The electrochemical stability of ionic liquids and deep eutectic solvents

Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically drive...

Full description

Saved in:
Bibliographic Details
Published inScience China. Chemistry Vol. 59; no. 5; pp. 571 - 577
Main Authors Li, Qingbo, Jiang, Jingyun, Li, Guofeng, Zhao, Wancheng, Zhao, Xinhui, Mu, Tiancheng
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.05.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.
AbstractList Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent electrochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investigated. The electrochemical stability of selected ILs comprising five traditional cations, namely imidazolium, pyridinium, pyrrolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cation and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.
Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.
Author Qingbo Li Jingyun Jiang Guofeng Li Wancheng Zhao Xinhui Zhao Tiancheng Mu
AuthorAffiliation Department of Chemistry, Renmin University of China, Beijing 100872, China
Author_xml – sequence: 1
  givenname: Qingbo
  surname: Li
  fullname: Li, Qingbo
  organization: Department of Chemistry, Renmin University of China
– sequence: 2
  givenname: Jingyun
  surname: Jiang
  fullname: Jiang, Jingyun
  organization: Department of Chemistry, Renmin University of China
– sequence: 3
  givenname: Guofeng
  surname: Li
  fullname: Li, Guofeng
  organization: Department of Chemistry, Renmin University of China
– sequence: 4
  givenname: Wancheng
  surname: Zhao
  fullname: Zhao, Wancheng
  organization: Department of Chemistry, Renmin University of China
– sequence: 5
  givenname: Xinhui
  surname: Zhao
  fullname: Zhao, Xinhui
  organization: Department of Chemistry, Renmin University of China
– sequence: 6
  givenname: Tiancheng
  surname: Mu
  fullname: Mu, Tiancheng
  email: tcmu@ruc.edu.cn
  organization: Department of Chemistry, Renmin University of China
BookMark eNp9kE1LAzEQhoNUsNb-AG-LnlfzsUl2j1L8KBS81HNIN7NtynbTJlmh_96ULQoemksCM0_emecWjTrXAUL3BD8RjOVzIKSgIsdE5JwLkbMrNCalqHJSSjxKbyGLXNKK3KBpCFucDmOYSj5G8-UGMmihjt7VG9jZWrdZiHplWxuPmWsy6zpbZ6099NaETHcmMwD7DPqYoFQJrv2GLoY7dN3oNsD0fE_Q19vrcvaRLz7f57OXRV4XuIq55JXWpsKkaApSCANES24YY5rzlQHaCEoZZQWVQktdEiNNRQRveMVETQHYBD0O_-69O_QQotq63ncpUqUNS0E4ZTh1kaGr9i4ED43ae7vT_qgIVidpapCmkjR1kqZYYuQ_prZRxyQgem3biyQdyJBSujX4v5kuQQ_nuI3r1ofE_c4oRCmTA8HYDxGfjPc
CitedBy_id crossref_primary_10_1016_j_matlet_2024_135891
crossref_primary_10_1016_j_molliq_2022_120001
crossref_primary_10_1021_acs_energyfuels_3c01720
crossref_primary_10_3390_molecules27186050
crossref_primary_10_1016_j_jil_2025_100135
crossref_primary_10_3390_app10155321
crossref_primary_10_3390_met8070556
crossref_primary_10_1016_j_electacta_2023_143082
crossref_primary_10_1016_j_molliq_2023_123519
crossref_primary_10_20964_2020_09_03
crossref_primary_10_1016_j_indcrop_2025_120785
crossref_primary_10_1016_j_jics_2025_101638
crossref_primary_10_1016_j_molliq_2022_120245
crossref_primary_10_1016_j_molliq_2024_124050
crossref_primary_10_3390_ma16020627
crossref_primary_10_1016_j_jiec_2024_09_027
crossref_primary_10_1016_j_molliq_2024_125384
crossref_primary_10_1007_s12666_023_02956_8
crossref_primary_10_1039_C7CP05911F
crossref_primary_10_1021_acs_jced_7b00458
crossref_primary_10_1016_j_jece_2025_116095
crossref_primary_10_1016_j_matt_2021_09_025
crossref_primary_10_1016_j_electacta_2020_136787
crossref_primary_10_1021_acs_energyfuels_3c03732
crossref_primary_10_1007_s11581_024_05883_w
crossref_primary_10_1016_j_gce_2021_01_004
crossref_primary_10_1016_j_jechem_2023_03_039
crossref_primary_10_20964_2019_11_16
crossref_primary_10_1016_j_electacta_2021_139647
crossref_primary_10_1016_j_ssi_2018_05_016
crossref_primary_10_1039_D4GC00136B
crossref_primary_10_1039_D2GC04190A
crossref_primary_10_3390_molecules28196758
crossref_primary_10_1016_j_molliq_2023_123930
crossref_primary_10_1016_j_electacta_2024_145242
crossref_primary_10_1021_acs_iecr_2c03313
crossref_primary_10_1016_j_seppur_2021_119416
crossref_primary_10_1016_j_molliq_2024_124469
crossref_primary_10_1016_j_tca_2023_179471
crossref_primary_10_1002_ente_202000432
crossref_primary_10_1039_C7GC01127J
crossref_primary_10_3390_molecules27238566
crossref_primary_10_1016_j_matpr_2023_01_115
crossref_primary_10_1016_j_est_2023_109566
crossref_primary_10_1016_j_jallcom_2024_177027
crossref_primary_10_1016_j_molliq_2021_116597
crossref_primary_10_1007_s10853_024_09753_8
crossref_primary_10_1016_j_jelechem_2020_114606
crossref_primary_10_1002_chem_201902797
crossref_primary_10_1016_j_elecom_2018_04_011
crossref_primary_10_1007_s11581_024_05714_y
crossref_primary_10_1016_j_elecom_2018_04_013
crossref_primary_10_1016_j_combustflame_2025_113994
crossref_primary_10_1021_acs_jpcb_1c09227
crossref_primary_10_1039_D3SE00949A
crossref_primary_10_1080_15421406_2022_2073037
crossref_primary_10_3390_ma14123221
crossref_primary_10_1002_admi_202400508
crossref_primary_10_1016_j_jelechem_2021_115691
crossref_primary_10_1016_j_rser_2023_113505
crossref_primary_10_1016_j_electacta_2024_143974
crossref_primary_10_1007_s10311_022_01521_x
crossref_primary_10_1016_j_molstruc_2024_139199
crossref_primary_10_1039_D1CS00404B
crossref_primary_10_1016_j_xcrp_2022_100809
crossref_primary_10_33961_jecst_2020_01522
crossref_primary_10_1039_D0RA10560K
crossref_primary_10_3390_s24082403
crossref_primary_10_1021_acsphyschemau_2c00035
crossref_primary_10_1016_j_molliq_2020_113594
crossref_primary_10_1016_j_mtener_2023_101432
crossref_primary_10_1016_j_molliq_2023_123314
crossref_primary_10_1016_j_molliq_2024_126826
crossref_primary_10_1038_s41467_021_27842_z
crossref_primary_10_1007_s11356_021_14485_2
crossref_primary_10_1021_acs_energyfuels_1c03243
crossref_primary_10_1016_j_ensm_2022_03_032
crossref_primary_10_1021_acs_jpcc_4c04520
crossref_primary_10_3389_fchem_2022_859304
crossref_primary_10_1016_j_jtice_2021_09_007
crossref_primary_10_1016_j_gce_2024_04_001
crossref_primary_10_1016_j_gee_2023_05_002
crossref_primary_10_3390_coatings11010080
crossref_primary_10_1016_j_molliq_2017_04_126
crossref_primary_10_1021_acs_iecr_8b04723
crossref_primary_10_1016_j_tca_2023_179607
crossref_primary_10_1016_j_cis_2024_103310
crossref_primary_10_1007_s12034_020_02337_7
crossref_primary_10_1039_D3SU00147D
crossref_primary_10_1016_j_molliq_2019_03_166
crossref_primary_10_1002_asia_201901365
crossref_primary_10_1002_chem_202102545
crossref_primary_10_1016_j_molliq_2020_114820
crossref_primary_10_1021_acs_langmuir_2c01153
crossref_primary_10_1021_acssuschemeng_8b03950
crossref_primary_10_1039_D3RA01958F
crossref_primary_10_3390_e25050793
crossref_primary_10_1039_D2NJ03148E
crossref_primary_10_1016_j_molliq_2021_116743
crossref_primary_10_1002_smll_202301862
crossref_primary_10_1016_j_gee_2020_11_008
crossref_primary_10_1016_j_molliq_2023_121676
crossref_primary_10_1016_j_electacta_2024_145443
crossref_primary_10_1016_j_molliq_2016_08_036
crossref_primary_10_1039_D4SC02318H
crossref_primary_10_1016_j_jclepro_2024_140988
crossref_primary_10_1016_j_eti_2021_101418
crossref_primary_10_1016_j_jechem_2023_12_021
crossref_primary_10_1016_j_jil_2023_100076
crossref_primary_10_3390_molecules26226962
crossref_primary_10_1016_j_molliq_2021_115909
crossref_primary_10_1016_j_procbio_2020_04_036
crossref_primary_10_1007_s11581_021_04048_3
crossref_primary_10_1016_j_materresbull_2021_111348
crossref_primary_10_1016_j_electacta_2018_05_103
crossref_primary_10_1080_10408347_2021_1946659
crossref_primary_10_1002_smll_202302385
crossref_primary_10_1021_acsomega_0c05369
crossref_primary_10_1007_s11581_023_05124_6
crossref_primary_10_1016_j_seppur_2024_128967
crossref_primary_10_1016_j_molliq_2025_126919
crossref_primary_10_1063_1_4996644
crossref_primary_10_1021_acs_jced_2c00729
crossref_primary_10_1016_j_jil_2023_100062
crossref_primary_10_1039_C7CP07483B
crossref_primary_10_1016_j_ces_2025_121553
crossref_primary_10_1149_2_0211809jes
crossref_primary_10_1007_s11426_016_0459_2
crossref_primary_10_1016_j_matre_2022_100093
crossref_primary_10_1016_j_cej_2024_156177
crossref_primary_10_1016_j_electacta_2022_141674
crossref_primary_10_1016_j_gce_2024_09_012
crossref_primary_10_1039_D2ME00050D
crossref_primary_10_1016_j_colsurfa_2025_136459
crossref_primary_10_1016_j_jece_2022_108004
crossref_primary_10_1039_C8CP07383J
crossref_primary_10_1080_10408347_2021_1978055
crossref_primary_10_1016_j_molliq_2022_119219
crossref_primary_10_1016_j_gee_2019_01_012
crossref_primary_10_1021_acs_jced_3c00706
crossref_primary_10_1021_acs_jced_4c00530
crossref_primary_10_1038_s41598_023_29387_1
crossref_primary_10_3390_cosmetics12010018
crossref_primary_10_1016_j_jechem_2025_01_060
Cites_doi 10.1063/1.2204959
10.1039/C5RA12425E
10.1021/acs.iecr.5b01789
10.1039/C5GC01451D
10.1016/j.cossms.2009.01.002
10.1016/j.elecom.2012.03.049
10.1016/j.electacta.2012.12.077
10.1039/c2cp41798g
10.1038/383313a0
10.1016/j.tca.2013.12.005
10.1039/B512724F
10.1039/C5CC05233E
10.1039/C5GC00231A
10.1149/1.1568740
10.1039/b007172m
10.1039/c0gc00712a
10.1007/s11426-014-5154-3
10.1016/j.electacta.2006.03.016
10.1016/j.ijggc.2011.05.014
10.1039/C4CP00279B
10.1039/c3gc41141a
10.1021/ie300247v
10.1021/ie5009597
10.1021/jp0634048
10.1039/b923589b
10.1021/ac030375d
10.1021/cr300162p
10.1021/je800898z
10.1002/anie.201206197
10.1002/celc.201402086
10.1039/C3CS60409H
10.1002/anie.201405082
10.1039/b914601f
10.1039/c3cc46473c
10.1002/asia.200900191
10.1039/c2ee21152a
10.1039/b817881j
10.1021/je800678e
10.1039/c2cs35178a
10.1021/jp303915c
10.1002/chem.200400533
10.1039/c0cp00486c
10.1016/j.electacta.2008.09.011
10.1039/C5GC00081E
10.1021/jp076271e
10.1038/nmat2448
10.1021/jp201886m
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2016
Science China Press and Springer-Verlag Berlin Heidelberg 2016.
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016
– notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11426-016-5566-3
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate The electrochemical stability of ionic liquids and deep eutectic solvents
EISSN 1869-1870
EndPage 577
ExternalDocumentID 10_1007_s11426_016_5566_3
668723463
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.VR
06C
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
88I
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CDRFL
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9N
PDBOC
PF0
PT4
QOR
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7S
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
~A9
~WA
-SB
-S~
0R~
5XA
5XC
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEB
CJPJV
H13
Q--
U1G
U5L
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
ABRTQ
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c409t-759aad9014f4146de1a75d333a55bde2f6223234276a7a81d7d9165f5936c2ee3
IEDL.DBID BENPR
ISSN 1674-7291
IngestDate Fri Jul 25 11:09:56 EDT 2025
Tue Jul 01 01:47:01 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
Fri Feb 21 02:35:10 EST 2025
Wed Feb 14 10:19:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ionic liquids
cyclic voltammetry
water effect
deep eutectic solvents
glassy carbon
electrochemical potential window
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-759aad9014f4146de1a75d333a55bde2f6223234276a7a81d7d9165f5936c2ee3
Notes Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.
electrochemical potential window, cyclic voltammetry, ionic liquids, deep eutectic solvents, glassy carbon, water effect
11-5839/O6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918615230
PQPubID 2044427
PageCount 7
ParticipantIDs proquest_journals_2918615230
crossref_primary_10_1007_s11426_016_5566_3
crossref_citationtrail_10_1007_s11426_016_5566_3
springer_journals_10_1007_s11426_016_5566_3
chongqing_primary_668723463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Chemistry
PublicationTitleAbbrev Sci. China Chem
PublicationTitleAlternate SCIENCE CHINA Chemistry
PublicationYear 2016
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References SongJFanHMaJHanBGreen Chem201315261926351:CAS:528:DC%2BC3sXhsV2gtbfI10.1039/c3gc41141a
De VosNMatonCStevensCVChemElectroChem201411258127010.1002/celc.201402086
RogersEIŠljukicBHardacreCComptonRGJ Chem Eng Data200954204920531:CAS:528:DC%2BD1MXkvVyksbo%3D10.1021/je800898z
CaoYMuTInd Eng Chem Res201453865186641:CAS:528:DC%2BC2cXms1Chs74%3D10.1021/ie5009597
Navarro-SuárezAMHidalgo-AcostaJCFadiniLFeliuJSuárez-HerreraMFJ Phys Chem C2011115111471115510.1021/jp201886m
ArmandMEndresFMacFarlaneDROhnoHScrosatiBNat Mater200986216291:CAS:528:DC%2BD1MXovFSisr0%3D10.1038/nmat2448
XueZZhangJPengLLiJMuTHanBYangGAngew Chem Int Ed20125112325123291:CAS:528:DC%2BC38XhsFyjsbjM10.1002/anie.201206197
GalinskiMLewandowskiAStepniakIElectrochim Acta200651556755801:CAS:528:DC%2BD28XotVaqtr8%3D10.1016/j.electacta.2006.03.016
LuskaKLMigowskiPLeitnerWGreen Chem201517319532061:CAS:528:DC%2BC2MXlvFWhtro%3D10.1039/C5GC00231A
YanCMuTPhys Chem Chem Phys201416507150751:CAS:528:DC%2BC2cXisleqsbg%3D10.1039/c4cp00279b
JuneidiIHayyanMHashimMARSC Adv2015583636836471:CAS:528:DC%2BC2MXhsFGkurbM10.1039/C5RA12425E
XueZZhangYZhouXCaoYMuTThermochim Acta201457859671:CAS:528:DC%2BC2cXitF2itrs%3D10.1016/j.tca.2013.12.005
WeiLZhouZChenSXuCSuDSchusterMESunSChem Commun20134911152111541:CAS:528:DC%2BC3sXhslWlsLvP10.1039/c3cc46473c
ZhangSSunJZhangXXinJMiaoQWangJChem Soc Rev201443783878691:CAS:528:DC%2BC2cXhslOis7bK10.1039/C3CS60409H
ZhouZBMatsumotoHTatsumiKChem-Eur J200410658165911:CAS:528:DC%2BD2cXhtFajsbfI10.1002/chem.200400533
VillagránCBanksCEHardacreCComptonRGAnal Chem2004761998200310.1021/ac030375d
XiaoLJohnsonKEJ Electrochem Soc200315030731110.1149/1.1568740
YanYYinYXinSSuJGuoYWanLElectrochim Acta20139158611:CAS:528:DC%2BC3sXis1GnurY%3D10.1016/j.electacta.2012.12.077
ChenYCaoYShiYXueZMuTInd Eng Chem Res201251741874271:CAS:528:DC%2BC38Xmslyisrg%3D10.1021/ie300247v
FangYJiangXSunXDaiSChem Commun20155113286132891:CAS:528:DC%2BC2MXhtFOltLjL10.1039/C5CC05233E
PawarPMJaragKJShankarlingGSGreen Chem201113213021341:CAS:528:DC%2BC3MXpslGitLY%3D10.1039/c0gc00712a
KroonMCBuijsWPetersCJWitkampGJGreen Chem200682412451:CAS:528:DC%2BD28XhvFCkt7Y%3D10.1039/B512724F
O’MahonyAMSilvesterDSAldousLHardacreCComptonRGJ Chem Eng Data2008532884289110.1021/je800678e
ZhangQVigierKDORoyerSJérômeFChem Soc Rev201241710871461:CAS:528:DC%2BC38XhsVOnurjF10.1039/c2cs35178a
van OschDJGPZubeirL v dBruinhorstARochaMAKroonMCGreen Chem2015174518452110.1039/C5GC01451D
WaldvogelSRJanzaBAngew Chem Int Ed201453712271231:CAS:528:DC%2BC2cXhtVShurnK10.1002/anie.201405082
HuSZhangZSongJZhouYHanBGreen Chem200911174617491:CAS:528:DC%2BD1MXhtlGit7%2FN10.1039/b914601f
NoackKSchulzPSPaapeNKieferJWasserscheidPLeipertzAPhys Chem Chem Phys20101214153141611:CAS:528:DC%2BC3cXhtlSqu7fE10.1039/c0cp00486c
JiaoTZhuangXHeHZhaoLLiCChenHZhangSGreen Chem201517378337901:CAS:528:DC%2BC2MXlsVWhsbc%3D10.1039/C5GC00081E
GreavesTLWeerawardenaAFongCKrodkiewskaIDrummondCJJ Phys Chem B200611022479224871:CAS:528:DC%2BD28XhtVyhsbfI10.1021/jp0634048
EckertCANature19963833133181:CAS:528:DyaK28XlvFaisbw%3D10.1038/383313a0
AppetecchiGBMontaninoMZaneDCarewskaMAlessandriniFPasseriniSElectrochim Acta200954132513321:CAS:528:DC%2BD1cXhsFCisb3E10.1016/j.electacta.2008.09.011
TianYGoffGSRundeWHBatistaERJ Phys Chem B201211611943119521:CAS:528:DC%2BC38Xht12isLbM10.1021/jp303915c
Scholz F. Electroanalytical Methods: Guide to Experiments and Applications. Heidelberg: Springer Science & Business Media, 2009
LiZJiaZLuanYMuTCurr Opin Solid State Mater Sci2008121810.1016/j.cossms.2009.01.002
YoshimotoSTaguchiRTsujiRUedaHNishiyamaKElectrochem Commun20122026281:CAS:528:DC%2BC38XnvFCntb8%3D10.1016/j.elecom.2012.03.049
PhadtareSBShankarlingGSGreen Chem2010124584621:CAS:528:DC%2BC3cXjtVSqt7g%3D10.1039/b923589b
YanYYinYGuoYWanLSci China Chem201457156415691:CAS:528:DC%2BC2cXhs1CntrjO10.1007/s11426-014-5154-3
SmithELAbbottAPRyderKSChem Rev201411411060110821:CAS:528:DC%2BC2cXhsleksrzM10.1021/cr300162p
ZhangSSunNHeXLuXZhangXJ Phys Chem Ref Data200635147515171:CAS:528:DC%2BD2sXptF2guw%3D%3D10.1063/1.2204959
ZhangXZhangXDongHZhaoZZhangSHuangYEnergy Environ Sci20125666866811:CAS:528:DC%2BC38XmsVWqsbc%3D10.1039/c2ee21152a
FreireMGNevesCMSSCarvalhoPJGardasRLFernandesAMMarruchoIMCoutinhoJAJ Phys Chem B200711113082130891:CAS:528:DC%2BD2sXht1WmtL%2FF10.1021/jp076271e
SchroderUWadhawanJDComptonRGMarkenFSuarezPAConsortiCSDupontJNew J Chem200024100910151:CAS:528:DC%2BD3cXos1altLs%3D10.1039/b007172m
AbbottAPEl TtaibKFrischGMcKenzieKJRyderKSPhys Chem Chem Phys200911426942771:CAS:528:DC%2BD1MXmtFCitrc%3D10.1039/b817881j
AnastasPTWarnerJCGreen Chemistry: Theory and Practice1998New YorkOxford University Press30
SunSNiuYXuQSunZWeiXInd Eng Chem Res201554801980241:CAS:528:DC%2BC2MXht12nurzE10.1021/acs.iecr.5b01789
CaoYChenYSunXZhangZMuTPhys Chem Chem Phys20121412252122621:CAS:528:DC%2BC38Xht1WrsbnM10.1039/c2cp41798g
XueZZhangZHanJChenYMuTInt J Greenhouse Gas Control201156286331:CAS:528:DC%2BC3MXhtVWqtLfL10.1016/j.ijggc.2011.05.014
Barrosse-AntleLEBondAMComptonR OMahonyAMRogersEISilvesterDSChem-Asian J201052022301:CAS:528:DC%2BC3cXhsVGqtrY%3D10.1002/asia.200900191
Y Cao (5566_CR16) 2014; 53
L Xiao (5566_CR44) 2003; 150
AP Abbott (5566_CR26) 2009; 11
Z Xue (5566_CR11) 2011; 5
DJGP Osch van (5566_CR15) 2015; 17
Y Chen (5566_CR17) 2012; 51
Y Yan (5566_CR20) 2014; 57
Q Zhang (5566_CR5) 2012; 41
TL Greaves (5566_CR46) 2006; 110
C Yan (5566_CR8) 2014; 16
S Sun (5566_CR30) 2015; 54
Y Tian (5566_CR47) 2012; 116
GB Appetecchi (5566_CR39) 2009; 54
SB Phadtare (5566_CR29) 2010; 12
Y Cao (5566_CR48) 2012; 14
S Zhang (5566_CR7) 2006; 35
S Yoshimoto (5566_CR38) 2012; 20
I Juneidi (5566_CR31) 2015; 5
PT Anastas (5566_CR1) 1998
Z Xue (5566_CR18) 2014; 578
T Jiao (5566_CR9) 2015; 17
U Schroder (5566_CR49) 2000; 24
M Galinski (5566_CR36) 2006; 51
N Vos De (5566_CR37) 2014; 1
AM Navarro-Suárez (5566_CR35) 2011; 115
J Song (5566_CR14) 2013; 15
5566_CR32
AM O’Mahony (5566_CR34) 2008; 53
SR Waldvogel (5566_CR24) 2014; 53
CA Eckert (5566_CR2) 1996; 383
MC Kroon (5566_CR45) 2006; 8
C Villagrán (5566_CR33) 2004; 76
Z Li (5566_CR10) 2008; 12
Z Xue (5566_CR4) 2012; 51
ZB Zhou (5566_CR41) 2004; 10
LE Barrosse-Antle (5566_CR22) 2010; 5
MG Freire (5566_CR42) 2007; 111
L Wei (5566_CR27) 2013; 49
M Armand (5566_CR21) 2009; 8
EL Smith (5566_CR6) 2014; 114
X Zhang (5566_CR12) 2012; 5
Y Fang (5566_CR23) 2015; 51
KL Luska (5566_CR25) 2015; 17
EI Rogers (5566_CR40) 2009; 54
S Zhang (5566_CR3) 2014; 43
S Hu (5566_CR13) 2009; 11
Y Yan (5566_CR19) 2013; 91
K Noack (5566_CR43) 2010; 12
PM Pawar (5566_CR28) 2011; 13
References_xml – reference: ArmandMEndresFMacFarlaneDROhnoHScrosatiBNat Mater200986216291:CAS:528:DC%2BD1MXovFSisr0%3D10.1038/nmat2448
– reference: FreireMGNevesCMSSCarvalhoPJGardasRLFernandesAMMarruchoIMCoutinhoJAJ Phys Chem B200711113082130891:CAS:528:DC%2BD2sXht1WmtL%2FF10.1021/jp076271e
– reference: LuskaKLMigowskiPLeitnerWGreen Chem201517319532061:CAS:528:DC%2BC2MXlvFWhtro%3D10.1039/C5GC00231A
– reference: LiZJiaZLuanYMuTCurr Opin Solid State Mater Sci2008121810.1016/j.cossms.2009.01.002
– reference: GalinskiMLewandowskiAStepniakIElectrochim Acta200651556755801:CAS:528:DC%2BD28XotVaqtr8%3D10.1016/j.electacta.2006.03.016
– reference: YanYYinYGuoYWanLSci China Chem201457156415691:CAS:528:DC%2BC2cXhs1CntrjO10.1007/s11426-014-5154-3
– reference: RogersEIŠljukicBHardacreCComptonRGJ Chem Eng Data200954204920531:CAS:528:DC%2BD1MXkvVyksbo%3D10.1021/je800898z
– reference: SchroderUWadhawanJDComptonRGMarkenFSuarezPAConsortiCSDupontJNew J Chem200024100910151:CAS:528:DC%2BD3cXos1altLs%3D10.1039/b007172m
– reference: AppetecchiGBMontaninoMZaneDCarewskaMAlessandriniFPasseriniSElectrochim Acta200954132513321:CAS:528:DC%2BD1cXhsFCisb3E10.1016/j.electacta.2008.09.011
– reference: KroonMCBuijsWPetersCJWitkampGJGreen Chem200682412451:CAS:528:DC%2BD28XhvFCkt7Y%3D10.1039/B512724F
– reference: XueZZhangZHanJChenYMuTInt J Greenhouse Gas Control201156286331:CAS:528:DC%2BC3MXhtVWqtLfL10.1016/j.ijggc.2011.05.014
– reference: PhadtareSBShankarlingGSGreen Chem2010124584621:CAS:528:DC%2BC3cXjtVSqt7g%3D10.1039/b923589b
– reference: EckertCANature19963833133181:CAS:528:DyaK28XlvFaisbw%3D10.1038/383313a0
– reference: XueZZhangJPengLLiJMuTHanBYangGAngew Chem Int Ed20125112325123291:CAS:528:DC%2BC38XhsFyjsbjM10.1002/anie.201206197
– reference: Navarro-SuárezAMHidalgo-AcostaJCFadiniLFeliuJSuárez-HerreraMFJ Phys Chem C2011115111471115510.1021/jp201886m
– reference: WeiLZhouZChenSXuCSuDSchusterMESunSChem Commun20134911152111541:CAS:528:DC%2BC3sXhslWlsLvP10.1039/c3cc46473c
– reference: CaoYMuTInd Eng Chem Res201453865186641:CAS:528:DC%2BC2cXms1Chs74%3D10.1021/ie5009597
– reference: AbbottAPEl TtaibKFrischGMcKenzieKJRyderKSPhys Chem Chem Phys200911426942771:CAS:528:DC%2BD1MXmtFCitrc%3D10.1039/b817881j
– reference: CaoYChenYSunXZhangZMuTPhys Chem Chem Phys20121412252122621:CAS:528:DC%2BC38Xht1WrsbnM10.1039/c2cp41798g
– reference: YanCMuTPhys Chem Chem Phys201416507150751:CAS:528:DC%2BC2cXisleqsbg%3D10.1039/c4cp00279b
– reference: ZhouZBMatsumotoHTatsumiKChem-Eur J200410658165911:CAS:528:DC%2BD2cXhtFajsbfI10.1002/chem.200400533
– reference: XueZZhangYZhouXCaoYMuTThermochim Acta201457859671:CAS:528:DC%2BC2cXitF2itrs%3D10.1016/j.tca.2013.12.005
– reference: WaldvogelSRJanzaBAngew Chem Int Ed201453712271231:CAS:528:DC%2BC2cXhtVShurnK10.1002/anie.201405082
– reference: GreavesTLWeerawardenaAFongCKrodkiewskaIDrummondCJJ Phys Chem B200611022479224871:CAS:528:DC%2BD28XhtVyhsbfI10.1021/jp0634048
– reference: TianYGoffGSRundeWHBatistaERJ Phys Chem B201211611943119521:CAS:528:DC%2BC38Xht12isLbM10.1021/jp303915c
– reference: SmithELAbbottAPRyderKSChem Rev201411411060110821:CAS:528:DC%2BC2cXhsleksrzM10.1021/cr300162p
– reference: van OschDJGPZubeirL v dBruinhorstARochaMAKroonMCGreen Chem2015174518452110.1039/C5GC01451D
– reference: ZhangSSunJZhangXXinJMiaoQWangJChem Soc Rev201443783878691:CAS:528:DC%2BC2cXhslOis7bK10.1039/C3CS60409H
– reference: ChenYCaoYShiYXueZMuTInd Eng Chem Res201251741874271:CAS:528:DC%2BC38Xmslyisrg%3D10.1021/ie300247v
– reference: AnastasPTWarnerJCGreen Chemistry: Theory and Practice1998New YorkOxford University Press30
– reference: SunSNiuYXuQSunZWeiXInd Eng Chem Res201554801980241:CAS:528:DC%2BC2MXht12nurzE10.1021/acs.iecr.5b01789
– reference: ZhangSSunNHeXLuXZhangXJ Phys Chem Ref Data200635147515171:CAS:528:DC%2BD2sXptF2guw%3D%3D10.1063/1.2204959
– reference: VillagránCBanksCEHardacreCComptonRGAnal Chem2004761998200310.1021/ac030375d
– reference: PawarPMJaragKJShankarlingGSGreen Chem201113213021341:CAS:528:DC%2BC3MXpslGitLY%3D10.1039/c0gc00712a
– reference: O’MahonyAMSilvesterDSAldousLHardacreCComptonRGJ Chem Eng Data2008532884289110.1021/je800678e
– reference: De VosNMatonCStevensCVChemElectroChem201411258127010.1002/celc.201402086
– reference: NoackKSchulzPSPaapeNKieferJWasserscheidPLeipertzAPhys Chem Chem Phys20101214153141611:CAS:528:DC%2BC3cXhtlSqu7fE10.1039/c0cp00486c
– reference: Scholz F. Electroanalytical Methods: Guide to Experiments and Applications. Heidelberg: Springer Science & Business Media, 2009
– reference: YoshimotoSTaguchiRTsujiRUedaHNishiyamaKElectrochem Commun20122026281:CAS:528:DC%2BC38XnvFCntb8%3D10.1016/j.elecom.2012.03.049
– reference: FangYJiangXSunXDaiSChem Commun20155113286132891:CAS:528:DC%2BC2MXhtFOltLjL10.1039/C5CC05233E
– reference: YanYYinYXinSSuJGuoYWanLElectrochim Acta20139158611:CAS:528:DC%2BC3sXis1GnurY%3D10.1016/j.electacta.2012.12.077
– reference: XiaoLJohnsonKEJ Electrochem Soc200315030731110.1149/1.1568740
– reference: ZhangXZhangXDongHZhaoZZhangSHuangYEnergy Environ Sci20125666866811:CAS:528:DC%2BC38XmsVWqsbc%3D10.1039/c2ee21152a
– reference: Barrosse-AntleLEBondAMComptonR OMahonyAMRogersEISilvesterDSChem-Asian J201052022301:CAS:528:DC%2BC3cXhsVGqtrY%3D10.1002/asia.200900191
– reference: ZhangQVigierKDORoyerSJérômeFChem Soc Rev201241710871461:CAS:528:DC%2BC38XhsVOnurjF10.1039/c2cs35178a
– reference: JiaoTZhuangXHeHZhaoLLiCChenHZhangSGreen Chem201517378337901:CAS:528:DC%2BC2MXlsVWhsbc%3D10.1039/C5GC00081E
– reference: JuneidiIHayyanMHashimMARSC Adv2015583636836471:CAS:528:DC%2BC2MXhsFGkurbM10.1039/C5RA12425E
– reference: SongJFanHMaJHanBGreen Chem201315261926351:CAS:528:DC%2BC3sXhsV2gtbfI10.1039/c3gc41141a
– reference: HuSZhangZSongJZhouYHanBGreen Chem200911174617491:CAS:528:DC%2BD1MXhtlGit7%2FN10.1039/b914601f
– volume: 35
  start-page: 1475
  year: 2006
  ident: 5566_CR7
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.2204959
– volume: 5
  start-page: 83636
  year: 2015
  ident: 5566_CR31
  publication-title: RSC Adv
  doi: 10.1039/C5RA12425E
– volume: 54
  start-page: 8019
  year: 2015
  ident: 5566_CR30
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.5b01789
– volume: 17
  start-page: 4518
  year: 2015
  ident: 5566_CR15
  publication-title: Green Chem
  doi: 10.1039/C5GC01451D
– volume: 12
  start-page: 1
  year: 2008
  ident: 5566_CR10
  publication-title: Curr Opin Solid State Mater Sci
  doi: 10.1016/j.cossms.2009.01.002
– volume: 20
  start-page: 26
  year: 2012
  ident: 5566_CR38
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2012.03.049
– volume: 91
  start-page: 58
  year: 2013
  ident: 5566_CR19
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.12.077
– volume: 14
  start-page: 12252
  year: 2012
  ident: 5566_CR48
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c2cp41798g
– volume: 383
  start-page: 313
  year: 1996
  ident: 5566_CR2
  publication-title: Nature
  doi: 10.1038/383313a0
– volume: 578
  start-page: 59
  year: 2014
  ident: 5566_CR18
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2013.12.005
– volume: 8
  start-page: 241
  year: 2006
  ident: 5566_CR45
  publication-title: Green Chem
  doi: 10.1039/B512724F
– volume: 51
  start-page: 13286
  year: 2015
  ident: 5566_CR23
  publication-title: Chem Commun
  doi: 10.1039/C5CC05233E
– volume: 17
  start-page: 3195
  year: 2015
  ident: 5566_CR25
  publication-title: Green Chem
  doi: 10.1039/C5GC00231A
– volume: 150
  start-page: 307
  year: 2003
  ident: 5566_CR44
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1568740
– volume: 24
  start-page: 1009
  year: 2000
  ident: 5566_CR49
  publication-title: New J Chem
  doi: 10.1039/b007172m
– volume: 13
  start-page: 2130
  year: 2011
  ident: 5566_CR28
  publication-title: Green Chem
  doi: 10.1039/c0gc00712a
– volume: 57
  start-page: 1564
  year: 2014
  ident: 5566_CR20
  publication-title: Sci China Chem
  doi: 10.1007/s11426-014-5154-3
– volume: 51
  start-page: 5567
  year: 2006
  ident: 5566_CR36
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2006.03.016
– volume: 5
  start-page: 628
  year: 2011
  ident: 5566_CR11
  publication-title: Int J Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2011.05.014
– volume: 16
  start-page: 5071
  year: 2014
  ident: 5566_CR8
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP00279B
– volume: 15
  start-page: 2619
  year: 2013
  ident: 5566_CR14
  publication-title: Green Chem
  doi: 10.1039/c3gc41141a
– volume: 51
  start-page: 7418
  year: 2012
  ident: 5566_CR17
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie300247v
– volume: 53
  start-page: 8651
  year: 2014
  ident: 5566_CR16
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie5009597
– volume: 110
  start-page: 22479
  year: 2006
  ident: 5566_CR46
  publication-title: J Phys Chem B
  doi: 10.1021/jp0634048
– volume: 12
  start-page: 458
  year: 2010
  ident: 5566_CR29
  publication-title: Green Chem
  doi: 10.1039/b923589b
– volume: 76
  start-page: 1998
  year: 2004
  ident: 5566_CR33
  publication-title: Anal Chem
  doi: 10.1021/ac030375d
– volume: 114
  start-page: 11060
  year: 2014
  ident: 5566_CR6
  publication-title: Chem Rev
  doi: 10.1021/cr300162p
– volume: 54
  start-page: 2049
  year: 2009
  ident: 5566_CR40
  publication-title: J Chem Eng Data
  doi: 10.1021/je800898z
– volume: 51
  start-page: 12325
  year: 2012
  ident: 5566_CR4
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201206197
– volume: 1
  start-page: 1258
  year: 2014
  ident: 5566_CR37
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402086
– volume: 43
  start-page: 7838
  year: 2014
  ident: 5566_CR3
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60409H
– start-page: 30
  volume-title: Green Chemistry: Theory and Practice
  year: 1998
  ident: 5566_CR1
– volume: 53
  start-page: 7122
  year: 2014
  ident: 5566_CR24
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201405082
– volume: 11
  start-page: 1746
  year: 2009
  ident: 5566_CR13
  publication-title: Green Chem
  doi: 10.1039/b914601f
– volume: 49
  start-page: 11152
  year: 2013
  ident: 5566_CR27
  publication-title: Chem Commun
  doi: 10.1039/c3cc46473c
– volume: 5
  start-page: 202
  year: 2010
  ident: 5566_CR22
  publication-title: Chem-Asian J
  doi: 10.1002/asia.200900191
– volume: 5
  start-page: 6668
  year: 2012
  ident: 5566_CR12
  publication-title: Energy Environ Sci
  doi: 10.1039/c2ee21152a
– volume: 11
  start-page: 4269
  year: 2009
  ident: 5566_CR26
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b817881j
– volume: 53
  start-page: 2884
  year: 2008
  ident: 5566_CR34
  publication-title: J Chem Eng Data
  doi: 10.1021/je800678e
– volume: 41
  start-page: 7108
  year: 2012
  ident: 5566_CR5
  publication-title: Chem Soc Rev
  doi: 10.1039/c2cs35178a
– volume: 116
  start-page: 11943
  year: 2012
  ident: 5566_CR47
  publication-title: J Phys Chem B
  doi: 10.1021/jp303915c
– volume: 10
  start-page: 6581
  year: 2004
  ident: 5566_CR41
  publication-title: Chem-Eur J
  doi: 10.1002/chem.200400533
– volume: 12
  start-page: 14153
  year: 2010
  ident: 5566_CR43
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c0cp00486c
– volume: 54
  start-page: 1325
  year: 2009
  ident: 5566_CR39
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2008.09.011
– volume: 17
  start-page: 3783
  year: 2015
  ident: 5566_CR9
  publication-title: Green Chem
  doi: 10.1039/C5GC00081E
– volume: 111
  start-page: 13082
  year: 2007
  ident: 5566_CR42
  publication-title: J Phys Chem B
  doi: 10.1021/jp076271e
– volume: 8
  start-page: 621
  year: 2009
  ident: 5566_CR21
  publication-title: Nat Mater
  doi: 10.1038/nmat2448
– volume: 115
  start-page: 11147
  year: 2011
  ident: 5566_CR35
  publication-title: J Phys Chem C
  doi: 10.1021/jp201886m
– ident: 5566_CR32
SSID ssj0000330275
Score 2.4602225
Snippet Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and...
Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Anions
Cations
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Choline
Electrochemical potential
Electrodes
Eutectic temperature
Glassy carbon
Hydrogen bonds
Ionic liquids
Moisture content
Room temperature
Solvents
Stability
Urea
共晶
室温离子液体
工作电极
气相色谱
氯化胆碱
电化学稳定性
绿色溶剂
还原电位
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRn1hbJQdPSqCb5-6xFEsV9GSht5DdZLVQtq3bHvz3TrabLooKnpNMYGaS-SYzmUHoRuWGUhdnhNnEEc6UIMYJTqJMpFHPAeiw_r3j6VmOxvxxIib1P-4yZLuHkGR1Uzef3SKwJuD6SiIAgxC2i_aEd91Bice0v31Y6bEqFOcdLelzDWkShWjmT1R8TYW3efG6hB2_2qYGcH6LkVamZ3iEDmvMiPsbIR-jHVecoP1BaNV2ih5A2LhuaJPVFQAwwL4q8fUDz3PsX10zPJsu11NbYlNYbJ1bYLf2MQQYAQ30iY_lGRoP718GI1L3SCAZeGYrokRijPWx0JzDpWddZJSwjDEjRGodzSXYf8o4VdIoA-BUWQCEIveN_DLqHDtHrWJeuAuEc8VjmSbKpdZwCYY8ETlnKRxgIVWWyDbqbDmlF5taGFrKWAF5ydqoF3ins7q8uO9yMdNNYWTPeu1TyjzrNSy53S4J9P6Y3A0C0fUxKzXINgZIBm5UG90FITXDvxK7_NfsDjqgXmGqNMcuaq3e1-4KoMgqva5U7xMOTtIN
  priority: 102
  providerName: Springer Nature
Title The electrochemical stability of ionic liquids and deep eutectic solvents
URI http://lib.cqvip.com/qk/60113X/201605/668723463.html
https://link.springer.com/article/10.1007/s11426-016-5566-3
https://www.proquest.com/docview/2918615230
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4t9LBcVrAP0YWtfNgTyKKxYzs5oS5qeaxAaEUl9hQ5tsMiobTdtgf-PTPBaQUSXJN4DjPjmW8emQH4aSorRMgclz4PPJVGcRtUyhOnyqQfEHR4yndcXumzcXpxq25jwm0e2ypbm9gYaj9xlCM_EnmSofdFxHw8nXHaGkXV1bhCYwM6aIIzDL46v4ZX139WWZa-bOpyFHVpajxEKm1ps_l_LkEHhdG05gphDZc0YOHfpL6bodt46ajW6PNVwbTxQ6Nt-BQBJBs8S3wHPoT6M3w8afe2fYFzlDyL221cHAfAEAM2XbCPbFIxSsE69nA_W977ObO1Zz6EKQtLKijgG1RH6oKcf4XxaHhzcsbjwgTuMExbcKNyaz0VRqsULaAPiTXKSymtUqUPotIIBoRMhdHWWESqxiM6VBVt9XMiBPkNNutJHXaBVSbNdJmbUHqbavTquapSWeJtVtq4XHdhb8WpYvo8GKPQOjNIXssu9FveFS7OGqeVFw_Fekoysb6g_jJifYFHDlZHWnrvfLzfCqSId25erDWkC4etkNav3yT2_X1ie7AlSEOaJsd92Fz8X4YfCEQWZQ82stFpDzqD07-_h72oe_h0LAZPTg3aQQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigX1PIQoaX4ABeQRdbP3QNCqG1I6OPUSr0tXttbKlWbhCSq-qf4jcxs1olAoreevR6txuOZbx6eAXhnaydEzD2XoYhcSau5i1rxzOsq60cEHYHiHadnZnihvl_qyw34nd7CUFll0omtog5jTzHyT6LIcrS-iJi_TKacpkZRdjWN0FiKxXG8u0WXbfZ5dIjn-16IwdH5wZB3UwW4R19mzq0unAuUPawVqokQM2d1kFI6rasQRW3QYgqphDXOOoRzNiCE0jWNvvMiRol0H8FjJWVBNyoffFvFdPqyzQKSj2eozBH_OSVS29d6GZpD9N0N1wiiuKR2Dj_HzdUUjdTfZnGNdf9Jz7ZWb7ANTzu4yr4u5WsHNmLzDLYO0pS45zBCOWPdLB3fNR9giDjbmts7Nq4ZBXw9u7meLq7DjLkmsBDjhMUFpS9wBYWfai5nL-DiQRj5EjabcRNfAautyk1V2FgFpwxiiELXSlaoO7SxvjA92F1xqpws23CUxuQWyRvZg37iXem7zuY0YOOmXPdkJtaXVM1GrC9xy4fVlkTvno_30oGU3Q2flWt57MHHdEjr5f8Se30_sbewNTw_PSlPRmfHu_BEkLS05ZV7sDn_tYhvEALNq_1W7hj8eGhB_wOeIhEZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE_VifEYEtQdPmga23bbskaAEfBAPknBrutuukpAFXDj4750uu2w0auK57TSZmXa-6UxnELqSsabUtiLCTGCJzyQn2nKfeBEPvaYF0GHce8fTQPSG_v2Ij_I-p2mR7V6EJFd_GlyVpmTRmJm4UX5888CygBssCAc8Qtgm2oLb2HNqPaTt9SNLk2VhOed0CZd3SAOviGz-RMXVV3ibJq9z2P2rnSrB57d4aWaGuvtoL8ePuL0S-AHasMkh2ukUbduOUB8Ej_PmNlFeDQADBMySYD_wNMbuBTbCk_F8OTYp1onBxtoZtksXT4AR0EaXBJkeo2H37qXTI3m_BBKBl7YgkgdaGxcXjX24AI31tOSGMaY5D42lsQAsQJlPpdBSA1CVBsAhj11Tv4hay05QJZkm9hThWPotEQbShkb7Aox6wGOfhXCYuZBRIKqotuaUmq3qYighWhLIC1ZFzYJ3KspLjbuOFxNVFkl2rFcuvcyxXsGS6_WSgt4fk-uFQFR-5FIFsm0BPAOXqopuCiGVw78SO_vX7Eu0_XzbVY_9wUMN7VKnO1n2Yx1VFu9Lew4IZRFeZFr4Cb8X2Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+electrochemical+stability+of+ionic+liquids+and+deep+eutectic+solvents&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E5%8C%96%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Qingbo+Li+Jingyun+Jiang+Guofeng+Li+Wancheng+Zhao+Xinhui+Zhao+Tiancheng+Mu&rft.date=2016-05-01&rft.issn=1674-7291&rft.eissn=1869-1870&rft.issue=5&rft.spage=571&rft.epage=577&rft_id=info:doi/10.1007%2Fs11426-016-5566-3&rft.externalDocID=668723463
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60113X%2F60113X.jpg