Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions
Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not...
Saved in:
Published in | Acta astronautica Vol. 152; pp. 630 - 638 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.11.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not studied enough. Here, a series of three-dimensional numerical simulations of a rotating detonation engine under both premixed and non-premixed conditions using H2/air mixture are performed. The explicit formulation of density-based solver in ANSYS Fluent is used to perform the simulations. Two total mass flow rates of 272.3 g/s and 500 g/s are selected. When the total mass flow rate is 272.3 g/s, the engine operates at single-wave mode under both premixed and non-premixed conditions. When the total mass flow rate is 500 g/s, the engine operates at single-wave mode under premixed condition. While under non-premixed condition, a spontaneous formation of dual-wave mode is observed. This case agrees well with the phenomenon observed in experiments that as the total mass flow rate increases, the number of rotating detonation waves tends to increase. Pressure waves caused by the high pressure behind the detonation waves can propagate upstream to the H2 and air plenums. The pressure feedback in the H2 plenum is much more obvious than that in the air plenum. Due to the imperfect mixing of H2/air and the more deflagration combustion caused by the hot detonation products, the thrust of the RDE under non-premixed condition is smaller than that under premixed condition.
•The flowfield in an RDE under premixed/non-premixed conditions is obtained.•In non-premixed cases, the detonation combustion occurs near the outer wall.•There are pressure disturbances in the H2 and air supplying plenums.•A spontaneous formation of dual-wave mode is observed for the non-premixed case.•The thrust under non-premixed condition has more fluctuations. |
---|---|
AbstractList | Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not studied enough. Here, a series of three-dimensional numerical simulations of a rotating detonation engine under both premixed and non-premixed conditions using H2/air mixture are performed. The explicit formulation of density-based solver in ANSYS Fluent is used to perform the simulations. Two total mass flow rates of 272.3 g/s and 500 g/s are selected. When the total mass flow rate is 272.3 g/s, the engine operates at single-wave mode under both premixed and non-premixed conditions. When the total mass flow rate is 500 g/s, the engine operates at single-wave mode under premixed condition. While under non-premixed condition, a spontaneous formation of dual-wave mode is observed. This case agrees well with the phenomenon observed in experiments that as the total mass flow rate increases, the number of rotating detonation waves tends to increase. Pressure waves caused by the high pressure behind the detonation waves can propagate upstream to the H2 and air plenums. The pressure feedback in the H2 plenum is much more obvious than that in the air plenum. Due to the imperfect mixing of H2/air and the more deflagration combustion caused by the hot detonation products, the thrust of the RDE under non-premixed condition is smaller than that under premixed condition.
•The flowfield in an RDE under premixed/non-premixed conditions is obtained.•In non-premixed cases, the detonation combustion occurs near the outer wall.•There are pressure disturbances in the H2 and air supplying plenums.•A spontaneous formation of dual-wave mode is observed for the non-premixed case.•The thrust under non-premixed condition has more fluctuations. Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not studied enough. Here, a series of three-dimensional numerical simulations of a rotating detonation engine under both premixed and non-premixed conditions using H2/air mixture are performed. The explicit formulation of density-based solver in ANSYS Fluent is used to perform the simulations. Two total mass flow rates of 272.3 g/s and 500 g/s are selected. When the total mass flow rate is 272.3 g/s, the engine operates at single-wave mode under both premixed and non-premixed conditions. When the total mass flow rate is 500 g/s, the engine operates at single-wave mode under premixed condition. While under non-premixed condition, a spontaneous formation of dual-wave mode is observed. This case agrees well with the phenomenon observed in experiments that as the total mass flow rate increases, the number of rotating detonation waves tends to increase. Pressure waves caused by the high pressure behind the detonation waves can propagate upstream to the H2 and air plenums. The pressure feedback in the H2 plenum is much more obvious than that in the air plenum. Due to the imperfect mixing of H2/air and the more deflagration combustion caused by the hot detonation products, the thrust of the RDE under non-premixed condition is smaller than that under premixed condition. |
Author | Zhou, Jin Liu, Shijie Sun, Jian Lin, Zhiyong |
Author_xml | – sequence: 1 givenname: Jian surname: Sun fullname: Sun, Jian email: 506096226@qq.com – sequence: 2 givenname: Jin surname: Zhou fullname: Zhou, Jin email: zj706@vip.sina.com – sequence: 3 givenname: Shijie surname: Liu fullname: Liu, Shijie email: liushijie@nudt.edu.cn – sequence: 4 givenname: Zhiyong surname: Lin fullname: Lin, Zhiyong email: linzy96@nudt.edu.cn |
BookMark | eNqNkMtOwzAQRS0EEm3hG4jEOuk4SWN7waKqeEkVbGCL5dqTylVrF9ut4O9JCbBgA6vR1dw7jzMkx847JOSCQkGBNuNVoXRSKqbgixIoL0AUQMsjMqCcibyECo7JAEDU-YQ1k1MyjHEFAKzkYkBeHnYbDFardWbdHmOyS5Wsd5lvM5UFnzrllpnB5F3fQLe0DrOdMxiybcCNfUMz7o7Kv0WmvTP2YI5n5KRV64jnX3VEnm-un2Z3-fzx9n42nee6BpHyRjeVVrykhk8qpqgCJkxTGkHRCCMaXWNZKcM5mAXjWC8MthQUbRkAGoRqRC77udvgX3fdG3Lld8F1K2VJK8or4MA611Xv0sHHGLCV2qbPr1JQdi0pyANSuZI_SOUBqQQhO6Rdnv3Kb4PdqPD-j-S0T2IHYW8xyKgtOo3GBtRJGm__nPEBZLGbKw |
CitedBy_id | crossref_primary_10_1007_s44270_024_00003_5 crossref_primary_10_1103_PhysRevFluids_6_050507 crossref_primary_10_1016_j_actaastro_2019_08_010 crossref_primary_10_1103_PhysRevE_104_024210 crossref_primary_10_2514_1_B39600 crossref_primary_10_1016_j_ast_2020_105825 crossref_primary_10_1016_j_combustflame_2024_113726 crossref_primary_10_1155_2020_8863691 crossref_primary_10_1115_1_4063706 crossref_primary_10_1016_j_actaastro_2019_07_001 crossref_primary_10_2514_1_B38868 crossref_primary_10_1016_j_actaastro_2019_08_019 crossref_primary_10_1016_j_jaecs_2024_100313 crossref_primary_10_1016_j_combustflame_2022_112550 crossref_primary_10_2514_1_J061549 crossref_primary_10_1016_j_energy_2022_123911 crossref_primary_10_1016_j_actaastro_2022_02_015 crossref_primary_10_1016_j_ast_2019_105301 crossref_primary_10_1016_j_ijhydene_2019_04_168 crossref_primary_10_1016_j_actaastro_2019_05_035 crossref_primary_10_1016_j_ijhydene_2020_02_009 crossref_primary_10_2514_1_J058157 crossref_primary_10_1016_j_ijhydene_2021_12_043 crossref_primary_10_1631_jzus_A2100448 crossref_primary_10_1016_j_combustflame_2023_113253 crossref_primary_10_1016_j_actaastro_2021_02_035 crossref_primary_10_1631_jzus_A2000314 crossref_primary_10_1016_j_actaastro_2024_10_067 crossref_primary_10_1016_j_actaastro_2019_09_038 crossref_primary_10_1016_j_ijhydene_2024_06_339 crossref_primary_10_1016_j_proci_2024_105416 crossref_primary_10_1016_j_energy_2022_126170 crossref_primary_10_1063_5_0023972 crossref_primary_10_1115_1_4066158 crossref_primary_10_1016_j_combustflame_2022_112209 crossref_primary_10_1016_j_combustflame_2022_112013 crossref_primary_10_1016_j_combustflame_2022_112253 crossref_primary_10_1016_j_fuel_2022_125949 crossref_primary_10_1063_5_0207508 crossref_primary_10_2514_1_B37719 crossref_primary_10_1007_s00193_023_01147_0 crossref_primary_10_1016_j_actaastro_2019_03_067 crossref_primary_10_1016_j_ijhydene_2019_11_014 crossref_primary_10_1016_j_actaastro_2021_12_026 crossref_primary_10_1007_s00193_024_01180_7 crossref_primary_10_1016_j_actaastro_2020_05_020 crossref_primary_10_1016_j_applthermaleng_2025_125436 crossref_primary_10_18698_0536_1044_2022_11_92_99 crossref_primary_10_1016_j_actaastro_2024_06_017 crossref_primary_10_1016_j_ijhydene_2023_04_040 crossref_primary_10_1016_j_actaastro_2021_11_035 crossref_primary_10_1016_j_actaastro_2021_02_010 crossref_primary_10_3389_fpace_2023_1127671 |
Cites_doi | 10.1016/j.actaastro.2016.09.014 10.1016/j.compfluid.2018.05.005 10.1080/00102202.2012.682669 10.1016/j.ast.2018.08.003 10.1016/j.ijhydene.2017.04.214 10.1016/j.energy.2018.03.062 10.2514/1.17656 10.1016/j.ijhydene.2016.12.038 10.1016/j.actaastro.2018.05.024 10.1007/s10573-007-0061-y 10.2514/1.B36095 10.1023/A:1023800521344 10.1134/S1990793113010119 10.1016/j.ijhydene.2015.11.041 10.2514/3.28557 10.1080/00102202.2015.1067202 10.1016/j.applthermaleng.2018.04.015 10.1016/j.expthermflusci.2017.12.004 10.1016/j.ijhydene.2016.06.083 10.1080/00102202.2015.1019620 10.1016/j.expthermflusci.2018.01.014 10.1007/s00193-015-0570-7 10.1016/j.ijhydene.2015.09.046 10.1007/s10573-006-0076-9 10.1016/j.applthermaleng.2016.07.166 10.1016/j.ijhydene.2014.11.119 10.1007/s00193-011-0298-y 10.1080/00102202.2014.935641 10.1016/j.actaastro.2015.08.013 10.1016/j.ijhydene.2014.07.159 10.1080/00102202.2014.923411 10.1016/j.expthermflusci.2014.11.017 10.1016/j.expthermflusci.2017.11.002 10.2514/3.50747 10.2514/3.12149 10.1016/j.cja.2015.03.006 10.1007/BF00742414 10.1016/j.actaastro.2017.09.008 10.1016/j.ijhydene.2016.02.028 10.1016/j.ijhydene.2014.04.150 |
ContentType | Journal Article |
Copyright | 2018 IAA Copyright Elsevier BV Nov 2018 |
Copyright_xml | – notice: 2018 IAA – notice: Copyright Elsevier BV Nov 2018 |
DBID | AAYXX CITATION 7TB 7TG 8FD FR3 H8D KL. L7M |
DOI | 10.1016/j.actaastro.2018.09.012 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2030 |
EndPage | 638 |
ExternalDocumentID | 10_1016_j_actaastro_2018_09_012 S0094576518314450 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 7TG 8FD EFKBS FR3 H8D KL. L7M |
ID | FETCH-LOGICAL-c409t-6c63ca821d8537a1a079d62d91ed9d96c4e23ad880db78e4bdef10a1f700ede03 |
IEDL.DBID | .~1 |
ISSN | 0094-5765 |
IngestDate | Wed Aug 13 06:37:00 EDT 2025 Tue Jul 01 01:39:38 EDT 2025 Thu Apr 24 23:00:31 EDT 2025 Fri Feb 23 02:29:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rotating detonation engine Pressure feedback Operation mode Total mass flow rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-6c63ca821d8537a1a079d62d91ed9d96c4e23ad880db78e4bdef10a1f700ede03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2131830807 |
PQPubID | 2045287 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2131830807 crossref_citationtrail_10_1016_j_actaastro_2018_09_012 crossref_primary_10_1016_j_actaastro_2018_09_012 elsevier_sciencedirect_doi_10_1016_j_actaastro_2018_09_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | Elmsford |
PublicationPlace_xml | – name: Elmsford |
PublicationTitle | Acta astronautica |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Nicholls, Cullen, Ragland (bib3) 1966; 3 Lin, Zhou, Liu, Lin (bib25) 2015 Zhang, Liu, Liu (bib21) 2017; 42 Bykovskii, Zhdan, Vedernikov (bib27) 2006; 42 Liu, Lin, Liu, Lin, Zhuang (bib1) 2012; 184 Smirnov, Penyazkov, Sevrouk, Nikitin, Stamov, Tyurenkova (bib48) 2017; 135 Lietz, Mundis, Schumaker, Sankaran (bib33) 2018 Fotia, Hoke, Schauer (bib18) 2018; 94 Schwer, Kailasanath (bib41) 2015 Cocks, Holley, Rankin (bib44) 2016 Sun, Zhou, Lin, Liu (bib12) 2016; 31 Liu, Wang, Li, Li, Wang (bib23) 2015; 28 Voitsekhovskii (bib2) 1959; 129 Zhang, Liu, Liu (bib14) 2016; 41 Anand, George, Driscoll, Gutmark (bib22) 2015; 40 Li, Wu, Weng, Zheng, Wei (bib17) 2018; 93 Liu, Zhou, Wang (bib40) 2015; 187 Smirnov, Betelin, Shagaliev, Nikitin, Belyakov, Deryuguin, Aksenov, Korchazhkin (bib50) 2014; 39 Menter (bib46) 1994; 32 Anand, George, Luzan, Gutmark (bib19) 2018; 92 Schwer, Kailasanath (bib37) 2012 Zhdan, Bykovskii, Vedernikov (bib10) 2007; 43 Zhdan, Mardashev, Mitrofanov (bib9) 1990; 26 Suchocki, Yu, Hoke, Naples, Schauer, Russo (bib28) 2012 Adamson, Olsson (bib4) 1967; 13 Roy, Ferguson, Sidwell, Bridget O, Strakey, Bedick, Sisler (bib26) 2017 Yao, Liu, Wang (bib39) 2015; 187 Smirnov, Penyazkov, Sevrouk, Nikitin, Stamov, Tyurenkova (bib52) 2018; 149 Kindracki, Wolanski, Gut (bib8) 2011; 21 Anand, George, Driscoll, Gutmark (bib29) 2016; 41 Wu, Liu, Liu, Wang (bib30) 2014; 39 Tsuboi, Jourdaine, Watanabe, Hayashi, Kojima (bib32) 2018 Xie, Wen, Li, Ji, Wang, Wolanski (bib15) 2018; 151 Shen, Adamson (bib5) 1972; 17 Bykovskii, Vedernikov (bib6) 2003; 39 Lin, Zhou, Liu, Lin, Zhuang (bib13) 2015; 40 Smirnov, Nikitin, Stamov, Mikhalchenko, Tyurenkova (bib45) 2018; 81 Tsuboi, Eto, Hayashi, Kojima (bib35) 2017; 33 Yao, Wang (bib36) 2016; 108 Nordeen, Schwer, Schauer, Hoke, Barber, Cetegen (bib42) 2016; 26 Wang, Le, Wang, Zheng (bib16) 2018; 137 Sun, Zhou, Liu, Lin, Cai (bib38) 2017; 140 George, Driscoll, Anand, Gutmark (bib24) 2016 Li, Liu, Zhang (bib34) 2018; 170 Evans, Schexnayder (bib47) 1980; 18 Liu, Liu, Lin, Lin (bib11) 2015; 187 Bykovskii, Zhdan, Vedernikov (bib7) 2006; 22 Wang (bib49) 2016; 41 Smirnov, Betelin, Nikitin, Stamov, Altoukhov (bib51) 2015; 117 Zhou, Ma, Liu, Yan, Li, Zhou (bib20) 2017; 42 Frolov, Dubrovskii, Ivanov (bib43) 2013; 7 Wu, Zhou, Liu, Wang (bib31) 2014; 186 Sun (10.1016/j.actaastro.2018.09.012_bib12) 2016; 31 George (10.1016/j.actaastro.2018.09.012_bib24) 2016 Cocks (10.1016/j.actaastro.2018.09.012_bib44) 2016 Liu (10.1016/j.actaastro.2018.09.012_bib1) 2012; 184 Kindracki (10.1016/j.actaastro.2018.09.012_bib8) 2011; 21 Wu (10.1016/j.actaastro.2018.09.012_bib31) 2014; 186 Sun (10.1016/j.actaastro.2018.09.012_bib38) 2017; 140 Liu (10.1016/j.actaastro.2018.09.012_bib23) 2015; 28 Roy (10.1016/j.actaastro.2018.09.012_bib26) 2017 Li (10.1016/j.actaastro.2018.09.012_bib17) 2018; 93 Evans (10.1016/j.actaastro.2018.09.012_bib47) 1980; 18 Zhdan (10.1016/j.actaastro.2018.09.012_bib10) 2007; 43 Nordeen (10.1016/j.actaastro.2018.09.012_bib42) 2016; 26 Smirnov (10.1016/j.actaastro.2018.09.012_bib52) 2018; 149 Frolov (10.1016/j.actaastro.2018.09.012_bib43) 2013; 7 Smirnov (10.1016/j.actaastro.2018.09.012_bib48) 2017; 135 Voitsekhovskii (10.1016/j.actaastro.2018.09.012_bib2) 1959; 129 Suchocki (10.1016/j.actaastro.2018.09.012_bib28) 2012 Anand (10.1016/j.actaastro.2018.09.012_bib19) 2018; 92 Schwer (10.1016/j.actaastro.2018.09.012_bib37) 2012 Bykovskii (10.1016/j.actaastro.2018.09.012_bib6) 2003; 39 Yao (10.1016/j.actaastro.2018.09.012_bib36) 2016; 108 Fotia (10.1016/j.actaastro.2018.09.012_bib18) 2018; 94 Yao (10.1016/j.actaastro.2018.09.012_bib39) 2015; 187 Wang (10.1016/j.actaastro.2018.09.012_bib49) 2016; 41 Anand (10.1016/j.actaastro.2018.09.012_bib22) 2015; 40 Xie (10.1016/j.actaastro.2018.09.012_bib15) 2018; 151 Lietz (10.1016/j.actaastro.2018.09.012_bib33) 2018 Zhou (10.1016/j.actaastro.2018.09.012_bib20) 2017; 42 Anand (10.1016/j.actaastro.2018.09.012_bib29) 2016; 41 Lin (10.1016/j.actaastro.2018.09.012_bib25) 2015 Zhang (10.1016/j.actaastro.2018.09.012_bib14) 2016; 41 Nicholls (10.1016/j.actaastro.2018.09.012_bib3) 1966; 3 Menter (10.1016/j.actaastro.2018.09.012_bib46) 1994; 32 Zhdan (10.1016/j.actaastro.2018.09.012_bib9) 1990; 26 Lin (10.1016/j.actaastro.2018.09.012_bib13) 2015; 40 Bykovskii (10.1016/j.actaastro.2018.09.012_bib7) 2006; 22 Shen (10.1016/j.actaastro.2018.09.012_bib5) 1972; 17 Zhang (10.1016/j.actaastro.2018.09.012_bib21) 2017; 42 Wang (10.1016/j.actaastro.2018.09.012_bib16) 2018; 137 Schwer (10.1016/j.actaastro.2018.09.012_bib41) 2015 Bykovskii (10.1016/j.actaastro.2018.09.012_bib27) 2006; 42 Smirnov (10.1016/j.actaastro.2018.09.012_bib51) 2015; 117 Adamson (10.1016/j.actaastro.2018.09.012_bib4) 1967; 13 Tsuboi (10.1016/j.actaastro.2018.09.012_bib35) 2017; 33 Tsuboi (10.1016/j.actaastro.2018.09.012_bib32) 2018 Smirnov (10.1016/j.actaastro.2018.09.012_bib50) 2014; 39 Liu (10.1016/j.actaastro.2018.09.012_bib40) 2015; 187 Smirnov (10.1016/j.actaastro.2018.09.012_bib45) 2018; 81 Wu (10.1016/j.actaastro.2018.09.012_bib30) 2014; 39 Li (10.1016/j.actaastro.2018.09.012_bib34) 2018; 170 Liu (10.1016/j.actaastro.2018.09.012_bib11) 2015; 187 |
References_xml | – volume: 39 start-page: 15803 year: 2014 end-page: 15809 ident: bib30 article-title: Numerical investigations of the restabilization of hydrogen-air rotating detonation engines publication-title: Int. J. Hydrogen Enenrgy – volume: 43 start-page: 449 year: 2007 end-page: 459 ident: bib10 article-title: Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture publication-title: Combust. Explos. Shock Waves – start-page: 122 year: 2015 end-page: 130 ident: bib25 article-title: An experimental study on ch4/o2 continuously rotating detonation wave in a hollow combustion chamber publication-title: Exp. Therm. Fluid Sci. – volume: 21 start-page: 75 year: 2011 end-page: 84 ident: bib8 article-title: Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures publication-title: Shock Waves – volume: 26 start-page: 417 year: 2016 end-page: 428 ident: bib42 article-title: Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine publication-title: Shock Waves – volume: 40 start-page: 1980 year: 2015 end-page: 1993 ident: bib13 article-title: Experimental study on propagation mode of h publication-title: Int. J. Hydrogen Enenrgy – year: 2018 ident: bib32 article-title: Three-dimensional numerical simulation on hydrogen-oxygen rotating detonation engine with unchoked aerospike nozzle publication-title: 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida – volume: 33 start-page: 100 year: 2017 end-page: 111 ident: bib35 article-title: Front cellular structure and thrust performance on hydrogen–oxygen rotating detonation engine publication-title: J. Propul. Power – volume: 41 start-page: 1281 year: 2016 end-page: 1292 ident: bib29 article-title: Investigation of rotating detonation combustor operation with h publication-title: Int. J. Hydrogen Enenrgy – volume: 94 start-page: 345 year: 2018 end-page: 354 ident: bib18 article-title: Study of the ignition process in a laboratory scale rotating detonation engine publication-title: Exp. Therm. Fluid Sci. – volume: 40 start-page: 16649 year: 2015 end-page: 16659 ident: bib22 article-title: Characterization of instabilities in a rotating detonation combustor publication-title: Int. J. Hydrogen Enenrgy – year: 2016 ident: bib44 article-title: High fidelity simulations of a non-premixed rotating detonation engine publication-title: 54th AIAA Aerospace Sciences Meeting. San Diego, California, USA – volume: 149 start-page: 77 year: 2018 end-page: 92 ident: bib52 article-title: Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber publication-title: Acta Astronaut. – volume: 140 start-page: 388 year: 2017 end-page: 401 ident: bib38 article-title: Effects of injection nozzle exit width on rotating detonation engine publication-title: Acta Astronaut. – volume: 18 start-page: 188 year: 1980 end-page: 193 ident: bib47 article-title: Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames publication-title: AIAA J. – volume: 13 start-page: 405 year: 1967 end-page: 415 ident: bib4 article-title: Performance analysis of a rotating detonation wave rocket engine publication-title: Acta Astronaut. – volume: 170 start-page: 261 year: 2018 end-page: 272 ident: bib34 article-title: Further investigations on the interface instability between fresh injections and burnt products in 2-d rotating detonation publication-title: Comput. Fluids – volume: 184 start-page: 1302 year: 2012 end-page: 1317 ident: bib1 article-title: Experimental realization of h publication-title: Combust. Sci. Technol. – volume: 187 start-page: 1790 year: 2015 end-page: 1804 ident: bib11 article-title: Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary publication-title: Combust. Sci. Technol. – year: 2012 ident: bib28 article-title: Rotating detonation engine operation publication-title: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee – volume: 3 start-page: 893 year: 1966 end-page: 898 ident: bib3 article-title: Feasibility studies of a rotating detonation wave rocket motor publication-title: J. Spacecraft Rockets – volume: 151 start-page: 408 year: 2018 end-page: 419 ident: bib15 article-title: Analysis of operating diagram for h publication-title: Energy – volume: 186 start-page: 1699 year: 2014 end-page: 1715 ident: bib31 article-title: Numerical investigation of the stability of rotating detonation engines publication-title: Combust. Sci. Technol. – volume: 42 start-page: 3363 year: 2017 end-page: 3370 ident: bib21 article-title: Experimental investigations on h publication-title: Int. J. Hydrogen Enenrgy – year: 2015 ident: bib41 article-title: Towards non-premixed injection modeling of rotating detonation engines publication-title: 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: bib46 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 42 start-page: 14741 year: 2017 end-page: 14749 ident: bib20 article-title: Experimental study of a hydrogen-air rotating detonation combustor publication-title: Int. J. Hydrogen Enenrgy – volume: 17 start-page: 715 year: 1972 end-page: 728 ident: bib5 article-title: Theoretical analysis of a rotating two-phase detonation in liquid rocket motors publication-title: Astronaut. Acta – volume: 31 start-page: 2080 year: 2016 end-page: 2086 ident: bib12 article-title: Influence of chamber length on rotating detonation engine performance publication-title: J. Aerespace Power – volume: 39 start-page: 10748 year: 2014 end-page: 10756 ident: bib50 article-title: Hydrogen fuel rocket engines simulation using logos code publication-title: Int. J. Hydrogen Enenrgy – volume: 187 start-page: 1867 year: 2015 end-page: 1878 ident: bib39 article-title: Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine publication-title: Combust. Sci. Technol. – volume: 42 start-page: 463 year: 2006 end-page: 471 ident: bib27 article-title: Continuous spin detonation of fuel-air mixtures publication-title: Combust. Explos. Shock Waves – volume: 22 start-page: 1204 year: 2006 end-page: 1216 ident: bib7 article-title: Continuous spin detonations publication-title: J. Propul. Power – volume: 39 start-page: 323 year: 2003 end-page: 334 ident: bib6 article-title: Continuous detonation of a subsonic flow of a propellant publication-title: Combust. Explos. Shock Waves – volume: 92 start-page: 314 year: 2018 end-page: 325 ident: bib19 article-title: Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities publication-title: Exp. Therm. Fluid Sci. – volume: 28 start-page: 669 year: 2015 end-page: 675 ident: bib23 article-title: Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine publication-title: Chin. J. Aeronaut. – year: 2018 ident: bib33 article-title: Numerical investigation of rotating detonation rocket engines publication-title: 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida – volume: 129 start-page: 1254 year: 1959 end-page: 1256 ident: bib2 article-title: Stationary detonation publication-title: Doklady Akademii Nayk USSR – volume: 135 start-page: 114 year: 2017 end-page: 130 ident: bib48 article-title: Detonation onset following shock wave focusing publication-title: Acta Astronaut. – volume: 26 start-page: 210 year: 1990 end-page: 214 ident: bib9 article-title: Calculation of the flow of spin detonation in an annular chamber publication-title: Combust. Explos. Shock Waves – year: 2017 ident: bib26 article-title: Experimental study of rotating detonation combustor performance under preheat and back pressure operation publication-title: 55th AIAA Aerospace Sciences Meeting. Grapevine, Texas – volume: 93 start-page: 366 year: 2018 end-page: 378 ident: bib17 article-title: Influence of equivalence ratio on the propagation characteristics of rotating detonation wave publication-title: Exp. Therm. Fluid Sci. – start-page: 2691 year: 2016 end-page: 2698 ident: bib24 article-title: On the existence and multiplicity of rotating detonations publication-title: Proc. Combust. Inst. – volume: 7 start-page: 35 year: 2013 end-page: 43 ident: bib43 article-title: Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer publication-title: Russ. J. Phys. Chem. B – volume: 41 start-page: 5605 year: 2016 end-page: 5616 ident: bib49 article-title: Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture publication-title: Int. J. Hydrogen Enenrgy – volume: 81 start-page: 213 year: 2018 end-page: 224 ident: bib45 article-title: Rotating detonation in a ramjet engine three-dimensional modeling publication-title: Aero. Sci. Technol. – volume: 187 start-page: 343 year: 2015 end-page: 361 ident: bib40 article-title: Numerical investigation of different injection patterns in rotating detonation engines publication-title: Combust. Sci. Technol. – volume: 41 start-page: 13281 year: 2016 end-page: 13293 ident: bib14 article-title: Effects of inner cylinder length on h publication-title: Int. J. Hydrogen Enenrgy – volume: 137 start-page: 749 year: 2018 end-page: 757 ident: bib16 article-title: A non-premixed rotating detonation engine using ethylene and air publication-title: Appl. Therm. Eng. – year: 2012 ident: bib37 article-title: Feedback into mixture plenums in rotating detonation engines publication-title: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee – volume: 117 start-page: 338 year: 2015 end-page: 355 ident: bib51 article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics publication-title: Acta Astronaut. – volume: 108 start-page: 927 year: 2016 end-page: 936 ident: bib36 article-title: Multiple ignitions and the stability of rotating detonation waves publication-title: Appl. Therm. Eng. – volume: 17 start-page: 715 year: 1972 ident: 10.1016/j.actaastro.2018.09.012_bib5 article-title: Theoretical analysis of a rotating two-phase detonation in liquid rocket motors publication-title: Astronaut. Acta – volume: 135 start-page: 114 year: 2017 ident: 10.1016/j.actaastro.2018.09.012_bib48 article-title: Detonation onset following shock wave focusing publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2016.09.014 – volume: 170 start-page: 261 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib34 article-title: Further investigations on the interface instability between fresh injections and burnt products in 2-d rotating detonation publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.05.005 – volume: 184 start-page: 1302 year: 2012 ident: 10.1016/j.actaastro.2018.09.012_bib1 article-title: Experimental realization of h2/air continuous rotating detonation in a cylindrical combustor publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2012.682669 – start-page: 2691 year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib24 article-title: On the existence and multiplicity of rotating detonations publication-title: Proc. Combust. Inst. – year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib33 article-title: Numerical investigation of rotating detonation rocket engines – year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib41 article-title: Towards non-premixed injection modeling of rotating detonation engines – year: 2017 ident: 10.1016/j.actaastro.2018.09.012_bib26 article-title: Experimental study of rotating detonation combustor performance under preheat and back pressure operation – volume: 81 start-page: 213 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib45 article-title: Rotating detonation in a ramjet engine three-dimensional modeling publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2018.08.003 – volume: 42 start-page: 14741 year: 2017 ident: 10.1016/j.actaastro.2018.09.012_bib20 article-title: Experimental study of a hydrogen-air rotating detonation combustor publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2017.04.214 – volume: 151 start-page: 408 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib15 article-title: Analysis of operating diagram for h2/air rotating detonation combustors under lean fuel condition publication-title: Energy doi: 10.1016/j.energy.2018.03.062 – volume: 22 start-page: 1204 year: 2006 ident: 10.1016/j.actaastro.2018.09.012_bib7 article-title: Continuous spin detonations publication-title: J. Propul. Power doi: 10.2514/1.17656 – volume: 42 start-page: 3363 year: 2017 ident: 10.1016/j.actaastro.2018.09.012_bib21 article-title: Experimental investigations on h2/air rotating detonation wave in the hollow chamber with laval nozzle publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2016.12.038 – volume: 149 start-page: 77 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib52 article-title: Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.05.024 – volume: 43 start-page: 449 year: 2007 ident: 10.1016/j.actaastro.2018.09.012_bib10 article-title: Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture publication-title: Combust. Explos. Shock Waves doi: 10.1007/s10573-007-0061-y – year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib32 article-title: Three-dimensional numerical simulation on hydrogen-oxygen rotating detonation engine with unchoked aerospike nozzle – volume: 33 start-page: 100 year: 2017 ident: 10.1016/j.actaastro.2018.09.012_bib35 article-title: Front cellular structure and thrust performance on hydrogen–oxygen rotating detonation engine publication-title: J. Propul. Power doi: 10.2514/1.B36095 – year: 2012 ident: 10.1016/j.actaastro.2018.09.012_bib37 article-title: Feedback into mixture plenums in rotating detonation engines – volume: 39 start-page: 323 year: 2003 ident: 10.1016/j.actaastro.2018.09.012_bib6 article-title: Continuous detonation of a subsonic flow of a propellant publication-title: Combust. Explos. Shock Waves doi: 10.1023/A:1023800521344 – volume: 7 start-page: 35 year: 2013 ident: 10.1016/j.actaastro.2018.09.012_bib43 article-title: Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793113010119 – volume: 41 start-page: 1281 year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib29 article-title: Investigation of rotating detonation combustor operation with h2-air mixtures publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2015.11.041 – volume: 3 start-page: 893 year: 1966 ident: 10.1016/j.actaastro.2018.09.012_bib3 article-title: Feasibility studies of a rotating detonation wave rocket motor publication-title: J. Spacecraft Rockets doi: 10.2514/3.28557 – volume: 187 start-page: 1867 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib39 article-title: Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2015.1067202 – volume: 137 start-page: 749 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib16 article-title: A non-premixed rotating detonation engine using ethylene and air publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.015 – volume: 92 start-page: 314 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib19 article-title: Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.12.004 – volume: 41 start-page: 13281 year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib14 article-title: Effects of inner cylinder length on h2/air rotating detonation publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2016.06.083 – volume: 187 start-page: 1790 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib11 article-title: Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2015.1019620 – volume: 93 start-page: 366 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib17 article-title: Influence of equivalence ratio on the propagation characteristics of rotating detonation wave publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2018.01.014 – volume: 26 start-page: 417 year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib42 article-title: Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine publication-title: Shock Waves doi: 10.1007/s00193-015-0570-7 – volume: 40 start-page: 16649 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib22 article-title: Characterization of instabilities in a rotating detonation combustor publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2015.09.046 – volume: 42 start-page: 463 year: 2006 ident: 10.1016/j.actaastro.2018.09.012_bib27 article-title: Continuous spin detonation of fuel-air mixtures publication-title: Combust. Explos. Shock Waves doi: 10.1007/s10573-006-0076-9 – volume: 108 start-page: 927 year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib36 article-title: Multiple ignitions and the stability of rotating detonation waves publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.166 – volume: 40 start-page: 1980 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib13 article-title: Experimental study on propagation mode of h2/air continuously rotating detonation wave publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2014.11.119 – year: 2012 ident: 10.1016/j.actaastro.2018.09.012_bib28 article-title: Rotating detonation engine operation – volume: 21 start-page: 75 year: 2011 ident: 10.1016/j.actaastro.2018.09.012_bib8 article-title: Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures publication-title: Shock Waves doi: 10.1007/s00193-011-0298-y – volume: 186 start-page: 1699 year: 2014 ident: 10.1016/j.actaastro.2018.09.012_bib31 article-title: Numerical investigation of the stability of rotating detonation engines publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2014.935641 – volume: 117 start-page: 338 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib51 article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.08.013 – volume: 39 start-page: 15803 year: 2014 ident: 10.1016/j.actaastro.2018.09.012_bib30 article-title: Numerical investigations of the restabilization of hydrogen-air rotating detonation engines publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2014.07.159 – volume: 187 start-page: 343 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib40 article-title: Numerical investigation of different injection patterns in rotating detonation engines publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2014.923411 – start-page: 122 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib25 article-title: An experimental study on ch4/o2 continuously rotating detonation wave in a hollow combustion chamber publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2014.11.017 – volume: 94 start-page: 345 year: 2018 ident: 10.1016/j.actaastro.2018.09.012_bib18 article-title: Study of the ignition process in a laboratory scale rotating detonation engine publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.11.002 – volume: 129 start-page: 1254 year: 1959 ident: 10.1016/j.actaastro.2018.09.012_bib2 article-title: Stationary detonation publication-title: Doklady Akademii Nayk USSR – volume: 13 start-page: 405 year: 1967 ident: 10.1016/j.actaastro.2018.09.012_bib4 article-title: Performance analysis of a rotating detonation wave rocket engine publication-title: Acta Astronaut. – volume: 18 start-page: 188 year: 1980 ident: 10.1016/j.actaastro.2018.09.012_bib47 article-title: Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames publication-title: AIAA J. doi: 10.2514/3.50747 – year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib44 article-title: High fidelity simulations of a non-premixed rotating detonation engine – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.actaastro.2018.09.012_bib46 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 28 start-page: 669 year: 2015 ident: 10.1016/j.actaastro.2018.09.012_bib23 article-title: Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2015.03.006 – volume: 26 start-page: 210 year: 1990 ident: 10.1016/j.actaastro.2018.09.012_bib9 article-title: Calculation of the flow of spin detonation in an annular chamber publication-title: Combust. Explos. Shock Waves doi: 10.1007/BF00742414 – volume: 140 start-page: 388 year: 2017 ident: 10.1016/j.actaastro.2018.09.012_bib38 article-title: Effects of injection nozzle exit width on rotating detonation engine publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.09.008 – volume: 41 start-page: 5605 year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib49 article-title: Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2016.02.028 – volume: 39 start-page: 10748 year: 2014 ident: 10.1016/j.actaastro.2018.09.012_bib50 article-title: Hydrogen fuel rocket engines simulation using logos code publication-title: Int. J. Hydrogen Enenrgy doi: 10.1016/j.ijhydene.2014.04.150 – volume: 31 start-page: 2080 year: 2016 ident: 10.1016/j.actaastro.2018.09.012_bib12 article-title: Influence of chamber length on rotating detonation engine performance publication-title: J. Aerespace Power |
SSID | ssj0007289 |
Score | 2.4400234 |
Snippet | Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 630 |
SubjectTerms | CAD Computer aided design Computer simulation Deflagration Detonation waves Elastic waves Flow rates High pressure Jet engines Mass flow rate Numerical controls Numerical simulations Operation mode Pressure feedback Pressure waves Ramjet engines Rotating detonation engine Rotation Total mass flow rate |
Title | Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions |
URI | https://dx.doi.org/10.1016/j.actaastro.2018.09.012 https://www.proquest.com/docview/2131830807 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywhsaO8zBbVVEVEJ2o1AnLiR0UVJIqTSUmfjvnPFqKhDowOsol0efz3Xfx3RmhG8A9dgIdWjblzGIBUxZXlFshc5XyJKi1NvXOzxNvPGWPM3fWQsOmFsakVda2v7LppbWur_RrNPuLJDE1vpwBW3ZBKSEqKON2xnyj5bdfmzQPnwYVBYZPMXdv5XjJqJByWeSmCpAEZcNTQv_yUL9sdemARkfosGaOeFB93DFq6fQEHfzoJ3iKXieragNmjpNN_4wsxVmMJc4zs-2evmGli6z6CYh1KY5NJVmOF7n-SD616qdZajUDDAGzqvK6ztB0dP8yHFv1AQpWBGFbYXmR50QyoESBU_YlkbbPlUcVJ1pxxb2IaepIBUtYhX6gWah0TGxJYt-2tdK2c47a8EZ9gbAH-AF3dKhPNANWENAwDBiPmUM52G63g7wGNBHV3cXNIRdz0aSRvYs12sKgLWwuAO0OsteCi6rBxm6Ru2ZWxJauCHADu4W7zTyKerkuBSXGtAF59i__8-wrtG9GValiF7WLfKWvgbMUYa9Uyh7aGzw8jSffN4nuSA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqdgAGxFMUCnhgjRo7zsNsVUXV0sfUSp2wnNhBRSWp0lTi53NukkKREANjEl1inc_ffRffnRF6AL3HTqBDy6acWSxgyuKKcitkrlKeBLPWpt55PPH6M_Y8d-c11K1qYUxaZYn9BaZv0bq80y612V4tFqbGlzNgyy4YJUQFJm5vmO5Ubh01OoNhf7IDZJ8GBQuG0RiBvTQvGeVSrvPMFAKSYNvzlNDfnNQPuN76oN4JOi7JI-4U4ztFNZ2coaNvLQXP0ctkU-zBLPHiq4VGmuA0xhJnqdl5T16x0nla_AfEeiuOTTFZhleZfl98aNVO0sSqLjDEzKpI7bpAs97TtNu3yjMUrAgit9zyIs-JZECJAr_sSyJtnyuPKk604op7EdPUkQpWsQr9QLNQ6ZjYksS-bWulbecS1eGL-gphD_QH9NGhPtEMiEFAwzBgPGYO5QDfbhN5ldJEVDYYN-dcLEWVSfYmdtoWRtvC5gK03UT2TnBV9Nj4W-SxmhWxZy4CPMHfwq1qHkW5YteCEoNuwJ_96_-8-x4d9KfjkRgNJsMbdGieFJWLLVTPs42-BQqTh3eliX4CXiLw-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+a+rotating+detonation+engine+under+premixed%2Fnon-premixed+conditions&rft.jtitle=Acta+astronautica&rft.au=Sun%2C+Jian&rft.au=Zhou%2C+Jin&rft.au=Liu%2C+Shijie&rft.au=Lin%2C+Zhiyong&rft.date=2018-11-01&rft.issn=0094-5765&rft.volume=152&rft.spage=630&rft.epage=638&rft_id=info:doi/10.1016%2Fj.actaastro.2018.09.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actaastro_2018_09_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |