Interconnection of thermal parameters, microstructure, macrosegregation and microhardness of unidirectionally solidified Zn-rich Zn–Ag peritectic alloys
•Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a peritectic matrix.•Equations relating interphase spacing to growth thermal parameters are proposed.•Inverse solute macrosegregation profiles are obs...
Saved in:
Published in | Materials in engineering Vol. 63; pp. 848 - 855 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a peritectic matrix.•Equations relating interphase spacing to growth thermal parameters are proposed.•Inverse solute macrosegregation profiles are observed for peritectic Zn–Ag alloys.•Microhardness depends on microstructural features only for single-phase Zn–Ag alloys.
In this work, the microstructural evolution of Zn–3.2wt%Ag (hypoperitectic) and Zn–8wt%Ag (hyperperitectic) alloys during transient unidirectional solidification is investigated. The experimental results include solidification thermal parameters such as the growth rate (VL), thermal gradient (GL) and tip cooling rate (Ṫ), which are related to the microstructural interphase spacing (λ) by proposed experimental growth laws. It is shown that, the classical lamellar eutectic growth law λ2V=constant, applies to the growth of the peritectic Zn–Ag alloys examined, despite the different values of the constant associated with each alloy composition. In contrast, it is shown that identical functions of the form λ=constant (GL)−14 (VL)−1/8, and λ=constant (Ṫ-1/3) can be applied to both alloys examined. Positive solute macrosegregation was observed in regions close to the bottom of the castings. The dependence of microhardness (HV) on the length scale of the microstructures (including that of a single phase Zn 0.8wt%Ag alloy: λC− cellular spacing) is examined. An experimental Hall–Petch type power law is proposed relating the resulting microhardness to λC for the single phase alloy, and despite the segregation profiles and the alloying differences of the hypoperitectic and hyperperitectic alloys, the average microhardnesses of these alloys is shown to be essentially constant and similar along the castings lengths. |
---|---|
AbstractList | •Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a peritectic matrix.•Equations relating interphase spacing to growth thermal parameters are proposed.•Inverse solute macrosegregation profiles are observed for peritectic Zn–Ag alloys.•Microhardness depends on microstructural features only for single-phase Zn–Ag alloys.
In this work, the microstructural evolution of Zn–3.2wt%Ag (hypoperitectic) and Zn–8wt%Ag (hyperperitectic) alloys during transient unidirectional solidification is investigated. The experimental results include solidification thermal parameters such as the growth rate (VL), thermal gradient (GL) and tip cooling rate (Ṫ), which are related to the microstructural interphase spacing (λ) by proposed experimental growth laws. It is shown that, the classical lamellar eutectic growth law λ2V=constant, applies to the growth of the peritectic Zn–Ag alloys examined, despite the different values of the constant associated with each alloy composition. In contrast, it is shown that identical functions of the form λ=constant (GL)−14 (VL)−1/8, and λ=constant (Ṫ-1/3) can be applied to both alloys examined. Positive solute macrosegregation was observed in regions close to the bottom of the castings. The dependence of microhardness (HV) on the length scale of the microstructures (including that of a single phase Zn 0.8wt%Ag alloy: λC− cellular spacing) is examined. An experimental Hall–Petch type power law is proposed relating the resulting microhardness to λC for the single phase alloy, and despite the segregation profiles and the alloying differences of the hypoperitectic and hyperperitectic alloys, the average microhardnesses of these alloys is shown to be essentially constant and similar along the castings lengths. In this work, the microstructural evolution of Zn-3.2wt%Ag (hypoperitectic) and Zn-8wt%Ag (hyperperitectic) alloys during transient unidirectional solidification is investigated. The experimental results include solidification thermal parameters such as the growth rate (V L), thermal gradient (G L) and tip cooling rate (), which are related to the microstructural interphase spacing ( lambda ) by proposed experimental growth laws. It is shown that, the classical lamellar eutectic growth law lambda 2 V =constant, applies to the growth of the peritectic Zn-Ag alloys examined, despite the different values of the constant associated with each alloy composition. In contrast, it is shown that identical functions of the form lambda =constant (G L)-14 (V L)-1/8, and lambda =constant () can be applied to both alloys examined. Positive solute macrosegregation was observed in regions close to the bottom of the castings. The dependence of microhardness (HV) on the length scale of the microstructures (including that of a single phase Zn 0.8wt%Ag alloy: lambda C- cellular spacing) is examined. An experimental Hall-Petch type power law is proposed relating the resulting microhardness to lambda C for the single phase alloy, and despite the segregation profiles and the alloying differences of the hypoperitectic and hyperperitectic alloys, the average microhardnesses of these alloys is shown to be essentially constant and similar along the castings lengths. |
Author | Bertelli, Felipe Rocha, Otávio L. Garcia, Amauri Dias, Marcelino Brito, Crystopher |
Author_xml | – sequence: 1 givenname: Marcelino surname: Dias fullname: Dias, Marcelino organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil – sequence: 2 givenname: Crystopher surname: Brito fullname: Brito, Crystopher organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil – sequence: 3 givenname: Felipe surname: Bertelli fullname: Bertelli, Felipe organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil – sequence: 4 givenname: Otávio L. surname: Rocha fullname: Rocha, Otávio L. organization: Federal Institute of Education, Science and Technology of Pará, IFPA, Almirante Barroso Avenue 1155, 66093-020 Belém, PA, Brazil – sequence: 5 givenname: Amauri surname: Garcia fullname: Garcia, Amauri email: amaurig@fem.unicamp.br organization: Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil |
BookMark | eNqFkL1uFDEURl0kEkngDSimpMgMtsfzRxEpigJEikQDDY3lta93vZqxN9eeSNvlHeh4PJ4ET4YqBamurn2-T7rnnJz44IGQ94xWjLL2476aVDIQK06ZqGhXUcpPyBnlLStr2g5vyHmMe0pZxxg_I7_vfALUwXvQyQVfBFukHeCkxuKgUE2Qv-NlMTmNISacdZoR8q6WHbYIW_WcU96s0E6h8RDj0jR7ZxyuzWocj0UMY36xDkzx05fo9C7PP0-_rrfFAdClBdVFRsMxviWnVo0R3v2bF-TH59vvN1_L-29f7m6u70st6JDK1lIxDMCh4X1PtRasbZQSPa1NDQAWVMdtJ0TTcmOtMH2jLd30sBm6Xg_tpr4gH9beA4aHGWKSk4saxlF5CHOUrBW85qwXTUbFii7HRwQrD-gmhUfJqFz0y71c9ctFv6SdzPpz7NOLmHbpWVtC5cbXwldrGLKDRwcoo3bgNaxmpQnu_wV_AQUyrgU |
CitedBy_id | crossref_primary_10_1016_j_actamat_2024_119992 crossref_primary_10_1016_j_matdes_2016_04_054 crossref_primary_10_1016_j_jmapro_2019_10_029 crossref_primary_10_1016_j_microrel_2017_12_029 crossref_primary_10_3390_met12071076 crossref_primary_10_1016_j_actamat_2017_03_019 crossref_primary_10_3390_met14101134 crossref_primary_10_1016_j_matchar_2021_110936 crossref_primary_10_3390_ma14102505 crossref_primary_10_1007_s00339_019_2848_6 crossref_primary_10_1016_S1003_6326_18_64811_3 |
Cites_doi | 10.1016/S1359-6454(01)00321-4 10.1016/0956-7151(93)90237-M 10.1016/j.msea.2004.01.022 10.1016/S1359-6462(96)00438-1 10.1016/j.matdes.2013.04.023 10.1016/S1359-6454(00)00003-3 10.1016/j.matlet.2004.04.006 10.1016/0036-9748(85)90325-4 10.1016/j.matlet.2012.04.095 10.1007/s11661-000-0049-7 10.1016/S1359-6454(99)00365-1 10.1016/j.electacta.2012.04.122 10.1016/j.matchemphys.2013.11.030 10.1016/j.jallcom.2009.01.105 10.1016/j.matdes.2010.05.046 10.1016/j.optlaseng.2011.01.007 10.1016/j.matlet.2011.03.034 10.1016/j.scriptamat.2004.05.011 10.1016/S0921-5093(98)01005-3 10.1016/j.jpcs.2012.05.014 10.1007/s11664-009-1061-3 10.1016/0022-0248(94)90477-4 10.1016/S0921-5093(03)00518-5 10.1179/imr.1996.41.4.129 10.1016/0001-6160(61)90186-9 10.1007/s11661-008-9542-1 10.1016/j.matdes.2014.02.026 10.1007/s12598-011-0408-0 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.matdes.2014.07.002 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 855 |
ExternalDocumentID | 10_1016_j_matdes_2014_07_002 S0261306914005299 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH 7SP 7SR 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c409t-6f0499e2e52880cc4165aa4803d3eeefea72f744562dff4d85cf0b8eb978c96b3 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Sun Aug 24 04:12:48 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 04:23:13 EDT 2025 Fri Feb 23 02:25:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Macrosegregation Microstructure Microhardness Peritectic Zn–Ag alloys Solidification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-6f0499e2e52880cc4165aa4803d3eeefea72f744562dff4d85cf0b8eb978c96b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1642321845 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1642321845 crossref_primary_10_1016_j_matdes_2014_07_002 crossref_citationtrail_10_1016_j_matdes_2014_07_002 elsevier_sciencedirect_doi_10_1016_j_matdes_2014_07_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Silva, Spinelli, Garcia (b0140) 2009; 480 Brito, Siqueira, Spinelli, Garcia (b0065) 2012; 80 Liu, Li, Su, Luo, Zhang, Guo (b0030) 2011; 65 Kaya, Böyük, Engin, Çadirli, Marasli (b0050) 2010; 39 Kerr, Kurz (b0005) 1996; 41 Uhlmann, Chadwick (b0075) 1961; 9 Yasuda, Ohnaka, Tokieda, Notake (b0010) 2003 Ma, Li, Ng, Jones (b0060) 2000; 48 Xu, Feng, Li, Li (b0080) 2004; 373 Xu, Feng, Li, Zhang, Li (b0085) 2002; 50 Rocha, Siqueira, Garcia (b0095) 2003; 361 Su, Lin, Wang, Xue, Huang (b0040) 2004; 51 Rosa, Spinelli, Ferreira, Garcia (b0100) 2008; 39A Zhang, Li, Xu, Li (b0115) 2002; 12 Lee, Verhoeven (b0125) 1994; 144 Su, Wang, Lin, Huang (b0035) 2004; 58 (accessed 16 01 2014). Busse, Meissen (b0120) 1997; 36 Ha, Hunt (b0015) 2000; 31A Bertelli, Meza, Goulart, Cheung, Riva, Garcia (b0110) 2011; 49 Gill, Kurz (b0130) 1993; 41 Brito, Siqueira, Spinelli, Garcia (b0020) 2012; 73 Spinelli, Silva, Garcia (b0155) 2014; 58 Silva, Spinelli, Mangelinck-Noel, Garcia (b0145) 2010; 31 Osório, Brito, Peixoto, Garcia (b0070) 2012; 76 Calberg, Bergman (b0135) 1985; 19 Ma, Li, Ng, Jones (b0055) 2000; 48 Jackson, Hunt (b0105) 1966; 236 Dias, Brito, Bertelli, Garcia (b0090) 2014; 143 Tokieda, Yasuda, Ohnaka (b0025) 1999; 262 Canté, Brito, Spinelli, Garcia (b0160) 2013; 51 Hu, Yan, Chen, Li, Fu (b0045) 2011; 30 Brito (10.1016/j.matdes.2014.07.002_b0065) 2012; 80 Osório (10.1016/j.matdes.2014.07.002_b0070) 2012; 76 Yasuda (10.1016/j.matdes.2014.07.002_b0010) 2003 Canté (10.1016/j.matdes.2014.07.002_b0160) 2013; 51 Su (10.1016/j.matdes.2014.07.002_b0035) 2004; 58 10.1016/j.matdes.2014.07.002_b0150 Spinelli (10.1016/j.matdes.2014.07.002_b0155) 2014; 58 Bertelli (10.1016/j.matdes.2014.07.002_b0110) 2011; 49 Kaya (10.1016/j.matdes.2014.07.002_b0050) 2010; 39 Ma (10.1016/j.matdes.2014.07.002_b0060) 2000; 48 Ha (10.1016/j.matdes.2014.07.002_b0015) 2000; 31A Jackson (10.1016/j.matdes.2014.07.002_b0105) 1966; 236 Silva (10.1016/j.matdes.2014.07.002_b0140) 2009; 480 Busse (10.1016/j.matdes.2014.07.002_b0120) 1997; 36 Dias (10.1016/j.matdes.2014.07.002_b0090) 2014; 143 Su (10.1016/j.matdes.2014.07.002_b0040) 2004; 51 Brito (10.1016/j.matdes.2014.07.002_b0020) 2012; 73 Hu (10.1016/j.matdes.2014.07.002_b0045) 2011; 30 Rocha (10.1016/j.matdes.2014.07.002_b0095) 2003; 361 Xu (10.1016/j.matdes.2014.07.002_b0080) 2004; 373 Zhang (10.1016/j.matdes.2014.07.002_b0115) 2002; 12 Liu (10.1016/j.matdes.2014.07.002_b0030) 2011; 65 Tokieda (10.1016/j.matdes.2014.07.002_b0025) 1999; 262 Xu (10.1016/j.matdes.2014.07.002_b0085) 2002; 50 Gill (10.1016/j.matdes.2014.07.002_b0130) 1993; 41 Calberg (10.1016/j.matdes.2014.07.002_b0135) 1985; 19 Uhlmann (10.1016/j.matdes.2014.07.002_b0075) 1961; 9 Kerr (10.1016/j.matdes.2014.07.002_b0005) 1996; 41 Silva (10.1016/j.matdes.2014.07.002_b0145) 2010; 31 Rosa (10.1016/j.matdes.2014.07.002_b0100) 2008; 39A Ma (10.1016/j.matdes.2014.07.002_b0055) 2000; 48 Lee (10.1016/j.matdes.2014.07.002_b0125) 1994; 144 |
References_xml | – volume: 48 start-page: 1741 year: 2000 end-page: 1751 ident: b0060 article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – II. Microstructural length scales publication-title: Acta Mater – volume: 373 start-page: 139 year: 2004 end-page: 145 ident: b0080 article-title: Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification publication-title: Mater Sci Eng A – volume: 262 start-page: 238 year: 1999 end-page: 245 ident: b0025 article-title: Formation of banded structures in Pb–Bi peritectic alloys publication-title: Mater Sci Eng A – volume: 41 start-page: 129 year: 1996 end-page: 164 ident: b0005 article-title: Solidification of peritectic alloys publication-title: Int Mater Rev – volume: 361 start-page: 111 year: 2003 end-page: 118 ident: b0095 article-title: Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys publication-title: Mater Sci Eng A – volume: 480 start-page: 485 year: 2009 end-page: 493 ident: b0140 article-title: Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys publication-title: J Alloys Compd – volume: 58 start-page: 2670 year: 2004 end-page: 2674 ident: b0035 article-title: Researches on lamellar structures in the unidirectional solidified Zn–2 publication-title: Mater Lett – volume: 143 start-page: 895 year: 2014 end-page: 899 ident: b0090 article-title: Cellular growth of single-phase Zn–Ag alloys unidirectionally solidified publication-title: Mater Chem Phys – volume: 12 start-page: 433 year: 2002 end-page: 436 ident: b0115 article-title: Laser resolidification of Zn-rich Zn–Ag peritectic alloys publication-title: Trans Nonferrous Met Soc China – volume: 31 start-page: 4584 year: 2010 end-page: 4591 ident: b0145 article-title: Microstructural development during transient directional solidification of a hypermonotectic Al–Bi alloy publication-title: Mater Des – volume: 30 start-page: 424 year: 2011 end-page: 431 ident: b0045 article-title: Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb–26 publication-title: Rare Metals – volume: 51 start-page: 342 year: 2013 end-page: 346 ident: b0160 article-title: Interrelation of cell spacing, intermetallic compounds and hardness on a directionally solidified Al–1.0Fe–1.0Ni alloy publication-title: Mater Des – volume: 73 start-page: 1173 year: 2012 end-page: 1181 ident: b0020 article-title: Cellular growth during transient directional solidification of Zn-rich Zn–Cu monophasic and peritectic alloys publication-title: J Phys Chem Solids – volume: 36 start-page: 653 year: 1997 end-page: 658 ident: b0120 article-title: Coupled growth of the peritectic α and the peritectic γ phases in binary titanium aluminides publication-title: Scripta Mater – volume: 65 start-page: 1628 year: 2011 end-page: 1631 ident: b0030 article-title: Directional solidification of Cu–20Sn alloy at low speed: from peritectic coupled growth to banding publication-title: Mater Lett – volume: 49 start-page: 490 year: 2011 end-page: 497 ident: b0110 article-title: Laser remelting of Al–1.5 publication-title: Opt Laser Eng – volume: 41 start-page: 3563 year: 1993 end-page: 3573 ident: b0130 article-title: Rapidly solidified Al–Cu alloys I: experimental determination of the microstructure-selection map publication-title: Acta Metall Mater – volume: 39A start-page: 2161 year: 2008 end-page: 2174 ident: b0100 article-title: Cellular/dendritic transition and microstructure evolution during transient directional solidification of Pb–Sb alloys publication-title: Metall Mater Trans A – reference: (accessed 16 01 2014). – volume: 236 start-page: 1129 year: 1966 end-page: 1142 ident: b0105 article-title: Lamellar and rod eutectic growth publication-title: Trans Metall Soc AIME – volume: 19 start-page: 333 year: 1985 end-page: 336 ident: b0135 article-title: On the formation of irregular monotectic structures publication-title: Scripta Metall – volume: 9 start-page: 835 year: 1961 end-page: 840 ident: b0075 article-title: Unidirectional solidification of melts producing the peritectic reaction publication-title: Acta Metall – volume: 76 start-page: 218 year: 2012 end-page: 228 ident: b0070 article-title: Electrochemical behavior of Zn-rich Zn–Cu peritectic alloys affected by macrosegregation and microstructural array publication-title: Electrochim Acta – start-page: 160 year: 2003 end-page: 173 ident: b0010 article-title: Peritectic solidification publication-title: Solidification and Castings – volume: 51 start-page: 397 year: 2004 end-page: 403 ident: b0040 article-title: Lamellar structures in laser surface remelted Zn–Cu peritectic alloy under ultra-high temperature gradient publication-title: Scripta Mater – volume: 48 start-page: 419 year: 2000 end-page: 431 ident: b0055 article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – I. microstructure selection publication-title: Acta Mater – volume: 144 start-page: 353 year: 1994 end-page: 366 ident: b0125 article-title: Peritectic formation in the Ni–Al system publication-title: J Cryst Growth – volume: 58 start-page: 482 year: 2014 end-page: 490 ident: b0155 article-title: Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications publication-title: Mater Des – volume: 80 start-page: 106 year: 2012 end-page: 109 ident: b0065 article-title: Effects of cell morphology and macrosegregation of directionally solidified Zn-rich Zn–Cu alloys on the resulting microhardness publication-title: Mater Lett – volume: 31A start-page: 29 year: 2000 end-page: 34 ident: b0015 article-title: A numerical and experimental study of the rate of transformation in three directionally grown peritectic systems publication-title: Metall Mater Trans – volume: 50 start-page: 183 year: 2002 end-page: 193 ident: b0085 article-title: Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys publication-title: Acta Mater – volume: 39 start-page: 303 year: 2010 end-page: 311 ident: b0050 article-title: Measurements of microhardness and thermal and electrical properties of the binary Zn–0.7 publication-title: J Electron Mater – volume: 50 start-page: 183 year: 2002 ident: 10.1016/j.matdes.2014.07.002_b0085 article-title: Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00321-4 – volume: 41 start-page: 3563 year: 1993 ident: 10.1016/j.matdes.2014.07.002_b0130 article-title: Rapidly solidified Al–Cu alloys I: experimental determination of the microstructure-selection map publication-title: Acta Metall Mater doi: 10.1016/0956-7151(93)90237-M – volume: 373 start-page: 139 year: 2004 ident: 10.1016/j.matdes.2014.07.002_b0080 article-title: Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.01.022 – volume: 36 start-page: 653 year: 1997 ident: 10.1016/j.matdes.2014.07.002_b0120 article-title: Coupled growth of the peritectic α and the peritectic γ phases in binary titanium aluminides publication-title: Scripta Mater doi: 10.1016/S1359-6462(96)00438-1 – volume: 51 start-page: 342 year: 2013 ident: 10.1016/j.matdes.2014.07.002_b0160 article-title: Interrelation of cell spacing, intermetallic compounds and hardness on a directionally solidified Al–1.0Fe–1.0Ni alloy publication-title: Mater Des doi: 10.1016/j.matdes.2013.04.023 – volume: 48 start-page: 1741 year: 2000 ident: 10.1016/j.matdes.2014.07.002_b0060 article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – II. Microstructural length scales publication-title: Acta Mater doi: 10.1016/S1359-6454(00)00003-3 – volume: 58 start-page: 2670 year: 2004 ident: 10.1016/j.matdes.2014.07.002_b0035 article-title: Researches on lamellar structures in the unidirectional solidified Zn–2wt%Cu peritectic alloy publication-title: Mater Lett doi: 10.1016/j.matlet.2004.04.006 – volume: 19 start-page: 333 year: 1985 ident: 10.1016/j.matdes.2014.07.002_b0135 article-title: On the formation of irregular monotectic structures publication-title: Scripta Metall doi: 10.1016/0036-9748(85)90325-4 – volume: 80 start-page: 106 year: 2012 ident: 10.1016/j.matdes.2014.07.002_b0065 article-title: Effects of cell morphology and macrosegregation of directionally solidified Zn-rich Zn–Cu alloys on the resulting microhardness publication-title: Mater Lett doi: 10.1016/j.matlet.2012.04.095 – volume: 31A start-page: 29 year: 2000 ident: 10.1016/j.matdes.2014.07.002_b0015 article-title: A numerical and experimental study of the rate of transformation in three directionally grown peritectic systems publication-title: Metall Mater Trans doi: 10.1007/s11661-000-0049-7 – volume: 48 start-page: 419 year: 2000 ident: 10.1016/j.matdes.2014.07.002_b0055 article-title: Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys – I. microstructure selection publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00365-1 – volume: 76 start-page: 218 year: 2012 ident: 10.1016/j.matdes.2014.07.002_b0070 article-title: Electrochemical behavior of Zn-rich Zn–Cu peritectic alloys affected by macrosegregation and microstructural array publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.04.122 – start-page: 160 year: 2003 ident: 10.1016/j.matdes.2014.07.002_b0010 article-title: Peritectic solidification – volume: 143 start-page: 895 year: 2014 ident: 10.1016/j.matdes.2014.07.002_b0090 article-title: Cellular growth of single-phase Zn–Ag alloys unidirectionally solidified publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2013.11.030 – volume: 12 start-page: 433 year: 2002 ident: 10.1016/j.matdes.2014.07.002_b0115 article-title: Laser resolidification of Zn-rich Zn–Ag peritectic alloys publication-title: Trans Nonferrous Met Soc China – volume: 480 start-page: 485 year: 2009 ident: 10.1016/j.matdes.2014.07.002_b0140 article-title: Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2009.01.105 – volume: 31 start-page: 4584 year: 2010 ident: 10.1016/j.matdes.2014.07.002_b0145 article-title: Microstructural development during transient directional solidification of a hypermonotectic Al–Bi alloy publication-title: Mater Des doi: 10.1016/j.matdes.2010.05.046 – volume: 49 start-page: 490 year: 2011 ident: 10.1016/j.matdes.2014.07.002_b0110 article-title: Laser remelting of Al–1.5wt%Fe alloy surfaces: numerical and experimental analyses publication-title: Opt Laser Eng doi: 10.1016/j.optlaseng.2011.01.007 – ident: 10.1016/j.matdes.2014.07.002_b0150 – volume: 65 start-page: 1628 year: 2011 ident: 10.1016/j.matdes.2014.07.002_b0030 article-title: Directional solidification of Cu–20Sn alloy at low speed: from peritectic coupled growth to banding publication-title: Mater Lett doi: 10.1016/j.matlet.2011.03.034 – volume: 51 start-page: 397 year: 2004 ident: 10.1016/j.matdes.2014.07.002_b0040 article-title: Lamellar structures in laser surface remelted Zn–Cu peritectic alloy under ultra-high temperature gradient publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2004.05.011 – volume: 262 start-page: 238 year: 1999 ident: 10.1016/j.matdes.2014.07.002_b0025 article-title: Formation of banded structures in Pb–Bi peritectic alloys publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(98)01005-3 – volume: 73 start-page: 1173 year: 2012 ident: 10.1016/j.matdes.2014.07.002_b0020 article-title: Cellular growth during transient directional solidification of Zn-rich Zn–Cu monophasic and peritectic alloys publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2012.05.014 – volume: 39 start-page: 303 year: 2010 ident: 10.1016/j.matdes.2014.07.002_b0050 article-title: Measurements of microhardness and thermal and electrical properties of the binary Zn–0.7wt%Cu hypoperitectic alloy publication-title: J Electron Mater doi: 10.1007/s11664-009-1061-3 – volume: 144 start-page: 353 year: 1994 ident: 10.1016/j.matdes.2014.07.002_b0125 article-title: Peritectic formation in the Ni–Al system publication-title: J Cryst Growth doi: 10.1016/0022-0248(94)90477-4 – volume: 361 start-page: 111 year: 2003 ident: 10.1016/j.matdes.2014.07.002_b0095 article-title: Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(03)00518-5 – volume: 41 start-page: 129 year: 1996 ident: 10.1016/j.matdes.2014.07.002_b0005 article-title: Solidification of peritectic alloys publication-title: Int Mater Rev doi: 10.1179/imr.1996.41.4.129 – volume: 9 start-page: 835 year: 1961 ident: 10.1016/j.matdes.2014.07.002_b0075 article-title: Unidirectional solidification of melts producing the peritectic reaction publication-title: Acta Metall doi: 10.1016/0001-6160(61)90186-9 – volume: 236 start-page: 1129 year: 1966 ident: 10.1016/j.matdes.2014.07.002_b0105 article-title: Lamellar and rod eutectic growth publication-title: Trans Metall Soc AIME – volume: 39A start-page: 2161 year: 2008 ident: 10.1016/j.matdes.2014.07.002_b0100 article-title: Cellular/dendritic transition and microstructure evolution during transient directional solidification of Pb–Sb alloys publication-title: Metall Mater Trans A doi: 10.1007/s11661-008-9542-1 – volume: 58 start-page: 482 year: 2014 ident: 10.1016/j.matdes.2014.07.002_b0155 article-title: Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications publication-title: Mater Des doi: 10.1016/j.matdes.2014.02.026 – volume: 30 start-page: 424 year: 2011 ident: 10.1016/j.matdes.2014.07.002_b0045 article-title: Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb–26wt%Bi hypoperitectic alloy publication-title: Rare Metals doi: 10.1007/s12598-011-0408-0 |
SSID | ssj0017112 |
Score | 2.1599894 |
Snippet | •Transient growth of peritectic Zn–Ag alloys from the melt is experimentally examined.•The microstructure has dispersed dendritic primary crystals in a... In this work, the microstructural evolution of Zn-3.2wt%Ag (hypoperitectic) and Zn-8wt%Ag (hyperperitectic) alloys during transient unidirectional... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 848 |
SubjectTerms | Alloys Castings Constants Macrosegregation Microhardness Microstructure Peritectic alloys Peritectic Zn–Ag alloys Solidification Zinc base alloys |
Title | Interconnection of thermal parameters, microstructure, macrosegregation and microhardness of unidirectionally solidified Zn-rich Zn–Ag peritectic alloys |
URI | https://dx.doi.org/10.1016/j.matdes.2014.07.002 https://www.proquest.com/docview/1642321845 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYgXOBQQR_iUZArccTKPryvY4RAAQSXFgn1YnntMQ1KNogkh9z6H7jx8_glnfF6UakqIXGKvFqvIo935vs8M98ydiitjiCxUtjI5kLayInKxSAqwGhd2tgUXnbx8iofXsvzm-xmhR13vTBUVhl8f-vTvbcOV_phNfv3o1H_O7EHBLwVUgRKV1WrbC3B6Br12Nrg7GJ49ZJMKGKf9AxHLXnVddD5Mi_EhRZItzuWXsUznK_8J0L946t9ADrdZB8CcuSD9s9tsRVoPrKNv_QEP7Enf75nqHbFtyvwqeME8CY4jzS-J1T7MjviE6rCa5VjFw-AY01jQOp96w3FdWPbm6gni5whPWnRjNrF8qeH4yXHbYtXHIJY_rMR6FB_4e_z78fBLSf9ZEpPjAynzP5y9pldn578OB6K8PEFYZDyzUXuiAxBAlmCr7gxCNwyrWUZpTYFAAe6SFwhiUBZ56QtM-OiuoQaaamp8jr9wnrNtIFtxnNXlLpOy8QYJ5HJl7EsXA21dhrhjrE7LO0WXJmgTE4fyBirrgTtTrVmUmQmFVHKPNlh4mXWfavM8cb9RWdL9WqHKQweb8z81ple4ctHGRXdwHQxU8g1EZEiSc523_30PbZOo7a_8SvrofFhH4HOvD4IG_kP4KsDqw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HIADoqUVlEddiWOtzcN5HVcItBTYS0FCvViOPYZFbBZ12QO3_ofe-Hn8EmYcBwGqhNTTKtk4ijyT8fd5Zr4wtietjiCxUtjI5kLayInKxSAqwNW6tLEpvOzi6TAfnMsfF9nFHNvvemGorDLE_jam-2gdzvTCbPZuR6PeT2IPCHgrpAiUrqrm2SKpU6GbL_aPjgfD52RCEfukZ9hqyauug86XeSEutEC63bH0Kp5hf-UfK9SbWO0XoMM1thqQI--3D_eBzUHzka280BNcZw9-f89Q7YpvV-ATxwngjXEcaXyPqfZl-p2PqQqvVY6d_QY81nQMSL0vvaG4bmx7EfVkUTCkO82aUTtZfvfw5p6j2-IZhyCW_2oEBtQr_H3887d_yUk_mdITI8Mps38__cTODw_O9gcifHxBGKR8dyJ3RIYggSzBV9wYBG6Z1rKMUpsCgANdJK6QRKCsc9KWmXFRXUKNtNRUeZ1-ZgvNpIENxnNXlLpOy8QYJ5HJl7EsXA21dhrhjrGbLO0mXJmgTE4fyLhRXQnatWrNpMhMKqKUebLJxPOo21aZ453ri86W6pWHKVw83hn5rTO9wpePMiq6gclsqpBrIiJFkpx9-e-7f2VLg7PTE3VyNDzeYsv0T9vruM0W0BFgB0HPXb0bnPoJOzoGmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interconnection+of+thermal+parameters%2C+microstructure%2C+macrosegregation+and+microhardness+of+unidirectionally+solidified+Zn-rich+Zn%E2%80%93Ag+peritectic+alloys&rft.jtitle=Materials+in+engineering&rft.au=Dias%2C+Marcelino&rft.au=Brito%2C+Crystopher&rft.au=Bertelli%2C+Felipe&rft.au=Rocha%2C+Ot%C3%A1vio+L.&rft.date=2014-11-01&rft.issn=0261-3069&rft.volume=63&rft.spage=848&rft.epage=855&rft_id=info:doi/10.1016%2Fj.matdes.2014.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2014_07_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |