Interconnection of thermal parameters, microstructure, macrosegregation and microhardness of unidirectionally solidified Zn-rich Zn–Ag peritectic alloys

•Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a peritectic matrix.•Equations relating interphase spacing to growth thermal parameters are proposed.•Inverse solute macrosegregation profiles are obs...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 63; pp. 848 - 855
Main Authors Dias, Marcelino, Brito, Crystopher, Bertelli, Felipe, Rocha, Otávio L., Garcia, Amauri
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a peritectic matrix.•Equations relating interphase spacing to growth thermal parameters are proposed.•Inverse solute macrosegregation profiles are observed for peritectic Zn–Ag alloys.•Microhardness depends on microstructural features only for single-phase Zn–Ag alloys. In this work, the microstructural evolution of Zn–3.2wt%Ag (hypoperitectic) and Zn–8wt%Ag (hyperperitectic) alloys during transient unidirectional solidification is investigated. The experimental results include solidification thermal parameters such as the growth rate (VL), thermal gradient (GL) and tip cooling rate (Ṫ), which are related to the microstructural interphase spacing (λ) by proposed experimental growth laws. It is shown that, the classical lamellar eutectic growth law λ2V=constant, applies to the growth of the peritectic Zn–Ag alloys examined, despite the different values of the constant associated with each alloy composition. In contrast, it is shown that identical functions of the form λ=constant (GL)−14 (VL)−1/8, and λ=constant (Ṫ-1/3) can be applied to both alloys examined. Positive solute macrosegregation was observed in regions close to the bottom of the castings. The dependence of microhardness (HV) on the length scale of the microstructures (including that of a single phase Zn 0.8wt%Ag alloy: λC− cellular spacing) is examined. An experimental Hall–Petch type power law is proposed relating the resulting microhardness to λC for the single phase alloy, and despite the segregation profiles and the alloying differences of the hypoperitectic and hyperperitectic alloys, the average microhardnesses of these alloys is shown to be essentially constant and similar along the castings lengths.
AbstractList •Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a peritectic matrix.•Equations relating interphase spacing to growth thermal parameters are proposed.•Inverse solute macrosegregation profiles are observed for peritectic Zn–Ag alloys.•Microhardness depends on microstructural features only for single-phase Zn–Ag alloys. In this work, the microstructural evolution of Zn–3.2wt%Ag (hypoperitectic) and Zn–8wt%Ag (hyperperitectic) alloys during transient unidirectional solidification is investigated. The experimental results include solidification thermal parameters such as the growth rate (VL), thermal gradient (GL) and tip cooling rate (Ṫ), which are related to the microstructural interphase spacing (λ) by proposed experimental growth laws. It is shown that, the classical lamellar eutectic growth law λ2V=constant, applies to the growth of the peritectic Zn–Ag alloys examined, despite the different values of the constant associated with each alloy composition. In contrast, it is shown that identical functions of the form λ=constant (GL)−14 (VL)−1/8, and λ=constant (Ṫ-1/3) can be applied to both alloys examined. Positive solute macrosegregation was observed in regions close to the bottom of the castings. The dependence of microhardness (HV) on the length scale of the microstructures (including that of a single phase Zn 0.8wt%Ag alloy: λC− cellular spacing) is examined. An experimental Hall–Petch type power law is proposed relating the resulting microhardness to λC for the single phase alloy, and despite the segregation profiles and the alloying differences of the hypoperitectic and hyperperitectic alloys, the average microhardnesses of these alloys is shown to be essentially constant and similar along the castings lengths.
In this work, the microstructural evolution of Zn-3.2wt%Ag (hypoperitectic) and Zn-8wt%Ag (hyperperitectic) alloys during transient unidirectional solidification is investigated. The experimental results include solidification thermal parameters such as the growth rate (V L), thermal gradient (G L) and tip cooling rate (), which are related to the microstructural interphase spacing ( lambda ) by proposed experimental growth laws. It is shown that, the classical lamellar eutectic growth law lambda 2 V =constant, applies to the growth of the peritectic Zn-Ag alloys examined, despite the different values of the constant associated with each alloy composition. In contrast, it is shown that identical functions of the form lambda =constant (G L)-14 (V L)-1/8, and lambda =constant () can be applied to both alloys examined. Positive solute macrosegregation was observed in regions close to the bottom of the castings. The dependence of microhardness (HV) on the length scale of the microstructures (including that of a single phase Zn 0.8wt%Ag alloy: lambda C- cellular spacing) is examined. An experimental Hall-Petch type power law is proposed relating the resulting microhardness to lambda C for the single phase alloy, and despite the segregation profiles and the alloying differences of the hypoperitectic and hyperperitectic alloys, the average microhardnesses of these alloys is shown to be essentially constant and similar along the castings lengths.
Author Bertelli, Felipe
Rocha, Otávio L.
Garcia, Amauri
Dias, Marcelino
Brito, Crystopher
Author_xml – sequence: 1
  givenname: Marcelino
  surname: Dias
  fullname: Dias, Marcelino
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
– sequence: 2
  givenname: Crystopher
  surname: Brito
  fullname: Brito, Crystopher
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
– sequence: 3
  givenname: Felipe
  surname: Bertelli
  fullname: Bertelli, Felipe
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
– sequence: 4
  givenname: Otávio L.
  surname: Rocha
  fullname: Rocha, Otávio L.
  organization: Federal Institute of Education, Science and Technology of Pará, IFPA, Almirante Barroso Avenue 1155, 66093-020 Belém, PA, Brazil
– sequence: 5
  givenname: Amauri
  surname: Garcia
  fullname: Garcia, Amauri
  email: amaurig@fem.unicamp.br
  organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
BookMark eNqFkL1uFDEURl0kEkngDSimpMgMtsfzRxEpigJEikQDDY3lta93vZqxN9eeSNvlHeh4PJ4ET4YqBamurn2-T7rnnJz44IGQ94xWjLL2476aVDIQK06ZqGhXUcpPyBnlLStr2g5vyHmMe0pZxxg_I7_vfALUwXvQyQVfBFukHeCkxuKgUE2Qv-NlMTmNISacdZoR8q6WHbYIW_WcU96s0E6h8RDj0jR7ZxyuzWocj0UMY36xDkzx05fo9C7PP0-_rrfFAdClBdVFRsMxviWnVo0R3v2bF-TH59vvN1_L-29f7m6u70st6JDK1lIxDMCh4X1PtRasbZQSPa1NDQAWVMdtJ0TTcmOtMH2jLd30sBm6Xg_tpr4gH9beA4aHGWKSk4saxlF5CHOUrBW85qwXTUbFii7HRwQrD-gmhUfJqFz0y71c9ctFv6SdzPpz7NOLmHbpWVtC5cbXwldrGLKDRwcoo3bgNaxmpQnu_wV_AQUyrgU
CitedBy_id crossref_primary_10_1016_j_actamat_2024_119992
crossref_primary_10_1016_j_matdes_2016_04_054
crossref_primary_10_1016_j_jmapro_2019_10_029
crossref_primary_10_1016_j_microrel_2017_12_029
crossref_primary_10_3390_met12071076
crossref_primary_10_1016_j_actamat_2017_03_019
crossref_primary_10_3390_met14101134
crossref_primary_10_1016_j_matchar_2021_110936
crossref_primary_10_3390_ma14102505
crossref_primary_10_1007_s00339_019_2848_6
crossref_primary_10_1016_S1003_6326_18_64811_3
Cites_doi 10.1016/S1359-6454(01)00321-4
10.1016/0956-7151(93)90237-M
10.1016/j.msea.2004.01.022
10.1016/S1359-6462(96)00438-1
10.1016/j.matdes.2013.04.023
10.1016/S1359-6454(00)00003-3
10.1016/j.matlet.2004.04.006
10.1016/0036-9748(85)90325-4
10.1016/j.matlet.2012.04.095
10.1007/s11661-000-0049-7
10.1016/S1359-6454(99)00365-1
10.1016/j.electacta.2012.04.122
10.1016/j.matchemphys.2013.11.030
10.1016/j.jallcom.2009.01.105
10.1016/j.matdes.2010.05.046
10.1016/j.optlaseng.2011.01.007
10.1016/j.matlet.2011.03.034
10.1016/j.scriptamat.2004.05.011
10.1016/S0921-5093(98)01005-3
10.1016/j.jpcs.2012.05.014
10.1007/s11664-009-1061-3
10.1016/0022-0248(94)90477-4
10.1016/S0921-5093(03)00518-5
10.1179/imr.1996.41.4.129
10.1016/0001-6160(61)90186-9
10.1007/s11661-008-9542-1
10.1016/j.matdes.2014.02.026
10.1007/s12598-011-0408-0
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
JG9
L7M
DOI 10.1016/j.matdes.2014.07.002
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 855
ExternalDocumentID 10_1016_j_matdes_2014_07_002
S0261306914005299
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
7SP
7SR
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c409t-6f0499e2e52880cc4165aa4803d3eeefea72f744562dff4d85cf0b8eb978c96b3
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Sun Aug 24 04:12:48 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 04:23:13 EDT 2025
Fri Feb 23 02:25:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Macrosegregation
Microstructure
Microhardness
Peritectic Zn–Ag alloys
Solidification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-6f0499e2e52880cc4165aa4803d3eeefea72f744562dff4d85cf0b8eb978c96b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1642321845
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1642321845
crossref_primary_10_1016_j_matdes_2014_07_002
crossref_citationtrail_10_1016_j_matdes_2014_07_002
elsevier_sciencedirect_doi_10_1016_j_matdes_2014_07_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Silva, Spinelli, Garcia (b0140) 2009; 480
Brito, Siqueira, Spinelli, Garcia (b0065) 2012; 80
Liu, Li, Su, Luo, Zhang, Guo (b0030) 2011; 65
Kaya, Böyük, Engin, Çadirli, Marasli (b0050) 2010; 39
Kerr, Kurz (b0005) 1996; 41
Uhlmann, Chadwick (b0075) 1961; 9
Yasuda, Ohnaka, Tokieda, Notake (b0010) 2003
Ma, Li, Ng, Jones (b0060) 2000; 48
Xu, Feng, Li, Li (b0080) 2004; 373
Xu, Feng, Li, Zhang, Li (b0085) 2002; 50
Rocha, Siqueira, Garcia (b0095) 2003; 361
Su, Lin, Wang, Xue, Huang (b0040) 2004; 51
Rosa, Spinelli, Ferreira, Garcia (b0100) 2008; 39A
Zhang, Li, Xu, Li (b0115) 2002; 12
Lee, Verhoeven (b0125) 1994; 144
Su, Wang, Lin, Huang (b0035) 2004; 58
(accessed 16 01 2014).
Busse, Meissen (b0120) 1997; 36
Ha, Hunt (b0015) 2000; 31A
Bertelli, Meza, Goulart, Cheung, Riva, Garcia (b0110) 2011; 49
Gill, Kurz (b0130) 1993; 41
Brito, Siqueira, Spinelli, Garcia (b0020) 2012; 73
Spinelli, Silva, Garcia (b0155) 2014; 58
Silva, Spinelli, Mangelinck-Noel, Garcia (b0145) 2010; 31
Osório, Brito, Peixoto, Garcia (b0070) 2012; 76
Calberg, Bergman (b0135) 1985; 19
Ma, Li, Ng, Jones (b0055) 2000; 48
Jackson, Hunt (b0105) 1966; 236
Dias, Brito, Bertelli, Garcia (b0090) 2014; 143
Tokieda, Yasuda, Ohnaka (b0025) 1999; 262
Canté, Brito, Spinelli, Garcia (b0160) 2013; 51
Hu, Yan, Chen, Li, Fu (b0045) 2011; 30
Brito (10.1016/j.matdes.2014.07.002_b0065) 2012; 80
Osório (10.1016/j.matdes.2014.07.002_b0070) 2012; 76
Yasuda (10.1016/j.matdes.2014.07.002_b0010) 2003
Canté (10.1016/j.matdes.2014.07.002_b0160) 2013; 51
Su (10.1016/j.matdes.2014.07.002_b0035) 2004; 58
10.1016/j.matdes.2014.07.002_b0150
Spinelli (10.1016/j.matdes.2014.07.002_b0155) 2014; 58
Bertelli (10.1016/j.matdes.2014.07.002_b0110) 2011; 49
Kaya (10.1016/j.matdes.2014.07.002_b0050) 2010; 39
Ma (10.1016/j.matdes.2014.07.002_b0060) 2000; 48
Ha (10.1016/j.matdes.2014.07.002_b0015) 2000; 31A
Jackson (10.1016/j.matdes.2014.07.002_b0105) 1966; 236
Silva (10.1016/j.matdes.2014.07.002_b0140) 2009; 480
Busse (10.1016/j.matdes.2014.07.002_b0120) 1997; 36
Dias (10.1016/j.matdes.2014.07.002_b0090) 2014; 143
Su (10.1016/j.matdes.2014.07.002_b0040) 2004; 51
Brito (10.1016/j.matdes.2014.07.002_b0020) 2012; 73
Hu (10.1016/j.matdes.2014.07.002_b0045) 2011; 30
Rocha (10.1016/j.matdes.2014.07.002_b0095) 2003; 361
Xu (10.1016/j.matdes.2014.07.002_b0080) 2004; 373
Zhang (10.1016/j.matdes.2014.07.002_b0115) 2002; 12
Liu (10.1016/j.matdes.2014.07.002_b0030) 2011; 65
Tokieda (10.1016/j.matdes.2014.07.002_b0025) 1999; 262
Xu (10.1016/j.matdes.2014.07.002_b0085) 2002; 50
Gill (10.1016/j.matdes.2014.07.002_b0130) 1993; 41
Calberg (10.1016/j.matdes.2014.07.002_b0135) 1985; 19
Uhlmann (10.1016/j.matdes.2014.07.002_b0075) 1961; 9
Kerr (10.1016/j.matdes.2014.07.002_b0005) 1996; 41
Silva (10.1016/j.matdes.2014.07.002_b0145) 2010; 31
Rosa (10.1016/j.matdes.2014.07.002_b0100) 2008; 39A
Ma (10.1016/j.matdes.2014.07.002_b0055) 2000; 48
Lee (10.1016/j.matdes.2014.07.002_b0125) 1994; 144
References_xml – volume: 48
  start-page: 1741
  year: 2000
  end-page: 1751
  ident: b0060
  article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – II. Microstructural length scales
  publication-title: Acta Mater
– volume: 373
  start-page: 139
  year: 2004
  end-page: 145
  ident: b0080
  article-title: Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification
  publication-title: Mater Sci Eng A
– volume: 262
  start-page: 238
  year: 1999
  end-page: 245
  ident: b0025
  article-title: Formation of banded structures in Pb–Bi peritectic alloys
  publication-title: Mater Sci Eng A
– volume: 41
  start-page: 129
  year: 1996
  end-page: 164
  ident: b0005
  article-title: Solidification of peritectic alloys
  publication-title: Int Mater Rev
– volume: 361
  start-page: 111
  year: 2003
  end-page: 118
  ident: b0095
  article-title: Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys
  publication-title: Mater Sci Eng A
– volume: 480
  start-page: 485
  year: 2009
  end-page: 493
  ident: b0140
  article-title: Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys
  publication-title: J Alloys Compd
– volume: 58
  start-page: 2670
  year: 2004
  end-page: 2674
  ident: b0035
  article-title: Researches on lamellar structures in the unidirectional solidified Zn–2
  publication-title: Mater Lett
– volume: 143
  start-page: 895
  year: 2014
  end-page: 899
  ident: b0090
  article-title: Cellular growth of single-phase Zn–Ag alloys unidirectionally solidified
  publication-title: Mater Chem Phys
– volume: 12
  start-page: 433
  year: 2002
  end-page: 436
  ident: b0115
  article-title: Laser resolidification of Zn-rich Zn–Ag peritectic alloys
  publication-title: Trans Nonferrous Met Soc China
– volume: 31
  start-page: 4584
  year: 2010
  end-page: 4591
  ident: b0145
  article-title: Microstructural development during transient directional solidification of a hypermonotectic Al–Bi alloy
  publication-title: Mater Des
– volume: 30
  start-page: 424
  year: 2011
  end-page: 431
  ident: b0045
  article-title: Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb–26
  publication-title: Rare Metals
– volume: 51
  start-page: 342
  year: 2013
  end-page: 346
  ident: b0160
  article-title: Interrelation of cell spacing, intermetallic compounds and hardness on a directionally solidified Al–1.0Fe–1.0Ni alloy
  publication-title: Mater Des
– volume: 73
  start-page: 1173
  year: 2012
  end-page: 1181
  ident: b0020
  article-title: Cellular growth during transient directional solidification of Zn-rich Zn–Cu monophasic and peritectic alloys
  publication-title: J Phys Chem Solids
– volume: 36
  start-page: 653
  year: 1997
  end-page: 658
  ident: b0120
  article-title: Coupled growth of the peritectic α and the peritectic γ phases in binary titanium aluminides
  publication-title: Scripta Mater
– volume: 65
  start-page: 1628
  year: 2011
  end-page: 1631
  ident: b0030
  article-title: Directional solidification of Cu–20Sn alloy at low speed: from peritectic coupled growth to banding
  publication-title: Mater Lett
– volume: 49
  start-page: 490
  year: 2011
  end-page: 497
  ident: b0110
  article-title: Laser remelting of Al–1.5
  publication-title: Opt Laser Eng
– volume: 41
  start-page: 3563
  year: 1993
  end-page: 3573
  ident: b0130
  article-title: Rapidly solidified Al–Cu alloys I: experimental determination of the microstructure-selection map
  publication-title: Acta Metall Mater
– volume: 39A
  start-page: 2161
  year: 2008
  end-page: 2174
  ident: b0100
  article-title: Cellular/dendritic transition and microstructure evolution during transient directional solidification of Pb–Sb alloys
  publication-title: Metall Mater Trans A
– reference: (accessed 16 01 2014).
– volume: 236
  start-page: 1129
  year: 1966
  end-page: 1142
  ident: b0105
  article-title: Lamellar and rod eutectic growth
  publication-title: Trans Metall Soc AIME
– volume: 19
  start-page: 333
  year: 1985
  end-page: 336
  ident: b0135
  article-title: On the formation of irregular monotectic structures
  publication-title: Scripta Metall
– volume: 9
  start-page: 835
  year: 1961
  end-page: 840
  ident: b0075
  article-title: Unidirectional solidification of melts producing the peritectic reaction
  publication-title: Acta Metall
– volume: 76
  start-page: 218
  year: 2012
  end-page: 228
  ident: b0070
  article-title: Electrochemical behavior of Zn-rich Zn–Cu peritectic alloys affected by macrosegregation and microstructural array
  publication-title: Electrochim Acta
– start-page: 160
  year: 2003
  end-page: 173
  ident: b0010
  article-title: Peritectic solidification
  publication-title: Solidification and Castings
– volume: 51
  start-page: 397
  year: 2004
  end-page: 403
  ident: b0040
  article-title: Lamellar structures in laser surface remelted Zn–Cu peritectic alloy under ultra-high temperature gradient
  publication-title: Scripta Mater
– volume: 48
  start-page: 419
  year: 2000
  end-page: 431
  ident: b0055
  article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – I. microstructure selection
  publication-title: Acta Mater
– volume: 144
  start-page: 353
  year: 1994
  end-page: 366
  ident: b0125
  article-title: Peritectic formation in the Ni–Al system
  publication-title: J Cryst Growth
– volume: 58
  start-page: 482
  year: 2014
  end-page: 490
  ident: b0155
  article-title: Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications
  publication-title: Mater Des
– volume: 80
  start-page: 106
  year: 2012
  end-page: 109
  ident: b0065
  article-title: Effects of cell morphology and macrosegregation of directionally solidified Zn-rich Zn–Cu alloys on the resulting microhardness
  publication-title: Mater Lett
– volume: 31A
  start-page: 29
  year: 2000
  end-page: 34
  ident: b0015
  article-title: A numerical and experimental study of the rate of transformation in three directionally grown peritectic systems
  publication-title: Metall Mater Trans
– volume: 50
  start-page: 183
  year: 2002
  end-page: 193
  ident: b0085
  article-title: Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys
  publication-title: Acta Mater
– volume: 39
  start-page: 303
  year: 2010
  end-page: 311
  ident: b0050
  article-title: Measurements of microhardness and thermal and electrical properties of the binary Zn–0.7
  publication-title: J Electron Mater
– volume: 50
  start-page: 183
  year: 2002
  ident: 10.1016/j.matdes.2014.07.002_b0085
  article-title: Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00321-4
– volume: 41
  start-page: 3563
  year: 1993
  ident: 10.1016/j.matdes.2014.07.002_b0130
  article-title: Rapidly solidified Al–Cu alloys I: experimental determination of the microstructure-selection map
  publication-title: Acta Metall Mater
  doi: 10.1016/0956-7151(93)90237-M
– volume: 373
  start-page: 139
  year: 2004
  ident: 10.1016/j.matdes.2014.07.002_b0080
  article-title: Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.01.022
– volume: 36
  start-page: 653
  year: 1997
  ident: 10.1016/j.matdes.2014.07.002_b0120
  article-title: Coupled growth of the peritectic α and the peritectic γ phases in binary titanium aluminides
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(96)00438-1
– volume: 51
  start-page: 342
  year: 2013
  ident: 10.1016/j.matdes.2014.07.002_b0160
  article-title: Interrelation of cell spacing, intermetallic compounds and hardness on a directionally solidified Al–1.0Fe–1.0Ni alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.04.023
– volume: 48
  start-page: 1741
  year: 2000
  ident: 10.1016/j.matdes.2014.07.002_b0060
  article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – II. Microstructural length scales
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(00)00003-3
– volume: 58
  start-page: 2670
  year: 2004
  ident: 10.1016/j.matdes.2014.07.002_b0035
  article-title: Researches on lamellar structures in the unidirectional solidified Zn–2wt%Cu peritectic alloy
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2004.04.006
– volume: 19
  start-page: 333
  year: 1985
  ident: 10.1016/j.matdes.2014.07.002_b0135
  article-title: On the formation of irregular monotectic structures
  publication-title: Scripta Metall
  doi: 10.1016/0036-9748(85)90325-4
– volume: 80
  start-page: 106
  year: 2012
  ident: 10.1016/j.matdes.2014.07.002_b0065
  article-title: Effects of cell morphology and macrosegregation of directionally solidified Zn-rich Zn–Cu alloys on the resulting microhardness
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2012.04.095
– volume: 31A
  start-page: 29
  year: 2000
  ident: 10.1016/j.matdes.2014.07.002_b0015
  article-title: A numerical and experimental study of the rate of transformation in three directionally grown peritectic systems
  publication-title: Metall Mater Trans
  doi: 10.1007/s11661-000-0049-7
– volume: 48
  start-page: 419
  year: 2000
  ident: 10.1016/j.matdes.2014.07.002_b0055
  article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – I. microstructure selection
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00365-1
– volume: 76
  start-page: 218
  year: 2012
  ident: 10.1016/j.matdes.2014.07.002_b0070
  article-title: Electrochemical behavior of Zn-rich Zn–Cu peritectic alloys affected by macrosegregation and microstructural array
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.04.122
– start-page: 160
  year: 2003
  ident: 10.1016/j.matdes.2014.07.002_b0010
  article-title: Peritectic solidification
– volume: 143
  start-page: 895
  year: 2014
  ident: 10.1016/j.matdes.2014.07.002_b0090
  article-title: Cellular growth of single-phase Zn–Ag alloys unidirectionally solidified
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2013.11.030
– volume: 12
  start-page: 433
  year: 2002
  ident: 10.1016/j.matdes.2014.07.002_b0115
  article-title: Laser resolidification of Zn-rich Zn–Ag peritectic alloys
  publication-title: Trans Nonferrous Met Soc China
– volume: 480
  start-page: 485
  year: 2009
  ident: 10.1016/j.matdes.2014.07.002_b0140
  article-title: Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2009.01.105
– volume: 31
  start-page: 4584
  year: 2010
  ident: 10.1016/j.matdes.2014.07.002_b0145
  article-title: Microstructural development during transient directional solidification of a hypermonotectic Al–Bi alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.05.046
– volume: 49
  start-page: 490
  year: 2011
  ident: 10.1016/j.matdes.2014.07.002_b0110
  article-title: Laser remelting of Al–1.5wt%Fe alloy surfaces: numerical and experimental analyses
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2011.01.007
– ident: 10.1016/j.matdes.2014.07.002_b0150
– volume: 65
  start-page: 1628
  year: 2011
  ident: 10.1016/j.matdes.2014.07.002_b0030
  article-title: Directional solidification of Cu–20Sn alloy at low speed: from peritectic coupled growth to banding
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2011.03.034
– volume: 51
  start-page: 397
  year: 2004
  ident: 10.1016/j.matdes.2014.07.002_b0040
  article-title: Lamellar structures in laser surface remelted Zn–Cu peritectic alloy under ultra-high temperature gradient
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2004.05.011
– volume: 262
  start-page: 238
  year: 1999
  ident: 10.1016/j.matdes.2014.07.002_b0025
  article-title: Formation of banded structures in Pb–Bi peritectic alloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(98)01005-3
– volume: 73
  start-page: 1173
  year: 2012
  ident: 10.1016/j.matdes.2014.07.002_b0020
  article-title: Cellular growth during transient directional solidification of Zn-rich Zn–Cu monophasic and peritectic alloys
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2012.05.014
– volume: 39
  start-page: 303
  year: 2010
  ident: 10.1016/j.matdes.2014.07.002_b0050
  article-title: Measurements of microhardness and thermal and electrical properties of the binary Zn–0.7wt%Cu hypoperitectic alloy
  publication-title: J Electron Mater
  doi: 10.1007/s11664-009-1061-3
– volume: 144
  start-page: 353
  year: 1994
  ident: 10.1016/j.matdes.2014.07.002_b0125
  article-title: Peritectic formation in the Ni–Al system
  publication-title: J Cryst Growth
  doi: 10.1016/0022-0248(94)90477-4
– volume: 361
  start-page: 111
  year: 2003
  ident: 10.1016/j.matdes.2014.07.002_b0095
  article-title: Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(03)00518-5
– volume: 41
  start-page: 129
  year: 1996
  ident: 10.1016/j.matdes.2014.07.002_b0005
  article-title: Solidification of peritectic alloys
  publication-title: Int Mater Rev
  doi: 10.1179/imr.1996.41.4.129
– volume: 9
  start-page: 835
  year: 1961
  ident: 10.1016/j.matdes.2014.07.002_b0075
  article-title: Unidirectional solidification of melts producing the peritectic reaction
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(61)90186-9
– volume: 236
  start-page: 1129
  year: 1966
  ident: 10.1016/j.matdes.2014.07.002_b0105
  article-title: Lamellar and rod eutectic growth
  publication-title: Trans Metall Soc AIME
– volume: 39A
  start-page: 2161
  year: 2008
  ident: 10.1016/j.matdes.2014.07.002_b0100
  article-title: Cellular/dendritic transition and microstructure evolution during transient directional solidification of Pb–Sb alloys
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-008-9542-1
– volume: 58
  start-page: 482
  year: 2014
  ident: 10.1016/j.matdes.2014.07.002_b0155
  article-title: Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.02.026
– volume: 30
  start-page: 424
  year: 2011
  ident: 10.1016/j.matdes.2014.07.002_b0045
  article-title: Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb–26wt%Bi hypoperitectic alloy
  publication-title: Rare Metals
  doi: 10.1007/s12598-011-0408-0
SSID ssj0017112
Score 2.1599894
Snippet •Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a...
In this work, the microstructural evolution of Zn-3.2wt%Ag (hypoperitectic) and Zn-8wt%Ag (hyperperitectic) alloys during transient unidirectional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 848
SubjectTerms Alloys
Castings
Constants
Macrosegregation
Microhardness
Microstructure
Peritectic alloys
Peritectic Zn–Ag alloys
Solidification
Zinc base alloys
Title Interconnection of thermal parameters, microstructure, macrosegregation and microhardness of unidirectionally solidified Zn-rich Zn–Ag peritectic alloys
URI https://dx.doi.org/10.1016/j.matdes.2014.07.002
https://www.proquest.com/docview/1642321845
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYgXOBQQR_iUZArccTKPryvY4RAAQSXFgn1YnntMQ1KNogkh9z6H7jx8_glnfF6UakqIXGKvFqvIo935vs8M98ydiitjiCxUtjI5kLayInKxSAqwGhd2tgUXnbx8iofXsvzm-xmhR13vTBUVhl8f-vTvbcOV_phNfv3o1H_O7EHBLwVUgRKV1WrbC3B6Br12Nrg7GJ49ZJMKGKf9AxHLXnVddD5Mi_EhRZItzuWXsUznK_8J0L946t9ADrdZB8CcuSD9s9tsRVoPrKNv_QEP7Enf75nqHbFtyvwqeME8CY4jzS-J1T7MjviE6rCa5VjFw-AY01jQOp96w3FdWPbm6gni5whPWnRjNrF8qeH4yXHbYtXHIJY_rMR6FB_4e_z78fBLSf9ZEpPjAynzP5y9pldn578OB6K8PEFYZDyzUXuiAxBAlmCr7gxCNwyrWUZpTYFAAe6SFwhiUBZ56QtM-OiuoQaaamp8jr9wnrNtIFtxnNXlLpOy8QYJ5HJl7EsXA21dhrhjrE7LO0WXJmgTE4fyBirrgTtTrVmUmQmFVHKPNlh4mXWfavM8cb9RWdL9WqHKQweb8z81ple4ctHGRXdwHQxU8g1EZEiSc523_30PbZOo7a_8SvrofFhH4HOvD4IG_kP4KsDqw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HIADoqUVlEddiWOtzcN5HVcItBTYS0FCvViOPYZFbBZ12QO3_ofe-Hn8EmYcBwGqhNTTKtk4ijyT8fd5Zr4wtietjiCxUtjI5kLayInKxSAqwNW6tLEpvOzi6TAfnMsfF9nFHNvvemGorDLE_jam-2gdzvTCbPZuR6PeT2IPCHgrpAiUrqrm2SKpU6GbL_aPjgfD52RCEfukZ9hqyauug86XeSEutEC63bH0Kp5hf-UfK9SbWO0XoMM1thqQI--3D_eBzUHzka280BNcZw9-f89Q7YpvV-ATxwngjXEcaXyPqfZl-p2PqQqvVY6d_QY81nQMSL0vvaG4bmx7EfVkUTCkO82aUTtZfvfw5p6j2-IZhyCW_2oEBtQr_H3887d_yUk_mdITI8Mps38__cTODw_O9gcifHxBGKR8dyJ3RIYggSzBV9wYBG6Z1rKMUpsCgANdJK6QRKCsc9KWmXFRXUKNtNRUeZ1-ZgvNpIENxnNXlLpOy8QYJ5HJl7EsXA21dhrhjrGbLO0mXJmgTE4fyLhRXQnatWrNpMhMKqKUebLJxPOo21aZ453ri86W6pWHKVw83hn5rTO9wpePMiq6gclsqpBrIiJFkpx9-e-7f2VLg7PTE3VyNDzeYsv0T9vruM0W0BFgB0HPXb0bnPoJOzoGmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interconnection+of+thermal+parameters%2C+microstructure%2C+macrosegregation+and+microhardness+of+unidirectionally+solidified+Zn-rich+Zn%E2%80%93Ag+peritectic+alloys&rft.jtitle=Materials+in+engineering&rft.au=Dias%2C+Marcelino&rft.au=Brito%2C+Crystopher&rft.au=Bertelli%2C+Felipe&rft.au=Rocha%2C+Ot%C3%A1vio+L.&rft.date=2014-11-01&rft.issn=0261-3069&rft.volume=63&rft.spage=848&rft.epage=855&rft_id=info:doi/10.1016%2Fj.matdes.2014.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2014_07_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon