Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system

Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties re...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 77; pp. 686 - 695
Main Authors Long, Yoann, Charbouillot, Tiffany, Brigante, Marcello, Mailhot, Gilles, Delort, Anne-Marie, Chaumerliac, Nadine, Deguillaume, Laurent
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2/O2− and HO) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations. •We model irradiation experiments on synthetic solutions with a cloud chemistry model.•We examine the time evolutions of some target species (iron, hydrogen peroxide, carboxylic acids).•The aqueous chemical mechanism in the model is consistent with laboratory measurements.•We report that some interactions between iron and carboxylic acids are not correctly represented in cloud chemistry models.
AbstractList Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the "oxidative engine" of the HxOy/iron (HxOy = H2O2, HO2radical dot/O2radical dot− and HOradical dot) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations.
Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2/O2− and HO) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations. •We model irradiation experiments on synthetic solutions with a cloud chemistry model.•We examine the time evolutions of some target species (iron, hydrogen peroxide, carboxylic acids).•The aqueous chemical mechanism in the model is consistent with laboratory measurements.•We report that some interactions between iron and carboxylic acids are not correctly represented in cloud chemistry models.
Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species.The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2/O2− and HO) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations.
Author Delort, Anne-Marie
Deguillaume, Laurent
Mailhot, Gilles
Brigante, Marcello
Long, Yoann
Charbouillot, Tiffany
Chaumerliac, Nadine
Author_xml – sequence: 1
  givenname: Yoann
  surname: Long
  fullname: Long, Yoann
  organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France
– sequence: 2
  givenname: Tiffany
  surname: Charbouillot
  fullname: Charbouillot, Tiffany
  organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France
– sequence: 3
  givenname: Marcello
  surname: Brigante
  fullname: Brigante, Marcello
  organization: Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
– sequence: 4
  givenname: Gilles
  surname: Mailhot
  fullname: Mailhot, Gilles
  organization: Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
– sequence: 5
  givenname: Anne-Marie
  surname: Delort
  fullname: Delort, Anne-Marie
  organization: Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
– sequence: 6
  givenname: Nadine
  surname: Chaumerliac
  fullname: Chaumerliac, Nadine
  organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France
– sequence: 7
  givenname: Laurent
  surname: Deguillaume
  fullname: Deguillaume, Laurent
  email: L.Deguillaume@opgc.univ-bpclermont.fr
  organization: Clermont Université, Université Blaise Pascal, OPGC, Laboratoire de Météorologie Physique, BP 10448, F-63000 Clermont-Ferrand, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27681155$$DView record in Pascal Francis
https://hal.science/hal-00950049$$DView record in HAL
BookMark eNqFkc1uEzEUhUeoSLSFV0CzQYJFEv_PDGJBVbUNUqRuytq68dwhjjx2sJ0oeYS-NQ4JXbDpxrauv3Oufc9VdeGDx6r6SMmUEqpm6ynkMST0uykjlE-JnBLevKkuadvwCWuFuChnLtmEcUreVVcprQkpSNdcVs93O3BbyDb4Ogz1GHp02NfGhW1ZVzjalOOhHtGswNs01vALrE-5drAMEXIolzZG6O3JA_cbjHZEn9PX-mmF9Xz_eJjZGPzMQFyG_cFZU4OxZ3cDrk6HlHF8X70dwCX8cN6vq5_3d0-388ni8eHH7c1iYgTp8kQBa0nXS0Ya1XPBxJLJhjdGCUqXaIhpB2UYR-Ss71EpYwSKvmFUKiqhk_y6-nLyXYHTm_JWiAcdwOr5zUIfa4R0khDR7WhhP5_YTQy_t5iyLvMw6Bx4DNukaUOk4EoQVtBPZxRS-dQQwRubXhqwRrWUymN7deJMDClFHF4QSvQxT73W__LUxzw1kbqEVYTf_hMam_8OPUew7nX595Mcy2x3FqNOxqI32NuIJus-2Ncs_gChMcUJ
CitedBy_id crossref_primary_10_1021_acs_est_6b02335
crossref_primary_10_1021_acs_est_6b03588
crossref_primary_10_3390_molecules25020423
crossref_primary_10_3390_atmos8110225
crossref_primary_10_5194_acp_15_12867_2015
crossref_primary_10_1029_2021JD035486
crossref_primary_10_1021_es403229x
crossref_primary_10_5194_gmd_10_1339_2017
crossref_primary_10_1007_s11244_019_01151_8
crossref_primary_10_1021_jp505010e
crossref_primary_10_5194_acp_14_1485_2014
crossref_primary_10_1039_D2EA00153E
crossref_primary_10_1016_j_atmosres_2019_01_013
crossref_primary_10_1021_acs_est_6b02338
crossref_primary_10_1016_j_atmosenv_2018_09_060
crossref_primary_10_1021_es4056643
crossref_primary_10_1021_acs_est_5c00233
crossref_primary_10_1016_j_chemosphere_2021_133127
crossref_primary_10_1021_cr500447k
crossref_primary_10_5194_acp_15_9191_2015
Cites_doi 10.1016/j.atmosenv.2012.03.079
10.5194/acp-10-8219-2010
10.1002/cphc.201000533
10.1021/es801192n
10.1016/j.atmosenv.2010.07.050
10.1016/S1352-2310(01)00300-4
10.1016/j.atmosenv.2005.02.014
10.1021/es00047a010
10.1073/pnas.1205743110
10.5194/acp-4-715-2004
10.1016/S1352-2310(01)00573-8
10.1021/es00048a032
10.1111/j.1751-1097.2011.01014.x
10.5194/acp-4-95-2004
10.1029/2005JD006880
10.1029/2002JD002950
10.1016/j.atmosenv.2006.12.041
10.1007/s10872-005-0064-9
10.1016/j.atmosenv.2010.08.051
10.1007/s10874-007-9073-y
10.1016/j.atmosres.2010.05.005
10.1007/s10874-010-9168-8
10.1016/j.atmosenv.2010.08.035
10.1021/es061649s
10.1021/cr020658q
10.5194/acp-11-11069-2011
10.1016/j.atmosres.2011.02.013
10.5094/APR.2010.029
10.1016/j.chemosphere.2007.02.011
10.1016/0016-7037(95)00201-A
10.1007/s10874-006-9026-x
10.1021/cr040649c
10.5194/acp-11-8721-2011
10.1016/j.atmosenv.2005.02.016
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7S9
L.6
1XC
DOI 10.1016/j.atmosenv.2013.05.037
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1873-2844
EndPage 695
ExternalDocumentID oai_HAL_hal_00950049v1
27681155
10_1016_j_atmosenv_2013_05_037
S1352231013003804
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.HR
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
T9H
TAE
VH1
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
1XC
ID FETCH-LOGICAL-c409t-6a2809d52076d3424b25737c6411bec0c8f6c23ee32dde66cc4e4d7215615a953
IEDL.DBID .~1
ISSN 1352-2310
IngestDate Sat Aug 02 06:20:36 EDT 2025
Tue Aug 05 10:32:13 EDT 2025
Mon Jul 21 09:15:23 EDT 2025
Tue Jul 01 03:38:03 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Fri Feb 23 02:35:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Iron
Modelling
Cloud photochemistry
Organic compounds
Laboratory study
Hydrogen peroxide
volatile organic compounds
Pollutant behavior
oxidation
Transition metal
clouds
Photochemical reaction
Modeling
Free radical reaction
Multiphase system
Atmospheric chemistry
carboxylic acids
Reaction mechanism
Hydroxyl radicals
iron
Air pollution
organic compounds
Hydrometeor
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-6a2809d52076d3424b25737c6411bec0c8f6c23ee32dde66cc4e4d7215615a953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8179-8880
0000-0003-2150-9888
0000-0003-4464-2999
0000-0002-3187-4793
PQID 1705436402
PQPubID 24069
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_00950049v1
proquest_miscellaneous_1705436402
pascalfrancis_primary_27681155
crossref_primary_10_1016_j_atmosenv_2013_05_037
crossref_citationtrail_10_1016_j_atmosenv_2013_05_037
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2013_05_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Atmospheric environment (1994)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Minero, Maurino, Bono, Pelizzetti, Marinoni, Mailhot, Carlotti, Vione (bib25) 2007; 68
Faust, Zepp (bib11) 1993; 27
Arakaki, Fujimura, Hamdun, Okada, Kondo, Oomori, Tanahara, Taira (bib1) 2005; 61
Nissensson, Dabdud, Das, Maurino, Minero, Vione (bib26) 2010; 38
Vaïtilingom, Deguillaume, Vinatier, Sancelme, Amato, Chaumerliac, Delort (bib33) 2013; 110
Ervens, Volkamer (bib10) 2010; 10
Vione, Minero, Hamraoui, Privat (bib35) 2007; 41
Charbouillot, Gorini, Voyard, Parazols, Brigante, Deguillaume, Delort, Mailhot (bib4) 2012; 56
van Pinxteren, Plewka, Hofmann, Müller, Kramberger, Svrcina, Bächmann, Jaeschke, Mertes, Collett, Herrmann (bib34) 2005; 39
Vaïtilingom, Charbouillot, Deguillaume, Maisonobe, Parazols, Amato, Sancelme, Delort (bib32) 2011; 11
Finlayson-Pitts, Pitts (bib12) 2000
Herrmann (bib13) 2003; 103
Leriche, Curier, Deguillaume, Caro, Sellegri, Chaumerliac (bib18) 2007; 57
Deguillaume, Desboeufs, Leriche, Long, Chaumerliac (bib5) 2010; 1
Okada, Kuroki, Nakama, Arakaki, Tanahara (bib27) 2006; 40
Marinoni, Parazols, Brigante, Deguillaume, Amato, Delort, Laj, Mailhot (bib24) 2011; 101
Deguillaume, Leriche, Desboeufs, Mailhot, George, Chaumerliac (bib7) 2005; 105
Madronich, Flocke (bib22) 1999
Löflund, Kasper-Giebl, Schuster, Giebl, Hitzenberger, Puxbaum (bib20) 2002; 36
Deguillaume, Tilgner, Schrödner, Wolke, Chaumerliac, Herrmann (bib8) 2009; 64
Herrmann, Tilgner, Barzaghi, Majdik, Gligorovski, Poulain, Monod (bib15) 2005; 39
Parazols, Marinoni, Amato, Abida, Laj, Mailhot (bib28) 2006; 54
Carlton, Turpin, Altieri, Seitzinger, Mathur, Roselle, Weber (bib2) 2008; 42
Long, Chaumerliac, Deguillaume, Leriche, Champeau (bib21) 2010; 97
Marinoni, Laj, Sellegri, Mailhot (bib23) 2004; 4
Herrmann, Hoffmann, Schaefer, Bräuer, Tilgner (bib14) 2010; 11
Kawamura, Barrie, Toom-Sauntry (bib16) 2010; 44
Zuo (bib36) 1995; 59
Leriche, Chaumerliac, Monod (bib17) 2001; 35
Sorooshian, Varutbangkul, Brechtel, Ervens, Feingold, Bahreini, Murphy, Holloway, Atlas, Buzorius, Jonsson, Flagan, Seinfeld (bib30) 2006; 111
Deguillaume, Leriche, Monod, Chaumerliac (bib6) 2004; 4
Leriche, Deguillaume, Chaumerliac (bib19) 2003; 108
Pehkonen, Siefert, Erel, Webb, Hoffmann (bib29) 1993; 27
Tilgner, Herrmann (bib31) 2010; 44
Charbouillot, Brigante, Deguillaume, Mailhot (bib3) 2012; 88
Ervens, Turpin, Weber (bib9) 2011; 11
Deguillaume (10.1016/j.atmosenv.2013.05.037_bib6) 2004; 4
Long (10.1016/j.atmosenv.2013.05.037_bib21) 2010; 97
Marinoni (10.1016/j.atmosenv.2013.05.037_bib24) 2011; 101
Ervens (10.1016/j.atmosenv.2013.05.037_bib10) 2010; 10
Leriche (10.1016/j.atmosenv.2013.05.037_bib17) 2001; 35
Charbouillot (10.1016/j.atmosenv.2013.05.037_bib4) 2012; 56
Kawamura (10.1016/j.atmosenv.2013.05.037_bib16) 2010; 44
Sorooshian (10.1016/j.atmosenv.2013.05.037_bib30) 2006; 111
Minero (10.1016/j.atmosenv.2013.05.037_bib25) 2007; 68
Finlayson-Pitts (10.1016/j.atmosenv.2013.05.037_bib12) 2000
van Pinxteren (10.1016/j.atmosenv.2013.05.037_bib34) 2005; 39
Madronich (10.1016/j.atmosenv.2013.05.037_bib22) 1999
Marinoni (10.1016/j.atmosenv.2013.05.037_bib23) 2004; 4
Nissensson (10.1016/j.atmosenv.2013.05.037_bib26) 2010; 38
Okada (10.1016/j.atmosenv.2013.05.037_bib27) 2006; 40
Leriche (10.1016/j.atmosenv.2013.05.037_bib18) 2007; 57
Carlton (10.1016/j.atmosenv.2013.05.037_bib2) 2008; 42
Deguillaume (10.1016/j.atmosenv.2013.05.037_bib8) 2009; 64
Ervens (10.1016/j.atmosenv.2013.05.037_bib9) 2011; 11
Charbouillot (10.1016/j.atmosenv.2013.05.037_bib3) 2012; 88
Herrmann (10.1016/j.atmosenv.2013.05.037_bib14) 2010; 11
Deguillaume (10.1016/j.atmosenv.2013.05.037_bib5) 2010; 1
Zuo (10.1016/j.atmosenv.2013.05.037_bib36) 1995; 59
Vione (10.1016/j.atmosenv.2013.05.037_bib35) 2007; 41
Arakaki (10.1016/j.atmosenv.2013.05.037_bib1) 2005; 61
Vaïtilingom (10.1016/j.atmosenv.2013.05.037_bib32) 2011; 11
Vaïtilingom (10.1016/j.atmosenv.2013.05.037_bib33) 2013; 110
Herrmann (10.1016/j.atmosenv.2013.05.037_bib13) 2003; 103
Leriche (10.1016/j.atmosenv.2013.05.037_bib19) 2003; 108
Deguillaume (10.1016/j.atmosenv.2013.05.037_bib7) 2005; 105
Löflund (10.1016/j.atmosenv.2013.05.037_bib20) 2002; 36
Faust (10.1016/j.atmosenv.2013.05.037_bib11) 1993; 27
Parazols (10.1016/j.atmosenv.2013.05.037_bib28) 2006; 54
Pehkonen (10.1016/j.atmosenv.2013.05.037_bib29) 1993; 27
Tilgner (10.1016/j.atmosenv.2013.05.037_bib31) 2010; 44
Herrmann (10.1016/j.atmosenv.2013.05.037_bib15) 2005; 39
References_xml – volume: 108
  start-page: 4433
  year: 2003
  ident: bib19
  article-title: Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime
  publication-title: Journal of Geophysical Research
– volume: 40
  start-page: 7790
  year: 2006
  end-page: 7795
  ident: bib27
  article-title: Wavelength dependence of Fe(II) photoformation in the water-soluble fraction of aerosols collected in Okinawa, Japan
  publication-title: Environmental Science and Technology
– volume: 68
  start-page: 2111
  year: 2007
  end-page: 2117
  ident: bib25
  article-title: Effect of selected organic and inorganic snow and cloud components on the photochemical generation of nitrite by nitrate irradiation
  publication-title: Chemosphere
– volume: 38
  start-page: 4859
  year: 2010
  end-page: 4866
  ident: bib26
  article-title: Evidence of the water-cage effect on the photolysis of NO
  publication-title: Atmospheric Environment
– volume: 4
  start-page: 95
  year: 2004
  end-page: 110
  ident: bib6
  article-title: The role of transition metal ions on HO
  publication-title: Atmospheric Chemistry and Physics
– volume: 103
  start-page: 4691
  year: 2003
  end-page: 4716
  ident: bib13
  article-title: Kinetics of aqueous phase reactions relevant for atmospheric chemistry
  publication-title: Chemical Reviews
– volume: 27
  start-page: 2056
  year: 1993
  end-page: 2062
  ident: bib29
  article-title: Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds
  publication-title: Environmental Science and Technology
– volume: 111
  start-page: D23S45
  year: 2006
  ident: bib30
  article-title: Oxalic acid in clear and cloudy atmospheres: analysis of data from international consortium for atmospheric research on transport and transformation 2004
  publication-title: Journal of Geophysical Research
– volume: 39
  start-page: 4351
  year: 2005
  end-page: 4363
  ident: bib15
  article-title: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0
  publication-title: Atmospheric Environment
– volume: 88
  start-page: 32
  year: 2012
  end-page: 37
  ident: bib3
  article-title: Atmospheric aqueous-phase photoreactivity: correlation between the hydroxyl radical photoformation and pesticide degradation rate in atmospherically relevant waters
  publication-title: Photochemistry and Photobiology
– volume: 27
  start-page: 2517
  year: 1993
  end-page: 2522
  ident: bib11
  article-title: Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters
  publication-title: Environmental Science and Technology
– volume: 101
  start-page: 256
  year: 2011
  end-page: 263
  ident: bib24
  article-title: Hydrogen peroxide in natural cloud water: sources and photoreactivity
  publication-title: Atmospheric Research
– volume: 44
  start-page: 5415
  year: 2010
  end-page: 5422
  ident: bib31
  article-title: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM
  publication-title: Atmospheric Environment
– year: 2000
  ident: bib12
  article-title: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications
– volume: 1
  start-page: 220
  year: 2010
  end-page: 228
  ident: bib5
  article-title: Effect of iron dissolution on cloud chemistry: from laboratory measurements to model results
  publication-title: Atmospheric Pollution Research
– volume: 57
  start-page: 281
  year: 2007
  end-page: 297
  ident: bib18
  article-title: Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the puy de Dôme station
  publication-title: Journal of Atmospheric Chemistry
– volume: 59
  start-page: 3123
  year: 1995
  end-page: 3130
  ident: bib36
  article-title: Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets
  publication-title: Geochimica et Cosmochimica Acta
– volume: 44
  start-page: 5316
  year: 2010
  end-page: 5319
  ident: bib16
  article-title: Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography
  publication-title: Atmospheric Environment
– volume: 42
  start-page: 8798
  year: 2008
  end-page: 8802
  ident: bib2
  article-title: CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements
  publication-title: Environmental Science and Technology
– volume: 56
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib4
  article-title: Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: formation, fate and reactivity
  publication-title: Atmospheric Environment
– volume: 61
  start-page: 561
  year: 2005
  end-page: 568
  ident: bib1
  article-title: Simultaneous measurement of hydrogen peroxide and Fe species (Fe(II) and Fe(tot)) in Okinawa island seawater: impacts of red soil pollution
  publication-title: Journal of Oceanography
– volume: 4
  start-page: 715
  year: 2004
  end-page: 728
  ident: bib23
  article-title: Cloud chemistry at the puy de Dôme: variability and relationships with environmental factors
  publication-title: Atmospheric Chemistry and Physics
– volume: 105
  start-page: 3388
  year: 2005
  end-page: 3431
  ident: bib7
  article-title: Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters
  publication-title: Chemical Reviews
– volume: 64
  start-page: 1
  year: 2009
  end-page: 35
  ident: bib8
  article-title: Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model
  publication-title: Journal of Atmospheric Chemistry
– volume: 54
  start-page: 267
  year: 2006
  end-page: 281
  ident: bib28
  article-title: Speciation and role of iron in cloud droplets at the puy de Dôme station
  publication-title: Journal of Atmospheric Chemistry
– volume: 39
  start-page: 4305
  year: 2005
  end-page: 4320
  ident: bib34
  article-title: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds
  publication-title: Atmospheric Environment
– volume: 10
  start-page: 8219
  year: 2010
  end-page: 8244
  ident: bib10
  article-title: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles
  publication-title: Atmospheric Chemistry and Physics
– year: 1999
  ident: bib22
  article-title: The Role of Solar Radiation in the Handbook of Environmental Chemistry
– volume: 11
  start-page: 11069
  year: 2011
  end-page: 11102
  ident: bib9
  article-title: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies
  publication-title: Atmospheric Chemistry and Physics
– volume: 41
  start-page: 3303
  year: 2007
  end-page: 3314
  ident: bib35
  article-title: Modelling photochemical reactions in atmospheric water droplets: an assessment of the importance of surface processes
  publication-title: Atmospheric Environment
– volume: 35
  start-page: 5411
  year: 2001
  end-page: 5423
  ident: bib17
  article-title: Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the puy de Dôme mountain (France)
  publication-title: Atmospheric Environment
– volume: 36
  start-page: 1553
  year: 2002
  end-page: 1558
  ident: bib20
  article-title: Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water
  publication-title: Atmospheric Environment
– volume: 11
  start-page: 8721
  year: 2011
  end-page: 8733
  ident: bib32
  article-title: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry
  publication-title: Atmospheric Chemistry and Physics
– volume: 11
  start-page: 3796
  year: 2010
  end-page: 3822
  ident: bib14
  article-title: Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools
  publication-title: ChemPhysChem
– volume: 97
  start-page: 540
  year: 2010
  end-page: 554
  ident: bib21
  article-title: Effect of mixed-phase cloud on the chemical budget of trace gases: a modeling approach
  publication-title: Atmospheric Research
– volume: 110
  start-page: 559
  year: 2013
  end-page: 564
  ident: bib33
  article-title: Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds
  publication-title: Proceedings of the National Academy of Sciences
– volume: 56
  start-page: 1
  year: 2012
  ident: 10.1016/j.atmosenv.2013.05.037_bib4
  article-title: Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: formation, fate and reactivity
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2012.03.079
– volume: 10
  start-page: 8219
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.037_bib10
  article-title: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-10-8219-2010
– volume: 11
  start-page: 3796
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.037_bib14
  article-title: Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201000533
– volume: 42
  start-page: 8798
  year: 2008
  ident: 10.1016/j.atmosenv.2013.05.037_bib2
  article-title: CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements
  publication-title: Environmental Science and Technology
  doi: 10.1021/es801192n
– volume: 44
  start-page: 5415
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.037_bib31
  article-title: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2010.07.050
– volume: 35
  start-page: 5411
  year: 2001
  ident: 10.1016/j.atmosenv.2013.05.037_bib17
  article-title: Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the puy de Dôme mountain (France)
  publication-title: Atmospheric Environment
  doi: 10.1016/S1352-2310(01)00300-4
– volume: 39
  start-page: 4305
  year: 2005
  ident: 10.1016/j.atmosenv.2013.05.037_bib34
  article-title: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2005.02.014
– volume: 27
  start-page: 2056
  year: 1993
  ident: 10.1016/j.atmosenv.2013.05.037_bib29
  article-title: Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds
  publication-title: Environmental Science and Technology
  doi: 10.1021/es00047a010
– volume: 110
  start-page: 559
  year: 2013
  ident: 10.1016/j.atmosenv.2013.05.037_bib33
  article-title: Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1205743110
– volume: 4
  start-page: 715
  year: 2004
  ident: 10.1016/j.atmosenv.2013.05.037_bib23
  article-title: Cloud chemistry at the puy de Dôme: variability and relationships with environmental factors
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-4-715-2004
– volume: 36
  start-page: 1553
  year: 2002
  ident: 10.1016/j.atmosenv.2013.05.037_bib20
  article-title: Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water
  publication-title: Atmospheric Environment
  doi: 10.1016/S1352-2310(01)00573-8
– volume: 27
  start-page: 2517
  year: 1993
  ident: 10.1016/j.atmosenv.2013.05.037_bib11
  article-title: Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters
  publication-title: Environmental Science and Technology
  doi: 10.1021/es00048a032
– volume: 88
  start-page: 32
  year: 2012
  ident: 10.1016/j.atmosenv.2013.05.037_bib3
  article-title: Atmospheric aqueous-phase photoreactivity: correlation between the hydroxyl radical photoformation and pesticide degradation rate in atmospherically relevant waters
  publication-title: Photochemistry and Photobiology
  doi: 10.1111/j.1751-1097.2011.01014.x
– volume: 4
  start-page: 95
  year: 2004
  ident: 10.1016/j.atmosenv.2013.05.037_bib6
  article-title: The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-4-95-2004
– volume: 111
  start-page: D23S45
  year: 2006
  ident: 10.1016/j.atmosenv.2013.05.037_bib30
  article-title: Oxalic acid in clear and cloudy atmospheres: analysis of data from international consortium for atmospheric research on transport and transformation 2004
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2005JD006880
– volume: 108
  start-page: 4433
  year: 2003
  ident: 10.1016/j.atmosenv.2013.05.037_bib19
  article-title: Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2002JD002950
– volume: 41
  start-page: 3303
  year: 2007
  ident: 10.1016/j.atmosenv.2013.05.037_bib35
  article-title: Modelling photochemical reactions in atmospheric water droplets: an assessment of the importance of surface processes
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2006.12.041
– volume: 61
  start-page: 561
  year: 2005
  ident: 10.1016/j.atmosenv.2013.05.037_bib1
  article-title: Simultaneous measurement of hydrogen peroxide and Fe species (Fe(II) and Fe(tot)) in Okinawa island seawater: impacts of red soil pollution
  publication-title: Journal of Oceanography
  doi: 10.1007/s10872-005-0064-9
– volume: 44
  start-page: 5316
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.037_bib16
  article-title: Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2010.08.051
– volume: 57
  start-page: 281
  year: 2007
  ident: 10.1016/j.atmosenv.2013.05.037_bib18
  article-title: Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the puy de Dôme station
  publication-title: Journal of Atmospheric Chemistry
  doi: 10.1007/s10874-007-9073-y
– volume: 97
  start-page: 540
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.037_bib21
  article-title: Effect of mixed-phase cloud on the chemical budget of trace gases: a modeling approach
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2010.05.005
– volume: 64
  start-page: 1
  year: 2009
  ident: 10.1016/j.atmosenv.2013.05.037_bib8
  article-title: Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model
  publication-title: Journal of Atmospheric Chemistry
  doi: 10.1007/s10874-010-9168-8
– year: 1999
  ident: 10.1016/j.atmosenv.2013.05.037_bib22
– volume: 38
  start-page: 4859
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.037_bib26
  article-title: Evidence of the water-cage effect on the photolysis of NO3− and FeOH2+. Implication of this effect and of H2O2 surface accumulation on photochemistry at the air-interface of atmospheric droplets
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2010.08.035
– volume: 40
  start-page: 7790
  year: 2006
  ident: 10.1016/j.atmosenv.2013.05.037_bib27
  article-title: Wavelength dependence of Fe(II) photoformation in the water-soluble fraction of aerosols collected in Okinawa, Japan
  publication-title: Environmental Science and Technology
  doi: 10.1021/es061649s
– volume: 103
  start-page: 4691
  year: 2003
  ident: 10.1016/j.atmosenv.2013.05.037_bib13
  article-title: Kinetics of aqueous phase reactions relevant for atmospheric chemistry
  publication-title: Chemical Reviews
  doi: 10.1021/cr020658q
– volume: 11
  start-page: 11069
  year: 2011
  ident: 10.1016/j.atmosenv.2013.05.037_bib9
  article-title: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-11-11069-2011
– volume: 101
  start-page: 256
  year: 2011
  ident: 10.1016/j.atmosenv.2013.05.037_bib24
  article-title: Hydrogen peroxide in natural cloud water: sources and photoreactivity
  publication-title: Atmospheric Research
  doi: 10.1016/j.atmosres.2011.02.013
– volume: 1
  start-page: 220
  year: 2010
  ident: 10.1016/j.atmosenv.2013.05.037_bib5
  article-title: Effect of iron dissolution on cloud chemistry: from laboratory measurements to model results
  publication-title: Atmospheric Pollution Research
  doi: 10.5094/APR.2010.029
– year: 2000
  ident: 10.1016/j.atmosenv.2013.05.037_bib12
– volume: 68
  start-page: 2111
  issue: 11
  year: 2007
  ident: 10.1016/j.atmosenv.2013.05.037_bib25
  article-title: Effect of selected organic and inorganic snow and cloud components on the photochemical generation of nitrite by nitrate irradiation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.02.011
– volume: 59
  start-page: 3123
  year: 1995
  ident: 10.1016/j.atmosenv.2013.05.037_bib36
  article-title: Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(95)00201-A
– volume: 54
  start-page: 267
  year: 2006
  ident: 10.1016/j.atmosenv.2013.05.037_bib28
  article-title: Speciation and role of iron in cloud droplets at the puy de Dôme station
  publication-title: Journal of Atmospheric Chemistry
  doi: 10.1007/s10874-006-9026-x
– volume: 105
  start-page: 3388
  year: 2005
  ident: 10.1016/j.atmosenv.2013.05.037_bib7
  article-title: Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters
  publication-title: Chemical Reviews
  doi: 10.1021/cr040649c
– volume: 11
  start-page: 8721
  year: 2011
  ident: 10.1016/j.atmosenv.2013.05.037_bib32
  article-title: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-11-8721-2011
– volume: 39
  start-page: 4351
  year: 2005
  ident: 10.1016/j.atmosenv.2013.05.037_bib15
  article-title: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2005.02.016
SSID ssj0003797
Score 2.209573
Snippet Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 686
SubjectTerms acetic acids
Applied sciences
aqueous solutions
atmospheric chemistry
Atmospheric pollution
Chemical composition and interactions. Ionic interactions and processes
Cloud photochemistry
Cloud physics
Earth, ocean, space
Exact sciences and technology
External geophysics
formic acid
hydrogen peroxide
Iron
irradiation
laboratory experimentation
light intensity
Meteorology
Modelling
Organic compounds
oxalic acid
oxidants
oxidation
photolysis
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
temperature
Title Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system
URI https://dx.doi.org/10.1016/j.atmosenv.2013.05.037
https://www.proquest.com/docview/1705436402
https://hal.science/hal-00950049
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N8QJCaBtMFFhlEK8hP2wnKW_V1CkMNB5g0t4s13FYpjapmnbaXnjnv-YucdpNIO2Bl0hJbCfxnc_fKXffAXyQJke_xwYeYg_pCakN2sEi9FKdRHnKU5voNtriLM7OxemFvNiB4z4XhsIqne3vbHprrd0V382mvyhL_3tI2AHRCf2Q4WnLCSpEQlr-8dc2zIMnXYEVbOxR6ztZwlcokXnd2OqaQrx4y-BJ9dD_vUE9uqRIyWcL3eDkFV3Vi78MeLsrnezBcwcn2bh7433YsdUBPL1DMngAh5NtLhs2dYu5eQG_Jxumb1YXrKuJkzMzq9d47AvBsbml5OCymTP9U5eIJplTnBpvlsslkRu0Y2yLBTSfGKofy26-3fr0aN_o5bS-uZ2VhmlTutHxA1lHJP0Szk8mP44zz1Vm8Az6gysv1lEajHIZBUmccxGJKa58nphYhCEqRWDSIjYRt5ZHaD7j2BhhRY7OJqI1qUeSH8JuVVf2FTAuRnmOt0Mhc8EDPS2EDYqCgBO5YsEAZC8OZRxtOVXPmKk-Pu1K9WJUJEYVSIViHIC_6bfoiDse7DHqpa3uqaDC3eXBvu9RPTYPIs7ubPxV0TUCseSHXYcDGN7Tnk3zCH0-ROZyAO96dVIoY_p1oytbrxtFpEeCx-jsv_6Pt3wDT-isi0V8C7ur5doeIaZaTYftohnC4_HnL9nZH8NQJFM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gAIIShULI9iENcoD9tJltuq2iqly3KglXqzvLZTUu0mq81u1f4E_jUziZO2AqkHLjnEduJkxuNv5JlvCPkitAG_xwYeYA_hcaE02ME89FKVRCZlqU1UE20xi7Mz_u1cnO-Qwy4XBsMqne1vbXpjrd0d3_1Nf1UU_s8QsQOgEzyQYSlygu4iO5UYkN3x8Uk26w0yS9oaK9DfwwF3EoUvQSjLqrblFUZ5sYbEE0ui_3uPevQLgyWfrVQN_y9vC1_8ZcObjenoBXnuECUdt5N-SXZsuUee3uEZ3CP7k9t0Nujq1nP9ivye9GTftMppWxbHUL2otnDtasHRpcX84KJeUnWhCgCU1OlOBY3Feo38Bs0zbusF1F8paCDNrn_c-PhqX6v1vLq-WRSaKl24p8MH0pZL-jU5O5qcHmaeK87gaXAJN16sojQYGREFSWwYj_gcFj9LdMzDEPQi0Gke64hZyyKwoHGsNbfcgL8JgE2okWD7ZFBWpX1DKOMjY6A55MJwFqh5zm2Q54id0BsLhkR04pDaMZdjAY2F7ELULmUnRolilIGQIMYh8ftxq5a748ERo07a8p4WSthgHhz7GdSjfxHSdmfjqcR7iGPRFbsKh-Tgnvb03SNw-wCciyH51KmTBBnj6Y0qbbWtJfIecRaDv__2P2b5kTzOTr9P5fR4dvKOPMGWNjTxPRls1lv7ASDWZn7gltAfqGEnBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+modeled+cloud+chemistry+mechanism+against+laboratory+irradiation+experiments%3A+the+HxOy%2Firon%2Fcarboxylic+acid+chemical+system&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Long%2C+Yoann&rft.au=Charbouillot%2C+Tiffany&rft.au=Brigante%2C+Marcello&rft.au=Mailhot%2C+Gilles&rft.date=2013-10-01&rft.pub=Elsevier&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=77&rft.spage=686&rft.epage=695&rft_id=info:doi/10.1016%2Fj.atmosenv.2013.05.037&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00950049v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon