Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system
Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties re...
Saved in:
Published in | Atmospheric environment (1994) Vol. 77; pp. 686 - 695 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species.
The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2/O2− and HO) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations.
•We model irradiation experiments on synthetic solutions with a cloud chemistry model.•We examine the time evolutions of some target species (iron, hydrogen peroxide, carboxylic acids).•The aqueous chemical mechanism in the model is consistent with laboratory measurements.•We report that some interactions between iron and carboxylic acids are not correctly represented in cloud chemistry models. |
---|---|
AbstractList | Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the "oxidative engine" of the HxOy/iron (HxOy = H2O2, HO2radical dot/O2radical dot− and HOradical dot) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations. Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2/O2− and HO) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations. •We model irradiation experiments on synthetic solutions with a cloud chemistry model.•We examine the time evolutions of some target species (iron, hydrogen peroxide, carboxylic acids).•The aqueous chemical mechanism in the model is consistent with laboratory measurements.•We report that some interactions between iron and carboxylic acids are not correctly represented in cloud chemistry models. Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species.The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2/O2− and HO) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations. |
Author | Delort, Anne-Marie Deguillaume, Laurent Mailhot, Gilles Brigante, Marcello Long, Yoann Charbouillot, Tiffany Chaumerliac, Nadine |
Author_xml | – sequence: 1 givenname: Yoann surname: Long fullname: Long, Yoann organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France – sequence: 2 givenname: Tiffany surname: Charbouillot fullname: Charbouillot, Tiffany organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France – sequence: 3 givenname: Marcello surname: Brigante fullname: Brigante, Marcello organization: Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France – sequence: 4 givenname: Gilles surname: Mailhot fullname: Mailhot, Gilles organization: Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France – sequence: 5 givenname: Anne-Marie surname: Delort fullname: Delort, Anne-Marie organization: Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France – sequence: 6 givenname: Nadine surname: Chaumerliac fullname: Chaumerliac, Nadine organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France – sequence: 7 givenname: Laurent surname: Deguillaume fullname: Deguillaume, Laurent email: L.Deguillaume@opgc.univ-bpclermont.fr organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27681155$$DView record in Pascal Francis https://hal.science/hal-00950049$$DView record in HAL |
BookMark | eNqFkc1uEzEUhUeoSLSFV0CzQYJFEv_PDGJBVbUNUqRuytq68dwhjjx2sJ0oeYS-NQ4JXbDpxrauv3Oufc9VdeGDx6r6SMmUEqpm6ynkMST0uykjlE-JnBLevKkuadvwCWuFuChnLtmEcUreVVcprQkpSNdcVs93O3BbyDb4Ogz1GHp02NfGhW1ZVzjalOOhHtGswNs01vALrE-5drAMEXIolzZG6O3JA_cbjHZEn9PX-mmF9Xz_eJjZGPzMQFyG_cFZU4OxZ3cDrk6HlHF8X70dwCX8cN6vq5_3d0-388ni8eHH7c1iYgTp8kQBa0nXS0Ya1XPBxJLJhjdGCUqXaIhpB2UYR-Ss71EpYwSKvmFUKiqhk_y6-nLyXYHTm_JWiAcdwOr5zUIfa4R0khDR7WhhP5_YTQy_t5iyLvMw6Bx4DNukaUOk4EoQVtBPZxRS-dQQwRubXhqwRrWUymN7deJMDClFHF4QSvQxT73W__LUxzw1kbqEVYTf_hMam_8OPUew7nX595Mcy2x3FqNOxqI32NuIJus-2Ncs_gChMcUJ |
CitedBy_id | crossref_primary_10_1021_acs_est_6b02335 crossref_primary_10_1021_acs_est_6b03588 crossref_primary_10_3390_molecules25020423 crossref_primary_10_3390_atmos8110225 crossref_primary_10_5194_acp_15_12867_2015 crossref_primary_10_1029_2021JD035486 crossref_primary_10_1021_es403229x crossref_primary_10_5194_gmd_10_1339_2017 crossref_primary_10_1007_s11244_019_01151_8 crossref_primary_10_1021_jp505010e crossref_primary_10_5194_acp_14_1485_2014 crossref_primary_10_1039_D2EA00153E crossref_primary_10_1016_j_atmosres_2019_01_013 crossref_primary_10_1021_acs_est_6b02338 crossref_primary_10_1016_j_atmosenv_2018_09_060 crossref_primary_10_1021_es4056643 crossref_primary_10_1021_acs_est_5c00233 crossref_primary_10_1016_j_chemosphere_2021_133127 crossref_primary_10_1021_cr500447k crossref_primary_10_5194_acp_15_9191_2015 |
Cites_doi | 10.1016/j.atmosenv.2012.03.079 10.5194/acp-10-8219-2010 10.1002/cphc.201000533 10.1021/es801192n 10.1016/j.atmosenv.2010.07.050 10.1016/S1352-2310(01)00300-4 10.1016/j.atmosenv.2005.02.014 10.1021/es00047a010 10.1073/pnas.1205743110 10.5194/acp-4-715-2004 10.1016/S1352-2310(01)00573-8 10.1021/es00048a032 10.1111/j.1751-1097.2011.01014.x 10.5194/acp-4-95-2004 10.1029/2005JD006880 10.1029/2002JD002950 10.1016/j.atmosenv.2006.12.041 10.1007/s10872-005-0064-9 10.1016/j.atmosenv.2010.08.051 10.1007/s10874-007-9073-y 10.1016/j.atmosres.2010.05.005 10.1007/s10874-010-9168-8 10.1016/j.atmosenv.2010.08.035 10.1021/es061649s 10.1021/cr020658q 10.5194/acp-11-11069-2011 10.1016/j.atmosres.2011.02.013 10.5094/APR.2010.029 10.1016/j.chemosphere.2007.02.011 10.1016/0016-7037(95)00201-A 10.1007/s10874-006-9026-x 10.1021/cr040649c 10.5194/acp-11-8721-2011 10.1016/j.atmosenv.2005.02.016 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW 7S9 L.6 1XC |
DOI | 10.1016/j.atmosenv.2013.05.037 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1873-2844 |
EndPage | 695 |
ExternalDocumentID | oai_HAL_hal_00950049v1 27681155 10_1016_j_atmosenv_2013_05_037 S1352231013003804 |
GroupedDBID | --- --K --M -DZ -~X ..I .DC .HR .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K T9H TAE VH1 WUQ ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c409t-6a2809d52076d3424b25737c6411bec0c8f6c23ee32dde66cc4e4d7215615a953 |
IEDL.DBID | .~1 |
ISSN | 1352-2310 |
IngestDate | Sat Aug 02 06:20:36 EDT 2025 Tue Aug 05 10:32:13 EDT 2025 Mon Jul 21 09:15:23 EDT 2025 Tue Jul 01 03:38:03 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Fri Feb 23 02:35:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Iron Modelling Cloud photochemistry Organic compounds Laboratory study Hydrogen peroxide volatile organic compounds Pollutant behavior oxidation Transition metal clouds Photochemical reaction Modeling Free radical reaction Multiphase system Atmospheric chemistry carboxylic acids Reaction mechanism Hydroxyl radicals iron Air pollution organic compounds Hydrometeor |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-6a2809d52076d3424b25737c6411bec0c8f6c23ee32dde66cc4e4d7215615a953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8179-8880 0000-0003-2150-9888 0000-0003-4464-2999 0000-0002-3187-4793 |
PQID | 1705436402 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_00950049v1 proquest_miscellaneous_1705436402 pascalfrancis_primary_27681155 crossref_primary_10_1016_j_atmosenv_2013_05_037 crossref_citationtrail_10_1016_j_atmosenv_2013_05_037 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2013_05_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Atmospheric environment (1994) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Minero, Maurino, Bono, Pelizzetti, Marinoni, Mailhot, Carlotti, Vione (bib25) 2007; 68 Faust, Zepp (bib11) 1993; 27 Arakaki, Fujimura, Hamdun, Okada, Kondo, Oomori, Tanahara, Taira (bib1) 2005; 61 Nissensson, Dabdud, Das, Maurino, Minero, Vione (bib26) 2010; 38 Vaïtilingom, Deguillaume, Vinatier, Sancelme, Amato, Chaumerliac, Delort (bib33) 2013; 110 Ervens, Volkamer (bib10) 2010; 10 Vione, Minero, Hamraoui, Privat (bib35) 2007; 41 Charbouillot, Gorini, Voyard, Parazols, Brigante, Deguillaume, Delort, Mailhot (bib4) 2012; 56 van Pinxteren, Plewka, Hofmann, Müller, Kramberger, Svrcina, Bächmann, Jaeschke, Mertes, Collett, Herrmann (bib34) 2005; 39 Vaïtilingom, Charbouillot, Deguillaume, Maisonobe, Parazols, Amato, Sancelme, Delort (bib32) 2011; 11 Finlayson-Pitts, Pitts (bib12) 2000 Herrmann (bib13) 2003; 103 Leriche, Curier, Deguillaume, Caro, Sellegri, Chaumerliac (bib18) 2007; 57 Deguillaume, Desboeufs, Leriche, Long, Chaumerliac (bib5) 2010; 1 Okada, Kuroki, Nakama, Arakaki, Tanahara (bib27) 2006; 40 Marinoni, Parazols, Brigante, Deguillaume, Amato, Delort, Laj, Mailhot (bib24) 2011; 101 Deguillaume, Leriche, Desboeufs, Mailhot, George, Chaumerliac (bib7) 2005; 105 Madronich, Flocke (bib22) 1999 Löflund, Kasper-Giebl, Schuster, Giebl, Hitzenberger, Puxbaum (bib20) 2002; 36 Deguillaume, Tilgner, Schrödner, Wolke, Chaumerliac, Herrmann (bib8) 2009; 64 Herrmann, Tilgner, Barzaghi, Majdik, Gligorovski, Poulain, Monod (bib15) 2005; 39 Parazols, Marinoni, Amato, Abida, Laj, Mailhot (bib28) 2006; 54 Carlton, Turpin, Altieri, Seitzinger, Mathur, Roselle, Weber (bib2) 2008; 42 Long, Chaumerliac, Deguillaume, Leriche, Champeau (bib21) 2010; 97 Marinoni, Laj, Sellegri, Mailhot (bib23) 2004; 4 Herrmann, Hoffmann, Schaefer, Bräuer, Tilgner (bib14) 2010; 11 Kawamura, Barrie, Toom-Sauntry (bib16) 2010; 44 Zuo (bib36) 1995; 59 Leriche, Chaumerliac, Monod (bib17) 2001; 35 Sorooshian, Varutbangkul, Brechtel, Ervens, Feingold, Bahreini, Murphy, Holloway, Atlas, Buzorius, Jonsson, Flagan, Seinfeld (bib30) 2006; 111 Deguillaume, Leriche, Monod, Chaumerliac (bib6) 2004; 4 Leriche, Deguillaume, Chaumerliac (bib19) 2003; 108 Pehkonen, Siefert, Erel, Webb, Hoffmann (bib29) 1993; 27 Tilgner, Herrmann (bib31) 2010; 44 Charbouillot, Brigante, Deguillaume, Mailhot (bib3) 2012; 88 Ervens, Turpin, Weber (bib9) 2011; 11 Deguillaume (10.1016/j.atmosenv.2013.05.037_bib6) 2004; 4 Long (10.1016/j.atmosenv.2013.05.037_bib21) 2010; 97 Marinoni (10.1016/j.atmosenv.2013.05.037_bib24) 2011; 101 Ervens (10.1016/j.atmosenv.2013.05.037_bib10) 2010; 10 Leriche (10.1016/j.atmosenv.2013.05.037_bib17) 2001; 35 Charbouillot (10.1016/j.atmosenv.2013.05.037_bib4) 2012; 56 Kawamura (10.1016/j.atmosenv.2013.05.037_bib16) 2010; 44 Sorooshian (10.1016/j.atmosenv.2013.05.037_bib30) 2006; 111 Minero (10.1016/j.atmosenv.2013.05.037_bib25) 2007; 68 Finlayson-Pitts (10.1016/j.atmosenv.2013.05.037_bib12) 2000 van Pinxteren (10.1016/j.atmosenv.2013.05.037_bib34) 2005; 39 Madronich (10.1016/j.atmosenv.2013.05.037_bib22) 1999 Marinoni (10.1016/j.atmosenv.2013.05.037_bib23) 2004; 4 Nissensson (10.1016/j.atmosenv.2013.05.037_bib26) 2010; 38 Okada (10.1016/j.atmosenv.2013.05.037_bib27) 2006; 40 Leriche (10.1016/j.atmosenv.2013.05.037_bib18) 2007; 57 Carlton (10.1016/j.atmosenv.2013.05.037_bib2) 2008; 42 Deguillaume (10.1016/j.atmosenv.2013.05.037_bib8) 2009; 64 Ervens (10.1016/j.atmosenv.2013.05.037_bib9) 2011; 11 Charbouillot (10.1016/j.atmosenv.2013.05.037_bib3) 2012; 88 Herrmann (10.1016/j.atmosenv.2013.05.037_bib14) 2010; 11 Deguillaume (10.1016/j.atmosenv.2013.05.037_bib5) 2010; 1 Zuo (10.1016/j.atmosenv.2013.05.037_bib36) 1995; 59 Vione (10.1016/j.atmosenv.2013.05.037_bib35) 2007; 41 Arakaki (10.1016/j.atmosenv.2013.05.037_bib1) 2005; 61 Vaïtilingom (10.1016/j.atmosenv.2013.05.037_bib32) 2011; 11 Vaïtilingom (10.1016/j.atmosenv.2013.05.037_bib33) 2013; 110 Herrmann (10.1016/j.atmosenv.2013.05.037_bib13) 2003; 103 Leriche (10.1016/j.atmosenv.2013.05.037_bib19) 2003; 108 Deguillaume (10.1016/j.atmosenv.2013.05.037_bib7) 2005; 105 Löflund (10.1016/j.atmosenv.2013.05.037_bib20) 2002; 36 Faust (10.1016/j.atmosenv.2013.05.037_bib11) 1993; 27 Parazols (10.1016/j.atmosenv.2013.05.037_bib28) 2006; 54 Pehkonen (10.1016/j.atmosenv.2013.05.037_bib29) 1993; 27 Tilgner (10.1016/j.atmosenv.2013.05.037_bib31) 2010; 44 Herrmann (10.1016/j.atmosenv.2013.05.037_bib15) 2005; 39 |
References_xml | – volume: 108 start-page: 4433 year: 2003 ident: bib19 article-title: Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime publication-title: Journal of Geophysical Research – volume: 40 start-page: 7790 year: 2006 end-page: 7795 ident: bib27 article-title: Wavelength dependence of Fe(II) photoformation in the water-soluble fraction of aerosols collected in Okinawa, Japan publication-title: Environmental Science and Technology – volume: 68 start-page: 2111 year: 2007 end-page: 2117 ident: bib25 article-title: Effect of selected organic and inorganic snow and cloud components on the photochemical generation of nitrite by nitrate irradiation publication-title: Chemosphere – volume: 38 start-page: 4859 year: 2010 end-page: 4866 ident: bib26 article-title: Evidence of the water-cage effect on the photolysis of NO publication-title: Atmospheric Environment – volume: 4 start-page: 95 year: 2004 end-page: 110 ident: bib6 article-title: The role of transition metal ions on HO publication-title: Atmospheric Chemistry and Physics – volume: 103 start-page: 4691 year: 2003 end-page: 4716 ident: bib13 article-title: Kinetics of aqueous phase reactions relevant for atmospheric chemistry publication-title: Chemical Reviews – volume: 27 start-page: 2056 year: 1993 end-page: 2062 ident: bib29 article-title: Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds publication-title: Environmental Science and Technology – volume: 111 start-page: D23S45 year: 2006 ident: bib30 article-title: Oxalic acid in clear and cloudy atmospheres: analysis of data from international consortium for atmospheric research on transport and transformation 2004 publication-title: Journal of Geophysical Research – volume: 39 start-page: 4351 year: 2005 end-page: 4363 ident: bib15 article-title: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0 publication-title: Atmospheric Environment – volume: 88 start-page: 32 year: 2012 end-page: 37 ident: bib3 article-title: Atmospheric aqueous-phase photoreactivity: correlation between the hydroxyl radical photoformation and pesticide degradation rate in atmospherically relevant waters publication-title: Photochemistry and Photobiology – volume: 27 start-page: 2517 year: 1993 end-page: 2522 ident: bib11 article-title: Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters publication-title: Environmental Science and Technology – volume: 101 start-page: 256 year: 2011 end-page: 263 ident: bib24 article-title: Hydrogen peroxide in natural cloud water: sources and photoreactivity publication-title: Atmospheric Research – volume: 44 start-page: 5415 year: 2010 end-page: 5422 ident: bib31 article-title: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM publication-title: Atmospheric Environment – year: 2000 ident: bib12 article-title: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications – volume: 1 start-page: 220 year: 2010 end-page: 228 ident: bib5 article-title: Effect of iron dissolution on cloud chemistry: from laboratory measurements to model results publication-title: Atmospheric Pollution Research – volume: 57 start-page: 281 year: 2007 end-page: 297 ident: bib18 article-title: Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the puy de Dôme station publication-title: Journal of Atmospheric Chemistry – volume: 59 start-page: 3123 year: 1995 end-page: 3130 ident: bib36 article-title: Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets publication-title: Geochimica et Cosmochimica Acta – volume: 44 start-page: 5316 year: 2010 end-page: 5319 ident: bib16 article-title: Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography publication-title: Atmospheric Environment – volume: 42 start-page: 8798 year: 2008 end-page: 8802 ident: bib2 article-title: CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements publication-title: Environmental Science and Technology – volume: 56 start-page: 1 year: 2012 end-page: 8 ident: bib4 article-title: Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: formation, fate and reactivity publication-title: Atmospheric Environment – volume: 61 start-page: 561 year: 2005 end-page: 568 ident: bib1 article-title: Simultaneous measurement of hydrogen peroxide and Fe species (Fe(II) and Fe(tot)) in Okinawa island seawater: impacts of red soil pollution publication-title: Journal of Oceanography – volume: 4 start-page: 715 year: 2004 end-page: 728 ident: bib23 article-title: Cloud chemistry at the puy de Dôme: variability and relationships with environmental factors publication-title: Atmospheric Chemistry and Physics – volume: 105 start-page: 3388 year: 2005 end-page: 3431 ident: bib7 article-title: Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters publication-title: Chemical Reviews – volume: 64 start-page: 1 year: 2009 end-page: 35 ident: bib8 article-title: Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model publication-title: Journal of Atmospheric Chemistry – volume: 54 start-page: 267 year: 2006 end-page: 281 ident: bib28 article-title: Speciation and role of iron in cloud droplets at the puy de Dôme station publication-title: Journal of Atmospheric Chemistry – volume: 39 start-page: 4305 year: 2005 end-page: 4320 ident: bib34 article-title: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds publication-title: Atmospheric Environment – volume: 10 start-page: 8219 year: 2010 end-page: 8244 ident: bib10 article-title: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles publication-title: Atmospheric Chemistry and Physics – year: 1999 ident: bib22 article-title: The Role of Solar Radiation in the Handbook of Environmental Chemistry – volume: 11 start-page: 11069 year: 2011 end-page: 11102 ident: bib9 article-title: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies publication-title: Atmospheric Chemistry and Physics – volume: 41 start-page: 3303 year: 2007 end-page: 3314 ident: bib35 article-title: Modelling photochemical reactions in atmospheric water droplets: an assessment of the importance of surface processes publication-title: Atmospheric Environment – volume: 35 start-page: 5411 year: 2001 end-page: 5423 ident: bib17 article-title: Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the puy de Dôme mountain (France) publication-title: Atmospheric Environment – volume: 36 start-page: 1553 year: 2002 end-page: 1558 ident: bib20 article-title: Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water publication-title: Atmospheric Environment – volume: 11 start-page: 8721 year: 2011 end-page: 8733 ident: bib32 article-title: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry publication-title: Atmospheric Chemistry and Physics – volume: 11 start-page: 3796 year: 2010 end-page: 3822 ident: bib14 article-title: Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools publication-title: ChemPhysChem – volume: 97 start-page: 540 year: 2010 end-page: 554 ident: bib21 article-title: Effect of mixed-phase cloud on the chemical budget of trace gases: a modeling approach publication-title: Atmospheric Research – volume: 110 start-page: 559 year: 2013 end-page: 564 ident: bib33 article-title: Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds publication-title: Proceedings of the National Academy of Sciences – volume: 56 start-page: 1 year: 2012 ident: 10.1016/j.atmosenv.2013.05.037_bib4 article-title: Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: formation, fate and reactivity publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2012.03.079 – volume: 10 start-page: 8219 year: 2010 ident: 10.1016/j.atmosenv.2013.05.037_bib10 article-title: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-10-8219-2010 – volume: 11 start-page: 3796 year: 2010 ident: 10.1016/j.atmosenv.2013.05.037_bib14 article-title: Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools publication-title: ChemPhysChem doi: 10.1002/cphc.201000533 – volume: 42 start-page: 8798 year: 2008 ident: 10.1016/j.atmosenv.2013.05.037_bib2 article-title: CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements publication-title: Environmental Science and Technology doi: 10.1021/es801192n – volume: 44 start-page: 5415 year: 2010 ident: 10.1016/j.atmosenv.2013.05.037_bib31 article-title: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2010.07.050 – volume: 35 start-page: 5411 year: 2001 ident: 10.1016/j.atmosenv.2013.05.037_bib17 article-title: Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the puy de Dôme mountain (France) publication-title: Atmospheric Environment doi: 10.1016/S1352-2310(01)00300-4 – volume: 39 start-page: 4305 year: 2005 ident: 10.1016/j.atmosenv.2013.05.037_bib34 article-title: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2005.02.014 – volume: 27 start-page: 2056 year: 1993 ident: 10.1016/j.atmosenv.2013.05.037_bib29 article-title: Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds publication-title: Environmental Science and Technology doi: 10.1021/es00047a010 – volume: 110 start-page: 559 year: 2013 ident: 10.1016/j.atmosenv.2013.05.037_bib33 article-title: Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1205743110 – volume: 4 start-page: 715 year: 2004 ident: 10.1016/j.atmosenv.2013.05.037_bib23 article-title: Cloud chemistry at the puy de Dôme: variability and relationships with environmental factors publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-4-715-2004 – volume: 36 start-page: 1553 year: 2002 ident: 10.1016/j.atmosenv.2013.05.037_bib20 article-title: Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water publication-title: Atmospheric Environment doi: 10.1016/S1352-2310(01)00573-8 – volume: 27 start-page: 2517 year: 1993 ident: 10.1016/j.atmosenv.2013.05.037_bib11 article-title: Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters publication-title: Environmental Science and Technology doi: 10.1021/es00048a032 – volume: 88 start-page: 32 year: 2012 ident: 10.1016/j.atmosenv.2013.05.037_bib3 article-title: Atmospheric aqueous-phase photoreactivity: correlation between the hydroxyl radical photoformation and pesticide degradation rate in atmospherically relevant waters publication-title: Photochemistry and Photobiology doi: 10.1111/j.1751-1097.2011.01014.x – volume: 4 start-page: 95 year: 2004 ident: 10.1016/j.atmosenv.2013.05.037_bib6 article-title: The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-4-95-2004 – volume: 111 start-page: D23S45 year: 2006 ident: 10.1016/j.atmosenv.2013.05.037_bib30 article-title: Oxalic acid in clear and cloudy atmospheres: analysis of data from international consortium for atmospheric research on transport and transformation 2004 publication-title: Journal of Geophysical Research doi: 10.1029/2005JD006880 – volume: 108 start-page: 4433 year: 2003 ident: 10.1016/j.atmosenv.2013.05.037_bib19 article-title: Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime publication-title: Journal of Geophysical Research doi: 10.1029/2002JD002950 – volume: 41 start-page: 3303 year: 2007 ident: 10.1016/j.atmosenv.2013.05.037_bib35 article-title: Modelling photochemical reactions in atmospheric water droplets: an assessment of the importance of surface processes publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2006.12.041 – volume: 61 start-page: 561 year: 2005 ident: 10.1016/j.atmosenv.2013.05.037_bib1 article-title: Simultaneous measurement of hydrogen peroxide and Fe species (Fe(II) and Fe(tot)) in Okinawa island seawater: impacts of red soil pollution publication-title: Journal of Oceanography doi: 10.1007/s10872-005-0064-9 – volume: 44 start-page: 5316 year: 2010 ident: 10.1016/j.atmosenv.2013.05.037_bib16 article-title: Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2010.08.051 – volume: 57 start-page: 281 year: 2007 ident: 10.1016/j.atmosenv.2013.05.037_bib18 article-title: Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the puy de Dôme station publication-title: Journal of Atmospheric Chemistry doi: 10.1007/s10874-007-9073-y – volume: 97 start-page: 540 year: 2010 ident: 10.1016/j.atmosenv.2013.05.037_bib21 article-title: Effect of mixed-phase cloud on the chemical budget of trace gases: a modeling approach publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2010.05.005 – volume: 64 start-page: 1 year: 2009 ident: 10.1016/j.atmosenv.2013.05.037_bib8 article-title: Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model publication-title: Journal of Atmospheric Chemistry doi: 10.1007/s10874-010-9168-8 – year: 1999 ident: 10.1016/j.atmosenv.2013.05.037_bib22 – volume: 38 start-page: 4859 year: 2010 ident: 10.1016/j.atmosenv.2013.05.037_bib26 article-title: Evidence of the water-cage effect on the photolysis of NO3− and FeOH2+. Implication of this effect and of H2O2 surface accumulation on photochemistry at the air-interface of atmospheric droplets publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2010.08.035 – volume: 40 start-page: 7790 year: 2006 ident: 10.1016/j.atmosenv.2013.05.037_bib27 article-title: Wavelength dependence of Fe(II) photoformation in the water-soluble fraction of aerosols collected in Okinawa, Japan publication-title: Environmental Science and Technology doi: 10.1021/es061649s – volume: 103 start-page: 4691 year: 2003 ident: 10.1016/j.atmosenv.2013.05.037_bib13 article-title: Kinetics of aqueous phase reactions relevant for atmospheric chemistry publication-title: Chemical Reviews doi: 10.1021/cr020658q – volume: 11 start-page: 11069 year: 2011 ident: 10.1016/j.atmosenv.2013.05.037_bib9 article-title: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-11-11069-2011 – volume: 101 start-page: 256 year: 2011 ident: 10.1016/j.atmosenv.2013.05.037_bib24 article-title: Hydrogen peroxide in natural cloud water: sources and photoreactivity publication-title: Atmospheric Research doi: 10.1016/j.atmosres.2011.02.013 – volume: 1 start-page: 220 year: 2010 ident: 10.1016/j.atmosenv.2013.05.037_bib5 article-title: Effect of iron dissolution on cloud chemistry: from laboratory measurements to model results publication-title: Atmospheric Pollution Research doi: 10.5094/APR.2010.029 – year: 2000 ident: 10.1016/j.atmosenv.2013.05.037_bib12 – volume: 68 start-page: 2111 issue: 11 year: 2007 ident: 10.1016/j.atmosenv.2013.05.037_bib25 article-title: Effect of selected organic and inorganic snow and cloud components on the photochemical generation of nitrite by nitrate irradiation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.02.011 – volume: 59 start-page: 3123 year: 1995 ident: 10.1016/j.atmosenv.2013.05.037_bib36 article-title: Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(95)00201-A – volume: 54 start-page: 267 year: 2006 ident: 10.1016/j.atmosenv.2013.05.037_bib28 article-title: Speciation and role of iron in cloud droplets at the puy de Dôme station publication-title: Journal of Atmospheric Chemistry doi: 10.1007/s10874-006-9026-x – volume: 105 start-page: 3388 year: 2005 ident: 10.1016/j.atmosenv.2013.05.037_bib7 article-title: Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters publication-title: Chemical Reviews doi: 10.1021/cr040649c – volume: 11 start-page: 8721 year: 2011 ident: 10.1016/j.atmosenv.2013.05.037_bib32 article-title: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-11-8721-2011 – volume: 39 start-page: 4351 year: 2005 ident: 10.1016/j.atmosenv.2013.05.037_bib15 article-title: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2005.02.016 |
SSID | ssj0003797 |
Score | 2.209573 |
Snippet | Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as... |
SourceID | hal proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 686 |
SubjectTerms | acetic acids Applied sciences aqueous solutions atmospheric chemistry Atmospheric pollution Chemical composition and interactions. Ionic interactions and processes Cloud photochemistry Cloud physics Earth, ocean, space Exact sciences and technology External geophysics formic acid hydrogen peroxide Iron irradiation laboratory experimentation light intensity Meteorology Modelling Organic compounds oxalic acid oxidants oxidation photolysis Pollutants physicochemistry study: properties, effects, reactions, transport and distribution Pollution temperature |
Title | Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system |
URI | https://dx.doi.org/10.1016/j.atmosenv.2013.05.037 https://www.proquest.com/docview/1705436402 https://hal.science/hal-00950049 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N8QJCaBtMFFhlEK8hP2wnKW_V1CkMNB5g0t4s13FYpjapmnbaXnjnv-YucdpNIO2Bl0hJbCfxnc_fKXffAXyQJke_xwYeYg_pCakN2sEi9FKdRHnKU5voNtriLM7OxemFvNiB4z4XhsIqne3vbHprrd0V382mvyhL_3tI2AHRCf2Q4WnLCSpEQlr-8dc2zIMnXYEVbOxR6ztZwlcokXnd2OqaQrx4y-BJ9dD_vUE9uqRIyWcL3eDkFV3Vi78MeLsrnezBcwcn2bh7433YsdUBPL1DMngAh5NtLhs2dYu5eQG_Jxumb1YXrKuJkzMzq9d47AvBsbml5OCymTP9U5eIJplTnBpvlsslkRu0Y2yLBTSfGKofy26-3fr0aN_o5bS-uZ2VhmlTutHxA1lHJP0Szk8mP44zz1Vm8Az6gysv1lEajHIZBUmccxGJKa58nphYhCEqRWDSIjYRt5ZHaD7j2BhhRY7OJqI1qUeSH8JuVVf2FTAuRnmOt0Mhc8EDPS2EDYqCgBO5YsEAZC8OZRxtOVXPmKk-Pu1K9WJUJEYVSIViHIC_6bfoiDse7DHqpa3uqaDC3eXBvu9RPTYPIs7ubPxV0TUCseSHXYcDGN7Tnk3zCH0-ROZyAO96dVIoY_p1oytbrxtFpEeCx-jsv_6Pt3wDT-isi0V8C7ur5doeIaZaTYftohnC4_HnL9nZH8NQJFM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gAIIShULI9iENcoD9tJltuq2iqly3KglXqzvLZTUu0mq81u1f4E_jUziZO2AqkHLjnEduJkxuNv5JlvCPkitAG_xwYeYA_hcaE02ME89FKVRCZlqU1UE20xi7Mz_u1cnO-Qwy4XBsMqne1vbXpjrd0d3_1Nf1UU_s8QsQOgEzyQYSlygu4iO5UYkN3x8Uk26w0yS9oaK9DfwwF3EoUvQSjLqrblFUZ5sYbEE0ui_3uPevQLgyWfrVQN_y9vC1_8ZcObjenoBXnuECUdt5N-SXZsuUee3uEZ3CP7k9t0Nujq1nP9ivye9GTftMppWxbHUL2otnDtasHRpcX84KJeUnWhCgCU1OlOBY3Feo38Bs0zbusF1F8paCDNrn_c-PhqX6v1vLq-WRSaKl24p8MH0pZL-jU5O5qcHmaeK87gaXAJN16sojQYGREFSWwYj_gcFj9LdMzDEPQi0Gke64hZyyKwoHGsNbfcgL8JgE2okWD7ZFBWpX1DKOMjY6A55MJwFqh5zm2Q54id0BsLhkR04pDaMZdjAY2F7ELULmUnRolilIGQIMYh8ftxq5a748ERo07a8p4WSthgHhz7GdSjfxHSdmfjqcR7iGPRFbsKh-Tgnvb03SNw-wCciyH51KmTBBnj6Y0qbbWtJfIecRaDv__2P2b5kTzOTr9P5fR4dvKOPMGWNjTxPRls1lv7ASDWZn7gltAfqGEnBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+modeled+cloud+chemistry+mechanism+against+laboratory+irradiation+experiments%3A+the+HxOy%2Firon%2Fcarboxylic+acid+chemical+system&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Long%2C+Yoann&rft.au=Charbouillot%2C+Tiffany&rft.au=Brigante%2C+Marcello&rft.au=Mailhot%2C+Gilles&rft.date=2013-10-01&rft.pub=Elsevier&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=77&rft.spage=686&rft.epage=695&rft_id=info:doi/10.1016%2Fj.atmosenv.2013.05.037&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00950049v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |