New animal models for encapsulating peritoneal sclerosis--role of acidic solution

Encapsulating peritoneal sclerosis (EPS), in which all or part of the intestine is enveloped in a fibrous ball resembling a cocoon, is a serious complication of peritoneal dialysis (PD). The aim of the present study was to investigate whether pH-neutral or acidic dialysis solutions induce peritoneal...

Full description

Saved in:
Bibliographic Details
Published inPeritoneal dialysis international Vol. 21 Suppl 3; no. 3_suppl; pp. S349 - 353
Main Authors Nakamoto, H, Imai, H, Ishida, Y, Yamanouchi, Y, Inoue, T, Okada, H, Suzuki, H
Format Journal Article
LanguageEnglish
Published United States 01.01.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Encapsulating peritoneal sclerosis (EPS), in which all or part of the intestine is enveloped in a fibrous ball resembling a cocoon, is a serious complication of peritoneal dialysis (PD). The aim of the present study was to investigate whether pH-neutral or acidic dialysis solutions induce peritoneal fibrosis. We divided 18 male Wistar-Kyoto (WKY) rats into three groups and dialyzed them with various solutions as follows: group I, 10 mL acidic dialysis solution (pH 3.8, containing 1.35% glucose), n = 6; group II, 10 mL pH 5.0 dialysis solution, n = 6; and group III, 10 mL neutral dialysis solution (pH 7.0), n = 6. Peritoneal catheters were inserted, and dialysis solution was injected every day for 40 days. At the end of the experiment, a peritoneal equilibration test (PET) was performed. Expression of mRNA of aquaporins 1 and 4 (AQP-1 and AQP-4) in the peritoneum were studied by semiquantitative reverse-transcriptase polymerase chain reaction (RT-PCR). In rats treated with pH 3.8 dialysis solution, necropsy findings revealed features identical to those of EPS. The typical appearance was of granulation tissue or fibrotic tissue (or both) covering multiple surfaces. Multiple adhesions were present. In microscopic examinations, peritoneal fibrosis and loss of mesothelium were found. In rats treated with pH 7.0 dialysis solution, no signs of EPS were seen. In rats treated with pH 5.0 dialysis solution, milder changes (subserosal thickening and partial adhesion of the peritonea) were observed. The mRNA of AQP-1 and AQP-4 were expressed in the peritonea of the rats. The expression of the AQPs was significantly suppressed in rats treated with pH 3.8 dialysis solution. In rats, long-term intraperitoneal injection of acidic dialysis solution produced features typical of EPS in humans. Newly developed neutral dialysis solutions protected the against the development of EPS during peritoneal dialysis in rats.
ISSN:0896-8608
1718-4304
DOI:10.1177/089686080102103s64