Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions

Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 152; pp. 630 - 638
Main Authors Sun, Jian, Zhou, Jin, Liu, Shijie, Lin, Zhiyong
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.11.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not studied enough. Here, a series of three-dimensional numerical simulations of a rotating detonation engine under both premixed and non-premixed conditions using H2/air mixture are performed. The explicit formulation of density-based solver in ANSYS Fluent is used to perform the simulations. Two total mass flow rates of 272.3 g/s and 500 g/s are selected. When the total mass flow rate is 272.3 g/s, the engine operates at single-wave mode under both premixed and non-premixed conditions. When the total mass flow rate is 500 g/s, the engine operates at single-wave mode under premixed condition. While under non-premixed condition, a spontaneous formation of dual-wave mode is observed. This case agrees well with the phenomenon observed in experiments that as the total mass flow rate increases, the number of rotating detonation waves tends to increase. Pressure waves caused by the high pressure behind the detonation waves can propagate upstream to the H2 and air plenums. The pressure feedback in the H2 plenum is much more obvious than that in the air plenum. Due to the imperfect mixing of H2/air and the more deflagration combustion caused by the hot detonation products, the thrust of the RDE under non-premixed condition is smaller than that under premixed condition. •The flowfield in an RDE under premixed/non-premixed conditions is obtained.•In non-premixed cases, the detonation combustion occurs near the outer wall.•There are pressure disturbances in the H2 and air supplying plenums.•A spontaneous formation of dual-wave mode is observed for the non-premixed case.•The thrust under non-premixed condition has more fluctuations.
AbstractList Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not studied enough. Here, a series of three-dimensional numerical simulations of a rotating detonation engine under both premixed and non-premixed conditions using H2/air mixture are performed. The explicit formulation of density-based solver in ANSYS Fluent is used to perform the simulations. Two total mass flow rates of 272.3 g/s and 500 g/s are selected. When the total mass flow rate is 272.3 g/s, the engine operates at single-wave mode under both premixed and non-premixed conditions. When the total mass flow rate is 500 g/s, the engine operates at single-wave mode under premixed condition. While under non-premixed condition, a spontaneous formation of dual-wave mode is observed. This case agrees well with the phenomenon observed in experiments that as the total mass flow rate increases, the number of rotating detonation waves tends to increase. Pressure waves caused by the high pressure behind the detonation waves can propagate upstream to the H2 and air plenums. The pressure feedback in the H2 plenum is much more obvious than that in the air plenum. Due to the imperfect mixing of H2/air and the more deflagration combustion caused by the hot detonation products, the thrust of the RDE under non-premixed condition is smaller than that under premixed condition. •The flowfield in an RDE under premixed/non-premixed conditions is obtained.•In non-premixed cases, the detonation combustion occurs near the outer wall.•There are pressure disturbances in the H2 and air supplying plenums.•A spontaneous formation of dual-wave mode is observed for the non-premixed case.•The thrust under non-premixed condition has more fluctuations.
Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical simulations of rotating detonation engines used premixed reactant mixtures. The rotating detonation waves under non-premixed condition are not studied enough. Here, a series of three-dimensional numerical simulations of a rotating detonation engine under both premixed and non-premixed conditions using H2/air mixture are performed. The explicit formulation of density-based solver in ANSYS Fluent is used to perform the simulations. Two total mass flow rates of 272.3 g/s and 500 g/s are selected. When the total mass flow rate is 272.3 g/s, the engine operates at single-wave mode under both premixed and non-premixed conditions. When the total mass flow rate is 500 g/s, the engine operates at single-wave mode under premixed condition. While under non-premixed condition, a spontaneous formation of dual-wave mode is observed. This case agrees well with the phenomenon observed in experiments that as the total mass flow rate increases, the number of rotating detonation waves tends to increase. Pressure waves caused by the high pressure behind the detonation waves can propagate upstream to the H2 and air plenums. The pressure feedback in the H2 plenum is much more obvious than that in the air plenum. Due to the imperfect mixing of H2/air and the more deflagration combustion caused by the hot detonation products, the thrust of the RDE under non-premixed condition is smaller than that under premixed condition.
Author Zhou, Jin
Liu, Shijie
Sun, Jian
Lin, Zhiyong
Author_xml – sequence: 1
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
  email: 506096226@qq.com
– sequence: 2
  givenname: Jin
  surname: Zhou
  fullname: Zhou, Jin
  email: zj706@vip.sina.com
– sequence: 3
  givenname: Shijie
  surname: Liu
  fullname: Liu, Shijie
  email: liushijie@nudt.edu.cn
– sequence: 4
  givenname: Zhiyong
  surname: Lin
  fullname: Lin, Zhiyong
  email: linzy96@nudt.edu.cn
BookMark eNqNkMtOwzAQRS0EEm3hG4jEOuk4SWN7waKqeEkVbGCL5dqTylVrF9ut4O9JCbBgA6vR1dw7jzMkx847JOSCQkGBNuNVoXRSKqbgixIoL0AUQMsjMqCcibyECo7JAEDU-YQ1k1MyjHEFAKzkYkBeHnYbDFardWbdHmOyS5Wsd5lvM5UFnzrllpnB5F3fQLe0DrOdMxiybcCNfUMz7o7Kv0WmvTP2YI5n5KRV64jnX3VEnm-un2Z3-fzx9n42nee6BpHyRjeVVrykhk8qpqgCJkxTGkHRCCMaXWNZKcM5mAXjWC8MthQUbRkAGoRqRC77udvgX3fdG3Lld8F1K2VJK8or4MA611Xv0sHHGLCV2qbPr1JQdi0pyANSuZI_SOUBqQQhO6Rdnv3Kb4PdqPD-j-S0T2IHYW8xyKgtOo3GBtRJGm__nPEBZLGbKw
CitedBy_id crossref_primary_10_1007_s44270_024_00003_5
crossref_primary_10_1103_PhysRevFluids_6_050507
crossref_primary_10_1016_j_actaastro_2019_08_010
crossref_primary_10_1103_PhysRevE_104_024210
crossref_primary_10_2514_1_B39600
crossref_primary_10_1016_j_ast_2020_105825
crossref_primary_10_1016_j_combustflame_2024_113726
crossref_primary_10_1155_2020_8863691
crossref_primary_10_1115_1_4063706
crossref_primary_10_1016_j_actaastro_2019_07_001
crossref_primary_10_2514_1_B38868
crossref_primary_10_1016_j_actaastro_2019_08_019
crossref_primary_10_1016_j_jaecs_2024_100313
crossref_primary_10_1016_j_combustflame_2022_112550
crossref_primary_10_2514_1_J061549
crossref_primary_10_1016_j_energy_2022_123911
crossref_primary_10_1016_j_actaastro_2022_02_015
crossref_primary_10_1016_j_ast_2019_105301
crossref_primary_10_1016_j_ijhydene_2019_04_168
crossref_primary_10_1016_j_actaastro_2019_05_035
crossref_primary_10_1016_j_ijhydene_2020_02_009
crossref_primary_10_2514_1_J058157
crossref_primary_10_1016_j_ijhydene_2021_12_043
crossref_primary_10_1631_jzus_A2100448
crossref_primary_10_1016_j_combustflame_2023_113253
crossref_primary_10_1016_j_actaastro_2021_02_035
crossref_primary_10_1631_jzus_A2000314
crossref_primary_10_1016_j_actaastro_2024_10_067
crossref_primary_10_1016_j_actaastro_2019_09_038
crossref_primary_10_1016_j_ijhydene_2024_06_339
crossref_primary_10_1016_j_proci_2024_105416
crossref_primary_10_1016_j_energy_2022_126170
crossref_primary_10_1063_5_0023972
crossref_primary_10_1115_1_4066158
crossref_primary_10_1016_j_combustflame_2022_112209
crossref_primary_10_1016_j_combustflame_2022_112013
crossref_primary_10_1016_j_combustflame_2022_112253
crossref_primary_10_1016_j_fuel_2022_125949
crossref_primary_10_1063_5_0207508
crossref_primary_10_2514_1_B37719
crossref_primary_10_1007_s00193_023_01147_0
crossref_primary_10_1016_j_actaastro_2019_03_067
crossref_primary_10_1016_j_ijhydene_2019_11_014
crossref_primary_10_1016_j_actaastro_2021_12_026
crossref_primary_10_1007_s00193_024_01180_7
crossref_primary_10_1016_j_actaastro_2020_05_020
crossref_primary_10_1016_j_applthermaleng_2025_125436
crossref_primary_10_18698_0536_1044_2022_11_92_99
crossref_primary_10_1016_j_actaastro_2024_06_017
crossref_primary_10_1016_j_ijhydene_2023_04_040
crossref_primary_10_1016_j_actaastro_2021_11_035
crossref_primary_10_1016_j_actaastro_2021_02_010
crossref_primary_10_3389_fpace_2023_1127671
Cites_doi 10.1016/j.actaastro.2016.09.014
10.1016/j.compfluid.2018.05.005
10.1080/00102202.2012.682669
10.1016/j.ast.2018.08.003
10.1016/j.ijhydene.2017.04.214
10.1016/j.energy.2018.03.062
10.2514/1.17656
10.1016/j.ijhydene.2016.12.038
10.1016/j.actaastro.2018.05.024
10.1007/s10573-007-0061-y
10.2514/1.B36095
10.1023/A:1023800521344
10.1134/S1990793113010119
10.1016/j.ijhydene.2015.11.041
10.2514/3.28557
10.1080/00102202.2015.1067202
10.1016/j.applthermaleng.2018.04.015
10.1016/j.expthermflusci.2017.12.004
10.1016/j.ijhydene.2016.06.083
10.1080/00102202.2015.1019620
10.1016/j.expthermflusci.2018.01.014
10.1007/s00193-015-0570-7
10.1016/j.ijhydene.2015.09.046
10.1007/s10573-006-0076-9
10.1016/j.applthermaleng.2016.07.166
10.1016/j.ijhydene.2014.11.119
10.1007/s00193-011-0298-y
10.1080/00102202.2014.935641
10.1016/j.actaastro.2015.08.013
10.1016/j.ijhydene.2014.07.159
10.1080/00102202.2014.923411
10.1016/j.expthermflusci.2014.11.017
10.1016/j.expthermflusci.2017.11.002
10.2514/3.50747
10.2514/3.12149
10.1016/j.cja.2015.03.006
10.1007/BF00742414
10.1016/j.actaastro.2017.09.008
10.1016/j.ijhydene.2016.02.028
10.1016/j.ijhydene.2014.04.150
ContentType Journal Article
Copyright 2018 IAA
Copyright Elsevier BV Nov 2018
Copyright_xml – notice: 2018 IAA
– notice: Copyright Elsevier BV Nov 2018
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2018.09.012
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 638
ExternalDocumentID 10_1016_j_actaastro_2018_09_012
S0094576518314450
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
7TG
8FD
EFKBS
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c409t-6c63ca821d8537a1a079d62d91ed9d96c4e23ad880db78e4bdef10a1f700ede03
IEDL.DBID .~1
ISSN 0094-5765
IngestDate Wed Aug 13 06:37:00 EDT 2025
Tue Jul 01 01:39:38 EDT 2025
Thu Apr 24 23:00:31 EDT 2025
Fri Feb 23 02:29:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rotating detonation engine
Pressure feedback
Operation mode
Total mass flow rate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-6c63ca821d8537a1a079d62d91ed9d96c4e23ad880db78e4bdef10a1f700ede03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2131830807
PQPubID 2045287
PageCount 9
ParticipantIDs proquest_journals_2131830807
crossref_citationtrail_10_1016_j_actaastro_2018_09_012
crossref_primary_10_1016_j_actaastro_2018_09_012
elsevier_sciencedirect_doi_10_1016_j_actaastro_2018_09_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Nicholls, Cullen, Ragland (bib3) 1966; 3
Lin, Zhou, Liu, Lin (bib25) 2015
Zhang, Liu, Liu (bib21) 2017; 42
Bykovskii, Zhdan, Vedernikov (bib27) 2006; 42
Liu, Lin, Liu, Lin, Zhuang (bib1) 2012; 184
Smirnov, Penyazkov, Sevrouk, Nikitin, Stamov, Tyurenkova (bib48) 2017; 135
Lietz, Mundis, Schumaker, Sankaran (bib33) 2018
Fotia, Hoke, Schauer (bib18) 2018; 94
Schwer, Kailasanath (bib41) 2015
Cocks, Holley, Rankin (bib44) 2016
Sun, Zhou, Lin, Liu (bib12) 2016; 31
Liu, Wang, Li, Li, Wang (bib23) 2015; 28
Voitsekhovskii (bib2) 1959; 129
Zhang, Liu, Liu (bib14) 2016; 41
Anand, George, Driscoll, Gutmark (bib22) 2015; 40
Li, Wu, Weng, Zheng, Wei (bib17) 2018; 93
Liu, Zhou, Wang (bib40) 2015; 187
Smirnov, Betelin, Shagaliev, Nikitin, Belyakov, Deryuguin, Aksenov, Korchazhkin (bib50) 2014; 39
Menter (bib46) 1994; 32
Anand, George, Luzan, Gutmark (bib19) 2018; 92
Schwer, Kailasanath (bib37) 2012
Zhdan, Bykovskii, Vedernikov (bib10) 2007; 43
Zhdan, Mardashev, Mitrofanov (bib9) 1990; 26
Suchocki, Yu, Hoke, Naples, Schauer, Russo (bib28) 2012
Adamson, Olsson (bib4) 1967; 13
Roy, Ferguson, Sidwell, Bridget O, Strakey, Bedick, Sisler (bib26) 2017
Yao, Liu, Wang (bib39) 2015; 187
Smirnov, Penyazkov, Sevrouk, Nikitin, Stamov, Tyurenkova (bib52) 2018; 149
Kindracki, Wolanski, Gut (bib8) 2011; 21
Anand, George, Driscoll, Gutmark (bib29) 2016; 41
Wu, Liu, Liu, Wang (bib30) 2014; 39
Tsuboi, Jourdaine, Watanabe, Hayashi, Kojima (bib32) 2018
Xie, Wen, Li, Ji, Wang, Wolanski (bib15) 2018; 151
Shen, Adamson (bib5) 1972; 17
Bykovskii, Vedernikov (bib6) 2003; 39
Lin, Zhou, Liu, Lin, Zhuang (bib13) 2015; 40
Smirnov, Nikitin, Stamov, Mikhalchenko, Tyurenkova (bib45) 2018; 81
Tsuboi, Eto, Hayashi, Kojima (bib35) 2017; 33
Yao, Wang (bib36) 2016; 108
Nordeen, Schwer, Schauer, Hoke, Barber, Cetegen (bib42) 2016; 26
Wang, Le, Wang, Zheng (bib16) 2018; 137
Sun, Zhou, Liu, Lin, Cai (bib38) 2017; 140
George, Driscoll, Anand, Gutmark (bib24) 2016
Li, Liu, Zhang (bib34) 2018; 170
Evans, Schexnayder (bib47) 1980; 18
Liu, Liu, Lin, Lin (bib11) 2015; 187
Bykovskii, Zhdan, Vedernikov (bib7) 2006; 22
Wang (bib49) 2016; 41
Smirnov, Betelin, Nikitin, Stamov, Altoukhov (bib51) 2015; 117
Zhou, Ma, Liu, Yan, Li, Zhou (bib20) 2017; 42
Frolov, Dubrovskii, Ivanov (bib43) 2013; 7
Wu, Zhou, Liu, Wang (bib31) 2014; 186
Sun (10.1016/j.actaastro.2018.09.012_bib12) 2016; 31
George (10.1016/j.actaastro.2018.09.012_bib24) 2016
Cocks (10.1016/j.actaastro.2018.09.012_bib44) 2016
Liu (10.1016/j.actaastro.2018.09.012_bib1) 2012; 184
Kindracki (10.1016/j.actaastro.2018.09.012_bib8) 2011; 21
Wu (10.1016/j.actaastro.2018.09.012_bib31) 2014; 186
Sun (10.1016/j.actaastro.2018.09.012_bib38) 2017; 140
Liu (10.1016/j.actaastro.2018.09.012_bib23) 2015; 28
Roy (10.1016/j.actaastro.2018.09.012_bib26) 2017
Li (10.1016/j.actaastro.2018.09.012_bib17) 2018; 93
Evans (10.1016/j.actaastro.2018.09.012_bib47) 1980; 18
Zhdan (10.1016/j.actaastro.2018.09.012_bib10) 2007; 43
Nordeen (10.1016/j.actaastro.2018.09.012_bib42) 2016; 26
Smirnov (10.1016/j.actaastro.2018.09.012_bib52) 2018; 149
Frolov (10.1016/j.actaastro.2018.09.012_bib43) 2013; 7
Smirnov (10.1016/j.actaastro.2018.09.012_bib48) 2017; 135
Voitsekhovskii (10.1016/j.actaastro.2018.09.012_bib2) 1959; 129
Suchocki (10.1016/j.actaastro.2018.09.012_bib28) 2012
Anand (10.1016/j.actaastro.2018.09.012_bib19) 2018; 92
Schwer (10.1016/j.actaastro.2018.09.012_bib37) 2012
Bykovskii (10.1016/j.actaastro.2018.09.012_bib6) 2003; 39
Yao (10.1016/j.actaastro.2018.09.012_bib36) 2016; 108
Fotia (10.1016/j.actaastro.2018.09.012_bib18) 2018; 94
Yao (10.1016/j.actaastro.2018.09.012_bib39) 2015; 187
Wang (10.1016/j.actaastro.2018.09.012_bib49) 2016; 41
Anand (10.1016/j.actaastro.2018.09.012_bib22) 2015; 40
Xie (10.1016/j.actaastro.2018.09.012_bib15) 2018; 151
Lietz (10.1016/j.actaastro.2018.09.012_bib33) 2018
Zhou (10.1016/j.actaastro.2018.09.012_bib20) 2017; 42
Anand (10.1016/j.actaastro.2018.09.012_bib29) 2016; 41
Lin (10.1016/j.actaastro.2018.09.012_bib25) 2015
Zhang (10.1016/j.actaastro.2018.09.012_bib14) 2016; 41
Nicholls (10.1016/j.actaastro.2018.09.012_bib3) 1966; 3
Menter (10.1016/j.actaastro.2018.09.012_bib46) 1994; 32
Zhdan (10.1016/j.actaastro.2018.09.012_bib9) 1990; 26
Lin (10.1016/j.actaastro.2018.09.012_bib13) 2015; 40
Bykovskii (10.1016/j.actaastro.2018.09.012_bib7) 2006; 22
Shen (10.1016/j.actaastro.2018.09.012_bib5) 1972; 17
Zhang (10.1016/j.actaastro.2018.09.012_bib21) 2017; 42
Wang (10.1016/j.actaastro.2018.09.012_bib16) 2018; 137
Schwer (10.1016/j.actaastro.2018.09.012_bib41) 2015
Bykovskii (10.1016/j.actaastro.2018.09.012_bib27) 2006; 42
Smirnov (10.1016/j.actaastro.2018.09.012_bib51) 2015; 117
Adamson (10.1016/j.actaastro.2018.09.012_bib4) 1967; 13
Tsuboi (10.1016/j.actaastro.2018.09.012_bib35) 2017; 33
Tsuboi (10.1016/j.actaastro.2018.09.012_bib32) 2018
Smirnov (10.1016/j.actaastro.2018.09.012_bib50) 2014; 39
Liu (10.1016/j.actaastro.2018.09.012_bib40) 2015; 187
Smirnov (10.1016/j.actaastro.2018.09.012_bib45) 2018; 81
Wu (10.1016/j.actaastro.2018.09.012_bib30) 2014; 39
Li (10.1016/j.actaastro.2018.09.012_bib34) 2018; 170
Liu (10.1016/j.actaastro.2018.09.012_bib11) 2015; 187
References_xml – volume: 39
  start-page: 15803
  year: 2014
  end-page: 15809
  ident: bib30
  article-title: Numerical investigations of the restabilization of hydrogen-air rotating detonation engines
  publication-title: Int. J. Hydrogen Enenrgy
– volume: 43
  start-page: 449
  year: 2007
  end-page: 459
  ident: bib10
  article-title: Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture
  publication-title: Combust. Explos. Shock Waves
– start-page: 122
  year: 2015
  end-page: 130
  ident: bib25
  article-title: An experimental study on ch4/o2 continuously rotating detonation wave in a hollow combustion chamber
  publication-title: Exp. Therm. Fluid Sci.
– volume: 21
  start-page: 75
  year: 2011
  end-page: 84
  ident: bib8
  article-title: Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures
  publication-title: Shock Waves
– volume: 26
  start-page: 417
  year: 2016
  end-page: 428
  ident: bib42
  article-title: Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine
  publication-title: Shock Waves
– volume: 40
  start-page: 1980
  year: 2015
  end-page: 1993
  ident: bib13
  article-title: Experimental study on propagation mode of h
  publication-title: Int. J. Hydrogen Enenrgy
– year: 2018
  ident: bib32
  article-title: Three-dimensional numerical simulation on hydrogen-oxygen rotating detonation engine with unchoked aerospike nozzle
  publication-title: 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida
– volume: 33
  start-page: 100
  year: 2017
  end-page: 111
  ident: bib35
  article-title: Front cellular structure and thrust performance on hydrogen–oxygen rotating detonation engine
  publication-title: J. Propul. Power
– volume: 41
  start-page: 1281
  year: 2016
  end-page: 1292
  ident: bib29
  article-title: Investigation of rotating detonation combustor operation with h
  publication-title: Int. J. Hydrogen Enenrgy
– volume: 94
  start-page: 345
  year: 2018
  end-page: 354
  ident: bib18
  article-title: Study of the ignition process in a laboratory scale rotating detonation engine
  publication-title: Exp. Therm. Fluid Sci.
– volume: 40
  start-page: 16649
  year: 2015
  end-page: 16659
  ident: bib22
  article-title: Characterization of instabilities in a rotating detonation combustor
  publication-title: Int. J. Hydrogen Enenrgy
– year: 2016
  ident: bib44
  article-title: High fidelity simulations of a non-premixed rotating detonation engine
  publication-title: 54th AIAA Aerospace Sciences Meeting. San Diego, California, USA
– volume: 149
  start-page: 77
  year: 2018
  end-page: 92
  ident: bib52
  article-title: Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber
  publication-title: Acta Astronaut.
– volume: 140
  start-page: 388
  year: 2017
  end-page: 401
  ident: bib38
  article-title: Effects of injection nozzle exit width on rotating detonation engine
  publication-title: Acta Astronaut.
– volume: 18
  start-page: 188
  year: 1980
  end-page: 193
  ident: bib47
  article-title: Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames
  publication-title: AIAA J.
– volume: 13
  start-page: 405
  year: 1967
  end-page: 415
  ident: bib4
  article-title: Performance analysis of a rotating detonation wave rocket engine
  publication-title: Acta Astronaut.
– volume: 170
  start-page: 261
  year: 2018
  end-page: 272
  ident: bib34
  article-title: Further investigations on the interface instability between fresh injections and burnt products in 2-d rotating detonation
  publication-title: Comput. Fluids
– volume: 184
  start-page: 1302
  year: 2012
  end-page: 1317
  ident: bib1
  article-title: Experimental realization of h
  publication-title: Combust. Sci. Technol.
– volume: 187
  start-page: 1790
  year: 2015
  end-page: 1804
  ident: bib11
  article-title: Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary
  publication-title: Combust. Sci. Technol.
– year: 2012
  ident: bib28
  article-title: Rotating detonation engine operation
  publication-title: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee
– volume: 3
  start-page: 893
  year: 1966
  end-page: 898
  ident: bib3
  article-title: Feasibility studies of a rotating detonation wave rocket motor
  publication-title: J. Spacecraft Rockets
– volume: 151
  start-page: 408
  year: 2018
  end-page: 419
  ident: bib15
  article-title: Analysis of operating diagram for h
  publication-title: Energy
– volume: 186
  start-page: 1699
  year: 2014
  end-page: 1715
  ident: bib31
  article-title: Numerical investigation of the stability of rotating detonation engines
  publication-title: Combust. Sci. Technol.
– volume: 42
  start-page: 3363
  year: 2017
  end-page: 3370
  ident: bib21
  article-title: Experimental investigations on h
  publication-title: Int. J. Hydrogen Enenrgy
– year: 2015
  ident: bib41
  article-title: Towards non-premixed injection modeling of rotating detonation engines
  publication-title: 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: bib46
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
– volume: 42
  start-page: 14741
  year: 2017
  end-page: 14749
  ident: bib20
  article-title: Experimental study of a hydrogen-air rotating detonation combustor
  publication-title: Int. J. Hydrogen Enenrgy
– volume: 17
  start-page: 715
  year: 1972
  end-page: 728
  ident: bib5
  article-title: Theoretical analysis of a rotating two-phase detonation in liquid rocket motors
  publication-title: Astronaut. Acta
– volume: 31
  start-page: 2080
  year: 2016
  end-page: 2086
  ident: bib12
  article-title: Influence of chamber length on rotating detonation engine performance
  publication-title: J. Aerespace Power
– volume: 39
  start-page: 10748
  year: 2014
  end-page: 10756
  ident: bib50
  article-title: Hydrogen fuel rocket engines simulation using logos code
  publication-title: Int. J. Hydrogen Enenrgy
– volume: 187
  start-page: 1867
  year: 2015
  end-page: 1878
  ident: bib39
  article-title: Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine
  publication-title: Combust. Sci. Technol.
– volume: 42
  start-page: 463
  year: 2006
  end-page: 471
  ident: bib27
  article-title: Continuous spin detonation of fuel-air mixtures
  publication-title: Combust. Explos. Shock Waves
– volume: 22
  start-page: 1204
  year: 2006
  end-page: 1216
  ident: bib7
  article-title: Continuous spin detonations
  publication-title: J. Propul. Power
– volume: 39
  start-page: 323
  year: 2003
  end-page: 334
  ident: bib6
  article-title: Continuous detonation of a subsonic flow of a propellant
  publication-title: Combust. Explos. Shock Waves
– volume: 92
  start-page: 314
  year: 2018
  end-page: 325
  ident: bib19
  article-title: Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities
  publication-title: Exp. Therm. Fluid Sci.
– volume: 28
  start-page: 669
  year: 2015
  end-page: 675
  ident: bib23
  article-title: Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine
  publication-title: Chin. J. Aeronaut.
– year: 2018
  ident: bib33
  article-title: Numerical investigation of rotating detonation rocket engines
  publication-title: 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida
– volume: 129
  start-page: 1254
  year: 1959
  end-page: 1256
  ident: bib2
  article-title: Stationary detonation
  publication-title: Doklady Akademii Nayk USSR
– volume: 135
  start-page: 114
  year: 2017
  end-page: 130
  ident: bib48
  article-title: Detonation onset following shock wave focusing
  publication-title: Acta Astronaut.
– volume: 26
  start-page: 210
  year: 1990
  end-page: 214
  ident: bib9
  article-title: Calculation of the flow of spin detonation in an annular chamber
  publication-title: Combust. Explos. Shock Waves
– year: 2017
  ident: bib26
  article-title: Experimental study of rotating detonation combustor performance under preheat and back pressure operation
  publication-title: 55th AIAA Aerospace Sciences Meeting. Grapevine, Texas
– volume: 93
  start-page: 366
  year: 2018
  end-page: 378
  ident: bib17
  article-title: Influence of equivalence ratio on the propagation characteristics of rotating detonation wave
  publication-title: Exp. Therm. Fluid Sci.
– start-page: 2691
  year: 2016
  end-page: 2698
  ident: bib24
  article-title: On the existence and multiplicity of rotating detonations
  publication-title: Proc. Combust. Inst.
– volume: 7
  start-page: 35
  year: 2013
  end-page: 43
  ident: bib43
  article-title: Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer
  publication-title: Russ. J. Phys. Chem. B
– volume: 41
  start-page: 5605
  year: 2016
  end-page: 5616
  ident: bib49
  article-title: Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture
  publication-title: Int. J. Hydrogen Enenrgy
– volume: 81
  start-page: 213
  year: 2018
  end-page: 224
  ident: bib45
  article-title: Rotating detonation in a ramjet engine three-dimensional modeling
  publication-title: Aero. Sci. Technol.
– volume: 187
  start-page: 343
  year: 2015
  end-page: 361
  ident: bib40
  article-title: Numerical investigation of different injection patterns in rotating detonation engines
  publication-title: Combust. Sci. Technol.
– volume: 41
  start-page: 13281
  year: 2016
  end-page: 13293
  ident: bib14
  article-title: Effects of inner cylinder length on h
  publication-title: Int. J. Hydrogen Enenrgy
– volume: 137
  start-page: 749
  year: 2018
  end-page: 757
  ident: bib16
  article-title: A non-premixed rotating detonation engine using ethylene and air
  publication-title: Appl. Therm. Eng.
– year: 2012
  ident: bib37
  article-title: Feedback into mixture plenums in rotating detonation engines
  publication-title: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee
– volume: 117
  start-page: 338
  year: 2015
  end-page: 355
  ident: bib51
  article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics
  publication-title: Acta Astronaut.
– volume: 108
  start-page: 927
  year: 2016
  end-page: 936
  ident: bib36
  article-title: Multiple ignitions and the stability of rotating detonation waves
  publication-title: Appl. Therm. Eng.
– volume: 17
  start-page: 715
  year: 1972
  ident: 10.1016/j.actaastro.2018.09.012_bib5
  article-title: Theoretical analysis of a rotating two-phase detonation in liquid rocket motors
  publication-title: Astronaut. Acta
– volume: 135
  start-page: 114
  year: 2017
  ident: 10.1016/j.actaastro.2018.09.012_bib48
  article-title: Detonation onset following shock wave focusing
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2016.09.014
– volume: 170
  start-page: 261
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib34
  article-title: Further investigations on the interface instability between fresh injections and burnt products in 2-d rotating detonation
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.05.005
– volume: 184
  start-page: 1302
  year: 2012
  ident: 10.1016/j.actaastro.2018.09.012_bib1
  article-title: Experimental realization of h2/air continuous rotating detonation in a cylindrical combustor
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2012.682669
– start-page: 2691
  year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib24
  article-title: On the existence and multiplicity of rotating detonations
  publication-title: Proc. Combust. Inst.
– year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib33
  article-title: Numerical investigation of rotating detonation rocket engines
– year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib41
  article-title: Towards non-premixed injection modeling of rotating detonation engines
– year: 2017
  ident: 10.1016/j.actaastro.2018.09.012_bib26
  article-title: Experimental study of rotating detonation combustor performance under preheat and back pressure operation
– volume: 81
  start-page: 213
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib45
  article-title: Rotating detonation in a ramjet engine three-dimensional modeling
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2018.08.003
– volume: 42
  start-page: 14741
  year: 2017
  ident: 10.1016/j.actaastro.2018.09.012_bib20
  article-title: Experimental study of a hydrogen-air rotating detonation combustor
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2017.04.214
– volume: 151
  start-page: 408
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib15
  article-title: Analysis of operating diagram for h2/air rotating detonation combustors under lean fuel condition
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.062
– volume: 22
  start-page: 1204
  year: 2006
  ident: 10.1016/j.actaastro.2018.09.012_bib7
  article-title: Continuous spin detonations
  publication-title: J. Propul. Power
  doi: 10.2514/1.17656
– volume: 42
  start-page: 3363
  year: 2017
  ident: 10.1016/j.actaastro.2018.09.012_bib21
  article-title: Experimental investigations on h2/air rotating detonation wave in the hollow chamber with laval nozzle
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2016.12.038
– volume: 149
  start-page: 77
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib52
  article-title: Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.05.024
– volume: 43
  start-page: 449
  year: 2007
  ident: 10.1016/j.actaastro.2018.09.012_bib10
  article-title: Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture
  publication-title: Combust. Explos. Shock Waves
  doi: 10.1007/s10573-007-0061-y
– year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib32
  article-title: Three-dimensional numerical simulation on hydrogen-oxygen rotating detonation engine with unchoked aerospike nozzle
– volume: 33
  start-page: 100
  year: 2017
  ident: 10.1016/j.actaastro.2018.09.012_bib35
  article-title: Front cellular structure and thrust performance on hydrogen–oxygen rotating detonation engine
  publication-title: J. Propul. Power
  doi: 10.2514/1.B36095
– year: 2012
  ident: 10.1016/j.actaastro.2018.09.012_bib37
  article-title: Feedback into mixture plenums in rotating detonation engines
– volume: 39
  start-page: 323
  year: 2003
  ident: 10.1016/j.actaastro.2018.09.012_bib6
  article-title: Continuous detonation of a subsonic flow of a propellant
  publication-title: Combust. Explos. Shock Waves
  doi: 10.1023/A:1023800521344
– volume: 7
  start-page: 35
  year: 2013
  ident: 10.1016/j.actaastro.2018.09.012_bib43
  article-title: Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793113010119
– volume: 41
  start-page: 1281
  year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib29
  article-title: Investigation of rotating detonation combustor operation with h2-air mixtures
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2015.11.041
– volume: 3
  start-page: 893
  year: 1966
  ident: 10.1016/j.actaastro.2018.09.012_bib3
  article-title: Feasibility studies of a rotating detonation wave rocket motor
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/3.28557
– volume: 187
  start-page: 1867
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib39
  article-title: Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2015.1067202
– volume: 137
  start-page: 749
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib16
  article-title: A non-premixed rotating detonation engine using ethylene and air
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.015
– volume: 92
  start-page: 314
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib19
  article-title: Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.12.004
– volume: 41
  start-page: 13281
  year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib14
  article-title: Effects of inner cylinder length on h2/air rotating detonation
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2016.06.083
– volume: 187
  start-page: 1790
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib11
  article-title: Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2015.1019620
– volume: 93
  start-page: 366
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib17
  article-title: Influence of equivalence ratio on the propagation characteristics of rotating detonation wave
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.01.014
– volume: 26
  start-page: 417
  year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib42
  article-title: Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine
  publication-title: Shock Waves
  doi: 10.1007/s00193-015-0570-7
– volume: 40
  start-page: 16649
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib22
  article-title: Characterization of instabilities in a rotating detonation combustor
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2015.09.046
– volume: 42
  start-page: 463
  year: 2006
  ident: 10.1016/j.actaastro.2018.09.012_bib27
  article-title: Continuous spin detonation of fuel-air mixtures
  publication-title: Combust. Explos. Shock Waves
  doi: 10.1007/s10573-006-0076-9
– volume: 108
  start-page: 927
  year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib36
  article-title: Multiple ignitions and the stability of rotating detonation waves
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.166
– volume: 40
  start-page: 1980
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib13
  article-title: Experimental study on propagation mode of h2/air continuously rotating detonation wave
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2014.11.119
– year: 2012
  ident: 10.1016/j.actaastro.2018.09.012_bib28
  article-title: Rotating detonation engine operation
– volume: 21
  start-page: 75
  year: 2011
  ident: 10.1016/j.actaastro.2018.09.012_bib8
  article-title: Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures
  publication-title: Shock Waves
  doi: 10.1007/s00193-011-0298-y
– volume: 186
  start-page: 1699
  year: 2014
  ident: 10.1016/j.actaastro.2018.09.012_bib31
  article-title: Numerical investigation of the stability of rotating detonation engines
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2014.935641
– volume: 117
  start-page: 338
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib51
  article-title: Accumulation of errors in numerical simulations of chemically reacting gas dynamics
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.08.013
– volume: 39
  start-page: 15803
  year: 2014
  ident: 10.1016/j.actaastro.2018.09.012_bib30
  article-title: Numerical investigations of the restabilization of hydrogen-air rotating detonation engines
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2014.07.159
– volume: 187
  start-page: 343
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib40
  article-title: Numerical investigation of different injection patterns in rotating detonation engines
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2014.923411
– start-page: 122
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib25
  article-title: An experimental study on ch4/o2 continuously rotating detonation wave in a hollow combustion chamber
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.11.017
– volume: 94
  start-page: 345
  year: 2018
  ident: 10.1016/j.actaastro.2018.09.012_bib18
  article-title: Study of the ignition process in a laboratory scale rotating detonation engine
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.11.002
– volume: 129
  start-page: 1254
  year: 1959
  ident: 10.1016/j.actaastro.2018.09.012_bib2
  article-title: Stationary detonation
  publication-title: Doklady Akademii Nayk USSR
– volume: 13
  start-page: 405
  year: 1967
  ident: 10.1016/j.actaastro.2018.09.012_bib4
  article-title: Performance analysis of a rotating detonation wave rocket engine
  publication-title: Acta Astronaut.
– volume: 18
  start-page: 188
  year: 1980
  ident: 10.1016/j.actaastro.2018.09.012_bib47
  article-title: Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames
  publication-title: AIAA J.
  doi: 10.2514/3.50747
– year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib44
  article-title: High fidelity simulations of a non-premixed rotating detonation engine
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.actaastro.2018.09.012_bib46
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– volume: 28
  start-page: 669
  year: 2015
  ident: 10.1016/j.actaastro.2018.09.012_bib23
  article-title: Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2015.03.006
– volume: 26
  start-page: 210
  year: 1990
  ident: 10.1016/j.actaastro.2018.09.012_bib9
  article-title: Calculation of the flow of spin detonation in an annular chamber
  publication-title: Combust. Explos. Shock Waves
  doi: 10.1007/BF00742414
– volume: 140
  start-page: 388
  year: 2017
  ident: 10.1016/j.actaastro.2018.09.012_bib38
  article-title: Effects of injection nozzle exit width on rotating detonation engine
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.09.008
– volume: 41
  start-page: 5605
  year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib49
  article-title: Rotating detonation in a combustor of trapezoidal cross section for the hydrogen-air mixture
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2016.02.028
– volume: 39
  start-page: 10748
  year: 2014
  ident: 10.1016/j.actaastro.2018.09.012_bib50
  article-title: Hydrogen fuel rocket engines simulation using logos code
  publication-title: Int. J. Hydrogen Enenrgy
  doi: 10.1016/j.ijhydene.2014.04.150
– volume: 31
  start-page: 2080
  year: 2016
  ident: 10.1016/j.actaastro.2018.09.012_bib12
  article-title: Influence of chamber length on rotating detonation engine performance
  publication-title: J. Aerespace Power
SSID ssj0007289
Score 2.4400234
Snippet Rotating detonation engines are widely studied because of their compact configurations and high thermal cycle efficiency. For briefty, most of the numerical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 630
SubjectTerms CAD
Computer aided design
Computer simulation
Deflagration
Detonation waves
Elastic waves
Flow rates
High pressure
Jet engines
Mass flow rate
Numerical controls
Numerical simulations
Operation mode
Pressure feedback
Pressure waves
Ramjet engines
Rotating detonation engine
Rotation
Total mass flow rate
Title Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions
URI https://dx.doi.org/10.1016/j.actaastro.2018.09.012
https://www.proquest.com/docview/2131830807
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywhsaO8zBbVVEVEJ2o1AnLiR0UVJIqTSUmfjvnPFqKhDowOsol0efz3Xfx3RmhG8A9dgIdWjblzGIBUxZXlFshc5XyJKi1NvXOzxNvPGWPM3fWQsOmFsakVda2v7LppbWur_RrNPuLJDE1vpwBW3ZBKSEqKON2xnyj5bdfmzQPnwYVBYZPMXdv5XjJqJByWeSmCpAEZcNTQv_yUL9sdemARkfosGaOeFB93DFq6fQEHfzoJ3iKXieragNmjpNN_4wsxVmMJc4zs-2evmGli6z6CYh1KY5NJVmOF7n-SD616qdZajUDDAGzqvK6ztB0dP8yHFv1AQpWBGFbYXmR50QyoESBU_YlkbbPlUcVJ1pxxb2IaepIBUtYhX6gWah0TGxJYt-2tdK2c47a8EZ9gbAH-AF3dKhPNANWENAwDBiPmUM52G63g7wGNBHV3cXNIRdz0aSRvYs12sKgLWwuAO0OsteCi6rBxm6Ru2ZWxJauCHADu4W7zTyKerkuBSXGtAF59i__8-wrtG9GValiF7WLfKWvgbMUYa9Uyh7aGzw8jSffN4nuSA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqdgAGxFMUCnhgjRo7zsNsVUXV0sfUSp2wnNhBRSWp0lTi53NukkKREANjEl1inc_ffRffnRF6AL3HTqBDy6acWSxgyuKKcitkrlKeBLPWpt55PPH6M_Y8d-c11K1qYUxaZYn9BaZv0bq80y612V4tFqbGlzNgyy4YJUQFJm5vmO5Ubh01OoNhf7IDZJ8GBQuG0RiBvTQvGeVSrvPMFAKSYNvzlNDfnNQPuN76oN4JOi7JI-4U4ztFNZ2coaNvLQXP0ctkU-zBLPHiq4VGmuA0xhJnqdl5T16x0nla_AfEeiuOTTFZhleZfl98aNVO0sSqLjDEzKpI7bpAs97TtNu3yjMUrAgit9zyIs-JZECJAr_sSyJtnyuPKk604op7EdPUkQpWsQr9QLNQ6ZjYksS-bWulbecS1eGL-gphD_QH9NGhPtEMiEFAwzBgPGYO5QDfbhN5ldJEVDYYN-dcLEWVSfYmdtoWRtvC5gK03UT2TnBV9Nj4W-SxmhWxZy4CPMHfwq1qHkW5YteCEoNuwJ_96_-8-x4d9KfjkRgNJsMbdGieFJWLLVTPs42-BQqTh3eliX4CXiLw-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+a+rotating+detonation+engine+under+premixed%2Fnon-premixed+conditions&rft.jtitle=Acta+astronautica&rft.au=Sun%2C+Jian&rft.au=Zhou%2C+Jin&rft.au=Liu%2C+Shijie&rft.au=Lin%2C+Zhiyong&rft.date=2018-11-01&rft.issn=0094-5765&rft.volume=152&rft.spage=630&rft.epage=638&rft_id=info:doi/10.1016%2Fj.actaastro.2018.09.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actaastro_2018_09_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon