Exploration of Heterogeneous Treatment Effects via Concave Fusion

Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have knowledge of the grouping informati...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biostatistics Vol. 16; no. 1
Main Authors Ma, Shujie, Huang, Jian, Zhang, Zhiwei, Liu, Mingming
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 20.09.2019
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.
AbstractList Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.
Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.
Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.
Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.
Author Huang, Jian
Zhang, Zhiwei
Liu, Mingming
Ma, Shujie
Author_xml – sequence: 1
  givenname: Shujie
  surname: Ma
  fullname: Ma, Shujie
  email: shujie.ma@ucr.edu
  organization: Department of Statistics, University of California at Riverside, Riverside, California 92521, USA
– sequence: 2
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
  email: jian-huang@uiowa.edu
  organization: Department of Statistics and Actuarial Science, University of Iowa, Iowa City, USA
– sequence: 3
  givenname: Zhiwei
  surname: Zhang
  fullname: Zhang, Zhiwei
  email: zhiwei.zhang@ucr.ed
  organization: Department of Statistics, University of California at Riverside, Riverside, California 92521, USA
– sequence: 4
  givenname: Mingming
  surname: Liu
  fullname: Liu, Mingming
  email: mliu034@ucr.edu
  organization: Department of Statistics, University of California at Riverside, Riverside, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31541601$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtrGzEURkVwSWw3y27LQDfdTKqr9yyDcepCoJsUuhPyzJ0wZjxyJE2a_PvKjyYQ0pW0OOfycWZkMvgBCfkE9AokyG_dZl0yCqaklKkzMgUpdSmUriZkyqASpdT89wWZxbihVICB6pxccJACFIUpuV4-7XofXOr8UPi2WGHC4O9xQD_G4i6gS1scUrFsW6xTLB47Vyz8ULtHLG7GmK2P5EPr-oiXp3dOft0s7xar8vbn9x-L69uyFrRKpeZaOuqUUkwL7hytARrWcIFVzTW0Gp1upeQViEpruhaNgkYY3iqjjV4rPidfj3d3wT-MGJPddrHGvneHrZaxSgplFDcZ_fIG3fgxDHmdZdwIrjXnLFOfT9S43mJjd6HbuvBs_8XJQHkE6uBjDNi-IEDtPr7N8e0-vt3Hzzx_w9ddOpRNwXX9fy1ztP64Prdv8D6Mz_nzuvldDxTwv5x0l-g
CitedBy_id crossref_primary_10_1007_s00180_023_01380_2
crossref_primary_10_1016_j_jspi_2023_106120
crossref_primary_10_1002_env_2849
crossref_primary_10_1002_bimj_202100119
crossref_primary_10_1007_s40304_023_00342_w
crossref_primary_10_1002_sim_8878
crossref_primary_10_3390_genes13040702
crossref_primary_10_1007_s11222_024_10401_z
crossref_primary_10_1016_j_csda_2024_107918
crossref_primary_10_1080_01621459_2022_2126363
crossref_primary_10_3390_math11102333
crossref_primary_10_1002_bimj_201900287
crossref_primary_10_1002_cjs_11763
crossref_primary_10_1016_j_jmva_2019_06_007
crossref_primary_10_1007_s00180_023_01436_3
crossref_primary_10_1080_10485252_2024_2358435
crossref_primary_10_1007_s11136_021_02765_w
crossref_primary_10_1002_bimj_202200231
crossref_primary_10_1080_01621459_2024_2321652
crossref_primary_10_1016_j_jmva_2022_105100
crossref_primary_10_1186_s12859_024_05652_6
crossref_primary_10_1080_10618600_2025_2467649
crossref_primary_10_1002_bimj_202300185
crossref_primary_10_1002_sim_8800
crossref_primary_10_1080_00401706_2023_2190779
crossref_primary_10_1002_sim_9414
crossref_primary_10_1093_biomtc_ujae076
crossref_primary_10_1080_24754269_2024_2327113
crossref_primary_10_1016_j_csda_2022_107667
crossref_primary_10_1007_s00362_020_01203_2
crossref_primary_10_1002_sim_10071
Cites_doi 10.1002/(SICI)1097-0258(19970228)16:4<455::AID-SIM382>3.0.CO;2-Y
10.1111/rssc.12012
10.1080/01621459.2014.894763
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0140-6736(05)64988-4
10.1080/01621459.2013.836975
10.1214/07-AOAS131
10.1093/biostatistics/kxq060
10.1561/2200000016
10.1214/12-AOAS593
10.1037/h0037350
10.1093/biomet/asm053
10.1177/1740774510366454
10.1214/14-AOAS773
10.1214/09-AOS729
10.1080/01621459.1971.10482356
10.1198/016214501753382273
10.1002/sim.3113
10.2307/2530862
10.1093/biomet/70.1.41
10.1111/j.1467-9876.2010.00754.x
10.1080/10618600.2014.948181
10.1214/aos/1176344136
10.1056/NEJMsr077003
10.1214/aos/1176349403
10.1111/j.0887-378X.2004.00327.x
10.1080/01621459.2014.951443
10.1016/S0140-6736(05)17709-5
10.1177/0962280213515572
10.1056/NEJMp068070
10.1002/jae.2410
10.3150/11-BEJ386
10.1023/A:1017501703105
10.1002/sim.7660
ContentType Journal Article
Copyright 2020 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1515/ijb-2018-0026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-4679
ExternalDocumentID 31541601
10_1515_ijb_2018_0026
10_1515_ijb_2018_0026161
Genre Journal Article
GroupedDBID ---
-~S
0R~
123
1WD
4.4
53G
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AALGR
AAOUV
AAOWA
AAPJK
AAQCX
AARVR
AASQH
AAXCG
ABAQN
ABDRH
ABFKT
ABJNI
ABMBZ
ABMIY
ABPLS
ABRDF
ABSOE
ABWLS
ABYBW
ABYKJ
ACDEB
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACPMA
ACUND
ACYCL
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AFBAA
AFBDD
AFBQV
AFCXV
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIKXB
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALWYM
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CKPZI
CS3
DASCH
DU5
EBS
F5P
HZ~
IY9
J9A
K.~
KDIRW
MV1
NQBSW
O9-
P2P
QD8
SA.
SLJYH
T2Y
UK5
WTRAM
AAYXX
CITATION
ABVMU
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c409t-7375a0a6662743aa0c11d2d34e9c371f7ea7f5539149770b4d61d483f68787b63
ISSN 2194-573X
1557-4679
IngestDate Fri Jul 11 05:46:07 EDT 2025
Mon Jun 30 06:19:03 EDT 2025
Thu Apr 03 06:53:13 EDT 2025
Tue Jul 01 01:02:59 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Thu Jul 10 10:37:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords penalized least squares
fusiongram
treatment heterogeneity
subgroup analysis
oracle property
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-7375a0a6662743aa0c11d2d34e9c371f7ea7f5539149770b4d61d483f68787b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.degruyter.com/document/doi/10.1515/ijb-2018-0026/pdf
PMID 31541601
PQID 2384377332
PQPubID 2031306
PageCount 26
ParticipantIDs proquest_miscellaneous_2295468638
proquest_journals_2384377332
pubmed_primary_31541601
crossref_primary_10_1515_ijb_2018_0026
crossref_citationtrail_10_1515_ijb_2018_0026
walterdegruyter_journals_10_1515_ijb_2018_0026161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-20
PublicationDateYYYYMMDD 2019-09-20
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-20
  day: 20
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle The international journal of biostatistics
PublicationTitleAlternate Int J Biostat
PublicationYear 2019
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023033117425670689_j_ijb-2018-0026_ref_006_w2aab3b7d880b1b6b1ab2b1b6Aa
2023033117425670689_j_ijb-2018-0026_ref_011_w2aab3b7d880b1b6b1ab2b1c11Aa
2023033117425670689_j_ijb-2018-0026_ref_016_w2aab3b7d880b1b6b1ab2b1c16Aa
2023033117425670689_j_ijb-2018-0026_ref_020_w2aab3b7d880b1b6b1ab2b1c20Aa
2023033117425670689_j_ijb-2018-0026_ref_017_w2aab3b7d880b1b6b1ab2b1c17Aa
2023033117425670689_j_ijb-2018-0026_ref_001_w2aab3b7d880b1b6b1ab2b1b1Aa
2023033117425670689_j_ijb-2018-0026_ref_021_w2aab3b7d880b1b6b1ab2b1c21Aa
2023033117425670689_j_ijb-2018-0026_ref_026_w2aab3b7d880b1b6b1ab2b1c26Aa
2023033117425670689_j_ijb-2018-0026_ref_030_w2aab3b7d880b1b6b1ab2b1c30Aa
2023033117425670689_j_ijb-2018-0026_ref_035_w2aab3b7d880b1b6b1ab2b1c35Aa
2023033117425670689_j_ijb-2018-0026_ref_010_w2aab3b7d880b1b6b1ab2b1c10Aa
2023033117425670689_j_ijb-2018-0026_ref_015_w2aab3b7d880b1b6b1ab2b1c15Aa
2023033117425670689_j_ijb-2018-0026_ref_003_w2aab3b7d880b1b6b1ab2b1b3Aa
2023033117425670689_j_ijb-2018-0026_ref_024_w2aab3b7d880b1b6b1ab2b1c24Aa
2023033117425670689_j_ijb-2018-0026_ref_029_w2aab3b7d880b1b6b1ab2b1c29Aa
2023033117425670689_j_ijb-2018-0026_ref_025_w2aab3b7d880b1b6b1ab2b1c25Aa
2023033117425670689_j_ijb-2018-0026_ref_034_w2aab3b7d880b1b6b1ab2b1c34Aa
2023033117425670689_j_ijb-2018-0026_ref_007_w2aab3b7d880b1b6b1ab2b1b7Aa
2023033117425670689_j_ijb-2018-0026_ref_023_w2aab3b7d880b1b6b1ab2b1c23Aa
2023033117425670689_j_ijb-2018-0026_ref_028_w2aab3b7d880b1b6b1ab2b1c28Aa
2023033117425670689_j_ijb-2018-0026_ref_032_w2aab3b7d880b1b6b1ab2b1c32Aa
2023033117425670689_j_ijb-2018-0026_ref_004_w2aab3b7d880b1b6b1ab2b1b4Aa
2023033117425670689_j_ijb-2018-0026_ref_033_w2aab3b7d880b1b6b1ab2b1c33Aa
2023033117425670689_j_ijb-2018-0026_ref_008_w2aab3b7d880b1b6b1ab2b1b8Aa
2023033117425670689_j_ijb-2018-0026_ref_014_w2aab3b7d880b1b6b1ab2b1c14Aa
2023033117425670689_j_ijb-2018-0026_ref_019_w2aab3b7d880b1b6b1ab2b1c19Aa
2023033117425670689_j_ijb-2018-0026_ref_005_w2aab3b7d880b1b6b1ab2b1b5Aa
2023033117425670689_j_ijb-2018-0026_ref_031_w2aab3b7d880b1b6b1ab2b1c31Aa
2023033117425670689_j_ijb-2018-0026_ref_012_w2aab3b7d880b1b6b1ab2b1c12Aa
2023033117425670689_j_ijb-2018-0026_ref_009_w2aab3b7d880b1b6b1ab2b1b9Aa
2023033117425670689_j_ijb-2018-0026_ref_002_w2aab3b7d880b1b6b1ab2b1b2Aa
2023033117425670689_j_ijb-2018-0026_ref_013_w2aab3b7d880b1b6b1ab2b1c13Aa
2023033117425670689_j_ijb-2018-0026_ref_018_w2aab3b7d880b1b6b1ab2b1c18Aa
2023033117425670689_j_ijb-2018-0026_ref_022_w2aab3b7d880b1b6b1ab2b1c22Aa
2023033117425670689_j_ijb-2018-0026_ref_027_w2aab3b7d880b1b6b1ab2b1c27Aa
References_xml – ident: 2023033117425670689_j_ijb-2018-0026_ref_008_w2aab3b7d880b1b6b1ab2b1b8Aa
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<455::AID-SIM382>3.0.CO;2-Y
– ident: 2023033117425670689_j_ijb-2018-0026_ref_015_w2aab3b7d880b1b6b1ab2b1c15Aa
  doi: 10.1111/rssc.12012
– ident: 2023033117425670689_j_ijb-2018-0026_ref_016_w2aab3b7d880b1b6b1ab2b1c16Aa
  doi: 10.1080/01621459.2014.894763
– ident: 2023033117425670689_j_ijb-2018-0026_ref_025_w2aab3b7d880b1b6b1ab2b1c25Aa
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 2023033117425670689_j_ijb-2018-0026_ref_002_w2aab3b7d880b1b6b1ab2b1b2Aa
  doi: 10.1016/S0140-6736(05)64988-4
– ident: 2023033117425670689_j_ijb-2018-0026_ref_029_w2aab3b7d880b1b6b1ab2b1c29Aa
  doi: 10.1080/01621459.2013.836975
– ident: 2023033117425670689_j_ijb-2018-0026_ref_032_w2aab3b7d880b1b6b1ab2b1c32Aa
  doi: 10.1214/07-AOAS131
– ident: 2023033117425670689_j_ijb-2018-0026_ref_009_w2aab3b7d880b1b6b1ab2b1b9Aa
  doi: 10.1093/biostatistics/kxq060
– ident: 2023033117425670689_j_ijb-2018-0026_ref_020_w2aab3b7d880b1b6b1ab2b1c20Aa
– ident: 2023033117425670689_j_ijb-2018-0026_ref_021_w2aab3b7d880b1b6b1ab2b1c21Aa
  doi: 10.1561/2200000016
– ident: 2023033117425670689_j_ijb-2018-0026_ref_012_w2aab3b7d880b1b6b1ab2b1c12Aa
  doi: 10.1214/12-AOAS593
– ident: 2023033117425670689_j_ijb-2018-0026_ref_022_w2aab3b7d880b1b6b1ab2b1c22Aa
  doi: 10.1037/h0037350
– ident: 2023033117425670689_j_ijb-2018-0026_ref_027_w2aab3b7d880b1b6b1ab2b1c27Aa
  doi: 10.1093/biomet/asm053
– ident: 2023033117425670689_j_ijb-2018-0026_ref_003_w2aab3b7d880b1b6b1ab2b1b3Aa
  doi: 10.1177/1740774510366454
– ident: 2023033117425670689_j_ijb-2018-0026_ref_004_w2aab3b7d880b1b6b1ab2b1b4Aa
  doi: 10.1214/14-AOAS773
– ident: 2023033117425670689_j_ijb-2018-0026_ref_018_w2aab3b7d880b1b6b1ab2b1c18Aa
  doi: 10.1214/09-AOS729
– ident: 2023033117425670689_j_ijb-2018-0026_ref_030_w2aab3b7d880b1b6b1ab2b1c30Aa
  doi: 10.1080/01621459.1971.10482356
– ident: 2023033117425670689_j_ijb-2018-0026_ref_017_w2aab3b7d880b1b6b1ab2b1c17Aa
  doi: 10.1198/016214501753382273
– ident: 2023033117425670689_j_ijb-2018-0026_ref_031_w2aab3b7d880b1b6b1ab2b1c31Aa
  doi: 10.1002/sim.3113
– ident: 2023033117425670689_j_ijb-2018-0026_ref_005_w2aab3b7d880b1b6b1ab2b1b5Aa
  doi: 10.2307/2530862
– ident: 2023033117425670689_j_ijb-2018-0026_ref_023_w2aab3b7d880b1b6b1ab2b1c23Aa
  doi: 10.1093/biomet/70.1.41
– ident: 2023033117425670689_j_ijb-2018-0026_ref_013_w2aab3b7d880b1b6b1ab2b1c13Aa
  doi: 10.1111/j.1467-9876.2010.00754.x
– ident: 2023033117425670689_j_ijb-2018-0026_ref_019_w2aab3b7d880b1b6b1ab2b1c19Aa
  doi: 10.1080/10618600.2014.948181
– ident: 2023033117425670689_j_ijb-2018-0026_ref_028_w2aab3b7d880b1b6b1ab2b1c28Aa
  doi: 10.1214/aos/1176344136
– ident: 2023033117425670689_j_ijb-2018-0026_ref_024_w2aab3b7d880b1b6b1ab2b1c24Aa
  doi: 10.1056/NEJMsr077003
– ident: 2023033117425670689_j_ijb-2018-0026_ref_026_w2aab3b7d880b1b6b1ab2b1c26Aa
  doi: 10.1214/aos/1176349403
– ident: 2023033117425670689_j_ijb-2018-0026_ref_001_w2aab3b7d880b1b6b1ab2b1b1Aa
  doi: 10.1111/j.0887-378X.2004.00327.x
– ident: 2023033117425670689_j_ijb-2018-0026_ref_010_w2aab3b7d880b1b6b1ab2b1c10Aa
  doi: 10.1080/01621459.2014.951443
– ident: 2023033117425670689_j_ijb-2018-0026_ref_007_w2aab3b7d880b1b6b1ab2b1b7Aa
  doi: 10.1016/S0140-6736(05)17709-5
– ident: 2023033117425670689_j_ijb-2018-0026_ref_011_w2aab3b7d880b1b6b1ab2b1c11Aa
  doi: 10.1177/0962280213515572
– ident: 2023033117425670689_j_ijb-2018-0026_ref_006_w2aab3b7d880b1b6b1ab2b1b6Aa
  doi: 10.1056/NEJMp068070
– ident: 2023033117425670689_j_ijb-2018-0026_ref_034_w2aab3b7d880b1b6b1ab2b1c34Aa
  doi: 10.1002/jae.2410
– ident: 2023033117425670689_j_ijb-2018-0026_ref_035_w2aab3b7d880b1b6b1ab2b1c35Aa
  doi: 10.3150/11-BEJ386
– ident: 2023033117425670689_j_ijb-2018-0026_ref_033_w2aab3b7d880b1b6b1ab2b1c33Aa
  doi: 10.1023/A:1017501703105
– ident: 2023033117425670689_j_ijb-2018-0026_ref_014_w2aab3b7d880b1b6b1ab2b1c14Aa
  doi: 10.1002/sim.7660
SSID ssj0041819
Score 2.3711824
Snippet Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Anti-HIV Agents - pharmacology
Biostatistics
Computer Simulation
fusiongram
HIV Infections - drug therapy
Humans
Models, Statistical
oracle property
penalized least squares
Precision Medicine
Randomized Controlled Trials as Topic
subgroup analysis
treatment heterogeneity
Title Exploration of Heterogeneous Treatment Effects via Concave Fusion
URI https://www.degruyter.com/doi/10.1515/ijb-2018-0026
https://www.ncbi.nlm.nih.gov/pubmed/31541601
https://www.proquest.com/docview/2384377332
https://www.proquest.com/docview/2295468638
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExI8THyOwEBBQjwRiGMnTh4LaqmmMl5SVPFi2Y6zpYIWbQnT-Os5J85HtyINXqLIseLo7pfz3fk-EHotdCxVCJaqkizxaJ4QT-TS90SWEMpYnsXC-Ds-H0ezBT1ahsu-S1-dXVLKd-r3zryS_-EqjAFfTZbsP3C2eykMwD3wF67AYbjeiMdNAF2n9M1MaMsGZmsT15p2IeQTG7PxqxAmw0-ZhkPT6rzlyKoHTLHlHxxUlZDFxqQeNVWdey927Ts9rVbFAB7WAX00wF3nlf52Wlzooh2eF1UTub8--dHuoNYBgesIq8AfysyQeSBvG8mnd4y1gja6Cqhr8jusS10UKwkr4NgzFmK_UbWH88df-HQxn_N0skxvo70ADIRghPbGnz5Mvra7MAXNJalr5doPsfVVYYH3W6_f1keuGRn30P5FHbeQ6ZOz6rJsz8lr9SO9j_at3eCOGxA8QLf0-iG603QSvXyExgMouJvc3YKC20HBtVBwAQquhYLbQOExWkwn6ceZZ7tjeAps8tJjhIXCF5Gp4E-JEL7COAsyQnWiCMM504LlYUgSsIEZ8yXNIpzRmORRDEJaRuQJGq03a_0UuTmlQitGdUxjKilLsiTTTCtQnQkFDd5Bb1sacWVLx5sOJt-5MSGBpBxIyg1JuSGpg9500382NVP-NvGwJTi3kD7noENSwhghgYNedY9B6JmTLFGTjZse9DSKYe9w0EHDqG4lAkYBjnzsIHyFc_0aO78GbJ9nN1jxObrb_wWHaFSeVfoFKKalfGkx-AdwZ47R
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVohyKG8IFDAS4kS6yXoSO8el6rJA29MW9Rb5FWgpG9RNisqvZ5wX0MIFrnES2_Owv7FH3wC8UE5qk1CkarTIQiwyHqpCR6GyGUchCiuVP-_Y20_nB_juMOmzCVddWqV1H0_r86plSB3b0tT-oGzgGqAdeHx0rEm_sQx9DDH-VH05uQprEilcGcHa9M3rnQ_9ckzPmuoe5JkYJoIfdkSbl_7y-8Z0CW3egI1vzQX2MLpf9qHZTdD9DNr0k89bdaW3zPcL5I7_NcVbsNGhVDZtzeo2XHHLO3CtrVt5fhembeZeo1RWFmzuc2pKMkVX1iu26HPXWUuNvGJnR4ptl0ujzhyb1f587h4czHYW2_Owq8UQGooAq1BwkahIpZ4vHrlSkYljO7EcXWa4iAvhlCiShGcUcQkRabRpbFHyIpW0JOiU34fRsly6h8AKROWMQCdRokaR2cw64QwBNY6EFwN41SsiNx1Rua-XcZL7gIVEk5Noci-a3IsmgJfD619bho6_vbjZazXvHHWVE2JBLgTnkwCeD83kYv7eRDViy33Fc0wlrVQBPGitYeiJEwSNKagNIL5gHj_7-ONoCGk_-odvnsH1-WJvN999u__-MaxTU5PxNok2YVSd1u4JQaRKP-2c4AfKuQth
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqByKK8CgQJBQpxIN1lPYue4LV2WV8WhRXuzHD9QC9pU3aSo_fUdbx4tLVzgHCe252F_Y0--AXitrCh0SpGqLngeoctZpFwRR8rkDDl3Rih_3vFlN5vu48dZOrv0F79PqzT2-3F9WjUMqUNT6toflPVcA7QDDw8OC9JvIiIfQwyPjLsJKwIplBnAyvj91s63bjVG2sE8BCbHxCjlbNbybF77yO_70jWweQfWfi3vr_vBXdqGJndBdRNosk9-bNZVsanPrnA7_s8M78Fai1HDcWNU9-GGnT-AW03VytOHMG7y9pYqDUsXTn1GTUmGaMt6Ee51methQ4y8CE8OVLhdzrU6seGk9qdz67A_2dnbnkZtJYZIU_xXRZzxVMUq82zxyJSKdZKYkWFoc8144rhV3KUpyyne4jwu0GSJQcFcJmhBKDL2CAbzcm6fQOgQldUcrUCBBfLc5MZyqwmmMSS0GMDbTg9StzTlvlrGT-nDFZKMJMlILxnpJRPAm775UcPP8beGG51SZeumC0l4BRnnjI0CeNU_JgfztyZqKTbp651jJmidCuBxYwx9T4wAaEIhbQDJFeu46OOPoyGc_fQf3nkJt7--m8jPH3Y_PYNVerJMdxvFGzCojmv7nPBRVbxoXeAcmBQKCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Heterogeneous+Treatment+Effects+via+Concave+Fusion&rft.jtitle=The+international+journal+of+biostatistics&rft.au=Ma%2C+Shujie&rft.au=Huang%2C+Jian&rft.au=Zhang%2C+Zhiwei&rft.au=Liu%2C+Mingming&rft.date=2019-09-20&rft.issn=1557-4679&rft.eissn=1557-4679&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1515%2Fijb-2018-0026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-573X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-573X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-573X&client=summon