AlQushaibi%2C+Alawi&rft.au=Qureshi%2C+Rizwan&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=19765&rft.epage=19777&rft_id=info:doi/10.1109%2FACCESS.2024.3360298&rft.externalDocID=10416855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon