Exploration of Heterogeneous Treatment Effects via Concave Fusion
Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have knowledge of the grouping informati...
Saved in:
Published in | The international journal of biostatistics Vol. 16; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
20.09.2019
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have
knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on
knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. |
---|---|
AbstractList | Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study.Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. |
Author | Huang, Jian Zhang, Zhiwei Liu, Mingming Ma, Shujie |
Author_xml | – sequence: 1 givenname: Shujie surname: Ma fullname: Ma, Shujie email: shujie.ma@ucr.edu organization: Department of Statistics, University of California at Riverside, Riverside, California 92521, USA – sequence: 2 givenname: Jian surname: Huang fullname: Huang, Jian email: jian-huang@uiowa.edu organization: Department of Statistics and Actuarial Science, University of Iowa, Iowa City, USA – sequence: 3 givenname: Zhiwei surname: Zhang fullname: Zhang, Zhiwei email: zhiwei.zhang@ucr.ed organization: Department of Statistics, University of California at Riverside, Riverside, California 92521, USA – sequence: 4 givenname: Mingming surname: Liu fullname: Liu, Mingming email: mliu034@ucr.edu organization: Department of Statistics, University of California at Riverside, Riverside, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31541601$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtrGzEURkVwSWw3y27LQDfdTKqr9yyDcepCoJsUuhPyzJ0wZjxyJE2a_PvKjyYQ0pW0OOfycWZkMvgBCfkE9AokyG_dZl0yCqaklKkzMgUpdSmUriZkyqASpdT89wWZxbihVICB6pxccJACFIUpuV4-7XofXOr8UPi2WGHC4O9xQD_G4i6gS1scUrFsW6xTLB47Vyz8ULtHLG7GmK2P5EPr-oiXp3dOft0s7xar8vbn9x-L69uyFrRKpeZaOuqUUkwL7hytARrWcIFVzTW0Gp1upeQViEpruhaNgkYY3iqjjV4rPidfj3d3wT-MGJPddrHGvneHrZaxSgplFDcZ_fIG3fgxDHmdZdwIrjXnLFOfT9S43mJjd6HbuvBs_8XJQHkE6uBjDNi-IEDtPr7N8e0-vt3Hzzx_w9ddOpRNwXX9fy1ztP64Prdv8D6Mz_nzuvldDxTwv5x0l-g |
CitedBy_id | crossref_primary_10_1007_s00180_023_01380_2 crossref_primary_10_1016_j_jspi_2023_106120 crossref_primary_10_1002_env_2849 crossref_primary_10_1002_bimj_202100119 crossref_primary_10_1007_s40304_023_00342_w crossref_primary_10_1002_sim_8878 crossref_primary_10_3390_genes13040702 crossref_primary_10_1007_s11222_024_10401_z crossref_primary_10_1016_j_csda_2024_107918 crossref_primary_10_1080_01621459_2022_2126363 crossref_primary_10_3390_math11102333 crossref_primary_10_1002_bimj_201900287 crossref_primary_10_1002_cjs_11763 crossref_primary_10_1016_j_jmva_2019_06_007 crossref_primary_10_1007_s00180_023_01436_3 crossref_primary_10_1080_10485252_2024_2358435 crossref_primary_10_1007_s11136_021_02765_w crossref_primary_10_1002_bimj_202200231 crossref_primary_10_1080_01621459_2024_2321652 crossref_primary_10_1016_j_jmva_2022_105100 crossref_primary_10_1186_s12859_024_05652_6 crossref_primary_10_1080_10618600_2025_2467649 crossref_primary_10_1002_bimj_202300185 crossref_primary_10_1002_sim_8800 crossref_primary_10_1080_00401706_2023_2190779 crossref_primary_10_1002_sim_9414 crossref_primary_10_1093_biomtc_ujae076 crossref_primary_10_1080_24754269_2024_2327113 crossref_primary_10_1016_j_csda_2022_107667 crossref_primary_10_1007_s00362_020_01203_2 crossref_primary_10_1002_sim_10071 |
Cites_doi | 10.1002/(SICI)1097-0258(19970228)16:4<455::AID-SIM382>3.0.CO;2-Y 10.1111/rssc.12012 10.1080/01621459.2014.894763 10.1111/j.2517-6161.1996.tb02080.x 10.1016/S0140-6736(05)64988-4 10.1080/01621459.2013.836975 10.1214/07-AOAS131 10.1093/biostatistics/kxq060 10.1561/2200000016 10.1214/12-AOAS593 10.1037/h0037350 10.1093/biomet/asm053 10.1177/1740774510366454 10.1214/14-AOAS773 10.1214/09-AOS729 10.1080/01621459.1971.10482356 10.1198/016214501753382273 10.1002/sim.3113 10.2307/2530862 10.1093/biomet/70.1.41 10.1111/j.1467-9876.2010.00754.x 10.1080/10618600.2014.948181 10.1214/aos/1176344136 10.1056/NEJMsr077003 10.1214/aos/1176349403 10.1111/j.0887-378X.2004.00327.x 10.1080/01621459.2014.951443 10.1016/S0140-6736(05)17709-5 10.1177/0962280213515572 10.1056/NEJMp068070 10.1002/jae.2410 10.3150/11-BEJ386 10.1023/A:1017501703105 10.1002/sim.7660 |
ContentType | Journal Article |
Copyright | 2020 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1515/ijb-2018-0026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-4679 |
ExternalDocumentID | 31541601 10_1515_ijb_2018_0026 10_1515_ijb_2018_0026161 |
Genre | Journal Article |
GroupedDBID | --- -~S 0R~ 123 1WD 4.4 53G AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AALGR AAOUV AAOWA AAPJK AAQCX AARVR AASQH AAXCG ABAQN ABDRH ABFKT ABJNI ABMBZ ABMIY ABPLS ABRDF ABSOE ABWLS ABYBW ABYKJ ACDEB ACEFL ACGFO ACGFS ACHNZ ACMKP ACONX ACPMA ACUND ACYCL ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEMOE AENEX AEQDQ AEQLX AERZL AFBAA AFBDD AFBQV AFCXV AFYRI AGBEV AGQYU AHCWZ AHVWV AHXUK AIKXB AIWOI AKXKS ALMA_UNASSIGNED_HOLDINGS ALWYM AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CKPZI CS3 DASCH DU5 EBS F5P HZ~ IY9 J9A K.~ KDIRW MV1 NQBSW O9- P2P QD8 SA. SLJYH T2Y UK5 WTRAM AAYXX CITATION ABVMU CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c409t-7375a0a6662743aa0c11d2d34e9c371f7ea7f5539149770b4d61d483f68787b63 |
ISSN | 2194-573X 1557-4679 |
IngestDate | Fri Jul 11 05:46:07 EDT 2025 Mon Jun 30 06:19:03 EDT 2025 Thu Apr 03 06:53:13 EDT 2025 Tue Jul 01 01:02:59 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Thu Jul 10 10:37:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | penalized least squares fusiongram treatment heterogeneity subgroup analysis oracle property |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c409t-7375a0a6662743aa0c11d2d34e9c371f7ea7f5539149770b4d61d483f68787b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.degruyter.com/document/doi/10.1515/ijb-2018-0026/pdf |
PMID | 31541601 |
PQID | 2384377332 |
PQPubID | 2031306 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2295468638 proquest_journals_2384377332 pubmed_primary_31541601 crossref_primary_10_1515_ijb_2018_0026 crossref_citationtrail_10_1515_ijb_2018_0026 walterdegruyter_journals_10_1515_ijb_2018_0026161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-20 |
PublicationDateYYYYMMDD | 2019-09-20 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | The international journal of biostatistics |
PublicationTitleAlternate | Int J Biostat |
PublicationYear | 2019 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023033117425670689_j_ijb-2018-0026_ref_006_w2aab3b7d880b1b6b1ab2b1b6Aa 2023033117425670689_j_ijb-2018-0026_ref_011_w2aab3b7d880b1b6b1ab2b1c11Aa 2023033117425670689_j_ijb-2018-0026_ref_016_w2aab3b7d880b1b6b1ab2b1c16Aa 2023033117425670689_j_ijb-2018-0026_ref_020_w2aab3b7d880b1b6b1ab2b1c20Aa 2023033117425670689_j_ijb-2018-0026_ref_017_w2aab3b7d880b1b6b1ab2b1c17Aa 2023033117425670689_j_ijb-2018-0026_ref_001_w2aab3b7d880b1b6b1ab2b1b1Aa 2023033117425670689_j_ijb-2018-0026_ref_021_w2aab3b7d880b1b6b1ab2b1c21Aa 2023033117425670689_j_ijb-2018-0026_ref_026_w2aab3b7d880b1b6b1ab2b1c26Aa 2023033117425670689_j_ijb-2018-0026_ref_030_w2aab3b7d880b1b6b1ab2b1c30Aa 2023033117425670689_j_ijb-2018-0026_ref_035_w2aab3b7d880b1b6b1ab2b1c35Aa 2023033117425670689_j_ijb-2018-0026_ref_010_w2aab3b7d880b1b6b1ab2b1c10Aa 2023033117425670689_j_ijb-2018-0026_ref_015_w2aab3b7d880b1b6b1ab2b1c15Aa 2023033117425670689_j_ijb-2018-0026_ref_003_w2aab3b7d880b1b6b1ab2b1b3Aa 2023033117425670689_j_ijb-2018-0026_ref_024_w2aab3b7d880b1b6b1ab2b1c24Aa 2023033117425670689_j_ijb-2018-0026_ref_029_w2aab3b7d880b1b6b1ab2b1c29Aa 2023033117425670689_j_ijb-2018-0026_ref_025_w2aab3b7d880b1b6b1ab2b1c25Aa 2023033117425670689_j_ijb-2018-0026_ref_034_w2aab3b7d880b1b6b1ab2b1c34Aa 2023033117425670689_j_ijb-2018-0026_ref_007_w2aab3b7d880b1b6b1ab2b1b7Aa 2023033117425670689_j_ijb-2018-0026_ref_023_w2aab3b7d880b1b6b1ab2b1c23Aa 2023033117425670689_j_ijb-2018-0026_ref_028_w2aab3b7d880b1b6b1ab2b1c28Aa 2023033117425670689_j_ijb-2018-0026_ref_032_w2aab3b7d880b1b6b1ab2b1c32Aa 2023033117425670689_j_ijb-2018-0026_ref_004_w2aab3b7d880b1b6b1ab2b1b4Aa 2023033117425670689_j_ijb-2018-0026_ref_033_w2aab3b7d880b1b6b1ab2b1c33Aa 2023033117425670689_j_ijb-2018-0026_ref_008_w2aab3b7d880b1b6b1ab2b1b8Aa 2023033117425670689_j_ijb-2018-0026_ref_014_w2aab3b7d880b1b6b1ab2b1c14Aa 2023033117425670689_j_ijb-2018-0026_ref_019_w2aab3b7d880b1b6b1ab2b1c19Aa 2023033117425670689_j_ijb-2018-0026_ref_005_w2aab3b7d880b1b6b1ab2b1b5Aa 2023033117425670689_j_ijb-2018-0026_ref_031_w2aab3b7d880b1b6b1ab2b1c31Aa 2023033117425670689_j_ijb-2018-0026_ref_012_w2aab3b7d880b1b6b1ab2b1c12Aa 2023033117425670689_j_ijb-2018-0026_ref_009_w2aab3b7d880b1b6b1ab2b1b9Aa 2023033117425670689_j_ijb-2018-0026_ref_002_w2aab3b7d880b1b6b1ab2b1b2Aa 2023033117425670689_j_ijb-2018-0026_ref_013_w2aab3b7d880b1b6b1ab2b1c13Aa 2023033117425670689_j_ijb-2018-0026_ref_018_w2aab3b7d880b1b6b1ab2b1c18Aa 2023033117425670689_j_ijb-2018-0026_ref_022_w2aab3b7d880b1b6b1ab2b1c22Aa 2023033117425670689_j_ijb-2018-0026_ref_027_w2aab3b7d880b1b6b1ab2b1c27Aa |
References_xml | – ident: 2023033117425670689_j_ijb-2018-0026_ref_008_w2aab3b7d880b1b6b1ab2b1b8Aa doi: 10.1002/(SICI)1097-0258(19970228)16:4<455::AID-SIM382>3.0.CO;2-Y – ident: 2023033117425670689_j_ijb-2018-0026_ref_015_w2aab3b7d880b1b6b1ab2b1c15Aa doi: 10.1111/rssc.12012 – ident: 2023033117425670689_j_ijb-2018-0026_ref_016_w2aab3b7d880b1b6b1ab2b1c16Aa doi: 10.1080/01621459.2014.894763 – ident: 2023033117425670689_j_ijb-2018-0026_ref_025_w2aab3b7d880b1b6b1ab2b1c25Aa doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: 2023033117425670689_j_ijb-2018-0026_ref_002_w2aab3b7d880b1b6b1ab2b1b2Aa doi: 10.1016/S0140-6736(05)64988-4 – ident: 2023033117425670689_j_ijb-2018-0026_ref_029_w2aab3b7d880b1b6b1ab2b1c29Aa doi: 10.1080/01621459.2013.836975 – ident: 2023033117425670689_j_ijb-2018-0026_ref_032_w2aab3b7d880b1b6b1ab2b1c32Aa doi: 10.1214/07-AOAS131 – ident: 2023033117425670689_j_ijb-2018-0026_ref_009_w2aab3b7d880b1b6b1ab2b1b9Aa doi: 10.1093/biostatistics/kxq060 – ident: 2023033117425670689_j_ijb-2018-0026_ref_020_w2aab3b7d880b1b6b1ab2b1c20Aa – ident: 2023033117425670689_j_ijb-2018-0026_ref_021_w2aab3b7d880b1b6b1ab2b1c21Aa doi: 10.1561/2200000016 – ident: 2023033117425670689_j_ijb-2018-0026_ref_012_w2aab3b7d880b1b6b1ab2b1c12Aa doi: 10.1214/12-AOAS593 – ident: 2023033117425670689_j_ijb-2018-0026_ref_022_w2aab3b7d880b1b6b1ab2b1c22Aa doi: 10.1037/h0037350 – ident: 2023033117425670689_j_ijb-2018-0026_ref_027_w2aab3b7d880b1b6b1ab2b1c27Aa doi: 10.1093/biomet/asm053 – ident: 2023033117425670689_j_ijb-2018-0026_ref_003_w2aab3b7d880b1b6b1ab2b1b3Aa doi: 10.1177/1740774510366454 – ident: 2023033117425670689_j_ijb-2018-0026_ref_004_w2aab3b7d880b1b6b1ab2b1b4Aa doi: 10.1214/14-AOAS773 – ident: 2023033117425670689_j_ijb-2018-0026_ref_018_w2aab3b7d880b1b6b1ab2b1c18Aa doi: 10.1214/09-AOS729 – ident: 2023033117425670689_j_ijb-2018-0026_ref_030_w2aab3b7d880b1b6b1ab2b1c30Aa doi: 10.1080/01621459.1971.10482356 – ident: 2023033117425670689_j_ijb-2018-0026_ref_017_w2aab3b7d880b1b6b1ab2b1c17Aa doi: 10.1198/016214501753382273 – ident: 2023033117425670689_j_ijb-2018-0026_ref_031_w2aab3b7d880b1b6b1ab2b1c31Aa doi: 10.1002/sim.3113 – ident: 2023033117425670689_j_ijb-2018-0026_ref_005_w2aab3b7d880b1b6b1ab2b1b5Aa doi: 10.2307/2530862 – ident: 2023033117425670689_j_ijb-2018-0026_ref_023_w2aab3b7d880b1b6b1ab2b1c23Aa doi: 10.1093/biomet/70.1.41 – ident: 2023033117425670689_j_ijb-2018-0026_ref_013_w2aab3b7d880b1b6b1ab2b1c13Aa doi: 10.1111/j.1467-9876.2010.00754.x – ident: 2023033117425670689_j_ijb-2018-0026_ref_019_w2aab3b7d880b1b6b1ab2b1c19Aa doi: 10.1080/10618600.2014.948181 – ident: 2023033117425670689_j_ijb-2018-0026_ref_028_w2aab3b7d880b1b6b1ab2b1c28Aa doi: 10.1214/aos/1176344136 – ident: 2023033117425670689_j_ijb-2018-0026_ref_024_w2aab3b7d880b1b6b1ab2b1c24Aa doi: 10.1056/NEJMsr077003 – ident: 2023033117425670689_j_ijb-2018-0026_ref_026_w2aab3b7d880b1b6b1ab2b1c26Aa doi: 10.1214/aos/1176349403 – ident: 2023033117425670689_j_ijb-2018-0026_ref_001_w2aab3b7d880b1b6b1ab2b1b1Aa doi: 10.1111/j.0887-378X.2004.00327.x – ident: 2023033117425670689_j_ijb-2018-0026_ref_010_w2aab3b7d880b1b6b1ab2b1c10Aa doi: 10.1080/01621459.2014.951443 – ident: 2023033117425670689_j_ijb-2018-0026_ref_007_w2aab3b7d880b1b6b1ab2b1b7Aa doi: 10.1016/S0140-6736(05)17709-5 – ident: 2023033117425670689_j_ijb-2018-0026_ref_011_w2aab3b7d880b1b6b1ab2b1c11Aa doi: 10.1177/0962280213515572 – ident: 2023033117425670689_j_ijb-2018-0026_ref_006_w2aab3b7d880b1b6b1ab2b1b6Aa doi: 10.1056/NEJMp068070 – ident: 2023033117425670689_j_ijb-2018-0026_ref_034_w2aab3b7d880b1b6b1ab2b1c34Aa doi: 10.1002/jae.2410 – ident: 2023033117425670689_j_ijb-2018-0026_ref_035_w2aab3b7d880b1b6b1ab2b1c35Aa doi: 10.3150/11-BEJ386 – ident: 2023033117425670689_j_ijb-2018-0026_ref_033_w2aab3b7d880b1b6b1ab2b1c33Aa doi: 10.1023/A:1017501703105 – ident: 2023033117425670689_j_ijb-2018-0026_ref_014_w2aab3b7d880b1b6b1ab2b1c14Aa doi: 10.1002/sim.7660 |
SSID | ssj0041819 |
Score | 2.3711824 |
Snippet | Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Anti-HIV Agents - pharmacology Biostatistics Computer Simulation fusiongram HIV Infections - drug therapy Humans Models, Statistical oracle property penalized least squares Precision Medicine Randomized Controlled Trials as Topic subgroup analysis treatment heterogeneity |
Title | Exploration of Heterogeneous Treatment Effects via Concave Fusion |
URI | https://www.degruyter.com/doi/10.1515/ijb-2018-0026 https://www.ncbi.nlm.nih.gov/pubmed/31541601 https://www.proquest.com/docview/2384377332 https://www.proquest.com/docview/2295468638 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExI8THyOwEBBQjwRiGMnTh4LaqmmMl5SVPFi2Y6zpYIWbQnT-Os5J85HtyINXqLIseLo7pfz3fk-EHotdCxVCJaqkizxaJ4QT-TS90SWEMpYnsXC-Ds-H0ezBT1ahsu-S1-dXVLKd-r3zryS_-EqjAFfTZbsP3C2eykMwD3wF67AYbjeiMdNAF2n9M1MaMsGZmsT15p2IeQTG7PxqxAmw0-ZhkPT6rzlyKoHTLHlHxxUlZDFxqQeNVWdey927Ts9rVbFAB7WAX00wF3nlf52Wlzooh2eF1UTub8--dHuoNYBgesIq8AfysyQeSBvG8mnd4y1gja6Cqhr8jusS10UKwkr4NgzFmK_UbWH88df-HQxn_N0skxvo70ADIRghPbGnz5Mvra7MAXNJalr5doPsfVVYYH3W6_f1keuGRn30P5FHbeQ6ZOz6rJsz8lr9SO9j_at3eCOGxA8QLf0-iG603QSvXyExgMouJvc3YKC20HBtVBwAQquhYLbQOExWkwn6ceZZ7tjeAps8tJjhIXCF5Gp4E-JEL7COAsyQnWiCMM504LlYUgSsIEZ8yXNIpzRmORRDEJaRuQJGq03a_0UuTmlQitGdUxjKilLsiTTTCtQnQkFDd5Bb1sacWVLx5sOJt-5MSGBpBxIyg1JuSGpg9500382NVP-NvGwJTi3kD7noENSwhghgYNedY9B6JmTLFGTjZse9DSKYe9w0EHDqG4lAkYBjnzsIHyFc_0aO78GbJ9nN1jxObrb_wWHaFSeVfoFKKalfGkx-AdwZ47R |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVohyKG8IFDAS4kS6yXoSO8el6rJA29MW9Rb5FWgpG9RNisqvZ5wX0MIFrnES2_Owv7FH3wC8UE5qk1CkarTIQiwyHqpCR6GyGUchCiuVP-_Y20_nB_juMOmzCVddWqV1H0_r86plSB3b0tT-oGzgGqAdeHx0rEm_sQx9DDH-VH05uQprEilcGcHa9M3rnQ_9ckzPmuoe5JkYJoIfdkSbl_7y-8Z0CW3egI1vzQX2MLpf9qHZTdD9DNr0k89bdaW3zPcL5I7_NcVbsNGhVDZtzeo2XHHLO3CtrVt5fhembeZeo1RWFmzuc2pKMkVX1iu26HPXWUuNvGJnR4ptl0ujzhyb1f587h4czHYW2_Owq8UQGooAq1BwkahIpZ4vHrlSkYljO7EcXWa4iAvhlCiShGcUcQkRabRpbFHyIpW0JOiU34fRsly6h8AKROWMQCdRokaR2cw64QwBNY6EFwN41SsiNx1Rua-XcZL7gIVEk5Noci-a3IsmgJfD619bho6_vbjZazXvHHWVE2JBLgTnkwCeD83kYv7eRDViy33Fc0wlrVQBPGitYeiJEwSNKagNIL5gHj_7-ONoCGk_-odvnsH1-WJvN999u__-MaxTU5PxNok2YVSd1u4JQaRKP-2c4AfKuQth |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqByKK8CgQJBQpxIN1lPYue4LV2WV8WhRXuzHD9QC9pU3aSo_fUdbx4tLVzgHCe252F_Y0--AXitrCh0SpGqLngeoctZpFwRR8rkDDl3Rih_3vFlN5vu48dZOrv0F79PqzT2-3F9WjUMqUNT6toflPVcA7QDDw8OC9JvIiIfQwyPjLsJKwIplBnAyvj91s63bjVG2sE8BCbHxCjlbNbybF77yO_70jWweQfWfi3vr_vBXdqGJndBdRNosk9-bNZVsanPrnA7_s8M78Fai1HDcWNU9-GGnT-AW03VytOHMG7y9pYqDUsXTn1GTUmGaMt6Ee51methQ4y8CE8OVLhdzrU6seGk9qdz67A_2dnbnkZtJYZIU_xXRZzxVMUq82zxyJSKdZKYkWFoc8144rhV3KUpyyne4jwu0GSJQcFcJmhBKDL2CAbzcm6fQOgQldUcrUCBBfLc5MZyqwmmMSS0GMDbTg9StzTlvlrGT-nDFZKMJMlILxnpJRPAm775UcPP8beGG51SZeumC0l4BRnnjI0CeNU_JgfztyZqKTbp651jJmidCuBxYwx9T4wAaEIhbQDJFeu46OOPoyGc_fQf3nkJt7--m8jPH3Y_PYNVerJMdxvFGzCojmv7nPBRVbxoXeAcmBQKCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Heterogeneous+Treatment+Effects+via+Concave+Fusion&rft.jtitle=The+international+journal+of+biostatistics&rft.au=Ma%2C+Shujie&rft.au=Huang%2C+Jian&rft.au=Zhang%2C+Zhiwei&rft.au=Liu%2C+Mingming&rft.date=2019-09-20&rft.issn=1557-4679&rft.eissn=1557-4679&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1515%2Fijb-2018-0026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-573X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-573X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-573X&client=summon |