The electrochemical stability of ionic liquids and deep eutectic solvents
Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically drive...
Saved in:
Published in | Science China. Chemistry Vol. 59; no. 5; pp. 571 - 577 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.05.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications. |
---|---|
AbstractList | Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent electrochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investigated. The electrochemical stability of selected ILs comprising five traditional cations, namely imidazolium, pyridinium, pyrrolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cation and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications. Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications. |
Author | Qingbo Li Jingyun Jiang Guofeng Li Wancheng Zhao Xinhui Zhao Tiancheng Mu |
AuthorAffiliation | Department of Chemistry, Renmin University of China, Beijing 100872, China |
Author_xml | – sequence: 1 givenname: Qingbo surname: Li fullname: Li, Qingbo organization: Department of Chemistry, Renmin University of China – sequence: 2 givenname: Jingyun surname: Jiang fullname: Jiang, Jingyun organization: Department of Chemistry, Renmin University of China – sequence: 3 givenname: Guofeng surname: Li fullname: Li, Guofeng organization: Department of Chemistry, Renmin University of China – sequence: 4 givenname: Wancheng surname: Zhao fullname: Zhao, Wancheng organization: Department of Chemistry, Renmin University of China – sequence: 5 givenname: Xinhui surname: Zhao fullname: Zhao, Xinhui organization: Department of Chemistry, Renmin University of China – sequence: 6 givenname: Tiancheng surname: Mu fullname: Mu, Tiancheng email: tcmu@ruc.edu.cn organization: Department of Chemistry, Renmin University of China |
BookMark | eNp9kE1LAzEQhoNUsNb-AG-LnlfzsUl2j1L8KBS81HNIN7NtynbTJlmh_96ULQoemksCM0_emecWjTrXAUL3BD8RjOVzIKSgIsdE5JwLkbMrNCalqHJSSjxKbyGLXNKK3KBpCFucDmOYSj5G8-UGMmihjt7VG9jZWrdZiHplWxuPmWsy6zpbZ6099NaETHcmMwD7DPqYoFQJrv2GLoY7dN3oNsD0fE_Q19vrcvaRLz7f57OXRV4XuIq55JXWpsKkaApSCANES24YY5rzlQHaCEoZZQWVQktdEiNNRQRveMVETQHYBD0O_-69O_QQotq63ncpUqUNS0E4ZTh1kaGr9i4ED43ae7vT_qgIVidpapCmkjR1kqZYYuQ_prZRxyQgem3biyQdyJBSujX4v5kuQQ_nuI3r1ofE_c4oRCmTA8HYDxGfjPc |
CitedBy_id | crossref_primary_10_1016_j_matlet_2024_135891 crossref_primary_10_1016_j_molliq_2022_120001 crossref_primary_10_1021_acs_energyfuels_3c01720 crossref_primary_10_3390_molecules27186050 crossref_primary_10_1016_j_jil_2025_100135 crossref_primary_10_3390_app10155321 crossref_primary_10_3390_met8070556 crossref_primary_10_1016_j_electacta_2023_143082 crossref_primary_10_1016_j_molliq_2023_123519 crossref_primary_10_20964_2020_09_03 crossref_primary_10_1016_j_indcrop_2025_120785 crossref_primary_10_1016_j_jics_2025_101638 crossref_primary_10_1016_j_molliq_2022_120245 crossref_primary_10_1016_j_molliq_2024_124050 crossref_primary_10_3390_ma16020627 crossref_primary_10_1016_j_jiec_2024_09_027 crossref_primary_10_1016_j_molliq_2024_125384 crossref_primary_10_1007_s12666_023_02956_8 crossref_primary_10_1039_C7CP05911F crossref_primary_10_1021_acs_jced_7b00458 crossref_primary_10_1016_j_jece_2025_116095 crossref_primary_10_1016_j_matt_2021_09_025 crossref_primary_10_1016_j_electacta_2020_136787 crossref_primary_10_1021_acs_energyfuels_3c03732 crossref_primary_10_1007_s11581_024_05883_w crossref_primary_10_1016_j_gce_2021_01_004 crossref_primary_10_1016_j_jechem_2023_03_039 crossref_primary_10_20964_2019_11_16 crossref_primary_10_1016_j_electacta_2021_139647 crossref_primary_10_1016_j_ssi_2018_05_016 crossref_primary_10_1039_D4GC00136B crossref_primary_10_1039_D2GC04190A crossref_primary_10_3390_molecules28196758 crossref_primary_10_1016_j_molliq_2023_123930 crossref_primary_10_1016_j_electacta_2024_145242 crossref_primary_10_1021_acs_iecr_2c03313 crossref_primary_10_1016_j_seppur_2021_119416 crossref_primary_10_1016_j_molliq_2024_124469 crossref_primary_10_1016_j_tca_2023_179471 crossref_primary_10_1002_ente_202000432 crossref_primary_10_1039_C7GC01127J crossref_primary_10_3390_molecules27238566 crossref_primary_10_1016_j_matpr_2023_01_115 crossref_primary_10_1016_j_est_2023_109566 crossref_primary_10_1016_j_jallcom_2024_177027 crossref_primary_10_1016_j_molliq_2021_116597 crossref_primary_10_1007_s10853_024_09753_8 crossref_primary_10_1016_j_jelechem_2020_114606 crossref_primary_10_1002_chem_201902797 crossref_primary_10_1016_j_elecom_2018_04_011 crossref_primary_10_1007_s11581_024_05714_y crossref_primary_10_1016_j_elecom_2018_04_013 crossref_primary_10_1016_j_combustflame_2025_113994 crossref_primary_10_1021_acs_jpcb_1c09227 crossref_primary_10_1039_D3SE00949A crossref_primary_10_1080_15421406_2022_2073037 crossref_primary_10_3390_ma14123221 crossref_primary_10_1002_admi_202400508 crossref_primary_10_1016_j_jelechem_2021_115691 crossref_primary_10_1016_j_rser_2023_113505 crossref_primary_10_1016_j_electacta_2024_143974 crossref_primary_10_1007_s10311_022_01521_x crossref_primary_10_1016_j_molstruc_2024_139199 crossref_primary_10_1039_D1CS00404B crossref_primary_10_1016_j_xcrp_2022_100809 crossref_primary_10_33961_jecst_2020_01522 crossref_primary_10_1039_D0RA10560K crossref_primary_10_3390_s24082403 crossref_primary_10_1021_acsphyschemau_2c00035 crossref_primary_10_1016_j_molliq_2020_113594 crossref_primary_10_1016_j_mtener_2023_101432 crossref_primary_10_1016_j_molliq_2023_123314 crossref_primary_10_1016_j_molliq_2024_126826 crossref_primary_10_1038_s41467_021_27842_z crossref_primary_10_1007_s11356_021_14485_2 crossref_primary_10_1021_acs_energyfuels_1c03243 crossref_primary_10_1016_j_ensm_2022_03_032 crossref_primary_10_1021_acs_jpcc_4c04520 crossref_primary_10_3389_fchem_2022_859304 crossref_primary_10_1016_j_jtice_2021_09_007 crossref_primary_10_1016_j_gce_2024_04_001 crossref_primary_10_1016_j_gee_2023_05_002 crossref_primary_10_3390_coatings11010080 crossref_primary_10_1016_j_molliq_2017_04_126 crossref_primary_10_1021_acs_iecr_8b04723 crossref_primary_10_1016_j_tca_2023_179607 crossref_primary_10_1016_j_cis_2024_103310 crossref_primary_10_1007_s12034_020_02337_7 crossref_primary_10_1039_D3SU00147D crossref_primary_10_1016_j_molliq_2019_03_166 crossref_primary_10_1002_asia_201901365 crossref_primary_10_1002_chem_202102545 crossref_primary_10_1016_j_molliq_2020_114820 crossref_primary_10_1021_acs_langmuir_2c01153 crossref_primary_10_1021_acssuschemeng_8b03950 crossref_primary_10_1039_D3RA01958F crossref_primary_10_3390_e25050793 crossref_primary_10_1039_D2NJ03148E crossref_primary_10_1016_j_molliq_2021_116743 crossref_primary_10_1002_smll_202301862 crossref_primary_10_1016_j_gee_2020_11_008 crossref_primary_10_1016_j_molliq_2023_121676 crossref_primary_10_1016_j_electacta_2024_145443 crossref_primary_10_1016_j_molliq_2016_08_036 crossref_primary_10_1039_D4SC02318H crossref_primary_10_1016_j_jclepro_2024_140988 crossref_primary_10_1016_j_eti_2021_101418 crossref_primary_10_1016_j_jechem_2023_12_021 crossref_primary_10_1016_j_jil_2023_100076 crossref_primary_10_3390_molecules26226962 crossref_primary_10_1016_j_molliq_2021_115909 crossref_primary_10_1016_j_procbio_2020_04_036 crossref_primary_10_1007_s11581_021_04048_3 crossref_primary_10_1016_j_materresbull_2021_111348 crossref_primary_10_1016_j_electacta_2018_05_103 crossref_primary_10_1080_10408347_2021_1946659 crossref_primary_10_1002_smll_202302385 crossref_primary_10_1021_acsomega_0c05369 crossref_primary_10_1007_s11581_023_05124_6 crossref_primary_10_1016_j_seppur_2024_128967 crossref_primary_10_1016_j_molliq_2025_126919 crossref_primary_10_1063_1_4996644 crossref_primary_10_1021_acs_jced_2c00729 crossref_primary_10_1016_j_jil_2023_100062 crossref_primary_10_1039_C7CP07483B crossref_primary_10_1016_j_ces_2025_121553 crossref_primary_10_1149_2_0211809jes crossref_primary_10_1007_s11426_016_0459_2 crossref_primary_10_1016_j_matre_2022_100093 crossref_primary_10_1016_j_cej_2024_156177 crossref_primary_10_1016_j_electacta_2022_141674 crossref_primary_10_1016_j_gce_2024_09_012 crossref_primary_10_1039_D2ME00050D crossref_primary_10_1016_j_colsurfa_2025_136459 crossref_primary_10_1016_j_jece_2022_108004 crossref_primary_10_1039_C8CP07383J crossref_primary_10_1080_10408347_2021_1978055 crossref_primary_10_1016_j_molliq_2022_119219 crossref_primary_10_1016_j_gee_2019_01_012 crossref_primary_10_1021_acs_jced_3c00706 crossref_primary_10_1021_acs_jced_4c00530 crossref_primary_10_1038_s41598_023_29387_1 crossref_primary_10_3390_cosmetics12010018 crossref_primary_10_1016_j_jechem_2025_01_060 |
Cites_doi | 10.1063/1.2204959 10.1039/C5RA12425E 10.1021/acs.iecr.5b01789 10.1039/C5GC01451D 10.1016/j.cossms.2009.01.002 10.1016/j.elecom.2012.03.049 10.1016/j.electacta.2012.12.077 10.1039/c2cp41798g 10.1038/383313a0 10.1016/j.tca.2013.12.005 10.1039/B512724F 10.1039/C5CC05233E 10.1039/C5GC00231A 10.1149/1.1568740 10.1039/b007172m 10.1039/c0gc00712a 10.1007/s11426-014-5154-3 10.1016/j.electacta.2006.03.016 10.1016/j.ijggc.2011.05.014 10.1039/C4CP00279B 10.1039/c3gc41141a 10.1021/ie300247v 10.1021/ie5009597 10.1021/jp0634048 10.1039/b923589b 10.1021/ac030375d 10.1021/cr300162p 10.1021/je800898z 10.1002/anie.201206197 10.1002/celc.201402086 10.1039/C3CS60409H 10.1002/anie.201405082 10.1039/b914601f 10.1039/c3cc46473c 10.1002/asia.200900191 10.1039/c2ee21152a 10.1039/b817881j 10.1021/je800678e 10.1039/c2cs35178a 10.1021/jp303915c 10.1002/chem.200400533 10.1039/c0cp00486c 10.1016/j.electacta.2008.09.011 10.1039/C5GC00081E 10.1021/jp076271e 10.1038/nmat2448 10.1021/jp201886m |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2016 Science China Press and Springer-Verlag Berlin Heidelberg 2016. |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016 – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11426-016-5566-3 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | The electrochemical stability of ionic liquids and deep eutectic solvents |
EISSN | 1869-1870 |
EndPage | 577 |
ExternalDocumentID | 10_1007_s11426_016_5566_3 668723463 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 88I 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BDATZ BENPR BGLVJ BGNMA CAG CCEZO CCPQU CDRFL CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KB. KOV LLZTM M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9N PDBOC PF0 PT4 QOR QOS R89 RIG ROL RSV S16 S3B SAP SCL SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7S Z7V Z7X Z7Y Z7Z ZMTXR ~A9 ~WA -SB -S~ 0R~ 5XA 5XC AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEB CJPJV H13 Q-- U1G U5L AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK ABRTQ D1I PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c409t-759aad9014f4146de1a75d333a55bde2f6223234276a7a81d7d9165f5936c2ee3 |
IEDL.DBID | BENPR |
ISSN | 1674-7291 |
IngestDate | Fri Jul 25 11:09:56 EDT 2025 Tue Jul 01 01:47:01 EDT 2025 Thu Apr 24 22:56:22 EDT 2025 Fri Feb 21 02:35:10 EST 2025 Wed Feb 14 10:19:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ionic liquids cyclic voltammetry water effect deep eutectic solvents glassy carbon electrochemical potential window |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-759aad9014f4146de1a75d333a55bde2f6223234276a7a81d7d9165f5936c2ee3 |
Notes | Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications. electrochemical potential window, cyclic voltammetry, ionic liquids, deep eutectic solvents, glassy carbon, water effect 11-5839/O6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918615230 |
PQPubID | 2044427 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2918615230 crossref_primary_10_1007_s11426_016_5566_3 crossref_citationtrail_10_1007_s11426_016_5566_3 springer_journals_10_1007_s11426_016_5566_3 chongqing_primary_668723463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Chemistry |
PublicationTitleAbbrev | Sci. China Chem |
PublicationTitleAlternate | SCIENCE CHINA Chemistry |
PublicationYear | 2016 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | SongJFanHMaJHanBGreen Chem201315261926351:CAS:528:DC%2BC3sXhsV2gtbfI10.1039/c3gc41141a De VosNMatonCStevensCVChemElectroChem201411258127010.1002/celc.201402086 RogersEIŠljukicBHardacreCComptonRGJ Chem Eng Data200954204920531:CAS:528:DC%2BD1MXkvVyksbo%3D10.1021/je800898z CaoYMuTInd Eng Chem Res201453865186641:CAS:528:DC%2BC2cXms1Chs74%3D10.1021/ie5009597 Navarro-SuárezAMHidalgo-AcostaJCFadiniLFeliuJSuárez-HerreraMFJ Phys Chem C2011115111471115510.1021/jp201886m ArmandMEndresFMacFarlaneDROhnoHScrosatiBNat Mater200986216291:CAS:528:DC%2BD1MXovFSisr0%3D10.1038/nmat2448 XueZZhangJPengLLiJMuTHanBYangGAngew Chem Int Ed20125112325123291:CAS:528:DC%2BC38XhsFyjsbjM10.1002/anie.201206197 GalinskiMLewandowskiAStepniakIElectrochim Acta200651556755801:CAS:528:DC%2BD28XotVaqtr8%3D10.1016/j.electacta.2006.03.016 LuskaKLMigowskiPLeitnerWGreen Chem201517319532061:CAS:528:DC%2BC2MXlvFWhtro%3D10.1039/C5GC00231A YanCMuTPhys Chem Chem Phys201416507150751:CAS:528:DC%2BC2cXisleqsbg%3D10.1039/c4cp00279b JuneidiIHayyanMHashimMARSC Adv2015583636836471:CAS:528:DC%2BC2MXhsFGkurbM10.1039/C5RA12425E XueZZhangYZhouXCaoYMuTThermochim Acta201457859671:CAS:528:DC%2BC2cXitF2itrs%3D10.1016/j.tca.2013.12.005 WeiLZhouZChenSXuCSuDSchusterMESunSChem Commun20134911152111541:CAS:528:DC%2BC3sXhslWlsLvP10.1039/c3cc46473c ZhangSSunJZhangXXinJMiaoQWangJChem Soc Rev201443783878691:CAS:528:DC%2BC2cXhslOis7bK10.1039/C3CS60409H ZhouZBMatsumotoHTatsumiKChem-Eur J200410658165911:CAS:528:DC%2BD2cXhtFajsbfI10.1002/chem.200400533 VillagránCBanksCEHardacreCComptonRGAnal Chem2004761998200310.1021/ac030375d XiaoLJohnsonKEJ Electrochem Soc200315030731110.1149/1.1568740 YanYYinYXinSSuJGuoYWanLElectrochim Acta20139158611:CAS:528:DC%2BC3sXis1GnurY%3D10.1016/j.electacta.2012.12.077 ChenYCaoYShiYXueZMuTInd Eng Chem Res201251741874271:CAS:528:DC%2BC38Xmslyisrg%3D10.1021/ie300247v FangYJiangXSunXDaiSChem Commun20155113286132891:CAS:528:DC%2BC2MXhtFOltLjL10.1039/C5CC05233E PawarPMJaragKJShankarlingGSGreen Chem201113213021341:CAS:528:DC%2BC3MXpslGitLY%3D10.1039/c0gc00712a KroonMCBuijsWPetersCJWitkampGJGreen Chem200682412451:CAS:528:DC%2BD28XhvFCkt7Y%3D10.1039/B512724F O’MahonyAMSilvesterDSAldousLHardacreCComptonRGJ Chem Eng Data2008532884289110.1021/je800678e ZhangQVigierKDORoyerSJérômeFChem Soc Rev201241710871461:CAS:528:DC%2BC38XhsVOnurjF10.1039/c2cs35178a van OschDJGPZubeirL v dBruinhorstARochaMAKroonMCGreen Chem2015174518452110.1039/C5GC01451D WaldvogelSRJanzaBAngew Chem Int Ed201453712271231:CAS:528:DC%2BC2cXhtVShurnK10.1002/anie.201405082 HuSZhangZSongJZhouYHanBGreen Chem200911174617491:CAS:528:DC%2BD1MXhtlGit7%2FN10.1039/b914601f NoackKSchulzPSPaapeNKieferJWasserscheidPLeipertzAPhys Chem Chem Phys20101214153141611:CAS:528:DC%2BC3cXhtlSqu7fE10.1039/c0cp00486c JiaoTZhuangXHeHZhaoLLiCChenHZhangSGreen Chem201517378337901:CAS:528:DC%2BC2MXlsVWhsbc%3D10.1039/C5GC00081E GreavesTLWeerawardenaAFongCKrodkiewskaIDrummondCJJ Phys Chem B200611022479224871:CAS:528:DC%2BD28XhtVyhsbfI10.1021/jp0634048 EckertCANature19963833133181:CAS:528:DyaK28XlvFaisbw%3D10.1038/383313a0 AppetecchiGBMontaninoMZaneDCarewskaMAlessandriniFPasseriniSElectrochim Acta200954132513321:CAS:528:DC%2BD1cXhsFCisb3E10.1016/j.electacta.2008.09.011 TianYGoffGSRundeWHBatistaERJ Phys Chem B201211611943119521:CAS:528:DC%2BC38Xht12isLbM10.1021/jp303915c Scholz F. Electroanalytical Methods: Guide to Experiments and Applications. Heidelberg: Springer Science & Business Media, 2009 LiZJiaZLuanYMuTCurr Opin Solid State Mater Sci2008121810.1016/j.cossms.2009.01.002 YoshimotoSTaguchiRTsujiRUedaHNishiyamaKElectrochem Commun20122026281:CAS:528:DC%2BC38XnvFCntb8%3D10.1016/j.elecom.2012.03.049 PhadtareSBShankarlingGSGreen Chem2010124584621:CAS:528:DC%2BC3cXjtVSqt7g%3D10.1039/b923589b YanYYinYGuoYWanLSci China Chem201457156415691:CAS:528:DC%2BC2cXhs1CntrjO10.1007/s11426-014-5154-3 SmithELAbbottAPRyderKSChem Rev201411411060110821:CAS:528:DC%2BC2cXhsleksrzM10.1021/cr300162p ZhangSSunNHeXLuXZhangXJ Phys Chem Ref Data200635147515171:CAS:528:DC%2BD2sXptF2guw%3D%3D10.1063/1.2204959 ZhangXZhangXDongHZhaoZZhangSHuangYEnergy Environ Sci20125666866811:CAS:528:DC%2BC38XmsVWqsbc%3D10.1039/c2ee21152a FreireMGNevesCMSSCarvalhoPJGardasRLFernandesAMMarruchoIMCoutinhoJAJ Phys Chem B200711113082130891:CAS:528:DC%2BD2sXht1WmtL%2FF10.1021/jp076271e SchroderUWadhawanJDComptonRGMarkenFSuarezPAConsortiCSDupontJNew J Chem200024100910151:CAS:528:DC%2BD3cXos1altLs%3D10.1039/b007172m AbbottAPEl TtaibKFrischGMcKenzieKJRyderKSPhys Chem Chem Phys200911426942771:CAS:528:DC%2BD1MXmtFCitrc%3D10.1039/b817881j AnastasPTWarnerJCGreen Chemistry: Theory and Practice1998New YorkOxford University Press30 SunSNiuYXuQSunZWeiXInd Eng Chem Res201554801980241:CAS:528:DC%2BC2MXht12nurzE10.1021/acs.iecr.5b01789 CaoYChenYSunXZhangZMuTPhys Chem Chem Phys20121412252122621:CAS:528:DC%2BC38Xht1WrsbnM10.1039/c2cp41798g XueZZhangZHanJChenYMuTInt J Greenhouse Gas Control201156286331:CAS:528:DC%2BC3MXhtVWqtLfL10.1016/j.ijggc.2011.05.014 Barrosse-AntleLEBondAMComptonR OMahonyAMRogersEISilvesterDSChem-Asian J201052022301:CAS:528:DC%2BC3cXhsVGqtrY%3D10.1002/asia.200900191 Y Cao (5566_CR16) 2014; 53 L Xiao (5566_CR44) 2003; 150 AP Abbott (5566_CR26) 2009; 11 Z Xue (5566_CR11) 2011; 5 DJGP Osch van (5566_CR15) 2015; 17 Y Chen (5566_CR17) 2012; 51 Y Yan (5566_CR20) 2014; 57 Q Zhang (5566_CR5) 2012; 41 TL Greaves (5566_CR46) 2006; 110 C Yan (5566_CR8) 2014; 16 S Sun (5566_CR30) 2015; 54 Y Tian (5566_CR47) 2012; 116 GB Appetecchi (5566_CR39) 2009; 54 SB Phadtare (5566_CR29) 2010; 12 Y Cao (5566_CR48) 2012; 14 S Zhang (5566_CR7) 2006; 35 S Yoshimoto (5566_CR38) 2012; 20 I Juneidi (5566_CR31) 2015; 5 PT Anastas (5566_CR1) 1998 Z Xue (5566_CR18) 2014; 578 T Jiao (5566_CR9) 2015; 17 U Schroder (5566_CR49) 2000; 24 M Galinski (5566_CR36) 2006; 51 N Vos De (5566_CR37) 2014; 1 AM Navarro-Suárez (5566_CR35) 2011; 115 J Song (5566_CR14) 2013; 15 5566_CR32 AM O’Mahony (5566_CR34) 2008; 53 SR Waldvogel (5566_CR24) 2014; 53 CA Eckert (5566_CR2) 1996; 383 MC Kroon (5566_CR45) 2006; 8 C Villagrán (5566_CR33) 2004; 76 Z Li (5566_CR10) 2008; 12 Z Xue (5566_CR4) 2012; 51 ZB Zhou (5566_CR41) 2004; 10 LE Barrosse-Antle (5566_CR22) 2010; 5 MG Freire (5566_CR42) 2007; 111 L Wei (5566_CR27) 2013; 49 M Armand (5566_CR21) 2009; 8 EL Smith (5566_CR6) 2014; 114 X Zhang (5566_CR12) 2012; 5 Y Fang (5566_CR23) 2015; 51 KL Luska (5566_CR25) 2015; 17 EI Rogers (5566_CR40) 2009; 54 S Zhang (5566_CR3) 2014; 43 S Hu (5566_CR13) 2009; 11 Y Yan (5566_CR19) 2013; 91 K Noack (5566_CR43) 2010; 12 PM Pawar (5566_CR28) 2011; 13 |
References_xml | – reference: ArmandMEndresFMacFarlaneDROhnoHScrosatiBNat Mater200986216291:CAS:528:DC%2BD1MXovFSisr0%3D10.1038/nmat2448 – reference: FreireMGNevesCMSSCarvalhoPJGardasRLFernandesAMMarruchoIMCoutinhoJAJ Phys Chem B200711113082130891:CAS:528:DC%2BD2sXht1WmtL%2FF10.1021/jp076271e – reference: LuskaKLMigowskiPLeitnerWGreen Chem201517319532061:CAS:528:DC%2BC2MXlvFWhtro%3D10.1039/C5GC00231A – reference: LiZJiaZLuanYMuTCurr Opin Solid State Mater Sci2008121810.1016/j.cossms.2009.01.002 – reference: GalinskiMLewandowskiAStepniakIElectrochim Acta200651556755801:CAS:528:DC%2BD28XotVaqtr8%3D10.1016/j.electacta.2006.03.016 – reference: YanYYinYGuoYWanLSci China Chem201457156415691:CAS:528:DC%2BC2cXhs1CntrjO10.1007/s11426-014-5154-3 – reference: RogersEIŠljukicBHardacreCComptonRGJ Chem Eng Data200954204920531:CAS:528:DC%2BD1MXkvVyksbo%3D10.1021/je800898z – reference: SchroderUWadhawanJDComptonRGMarkenFSuarezPAConsortiCSDupontJNew J Chem200024100910151:CAS:528:DC%2BD3cXos1altLs%3D10.1039/b007172m – reference: AppetecchiGBMontaninoMZaneDCarewskaMAlessandriniFPasseriniSElectrochim Acta200954132513321:CAS:528:DC%2BD1cXhsFCisb3E10.1016/j.electacta.2008.09.011 – reference: KroonMCBuijsWPetersCJWitkampGJGreen Chem200682412451:CAS:528:DC%2BD28XhvFCkt7Y%3D10.1039/B512724F – reference: XueZZhangZHanJChenYMuTInt J Greenhouse Gas Control201156286331:CAS:528:DC%2BC3MXhtVWqtLfL10.1016/j.ijggc.2011.05.014 – reference: PhadtareSBShankarlingGSGreen Chem2010124584621:CAS:528:DC%2BC3cXjtVSqt7g%3D10.1039/b923589b – reference: EckertCANature19963833133181:CAS:528:DyaK28XlvFaisbw%3D10.1038/383313a0 – reference: XueZZhangJPengLLiJMuTHanBYangGAngew Chem Int Ed20125112325123291:CAS:528:DC%2BC38XhsFyjsbjM10.1002/anie.201206197 – reference: Navarro-SuárezAMHidalgo-AcostaJCFadiniLFeliuJSuárez-HerreraMFJ Phys Chem C2011115111471115510.1021/jp201886m – reference: WeiLZhouZChenSXuCSuDSchusterMESunSChem Commun20134911152111541:CAS:528:DC%2BC3sXhslWlsLvP10.1039/c3cc46473c – reference: CaoYMuTInd Eng Chem Res201453865186641:CAS:528:DC%2BC2cXms1Chs74%3D10.1021/ie5009597 – reference: AbbottAPEl TtaibKFrischGMcKenzieKJRyderKSPhys Chem Chem Phys200911426942771:CAS:528:DC%2BD1MXmtFCitrc%3D10.1039/b817881j – reference: CaoYChenYSunXZhangZMuTPhys Chem Chem Phys20121412252122621:CAS:528:DC%2BC38Xht1WrsbnM10.1039/c2cp41798g – reference: YanCMuTPhys Chem Chem Phys201416507150751:CAS:528:DC%2BC2cXisleqsbg%3D10.1039/c4cp00279b – reference: ZhouZBMatsumotoHTatsumiKChem-Eur J200410658165911:CAS:528:DC%2BD2cXhtFajsbfI10.1002/chem.200400533 – reference: XueZZhangYZhouXCaoYMuTThermochim Acta201457859671:CAS:528:DC%2BC2cXitF2itrs%3D10.1016/j.tca.2013.12.005 – reference: WaldvogelSRJanzaBAngew Chem Int Ed201453712271231:CAS:528:DC%2BC2cXhtVShurnK10.1002/anie.201405082 – reference: GreavesTLWeerawardenaAFongCKrodkiewskaIDrummondCJJ Phys Chem B200611022479224871:CAS:528:DC%2BD28XhtVyhsbfI10.1021/jp0634048 – reference: TianYGoffGSRundeWHBatistaERJ Phys Chem B201211611943119521:CAS:528:DC%2BC38Xht12isLbM10.1021/jp303915c – reference: SmithELAbbottAPRyderKSChem Rev201411411060110821:CAS:528:DC%2BC2cXhsleksrzM10.1021/cr300162p – reference: van OschDJGPZubeirL v dBruinhorstARochaMAKroonMCGreen Chem2015174518452110.1039/C5GC01451D – reference: ZhangSSunJZhangXXinJMiaoQWangJChem Soc Rev201443783878691:CAS:528:DC%2BC2cXhslOis7bK10.1039/C3CS60409H – reference: ChenYCaoYShiYXueZMuTInd Eng Chem Res201251741874271:CAS:528:DC%2BC38Xmslyisrg%3D10.1021/ie300247v – reference: AnastasPTWarnerJCGreen Chemistry: Theory and Practice1998New YorkOxford University Press30 – reference: SunSNiuYXuQSunZWeiXInd Eng Chem Res201554801980241:CAS:528:DC%2BC2MXht12nurzE10.1021/acs.iecr.5b01789 – reference: ZhangSSunNHeXLuXZhangXJ Phys Chem Ref Data200635147515171:CAS:528:DC%2BD2sXptF2guw%3D%3D10.1063/1.2204959 – reference: VillagránCBanksCEHardacreCComptonRGAnal Chem2004761998200310.1021/ac030375d – reference: PawarPMJaragKJShankarlingGSGreen Chem201113213021341:CAS:528:DC%2BC3MXpslGitLY%3D10.1039/c0gc00712a – reference: O’MahonyAMSilvesterDSAldousLHardacreCComptonRGJ Chem Eng Data2008532884289110.1021/je800678e – reference: De VosNMatonCStevensCVChemElectroChem201411258127010.1002/celc.201402086 – reference: NoackKSchulzPSPaapeNKieferJWasserscheidPLeipertzAPhys Chem Chem Phys20101214153141611:CAS:528:DC%2BC3cXhtlSqu7fE10.1039/c0cp00486c – reference: Scholz F. Electroanalytical Methods: Guide to Experiments and Applications. Heidelberg: Springer Science & Business Media, 2009 – reference: YoshimotoSTaguchiRTsujiRUedaHNishiyamaKElectrochem Commun20122026281:CAS:528:DC%2BC38XnvFCntb8%3D10.1016/j.elecom.2012.03.049 – reference: FangYJiangXSunXDaiSChem Commun20155113286132891:CAS:528:DC%2BC2MXhtFOltLjL10.1039/C5CC05233E – reference: YanYYinYXinSSuJGuoYWanLElectrochim Acta20139158611:CAS:528:DC%2BC3sXis1GnurY%3D10.1016/j.electacta.2012.12.077 – reference: XiaoLJohnsonKEJ Electrochem Soc200315030731110.1149/1.1568740 – reference: ZhangXZhangXDongHZhaoZZhangSHuangYEnergy Environ Sci20125666866811:CAS:528:DC%2BC38XmsVWqsbc%3D10.1039/c2ee21152a – reference: Barrosse-AntleLEBondAMComptonR OMahonyAMRogersEISilvesterDSChem-Asian J201052022301:CAS:528:DC%2BC3cXhsVGqtrY%3D10.1002/asia.200900191 – reference: ZhangQVigierKDORoyerSJérômeFChem Soc Rev201241710871461:CAS:528:DC%2BC38XhsVOnurjF10.1039/c2cs35178a – reference: JiaoTZhuangXHeHZhaoLLiCChenHZhangSGreen Chem201517378337901:CAS:528:DC%2BC2MXlsVWhsbc%3D10.1039/C5GC00081E – reference: JuneidiIHayyanMHashimMARSC Adv2015583636836471:CAS:528:DC%2BC2MXhsFGkurbM10.1039/C5RA12425E – reference: SongJFanHMaJHanBGreen Chem201315261926351:CAS:528:DC%2BC3sXhsV2gtbfI10.1039/c3gc41141a – reference: HuSZhangZSongJZhouYHanBGreen Chem200911174617491:CAS:528:DC%2BD1MXhtlGit7%2FN10.1039/b914601f – volume: 35 start-page: 1475 year: 2006 ident: 5566_CR7 publication-title: J Phys Chem Ref Data doi: 10.1063/1.2204959 – volume: 5 start-page: 83636 year: 2015 ident: 5566_CR31 publication-title: RSC Adv doi: 10.1039/C5RA12425E – volume: 54 start-page: 8019 year: 2015 ident: 5566_CR30 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.5b01789 – volume: 17 start-page: 4518 year: 2015 ident: 5566_CR15 publication-title: Green Chem doi: 10.1039/C5GC01451D – volume: 12 start-page: 1 year: 2008 ident: 5566_CR10 publication-title: Curr Opin Solid State Mater Sci doi: 10.1016/j.cossms.2009.01.002 – volume: 20 start-page: 26 year: 2012 ident: 5566_CR38 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2012.03.049 – volume: 91 start-page: 58 year: 2013 ident: 5566_CR19 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.12.077 – volume: 14 start-page: 12252 year: 2012 ident: 5566_CR48 publication-title: Phys Chem Chem Phys doi: 10.1039/c2cp41798g – volume: 383 start-page: 313 year: 1996 ident: 5566_CR2 publication-title: Nature doi: 10.1038/383313a0 – volume: 578 start-page: 59 year: 2014 ident: 5566_CR18 publication-title: Thermochim Acta doi: 10.1016/j.tca.2013.12.005 – volume: 8 start-page: 241 year: 2006 ident: 5566_CR45 publication-title: Green Chem doi: 10.1039/B512724F – volume: 51 start-page: 13286 year: 2015 ident: 5566_CR23 publication-title: Chem Commun doi: 10.1039/C5CC05233E – volume: 17 start-page: 3195 year: 2015 ident: 5566_CR25 publication-title: Green Chem doi: 10.1039/C5GC00231A – volume: 150 start-page: 307 year: 2003 ident: 5566_CR44 publication-title: J Electrochem Soc doi: 10.1149/1.1568740 – volume: 24 start-page: 1009 year: 2000 ident: 5566_CR49 publication-title: New J Chem doi: 10.1039/b007172m – volume: 13 start-page: 2130 year: 2011 ident: 5566_CR28 publication-title: Green Chem doi: 10.1039/c0gc00712a – volume: 57 start-page: 1564 year: 2014 ident: 5566_CR20 publication-title: Sci China Chem doi: 10.1007/s11426-014-5154-3 – volume: 51 start-page: 5567 year: 2006 ident: 5566_CR36 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2006.03.016 – volume: 5 start-page: 628 year: 2011 ident: 5566_CR11 publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2011.05.014 – volume: 16 start-page: 5071 year: 2014 ident: 5566_CR8 publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP00279B – volume: 15 start-page: 2619 year: 2013 ident: 5566_CR14 publication-title: Green Chem doi: 10.1039/c3gc41141a – volume: 51 start-page: 7418 year: 2012 ident: 5566_CR17 publication-title: Ind Eng Chem Res doi: 10.1021/ie300247v – volume: 53 start-page: 8651 year: 2014 ident: 5566_CR16 publication-title: Ind Eng Chem Res doi: 10.1021/ie5009597 – volume: 110 start-page: 22479 year: 2006 ident: 5566_CR46 publication-title: J Phys Chem B doi: 10.1021/jp0634048 – volume: 12 start-page: 458 year: 2010 ident: 5566_CR29 publication-title: Green Chem doi: 10.1039/b923589b – volume: 76 start-page: 1998 year: 2004 ident: 5566_CR33 publication-title: Anal Chem doi: 10.1021/ac030375d – volume: 114 start-page: 11060 year: 2014 ident: 5566_CR6 publication-title: Chem Rev doi: 10.1021/cr300162p – volume: 54 start-page: 2049 year: 2009 ident: 5566_CR40 publication-title: J Chem Eng Data doi: 10.1021/je800898z – volume: 51 start-page: 12325 year: 2012 ident: 5566_CR4 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201206197 – volume: 1 start-page: 1258 year: 2014 ident: 5566_CR37 publication-title: ChemElectroChem doi: 10.1002/celc.201402086 – volume: 43 start-page: 7838 year: 2014 ident: 5566_CR3 publication-title: Chem Soc Rev doi: 10.1039/C3CS60409H – start-page: 30 volume-title: Green Chemistry: Theory and Practice year: 1998 ident: 5566_CR1 – volume: 53 start-page: 7122 year: 2014 ident: 5566_CR24 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201405082 – volume: 11 start-page: 1746 year: 2009 ident: 5566_CR13 publication-title: Green Chem doi: 10.1039/b914601f – volume: 49 start-page: 11152 year: 2013 ident: 5566_CR27 publication-title: Chem Commun doi: 10.1039/c3cc46473c – volume: 5 start-page: 202 year: 2010 ident: 5566_CR22 publication-title: Chem-Asian J doi: 10.1002/asia.200900191 – volume: 5 start-page: 6668 year: 2012 ident: 5566_CR12 publication-title: Energy Environ Sci doi: 10.1039/c2ee21152a – volume: 11 start-page: 4269 year: 2009 ident: 5566_CR26 publication-title: Phys Chem Chem Phys doi: 10.1039/b817881j – volume: 53 start-page: 2884 year: 2008 ident: 5566_CR34 publication-title: J Chem Eng Data doi: 10.1021/je800678e – volume: 41 start-page: 7108 year: 2012 ident: 5566_CR5 publication-title: Chem Soc Rev doi: 10.1039/c2cs35178a – volume: 116 start-page: 11943 year: 2012 ident: 5566_CR47 publication-title: J Phys Chem B doi: 10.1021/jp303915c – volume: 10 start-page: 6581 year: 2004 ident: 5566_CR41 publication-title: Chem-Eur J doi: 10.1002/chem.200400533 – volume: 12 start-page: 14153 year: 2010 ident: 5566_CR43 publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp00486c – volume: 54 start-page: 1325 year: 2009 ident: 5566_CR39 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.09.011 – volume: 17 start-page: 3783 year: 2015 ident: 5566_CR9 publication-title: Green Chem doi: 10.1039/C5GC00081E – volume: 111 start-page: 13082 year: 2007 ident: 5566_CR42 publication-title: J Phys Chem B doi: 10.1021/jp076271e – volume: 8 start-page: 621 year: 2009 ident: 5566_CR21 publication-title: Nat Mater doi: 10.1038/nmat2448 – volume: 115 start-page: 11147 year: 2011 ident: 5566_CR35 publication-title: J Phys Chem C doi: 10.1021/jp201886m – ident: 5566_CR32 |
SSID | ssj0000330275 |
Score | 2.4602225 |
Snippet | Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and... Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 571 |
SubjectTerms | Anions Cations Chemistry Chemistry and Materials Science Chemistry/Food Science Choline Electrochemical potential Electrodes Eutectic temperature Glassy carbon Hydrogen bonds Ionic liquids Moisture content Room temperature Solvents Stability Urea 共晶 室温离子液体 工作电极 气相色谱 氯化胆碱 电化学稳定性 绿色溶剂 还原电位 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRn1hbJQdPSqCb5-6xFEsV9GSht5DdZLVQtq3bHvz3TrabLooKnpNMYGaS-SYzmUHoRuWGUhdnhNnEEc6UIMYJTqJMpFHPAeiw_r3j6VmOxvxxIib1P-4yZLuHkGR1Uzef3SKwJuD6SiIAgxC2i_aEd91Bice0v31Y6bEqFOcdLelzDWkShWjmT1R8TYW3efG6hB2_2qYGcH6LkVamZ3iEDmvMiPsbIR-jHVecoP1BaNV2ih5A2LhuaJPVFQAwwL4q8fUDz3PsX10zPJsu11NbYlNYbJ1bYLf2MQQYAQ30iY_lGRoP718GI1L3SCAZeGYrokRijPWx0JzDpWddZJSwjDEjRGodzSXYf8o4VdIoA-BUWQCEIveN_DLqHDtHrWJeuAuEc8VjmSbKpdZwCYY8ETlnKRxgIVWWyDbqbDmlF5taGFrKWAF5ydqoF3ins7q8uO9yMdNNYWTPeu1TyjzrNSy53S4J9P6Y3A0C0fUxKzXINgZIBm5UG90FITXDvxK7_NfsDjqgXmGqNMcuaq3e1-4KoMgqva5U7xMOTtIN priority: 102 providerName: Springer Nature |
Title | The electrochemical stability of ionic liquids and deep eutectic solvents |
URI | http://lib.cqvip.com/qk/60113X/201605/668723463.html https://link.springer.com/article/10.1007/s11426-016-5566-3 https://www.proquest.com/docview/2918615230 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4t9LBcVrAP0YWtfNgTyKKxYzs5oS5qeaxAaEUl9hQ5tsMiobTdtgf-PTPBaQUSXJN4DjPjmW8emQH4aSorRMgclz4PPJVGcRtUyhOnyqQfEHR4yndcXumzcXpxq25jwm0e2ypbm9gYaj9xlCM_EnmSofdFxHw8nXHaGkXV1bhCYwM6aIIzDL46v4ZX139WWZa-bOpyFHVpajxEKm1ps_l_LkEHhdG05gphDZc0YOHfpL6bodt46ajW6PNVwbTxQ6Nt-BQBJBs8S3wHPoT6M3w8afe2fYFzlDyL221cHAfAEAM2XbCPbFIxSsE69nA_W977ObO1Zz6EKQtLKijgG1RH6oKcf4XxaHhzcsbjwgTuMExbcKNyaz0VRqsULaAPiTXKSymtUqUPotIIBoRMhdHWWESqxiM6VBVt9XMiBPkNNutJHXaBVSbNdJmbUHqbavTquapSWeJtVtq4XHdhb8WpYvo8GKPQOjNIXssu9FveFS7OGqeVFw_Fekoysb6g_jJifYFHDlZHWnrvfLzfCqSId25erDWkC4etkNav3yT2_X1ie7AlSEOaJsd92Fz8X4YfCEQWZQ82stFpDzqD07-_h72oe_h0LAZPTg3aQQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigX1PIQoaX4ABeQRdbP3QNCqG1I6OPUSr0tXttbKlWbhCSq-qf4jcxs1olAoreevR6txuOZbx6eAXhnaydEzD2XoYhcSau5i1rxzOsq60cEHYHiHadnZnihvl_qyw34nd7CUFll0omtog5jTzHyT6LIcrS-iJi_TKacpkZRdjWN0FiKxXG8u0WXbfZ5dIjn-16IwdH5wZB3UwW4R19mzq0unAuUPawVqokQM2d1kFI6rasQRW3QYgqphDXOOoRzNiCE0jWNvvMiRol0H8FjJWVBNyoffFvFdPqyzQKSj2eozBH_OSVS29d6GZpD9N0N1wiiuKR2Dj_HzdUUjdTfZnGNdf9Jz7ZWb7ANTzu4yr4u5WsHNmLzDLYO0pS45zBCOWPdLB3fNR9giDjbmts7Nq4ZBXw9u7meLq7DjLkmsBDjhMUFpS9wBYWfai5nL-DiQRj5EjabcRNfAautyk1V2FgFpwxiiELXSlaoO7SxvjA92F1xqpws23CUxuQWyRvZg37iXem7zuY0YOOmXPdkJtaXVM1GrC9xy4fVlkTvno_30oGU3Q2flWt57MHHdEjr5f8Se30_sbewNTw_PSlPRmfHu_BEkLS05ZV7sDn_tYhvEALNq_1W7hj8eGhB_wOeIhEZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE_VifEYEtQdPmga23bbskaAEfBAPknBrutuukpAFXDj4750uu2w0auK57TSZmXa-6UxnELqSsabUtiLCTGCJzyQn2nKfeBEPvaYF0GHce8fTQPSG_v2Ij_I-p2mR7V6EJFd_GlyVpmTRmJm4UX5888CygBssCAc8Qtgm2oLb2HNqPaTt9SNLk2VhOed0CZd3SAOviGz-RMXVV3ibJq9z2P2rnSrB57d4aWaGuvtoL8ePuL0S-AHasMkh2ukUbduOUB8Ej_PmNlFeDQADBMySYD_wNMbuBTbCk_F8OTYp1onBxtoZtksXT4AR0EaXBJkeo2H37qXTI3m_BBKBl7YgkgdaGxcXjX24AI31tOSGMaY5D42lsQAsQJlPpdBSA1CVBsAhj11Tv4hay05QJZkm9hThWPotEQbShkb7Aox6wGOfhXCYuZBRIKqotuaUmq3qYighWhLIC1ZFzYJ3KspLjbuOFxNVFkl2rFcuvcyxXsGS6_WSgt4fk-uFQFR-5FIFsm0BPAOXqopuCiGVw78SO_vX7Eu0_XzbVY_9wUMN7VKnO1n2Yx1VFu9Lew4IZRFeZFr4Cb8X2Tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+electrochemical+stability+of+ionic+liquids+and+deep+eutectic+solvents&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E5%8C%96%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Qingbo+Li+Jingyun+Jiang+Guofeng+Li+Wancheng+Zhao+Xinhui+Zhao+Tiancheng+Mu&rft.date=2016-05-01&rft.issn=1674-7291&rft.eissn=1869-1870&rft.issue=5&rft.spage=571&rft.epage=577&rft_id=info:doi/10.1007%2Fs11426-016-5566-3&rft.externalDocID=668723463 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60113X%2F60113X.jpg |